CINXE.COM

Search results for: squeeze casting

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: squeeze casting</title> <meta name="description" content="Search results for: squeeze casting"> <meta name="keywords" content="squeeze casting"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="squeeze casting" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="squeeze casting"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 324</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: squeeze casting</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">324</span> An Experimental Analysis of Squeeze Casting Parameters for 2017 a Wrought Al Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ben%20Amar">Mohamed Ben Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Najib%20Souissi"> Najib Souissi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chedly%20Bradai"> Chedly Bradai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Taguchi design investigation has been made into the relationship between the ductility and process variables in a squeeze cast 2017A wrought aluminium alloy. The considered process parameters were: squeeze pressure, melt temperature and die preheating temperature. An orthogonal array (OA), main effect, signal-to-noise (S/N) ratio, and the analysis of variance (ANOVA) are employed to analyze the effect of casting parameters. The results have shown that the selected parameters significantly affect the ductility of 2017A wrought Al alloy castings. Optimal squeeze cast process parameters were provided to illustrate the proposed approach and the results were proven to be trustworthy through practical experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title="Taguchi method">Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=squeeze%20casting" title=" squeeze casting"> squeeze casting</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20parameters" title=" process parameters"> process parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/35911/an-experimental-analysis-of-squeeze-casting-parameters-for-2017-a-wrought-al-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">323</span> Development of Al-5%Cu/Si₃N₄, B₄C or BN Composites for Piston Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Lotfy">Ahmed Lotfy</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20V.%20Pozdniakov"> Andrey V. Pozdniakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vadim%20C.%20Zolotorevskiy"> Vadim C. Zolotorevskiy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research is to provide a competitive alternative to aluminum silicon alloys used in automotive applications. This alternative was created by developing three types of composites Al-5%Cu- (B₄C, BN or Si₃N₄) particulates with a low coefficient of thermal expansion. Stir casting was used to synthesis composites containing 2, 5 and 7 wt. % of B₄C, Si₃N₄ and 2, 5 of BN followed by squeeze casting. The squeeze casting process decreased the porosity of the final composites. The composites exhibited a fairly uniform particle distribution throughout the matrix alloy. The microstructure and XRD results of the composites suggested a significant reaction occurred at the interface between the particles and alloy. Increasing the aging temperature from 200 to 250°C decreased the hardness values of the matrix and the composites and decreased the time required to reach the peak. Turner model was used to calculate the expected values of thermal expansion coefficient CTE of matrix and its composites. Deviations between calculated and experimental values of CTE were not exceeded 10%. Al-5%Cu-B₄C composites experimentally showed the lowest values of CTE (17-19)·10-6 °С-1 and (19-20) ·10-6 °С-1 in the temperature range 20-100 °С and 20-200 °С respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20matrix%20composites" title="aluminum matrix composites">aluminum matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20thermal%20expansion" title=" coefficient of thermal expansion"> coefficient of thermal expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=squeeze%20casting" title=" squeeze casting"> squeeze casting</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20microscopy" title=" electron microscopy"> electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/67084/development-of-al-5cusi3n4-b4c-or-bn-composites-for-piston-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">322</span> Effects of Applied Pressure and Heat Treatment on the Microstructure of Squeeze Cast Al-Si Alloy Were Examined</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ben%20Amar">Mohamed Ben Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Henda%20Barhoumi"> Henda Barhoumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hokia%20Siala"> Hokia Siala</a>, <a href="https://publications.waset.org/abstracts/search?q=Foued%20Elhalouani"> Foued Elhalouani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present contribution consists of a purely experimental investigation on the effect of Squeeze casting on the micro structural and mechanical propriety of Al-Si alloys destined to automotive industry. Accordingly, we have proceeding, by ourselves, to all the thermal treatment consisting of solution treatment at 540°C for 8h and aging at 160°C for 4h. The various thermal treatment, have been carried out in order to monitor the processes of formation and dissolution accompanying the solid state phase transformations as well as the resulting changes in the mechanical proprieties. The examination of the micrographs of the aluminum alloys reveals the dominant presence of dendrite. Concerning the mechanical characteristic the Vickers micro-hardness curve an increase as a function of the pressure. As well as the heat treatment increase mechanical propriety such that pressure and micro hardness. The curves have been explained in terms of structural hardening resulting from the various compounds formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=squeeze%20casting" title="squeeze casting">squeeze casting</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20parameters" title=" process parameters"> process parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/35915/effects-of-applied-pressure-and-heat-treatment-on-the-microstructure-of-squeeze-cast-al-si-alloy-were-examined" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">321</span> Metallograpy of Remelted A356 Aluminium following Squeeze Casting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azad%20Hussain">Azad Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Cobley"> Andrew Cobley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for lightweight parts with high mechanical strength(s) and integrity, in sectors such as the aerospace and automotive is ever increasing, motivated by the need for weight reduction in order to increase fuel efficiency with components usually manufactured using a high grade primary metal or alloy. For components manufactured using the squeeze casting process, this alloy is usually A356 aluminium (Al), it is one of the most versatile Al alloys; and is used extensively in castings for demanding environments. The A356 castings provide good strength to weight ratio making it an attractive option for components where strength has to be maintained, with the added advantage of weight reduction. In addition, the versatility in castabilitiy, weldability and corrosion resistance are other attributes that provide for the A356 cast alloy to be used in a large array of industrial applications. Conversely, it is rare to use remelted Al in these cases, due the nature of the applications of components in demanding environments, were material properties must be defined to meet certain specifications for example a known strength or ductility. However the use of remelted Al, especially primary grade Al such as A356, would offer significant cost and energy savings for manufacturers using primary alloys, provided that remelted aluminium can offer similar benefits in terms of material