CINXE.COM

Latitude - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Latitude - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"77fd523d-8bae-4f04-83be-1e52fef415e3","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Latitude","wgTitle":"Latitude","wgCurRevisionId":1257340328,"wgRevisionId":1257340328,"wgArticleId":17616,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1: long volume value","CS1 French-language sources (fr)","Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from December 2011","Pages using Sister project links with default search","Webarchive template wayback links","Circles of latitude","Geodesy","Navigation"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Latitude", "wgRelevantArticleId":17616,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q34027","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform", "platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher" ,"ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/44/Division_of_the_Earth_into_Gauss-Krueger_zones_-_Globe.svg/1200px-Division_of_the_Earth_into_Gauss-Krueger_zones_-_Globe.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/44/Division_of_the_Earth_into_Gauss-Krueger_zones_-_Globe.svg/800px-Division_of_the_Earth_into_Gauss-Krueger_zones_-_Globe.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/44/Division_of_the_Earth_into_Gauss-Krueger_zones_-_Globe.svg/640px-Division_of_the_Earth_into_Gauss-Krueger_zones_-_Globe.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Latitude - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Latitude"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Latitude&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Latitude"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Latitude rootpage-Latitude skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Latitude" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Latitude" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Latitude" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Latitude" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Background" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Background"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Background</span> </div> </a> <button aria-controls="toc-Background-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Background subsection</span> </button> <ul id="toc-Background-sublist" class="vector-toc-list"> <li id="toc-Determination" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Determination"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Determination</span> </div> </a> <ul id="toc-Determination-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Latitude_on_the_sphere" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Latitude_on_the_sphere"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Latitude on the sphere</span> </div> </a> <button aria-controls="toc-Latitude_on_the_sphere-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Latitude on the sphere subsection</span> </button> <ul id="toc-Latitude_on_the_sphere-sublist" class="vector-toc-list"> <li id="toc-The_graticule_on_the_sphere" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_graticule_on_the_sphere"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>The graticule on the sphere</span> </div> </a> <ul id="toc-The_graticule_on_the_sphere-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Named_latitudes_on_the_Earth" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Named_latitudes_on_the_Earth"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Named latitudes on the Earth</span> </div> </a> <ul id="toc-Named_latitudes_on_the_Earth-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Latitude_on_the_ellipsoid" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Latitude_on_the_ellipsoid"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Latitude on the ellipsoid</span> </div> </a> <button aria-controls="toc-Latitude_on_the_ellipsoid-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Latitude on the ellipsoid subsection</span> </button> <ul id="toc-Latitude_on_the_ellipsoid-sublist" class="vector-toc-list"> <li id="toc-Ellipsoids" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ellipsoids"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Ellipsoids</span> </div> </a> <ul id="toc-Ellipsoids-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_geometry_of_the_ellipsoid" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_geometry_of_the_ellipsoid"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>The geometry of the ellipsoid</span> </div> </a> <ul id="toc-The_geometry_of_the_ellipsoid-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geodetic_and_geocentric_latitudes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geodetic_and_geocentric_latitudes"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Geodetic and geocentric latitudes</span> </div> </a> <ul id="toc-Geodetic_and_geocentric_latitudes-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Meridian_distance" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Meridian_distance"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Meridian distance</span> </div> </a> <button aria-controls="toc-Meridian_distance-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Meridian distance subsection</span> </button> <ul id="toc-Meridian_distance-sublist" class="vector-toc-list"> <li id="toc-Meridian_distance_on_the_sphere" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Meridian_distance_on_the_sphere"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Meridian distance on the sphere</span> </div> </a> <ul id="toc-Meridian_distance_on_the_sphere-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Meridian_distance_on_the_ellipsoid" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Meridian_distance_on_the_ellipsoid"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Meridian distance on the ellipsoid</span> </div> </a> <ul id="toc-Meridian_distance_on_the_ellipsoid-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Auxiliary_latitudes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Auxiliary_latitudes"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Auxiliary latitudes</span> </div> </a> <button aria-controls="toc-Auxiliary_latitudes-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Auxiliary latitudes subsection</span> </button> <ul id="toc-Auxiliary_latitudes-sublist" class="vector-toc-list"> <li id="toc-Geocentric_latitude" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geocentric_latitude"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Geocentric latitude</span> </div> </a> <ul id="toc-Geocentric_latitude-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Parametric_latitude_(or_reduced_latitude)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Parametric_latitude_(or_reduced_latitude)"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Parametric latitude (or reduced latitude)</span> </div> </a> <ul