microstructure and mechanical properties. This study presents the results of the material microstructure and properties of 100% primary A356 Al and 100% remelt Al cast, manufactured via the direct squeeze cast method. The microstructures of the castings made from remelted A356 Al were then compared with the microstructures of primary A356 Al. The outcome of using remelting Al on the microstructure was examined via different analytical techniques, optical microscopy of polished and etched surfaces, and scanning electron microscopy. Microstructural analysis of the 100% remelted Al when compared with primary Al show similar α-Al phase, primary Al dendrites, particles and eutectic constituents. Mechanical testing of cast samples will elucidate further information as to the suitability of utilising 100% remelt for casting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A356" title="A356">A356</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=remelt" title=" remelt"> remelt</a>, <a href="https://publications.waset.org/abstracts/search?q=squeeze%20casting" title=" squeeze casting"> squeeze casting</a> </p> <a href="https://publications.waset.org/abstracts/40101/metallograpy-of-remelted-a356-aluminium-following-squeeze-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">320</span> Fundamental Research Dissension between Hot and Cold Chamber High Pressure Die Casting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahil%20Kumar">Sahil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Surinder%20Pal"> Surinder Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Kapoor"> Rahul Kapoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is focused on to define the basic difference between hot and cold chamber high pressure die casting process which is not fully defined in a research before paper which we have studied. The pressure die casting is basically defined into two types (1) Hot chamber Die Casting (2) Cold chamber Die Casting. Cold chamber die casting is used for casting alloys that require high pressure and have a high melting temperature, such as brass, aluminum, magnesium, copper based alloys and other high melting point nonferrous alloys. Hot chamber die casting is suitable for casting zinc, tin, lead, and low melting point alloys. In hot chamber die casting machine, the molten metal is an integral pan of the machine. It mainly consists of hot chamber and gooseneck type metal container made of cast iron. This machine is mainly used for low melting alloys and alloys of metals like zinc, lead etc. Metals and alloys having a high melting point and those which are having an affinity for iron cannot be cast by this machine, which could otherwise attack the shot sleeve and damage the machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20chamber%20die%20casting" title="hot chamber die casting">hot chamber die casting</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20chamber%20die%20casting" title=" cold chamber die casting"> cold chamber die casting</a>, <a href="https://publications.waset.org/abstracts/search?q=metals%20and%20alloys" title=" metals and alloys"> metals and alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=casting%20technology" title=" casting technology"> casting technology</a> </p> <a href="https://publications.waset.org/abstracts/25342/fundamental-research-dissension-between-hot-and-cold-chamber-high-pressure-die-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">618</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> Evaluation of Digital Assessment of Anal Sphincter Muscle Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Kamal%20Aziz%20Saba">Emmanuel Kamal Aziz Saba</a>, <a href="https://publications.waset.org/abstracts/search?q=Gihan%20Abd%20El-Lateif%20Younis%20El-Tantawi"> Gihan Abd El-Lateif Younis El-Tantawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Hamdy%20Zahran"> Mohammed Hamdy Zahran</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Khalil%20Ibrahim"> Ibrahim Khalil Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abd%20El-Salam%20Shehata"> Mohammed Abd El-Salam Shehata</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Al-Moghazy%20Sultan"> Hussein Al-Moghazy Sultan</a>, <a href="https://publications.waset.org/abstracts/search?q=Medhat%20Mohamed%20Anwar"> Medhat Mohamed Anwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Examination of the external anal sphincter muscle strength of voluntary contraction is essential in initial assessment and assessment of efficacy of rehabilitation of patients with faecal incontinence (FI) and obstructed defecation (OD). The present study was conducted to evaluate the digital assessment of the external anal sphincter muscle strength of voluntary contraction by using Modified Oxford Scale (MOS) in comparison to anal manometry squeeze pressure. The present cross-sectional study included 65 patients. There were 40 patients (61.5 %) with FI and 25 patients (38.5 %) with OD. All patients were subjected to history taking, clinical examination including assessment of the external anal sphincter muscle strength of voluntary contraction by using MOS and anal manometry (mean squeeze pressure and maximal squeeze pressure). There was a statistically significant positive correlation between MOS and anal manometry squeeze pressures including mean squeeze pressure and maximal squeeze pressure among FI group and OD group. In conclusion, assessment of the external anal sphincter muscle strength of voluntary contraction by using MOS is a valid method and can substitute anal manometry assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anal%20manometry" title="anal manometry">anal manometry</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20anal%20sphincter%20muscle" title=" external anal sphincter muscle"> external anal sphincter muscle</a>, <a href="https://publications.waset.org/abstracts/search?q=Modified%20Oxford%20Scale" title=" Modified Oxford Scale"> Modified Oxford Scale</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20strength" title=" muscle strength"> muscle strength</a> </p> <a href="https://publications.waset.org/abstracts/32483/evaluation-of-digital-assessment-of-anal-sphincter-muscle-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> A Comparative Study of Microstructure, Thermal and Mechanical Properties of A359 Composites Reinforced with SiC, Si3N4 and AlN Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Essam%20Shalaby">Essam Shalaby</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Churyumov"> Alexander Churyumov</a>, <a href="https://publications.waset.org/abstracts/search?q=Malak%20Abou%20El-Khair"> Malak Abou El-Khair</a>, <a href="https://publications.waset.org/abstracts/search?q=Atef%20Daoud"> Atef Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comparative study of the thermal and mechanical behavior of squeezed A359 composites containing 5, 10 and 15 wt.% SiC, (SiC+ Si3N4) and AlN particulates was investigated. Stir followed by squeeze casting techniques are used to produce A359 composites. It was noticed that, A359/AlN composites have high thermal conductivity as compared to A359 alloy and even to A359/SiC or A359/(SiC+Si3N4) composites. Microstructures of the composites have shown homogeneous and even distribution of reinforcements within the matrix. Interfacial reactions between particles and matrix were investigated using X-ray diffraction and energy dispersive X-ray analysis. The presence of particles led not only to increase peak hardness of the composites but also to accelerate the aging kinetics. As compared with A359 matrix alloy, compression test of the composites has exhibited a significant increase in the yield and the ultimate compressive strengths with a relative reduction in the failure strain. Those light weight composites have a high potential to be used for automotive and aerospace applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal-matrix%20composite" title="metal-matrix composite">metal-matrix composite</a>, <a href="https://publications.waset.org/abstracts/search?q=squeeze" title=" squeeze"> squeeze</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20properties" title=" compressive properties"> compressive properties</a> </p> <a href="https://publications.waset.org/abstracts/66981/a-comparative-study-of-microstructure-thermal-and-mechanical-properties-of-a359-composites-reinforced-with-sic-si3n4-and-aln-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">317</span> Comparing Two Non-Contact Squeeze Film Levitation Designs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Almurshedi">Ahmed Almurshedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Atherton"> Mark Atherton</a>, <a href="https://publications.waset.org/abstracts/search?q=Mares%20Cristinel"> Mares Cristinel</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadeusz%20%20Stolarski"> Tadeusz Stolarski</a>, <a href="https://publications.waset.org/abstracts/search?q=Masaaki%20%20Miyatake"> Masaaki Miyatake</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transportation and handling of delicate and lightweight objects is a significant issue in some industries. Two levitation prototype designs, a horn transducer design and surface-mounted piezoelectric actuator vibrating plate design, are compared. Both designs are based on the method of squeeze-film levitation (SFL) and the aim of this study is to evaluate the characteristics and performance of each. To this end, physical experiments are conducted and are demonstrated that the horn-type transducer prototype design produces better levitation performance but it design complexity and operating characteristics make it less suitable than the vibrating plate design for practical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating" title="floating">floating</a>, <a href="https://publications.waset.org/abstracts/search?q=levitation" title=" levitation"> levitation</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=squeeze-film" title=" squeeze-film"> squeeze-film</a>, <a href="https://publications.waset.org/abstracts/search?q=transducer" title=" transducer"> transducer</a> </p> <a href="https://publications.waset.org/abstracts/92876/comparing-two-non-contact-squeeze-film-levitation-designs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">316</span> Experimental Squeeze Flow of Bitumen: Rheological Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kraiem">A. Kraiem</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ayadi"> A. Ayadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The squeeze flow tests were studied by many authors to measure the rheological properties of fluid. Experimental squeezing flow test with constant area between two parallel disks of bitumen is investigated in the present work. The effect of the temperature, the process of preparing the sample and the gap between the discs were discussed. The obtained results were compared with the theoretical models. The behavior of bitumen depends on the viscosity and the yield stress. Thus, the bitumen was presented as a power law for a small power law exponent and as a biviscous fluid when the viscosity ratio was smaller than one. Also, the influence of the ambient temperature is required for the compression test. Therefore, for a high temperature the yield stress decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen" title="bitumen">bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=biviscous%20fluid" title=" biviscous fluid"> biviscous fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=squeeze%20flow" title=" squeeze flow"> squeeze flow</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress"> yield stress</a> </p> <a href="https://publications.waset.org/abstracts/95528/experimental-squeeze-flow-of-bitumen-rheological-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">315</span> Simulation of Die Casting Process in an Industrial Helical Gearbox Flange Die</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Modabberifar">Mehdi Modabberifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Behrouz%20Raad"> Behrouz Raad</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahman%20Mirzakhani"> Bahman Mirzakhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flanges are widely used for connecting valves, pipes and other industrial devices such as gearboxes. Method of producing a flange has a considerable impact on the manner of their involvement with the industrial engines and gearboxes. By Using die casting instead of sand casting and machining for manufacturing flanges, production speed and dimensional accuracy of the parts increases. Also, in die casting, obtained dimensions are close to final dimensions and hence the need for machining flanges after die casting process decreases which makes a significant savings in raw materials and improves the mechanical properties of flanges. In this paper, a typical die of an industrial helical gearbox flange (size ISO 50) was designed and die casting process for producing this type of flange was simulated using ProCAST software. The results of simulation were used for optimizing die design. Finally, using the results of the analysis, optimized die was built. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=die%20casting" title="die casting">die casting</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=flange" title=" flange"> flange</a>, <a href="https://publications.waset.org/abstracts/search?q=helical%20gearbox" title=" helical gearbox"> helical gearbox</a> </p> <a href="https://publications.waset.org/abstracts/7659/simulation-of-die-casting-process-in-an-industrial-helical-gearbox-flange-die" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">314</span> A Review on Parametric Optimization of Casting Processes Using Optimization Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhrugesh%20Radadiya">Bhrugesh Radadiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaydeep%20Shah"> Jaydeep Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Indian foundry industry, there is a need of defect free casting with minimum production cost in short lead time. Casting defect is a very large issue in foundry shop which increases the rejection rate of casting and wastage of materials. The various parameters influences on casting process such as mold machine related parameters, green sand related parameters, cast metal related parameters, mold related parameters and shake out related parameters. The mold related parameters are most influences on casting defects in sand casting process. This paper review the casting produced by foundry with shrinkage and blow holes as a major defects was analyzed and identified that mold related parameters such as mold temperature, pouring temperature and runner size were not properly set in sand casting process. These parameters were optimized using different optimization techniques such as Taguchi method, Response surface methodology, Genetic algorithm and Teaching-learning based optimization algorithm. Finally, concluded that a Teaching-learning based optimization algorithm give better result than other optimization techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=casting%20defects" title="casting defects">casting defects</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20optimization" title=" parametric optimization"> parametric optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=TLBO%20algorithm" title=" TLBO algorithm"> TLBO algorithm</a> </p> <a href="https://publications.waset.org/abstracts/21826/a-review-on-parametric-optimization-of-casting-processes-using-optimization-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">728</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">313</span> Processing Design of Miniature Casting Incorporating Stereolithography Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pei-Hsing%20Huang">Pei-Hsing Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Ju%20Huang"> Wei-Ju Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investment casting is commonly used in the production of metallic components with complex shapes, due to its high dimensional precision, good surface finish, and low cost. However, the process is cumbersome, and the period between trial casting and final production can be very long, thereby limiting business opportunities and competitiveness. In this study, we replaced conventional wax injection with stereolithography (SLA) 3D printing to speed up the trial process and reduce costs. We also used silicone molds to further reduce costs to avoid the high costs imposed by photosensitive resin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=investment%20casting" title="investment casting">investment casting</a>, <a href="https://publications.waset.org/abstracts/search?q=stereolithography" title=" stereolithography"> stereolithography</a>, <a href="https://publications.waset.org/abstracts/search?q=wax%20molding" title=" wax molding"> wax molding</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a> </p> <a href="https://publications.waset.org/abstracts/69971/processing-design-of-miniature-casting-incorporating-stereolithography-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">312</span> Bifurcations of a System of Rotor-Ball Bearings with Waviness and Squeeze Film Dampers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Modares%20Ahmadi">Sina Modares Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Reza%20Ghazavi"> Mohamad Reza Ghazavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandana%20Sheikhzad"> Mandana Sheikhzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Squeeze film damper systems (SFD) are often used in machines with high rotational speed to reduce non-periodic behavior by creating external damping. These types of systems are frequently used in aircraft gas turbine engines. There are some structural parameters which are of great importance in designing these kinds of systems, such as oil film thickness, C, and outer race mass, mo. Moreover, there is a crucial parameter associated with manufacturing process, under the title of waviness. Geometric imperfections are often called waviness if its wavelength is much longer than Hertzian contact width which is a considerable source of vibration in ball bearings. In this paper, a system of a flexible rotor and two ball bearings with floating ring squeeze film dampers and consideration of waviness has been modeled and solved by a numerical integration method, namely Runge-Kutta method to investigate the dynamic response of the system. The results show that by increasing the number of wave lobes, which is due to inappropriate manufacturing, non- periodic and chaotic behavior increases. This result reveals the importance of manufacturing accuracy. Moreover, as long as C< 1.5×10-4 m, by increasing the oil film thickness, unwanted vibrations and non-periodic behavior of the system have been reduced, On the other hand, when C>1.5×10-4 m, increasing the outer oil film thickness results in the increasing chaotic and non-periodic responses. This result shows that although the presence of oil film results in reduction the non-periodic and chaotic behaviors, but the oil film has an optimal thickness. In addition, with increasing mo, the disc displacement amplitude increases. This result reveals the importance of utilizing light materials in manufacturing the squeeze film dampers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=squeeze-film%20damper" title="squeeze-film damper">squeeze-film damper</a>, <a href="https://publications.waset.org/abstracts/search?q=waviness" title=" waviness"> waviness</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20bearing" title=" ball bearing"> ball bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=bifurcation" title=" bifurcation"> bifurcation</a> </p> <a href="https://publications.waset.org/abstracts/17218/bifurcations-of-a-system-of-rotor-ball-bearings-with-waviness-and-squeeze-film-dampers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">311</span> Effect of the Mould Rotational Speed on the Quality of Centrifugal Castings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20El-Sayed">M. A. El-Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Aziz"> S. A. Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Centrifugal casting is a standard casting technique for the manufacture of hollow, intricate and sound castings without the use of cores. The molten metal or alloy poured into the rotating mold forms a hollow casting as the centrifugal forces lift the liquid along the mold inner surface. The rotational speed of the die was suggested to greatly affect the manner in which the molten metal flows within the mould and consequently the probability of the formation of a uniform cylinder. In this work the flow of the liquid metal at various speeds and its effect during casting were studied. The results suggested that there was a critical range for the speed, within which the produced castings exhibited best uniformity and maximum mechanical properties. When a mould was rotated at speeds below or beyond the critical range defects were found in the final castings, which affected the uniformity and significantly lowered the mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20casting" title="centrifugal casting">centrifugal casting</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20speed" title=" rotational speed"> rotational speed</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20speed%20range" title=" critical speed range"> critical speed range</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/6659/effect-of-the-mould-rotational-speed-on-the-quality-of-centrifugal-castings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">310</span> Development of a Robot Assisted Centrifugal Casting Machine for Manufacturing Multi-Layer Journal Bearing and High-Tech Machine Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Syed%20Ali%20Molla">Mohammad Syed Ali Molla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Azim"> Mohammed Azim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Esharuzzaman"> Mohammad Esharuzzaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Centrifugal-casting machine is used in manufacturing special machine components like multi-layer journal bearing used in all internal combustion engine, steam, gas turbine and air craft turboengine where isotropic properties and high precisions are desired. Moreover, this machine can be used in manufacturing thin wall hightech machine components like cylinder liners and piston rings of IC engine and other machine parts like sleeves, and bushes. Heavy-duty machine component like railway wheel can also be prepared by centrifugal casting. A lot of technological developments are required in casting process for production of good casted machine body and machine parts. Usually defects like blowholes, surface roughness, chilled surface etc. are found in sand casted machine parts. But these can be removed by centrifugal casting machine using rotating metallic die. Moreover, die rotation, its temperature control, and good pouring practice can contribute to the quality of casting because of the fact that the soundness of a casting in large part depends upon how the metal enters into the mold or dies and solidifies. Poor pouring practice leads to variety of casting defects such as temperature loss, low quality casting, excessive turbulence, over pouring etc. Besides these, handling of molten metal is very unsecured and dangerous for the workers. In order to get rid of all these problems, the need of an automatic pouring device arises. In this research work, a robot assisted pouring device and a centrifugal casting machine are designed, developed constructed and tested experimentally which are found to work satisfactorily. The robot assisted pouring device is further modified and developed for using it in actual metal casting process. Lot of settings and tests are required to control the system and ultimately it can be used in automation of centrifugal casting machine to produce high-tech machine parts with desired precision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing" title="bearing">bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20casting" title=" centrifugal casting"> centrifugal casting</a>, <a href="https://publications.waset.org/abstracts/search?q=cylinder%20liners" title=" cylinder liners"> cylinder liners</a>, <a href="https://publications.waset.org/abstracts/search?q=robot" title=" robot"> robot</a> </p> <a href="https://publications.waset.org/abstracts/40197/development-of-a-robot-assisted-centrifugal-casting-machine-for-manufacturing-multi-layer-journal-bearing-and-high-tech-machine-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">309</span> Investment Casting Conditions with Tourmaline In-Situ</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kageeporn%20Wongpreedee">Kageeporn Wongpreedee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bongkot%20Phichaikamjornwut"> Bongkot Phichaikamjornwut</a>, <a href="https://publications.waset.org/abstracts/search?q=Duangkhae%20Bootkul"> Duangkhae Bootkul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technique of stone in place casting had been established in jewelry production for two decades. However, the process were not widely used since it was limited to precious stones with high hardness and high stabililty at high temperature. This experiment were tested on tourmaline which is semi-precious gemstone having less hardness and less stability comparing to precious stones. The experiment were designed into two parts. The first part is to understand the phenomena of tourmaline under the heating conditions. Natural tourmaline stones were investigated and compared inclusions inside stones tested at temperature of 500 °C, 600 °C, and 700 °C. The second part is to cast the treated tourmaline with ion-implanation under the stones in place casting conditions. The results showed that stones were able to tolerate as much as at 700 °C showing the growths of inclusions inside the stones. The second part of this experiment were compared tourmaline with ion-implantation and natural tourmaline using on stones in place casting process at different stone setting types. The results showed that the cracks and inclustions of both treat and natural tourmaline with stones in place casting were propagate due to high stress of metal contractions. The stones with ion-implatation were more likely tolerate to cracks and inclusion propagations inside the stones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stone%20in%20place%20casting" title="stone in place casting">stone in place casting</a>, <a href="https://publications.waset.org/abstracts/search?q=tourmaline" title=" tourmaline"> tourmaline</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20implantation" title=" ion implantation"> ion implantation</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20contraction" title=" metal contraction"> metal contraction</a> </p> <a href="https://publications.waset.org/abstracts/57747/investment-casting-conditions-with-tourmaline-in-situ" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">308</span> The Effect of Increase in Aluminium Content on Fluidity of ZA Alloys Processed by Centrifugal Casting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20N.%20Jyothi">P. N. Jyothi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shailesh%20Rao"> A. Shailesh Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Jagath"> M. C. Jagath</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Channakeshavalu"> K. Channakeshavalu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uses of ZA alloys as bearing material have been increased due to their superior mechanical properties, wear characteristics and tribological properties. Among ZA alloys, ZA 27 alloy has higher strength, low density with excellent bearing and wear characteristics. From the past research work, it is observed that in continuous casting as Al content increases, the fluidity also increases. In present work, ZA 8, ZA 12 and ZA 27 alloys have been processed through centrifugal casting process at 600 rotational speed of the mould. Uniform full cylinder is casted with ZA 8 alloy. For ZA 12 and ZA 27 alloys where the Al content is higher, cast tubes were not complete and uniform. The reason is Al may be acting as a refiner and reduce the melt flow in the rotating mould. This is mainly due to macro-segregation of Al, which has occurred due to difference in densities of Al and Zn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20casting" title="centrifugal casting">centrifugal casting</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20flow" title=" metal flow"> metal flow</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20engineering" title=" systems engineering"> systems engineering</a> </p> <a href="https://publications.waset.org/abstracts/4057/the-effect-of-increase-in-aluminium-content-on-fluidity-of-za-alloys-processed-by-centrifugal-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">307</span> A Lightweight Pretrained Encrypted Traffic Classification Method with Squeeze-and-Excitation Block and Sharpness-Aware Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiyan%20Meng">Zhiyan Meng</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Liu"> Dan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jintao%20Meng"> Jintao Meng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dependable encrypted traffic classification is crucial for improving cybersecurity and handling the growing amount of data. Large language models have shown that learning from large datasets can be effective, making pre-trained methods for encrypted traffic classification popular. However, attention-based pre-trained methods face two main issues: their large neural parameters are not suitable for low-computation environments like mobile devices and real-time applications, and they often overfit by getting stuck in local minima. To address these issues, we developed a lightweight transformer model, which reduces the computational parameters through lightweight vocabulary construction and Squeeze-and-Excitation Block. We use sharpness-aware optimization to avoid local minima during pre-training and capture temporal features with relative positional embeddings. Our approach keeps the model's classification accuracy high for downstream tasks. We conducted experiments on four datasets -USTC-TFC2016, VPN 2016, Tor 2016, and CICIOT 2022. Even with fewer than 18 million parameters, our method achieves classification results similar to methods with ten times as many parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sharpness-aware%20optimization" title="sharpness-aware optimization">sharpness-aware optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=encrypted%20traffic%20classification" title=" encrypted traffic classification"> encrypted traffic classification</a>, <a href="https://publications.waset.org/abstracts/search?q=squeeze-and-excitation%20block" title=" squeeze-and-excitation block"> squeeze-and-excitation block</a>, <a href="https://publications.waset.org/abstracts/search?q=pretrained%20model" title=" pretrained model"> pretrained model</a> </p> <a href="https://publications.waset.org/abstracts/191101/a-lightweight-pretrained-encrypted-traffic-classification-method-with-squeeze-and-excitation-block-and-sharpness-aware-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">306</span> USE-Net: SE-Block Enhanced U-Net Architecture for Robust Speaker Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kilari%20Nikhil">Kilari Nikhil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankur%20Tibrewal"> Ankur Tibrewal</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivas%20Kruthiventi%20S.%20S."> Srinivas Kruthiventi S. S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional speaker identification systems often fall short of capturing the diverse variations present in speech data due to fixed-scale architectures. In this research, we propose a CNN-based architecture, USENet, designed to overcome these limitations. Leveraging two key techniques, our approach achieves superior performance on the VoxCeleb 1 Dataset without any pre-training. Firstly, we adopt a U-net-inspired design to extract features at multiple scales, empowering our model to capture speech characteristics effectively. Secondly, we introduce the squeeze and excitation block to enhance spatial feature learning. The proposed architecture showcases significant advancements in speaker identification, outperforming existing methods, and holds promise for future research in this domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-scale%20feature%20extraction" title="multi-scale feature extraction">multi-scale feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=squeeze%20and%20excitation" title=" squeeze and excitation"> squeeze and excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=VoxCeleb1%20speaker%20identification" title=" VoxCeleb1 speaker identification"> VoxCeleb1 speaker identification</a>, <a href="https://publications.waset.org/abstracts/search?q=mel-spectrograms" title=" mel-spectrograms"> mel-spectrograms</a>, <a href="https://publications.waset.org/abstracts/search?q=USENet" title=" USENet"> USENet</a> </p> <a href="https://publications.waset.org/abstracts/170441/use-net-se-block-enhanced-u-net-architecture-for-robust-speaker-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">305</span> Accuracy of a 3D-Printed Polymer Model for Producing Casting Mold</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ariangelo%20Hauer%20Dias%20Filho">Ariangelo Hauer Dias Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=Gustavo%20Antoni%C3%A1comi%20de%20Carvalho"> Gustavo Antoniácomi de Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamim%20de%20Melo%20Carvalho"> Benjamim de Melo Carvalho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work´s purpose was to evaluate the possibility of manufacturing casting tools utilizing Fused Filament Fabrication, a 3D printing technique, without any post-processing on the printed part. Taguchi Orthogonal array was used to evaluate the influence of extrusion temperature, bed temperature, layer height, and infill on the dimensional accuracy of a 3D-Printed Polymer Model. A Zeiss T-SCAN CS 3D Scanner was used for dimensional evaluation of the printed parts within the limit of ±0,2 mm. The mold capabilities were tested with the printed model to check how it would interact with the green sand. With little adjustments in the 3D model, it was possible to produce rapid tools without the need for post-processing for iron casting. The results are important for reducing time and cost in the development of such tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20tooling" title=" rapid tooling"> rapid tooling</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20filament%20fabrication" title=" fused filament fabrication"> fused filament fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=casting%20mold" title=" casting mold"> casting mold</a> </p> <a href="https://publications.waset.org/abstracts/152307/accuracy-of-a-3d-printed-polymer-model-for-producing-casting-mold" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">304</span> Porosities Comparison between Production and Simulation in Motorcycle Fuel Caps of Aluminum High Pressure Die Casting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Meethum">P. Meethum</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Suvanjumrat"> C. Suvanjumrat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many aluminum motorcycle parts produced by a high pressure die casting. Some parts such as fuel caps were a thin and complex shape. This part risked for porosities and blisters on surface if it only depended on an experience of mold makers for mold design. This research attempted to use CAST-DESIGNER software simulated the high pressure die casting process with the same process parameters of a motorcycle fuel cap production. The simulated results were compared with fuel cap products and expressed the same porosity and blister locations on cap surface. An average of absolute difference of simulated results was obtained 0.094 mm when compared the simulated porosity and blister defect sizes on the fuel cap surfaces with the experimental micro photography. This comparison confirmed an accuracy of software and will use the setting parameters to improve fuel cap molds in the further work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum" title="aluminum">aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=die%20casting" title=" die casting"> die casting</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cap" title=" fuel cap"> fuel cap</a>, <a href="https://publications.waset.org/abstracts/search?q=motorcycle" title=" motorcycle"> motorcycle</a> </p> <a href="https://publications.waset.org/abstracts/16969/porosities-comparison-between-production-and-simulation-in-motorcycle-fuel-caps-of-aluminum-high-pressure-die-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">303</span> A Metallography Study of Secondary A226 Aluminium Alloy Used in Automotive Industries </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lenka%20Hurtalov%C3%A1">Lenka Hurtalová</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Tillov%C3%A1"> Eva Tillová</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%A1ria%20Chalupov%C3%A1"> Mária Chalupová</a>, <a href="https://publications.waset.org/abstracts/search?q=Juraj%20Belan"> Juraj Belan</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Uhr%C3%AD%C4%8Dik"> Milan Uhríčik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The secondary alloy A226 is used for many automotive casting produced by mould casting and high pressure die-casting. This alloy has excellent castability, good mechanical properties and cost-effectiveness. Production of primary aluminium alloys belong to heavy source fouling of life environs. The European Union calls for the emission reduction and reduction in energy consumption, therefore, increase production of recycled (secondary) aluminium cast alloys. The contribution is deal with influence of recycling on the quality of the casting made from A226 in automotive industry. The properties of the casting made from secondary aluminium alloys were compared with the required properties of primary aluminium alloys. The effect of recycling on microstructure was observed using combination different analytical techniques (light microscopy upon black-white etching, scanning electron microscopy-SEM upon deep etching and energy dispersive X-ray analysis-EDX). These techniques were used for the identification of the various structure parameters, which was used to compare secondary alloy microstructure with primary alloy microstructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A226%20secondary%20aluminium%20alloy" title="A226 secondary aluminium alloy">A226 secondary aluminium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20etching" title=" deep etching"> deep etching</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling%20foundry%20aluminium%20alloy" title=" recycling foundry aluminium alloy"> recycling foundry aluminium alloy</a> </p> <a href="https://publications.waset.org/abstracts/20090/a-metallography-study-of-secondary-a226-aluminium-alloy-used-in-automotive-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">302</span> Closed-Form Sharma-Mittal Entropy Rate for Gaussian Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Septimia%20Sarbu">Septimia Sarbu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The entropy rate of a stochastic process is a fundamental concept in information theory. It provides a limit to the amount of information that can be transmitted reliably over a communication channel, as stated by Shannon's coding theorems. Recently, researchers have focused on developing new measures of information that generalize Shannon's classical theory. The aim is to design more efficient information encoding and transmission schemes. This paper continues the study of generalized entropy rates, by deriving a closed-form solution to the Sharma-Mittal entropy rate for Gaussian processes. Using the squeeze theorem, we solve the limit in the definition of the entropy rate, for different values of alpha and beta, which are the parameters of the Sharma-Mittal entropy. In the end, we compare it with Shannon and Rényi's entropy rates for Gaussian processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20entropies" title="generalized entropies">generalized entropies</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharma-Mittal%20entropy%20rate" title=" Sharma-Mittal entropy rate"> Sharma-Mittal entropy rate</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes" title=" Gaussian processes"> Gaussian processes</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues%20of%20the%20covariance%20matrix" title=" eigenvalues of the covariance matrix"> eigenvalues of the covariance matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=squeeze%20theorem" title=" squeeze theorem "> squeeze theorem </a> </p> <a href="https://publications.waset.org/abstracts/32177/closed-form-sharma-mittal-entropy-rate-for-gaussian-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">301</span> Performance Evaluation of Sand Casting Manufacturing Plant with WITNESS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aniruddha%20Joshi">Aniruddha Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses a simulation study of automated sand casting production system. Therefore, the first aims of this study is development of automated sand casting process model and analyze this model with a simulation software Witness. Production methodology aims to improve overall productivity through elimination of wastes and that leads to improve quality. Integration of automation with Simulation is beneficial to identify the obstacles in implementation and to take appropriate options to implement successfully. For this integration, there are different Simulation Software’s. To study this integration, with the help of “WITNESS” Simulation Software the model is created. This model is based on literature review. The input parameters are Setup Time, Number of machines, cycle time and output parameter is number of castings, avg, and time and percentage usage of machines. Obtained results are used for Statistical Analysis. This analysis concludes the optimal solution to get maximum output. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20sand%20casting%20production%20system" title="automated sand casting production system">automated sand casting production system</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=WITNESS%20software" title=" WITNESS software"> WITNESS software</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a> </p> <a href="https://publications.waset.org/abstracts/18959/performance-evaluation-of-sand-casting-manufacturing-plant-with-witness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">789</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">300</span> Towards the Modeling of Lost Core Viability in High-Pressure Die Casting: A Fluid-Structure Interaction Model with 2-Phase Flow Fluid Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Kohlst%C3%A4dt">Sebastian Kohlstädt</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20%20Vynnycky"> Michael Vynnycky</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20Goeke"> Stephan Goeke</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20J%C3%A4ckel"> Jan Jäckel</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Gebauer-Teichmann"> Andreas Gebauer-Teichmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper summarizes the progress in the latest computational fluid dynamics research towards the modeling in of lost core viability in high-pressure die casting. High-pressure die casting is a process that is widely employed in the automotive and neighboring industries due to its advantages in casting quality and cost efficiency. The degrees of freedom are however somewhat limited as it has been so far difficult to use lost cores in the process. This is right now changing and the deployment of lost cores is considered a future growth potential for high-pressure die casting companies. The use of this technology itself is difficult though. The strength of the core material, as chiefly salt is used, is limited and experiments have shown that the cores will not hold under all circumstances and process designs. For this purpose, the publicly available CFD library foam-extend (OpenFOAM) is used, and two additional fluid models for incompressible and compressible two-phase flow are implemented as fluid solver models into the FSI library. For this purpose, the volume-of-fluid (VOF) methodology is used. The necessity for the fluid-structure interaction (FSI) approach is shown by a simple CFD model geometry. The model is benchmarked against analytical models and experimental data. Sufficient agreement is found with the analytical models and good agreement with the experimental data. An outlook on future developments concludes the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=high-pressure%20die%20casting" title=" high-pressure die casting"> high-pressure die casting</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flow" title=" multiphase flow"> multiphase flow</a> </p> <a href="https://publications.waset.org/abstracts/78928/towards-the-modeling-of-lost-core-viability-in-high-pressure-die-casting-a-fluid-structure-interaction-model-with-2-phase-flow-fluid-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">299</span> Ethics in the Production of Chinese Reality TV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tianyu%20Zhang">Tianyu Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> China has become one of the markets with the biggest potential for UK exporters, but it remains difficult for outsiders to explore Chinese media’s inner workings due to a lack of access. Having worked in Chinese media, the author conducted six month’s participant-observation in China Central Television (CCTV) and three independent production companies. This paper mainly explores how TV production ethics were implemented in the casting process of three Chinese reality shows that are well-known within the country. The three production teams had issues in common: unorganised management, subjective casting standards and lack of production ethics. Casting directors, who were multitasking, could only rely on their professional experience and ad-hoc demands from the management. More concerning phenomena such as borderline corruption, passive-aggressiveness, and blame cultures were prevalent during the entire production, especially during casting. The casting process also often involved the celebrity status of the many ‘ordinary’ participants who were not that ‘ordinary’ as they claimed. Many of these participants were professional talents who were not famous enough but worked as many other well-known celebrities who had their own employees. On the other hand, as comprehensive production and ethics guidelines were missing, junior television practitioners struggled between their ideal professional standards and real-life events that fell into grey areas – telling white lies, bribery, shifting blame, and lack of employee training. Although facing challenges, many practitioners came up with self-management solutions and worked with positivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=production%20studies" title="production studies">production studies</a>, <a href="https://publications.waset.org/abstracts/search?q=ethics" title="ethics">ethics</a>, <a href="https://publications.waset.org/abstracts/search?q=television%20production" title="television production">television production</a>, <a href="https://publications.waset.org/abstracts/search?q=ethnography" title="ethnography">ethnography</a>, <a href="https://publications.waset.org/abstracts/search?q=reality%20TV" title="reality TV">reality TV</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20TV" title="Chinese TV">Chinese TV</a> </p> <a href="https://publications.waset.org/abstracts/147788/ethics-in-the-production-of-chinese-reality-tv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">298</span> Processes and Application of Casting Simulation and Its Software’s</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surinder%20Pal">Surinder Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Gupta"> Ajay Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Johny%20Khajuria"> Johny Khajuria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Casting simulation helps visualize mold filling and casting solidification; predict related defects like cold shut, shrinkage porosity and hard spots; and optimize the casting design to achieve the desired quality with high yield. Flow and solidification of molten metals are, however, a very complex phenomenon that is difficult to simulate correctly by conventional computational techniques, especially when the part geometry is intricate and the required inputs (like thermo-physical properties and heat transfer coefficients) are not available. Simulation software is based on the process of modeling a real phenomenon with a set of mathematical formulas. It is, essentially, a program that allows the user to observe an operation through simulation without actually performing that operation. Simulation software is used widely to design equipment so that the final product will be as close to design specs as possible without expensive in process modification. Simulation software with real-time response is often used in gaming, but it also has important industrial applications. When the penalty for improper operation is costly, such as airplane pilots, nuclear power plant operators, or chemical plant operators, a mockup of the actual control panel is connected to a real-time simulation of the physical response, giving valuable training experience without fear of a disastrous outcome. The all casting simulation software has own requirements, like magma cast has only best for crack simulation. The latest generation software Auto CAST developed at IIT Bombay provides a host of functions to support method engineers, including part thickness visualization, core design, multi-cavity mold design with common gating and feeding, application of various feed aids (feeder sleeves, chills, padding, etc.), simulation of mold filling and casting solidification, automatic optimization of feeders and gating driven by the desired quality level, and what-if cost analysis. IIT Bombay has developed a set of applications for the foundry industry to improve casting yield and quality. Casting simulation is a fast and efficient solution for process for advanced tool which is the result of more than 20 years of collaboration with major industrial partners and academic institutions around the world. In this paper the process of casting simulation is studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=casting%20simulation%20software%E2%80%99s" title="casting simulation software’s">casting simulation software’s</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20technique%E2%80%99s" title=" simulation technique’s"> simulation technique’s</a>, <a href="https://publications.waset.org/abstracts/search?q=casting%20simulation" title=" casting simulation"> casting simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=processes" title=" processes"> processes</a> </p> <a href="https://publications.waset.org/abstracts/25332/processes-and-application-of-casting-simulation-and-its-softwares" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">297</span> Melt Conditioned-Twin Roll Casting of Magnesium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Das">Sanjeev Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present investigation, magnesium strips were produced by twin roll casting (TRC) and melt conditioned twin roll casting (MC-TRC) processes. The microstructures showed uniform fine equiaxed grain morphology in the case of MC-TRC cast samples. In the case of TRC samples elongated grains with centerline segregation was observed. Further investigation showed both the process has different solidification mechanism. Tensile tests were performed at 250–400ºC for both TRC and MCTRC samples. At 250ºC, MC-TRC sample showed significant improvement in strength and ductility. However, at higher temperatures the tensile properties were almost comparable, despite of TRC samples having larger grains compared to MC-TRC samples. It was observed that homogenized MC-TRC samples were easily hot stamped compared to TRC samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MC-TRC" title="MC-TRC">MC-TRC</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloy" title=" magnesium alloy"> magnesium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleation" title=" nucleation"> nucleation</a> </p> <a href="https://publications.waset.org/abstracts/71008/melt-conditioned-twin-roll-casting-of-magnesium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">296</span> A Rapid and Cost-Effective Approach to Manufacturing Modeling Platform for Fused Deposition Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chil-Chyuan%20Kuo">Chil-Chyuan Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Hsuan%20Tsai"> Chen-Hsuan Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a cost-effective approach for rapid fabricating modeling platforms utilized in fused deposition modeling system. A small-batch production of modeling platforms about 20 pieces can be obtained economically through silicone rubber mold using vacuum casting without applying the plastic injection molding. The air venting systems is crucial for fabricating modeling platform using vacuum casting. Modeling platforms fabricated can be used for building rapid prototyping model after sandblasting. This study offers industrial value because it has both time-effectiveness and cost-effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum%20casting" title="vacuum casting">vacuum casting</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20platform" title=" modeling platform"> modeling platform</a>, <a href="https://publications.waset.org/abstracts/search?q=sandblasting" title=" sandblasting"> sandblasting</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/8812/a-rapid-and-cost-effective-approach-to-manufacturing-modeling-platform-for-fused-deposition-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">295</span> Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Kewen">Li Kewen</a>, <a href="https://publications.waset.org/abstracts/search?q=Su%20Zhaoxin"> Su Zhaoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xingmou"> Wang Xingmou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhu%20Jian%20Bing"> Zhu Jian Bing </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=lithology" title=" lithology"> lithology</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20of%20reservoir" title=" prediction of reservoir"> prediction of reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20attributes" title=" seismic attributes "> seismic attributes </a> </p> <a href="https://publications.waset.org/abstracts/121343/research-on-reservoir-lithology-prediction-based-on-residual-neural-network-and-squeeze-and-excitation-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=squeeze%20casting&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=squeeze%20casting&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=squeeze%20casting&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=squeeze%20casting&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=squeeze%20casting&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=squeeze%20casting&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=squeeze%20casting&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=squeeze%20casting&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=squeeze%20casting&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=squeeze%20casting&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=squeeze%20casting&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10