id="toc-Parametric_latitude_(or_reduced_latitude)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rectifying_latitude" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rectifying_latitude"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Rectifying latitude</span> </div> </a> <ul id="toc-Rectifying_latitude-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Authalic_latitude" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Authalic_latitude"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Authalic latitude</span> </div> </a> <ul id="toc-Authalic_latitude-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conformal_latitude" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conformal_latitude"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Conformal latitude</span> </div> </a> <ul id="toc-Conformal_latitude-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Isometric_latitude" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Isometric_latitude"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6</span> <span>Isometric latitude</span> </div> </a> <ul id="toc-Isometric_latitude-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Inverse_formulae_and_series" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Inverse_formulae_and_series"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.7</span> <span>Inverse formulae and series</span> </div> </a> <ul id="toc-Inverse_formulae_and_series-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Numerical_comparison_of_auxiliary_latitudes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Numerical_comparison_of_auxiliary_latitudes"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.8</span> <span>Numerical comparison of auxiliary latitudes</span> </div> </a> <ul id="toc-Numerical_comparison_of_auxiliary_latitudes-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Latitude_and_coordinate_systems" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Latitude_and_coordinate_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Latitude and coordinate systems</span> </div> </a> <button aria-controls="toc-Latitude_and_coordinate_systems-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Latitude and coordinate systems subsection</span> </button> <ul id="toc-Latitude_and_coordinate_systems-sublist" class="vector-toc-list"> <li id="toc-Geodetic_coordinates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geodetic_coordinates"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Geodetic coordinates</span> </div> </a> <ul id="toc-Geodetic_coordinates-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spherical_polar_coordinates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spherical_polar_coordinates"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Spherical polar coordinates</span> </div> </a> <ul id="toc-Spherical_polar_coordinates-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ellipsoidal-harmonic_coordinates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ellipsoidal-harmonic_coordinates"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Ellipsoidal-harmonic coordinates</span> </div> </a> <ul id="toc-Ellipsoidal-harmonic_coordinates-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Coordinate_conversions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Coordinate_conversions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Coordinate conversions</span> </div> </a> <ul id="toc-Coordinate_conversions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Astronomical_latitude" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Astronomical_latitude"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Astronomical latitude</span> </div> </a> <ul id="toc-Astronomical_latitude-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <button aria-controls="toc-References-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle References subsection</span> </button> <ul id="toc-References-sublist" class="vector-toc-list"> <li id="toc-Footnotes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Footnotes"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Footnotes</span> </div> </a> <ul id="toc-Footnotes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Latitude</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 126 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-126" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">126 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Breedtegraad" title="Breedtegraad – Afrikaans" lang="af" hreflang="af" data-title="Breedtegraad" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Geografische_Breite" title="Geografische Breite – Alemannic" lang="gsw" hreflang="gsw" data-title="Geografische Breite" data-language-autonym="Alemannisch" data-language-local-name="Alemannic" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B9%D8%B1%D8%B6_(%D8%AC%D8%BA%D8%B1%D8%A7%D9%81%D9%8A%D8%A7)" title="عرض (جغرافيا) – Arabic" lang="ar" hreflang="ar" data-title="عرض (جغرافيا)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Latitut" title="Latitut – Aragonese" lang="an" hreflang="an" data-title="Latitut" data-language-autonym="Aragonés" data-language-local-name="Aragonese" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-frp mw-list-item"><a href="https://frp.wikipedia.org/wiki/Latituda" title="Latituda – Arpitan" lang="frp" hreflang="frp" data-title="Latituda" data-language-autonym="Arpetan" data-language-local-name="Arpitan" class="interlanguage-link-target"><span>Arpetan</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Llatit%C3%BA" title="Llatitú – Asturian" lang="ast" hreflang="ast" data-title="Llatitú" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-awa mw-list-item"><a href="https://awa.wikipedia.org/wiki/%E0%A4%85%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A4%BE%E0%A4%82%E0%A4%B6" title="अक्षांश – Awadhi" lang="awa" hreflang="awa" data-title="अक्षांश" data-language-autonym="अवधी" data-language-local-name="Awadhi" class="interlanguage-link-target"><span>अवधी</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Co%C4%9Frafi_enlik" title="Coğrafi enlik – Azerbaijani" lang="az" hreflang="az" data-title="Coğrafi enlik" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D8%A7%D8%A6%D9%86%D9%84%D9%85" title="ائنلم – South Azerbaijani" lang="azb" hreflang="azb" data-title="ائنلم" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%85%E0%A6%95%E0%A7%8D%E0%A6%B7%E0%A6%BE%E0%A6%82%E0%A6%B6" title="অক্ষাংশ – Bangla" lang="bn" hreflang="bn" data-title="অক্ষাংশ" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/H%C5%ABi-t%C5%8D%CD%98" title="Hūi-tō͘ – Minnan" lang="nan" hreflang="nan" data-title="Hūi-tō͘" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D0%B8%D0%BA_%D0%BA%D0%B8%D2%A3%D0%BB%D0%B5%D0%BA" title="Географик киңлек – Bashkir" lang="ba" hreflang="ba" data-title="Географик киңлек" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A8%D1%8B%D1%80%D0%B0%D1%82%D0%B0" title="Шырата – Belarusian" lang="be" hreflang="be" data-title="Шырата" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A8%D1%8B%D1%80%D0%B0%D1%82%D0%B0" title="Шырата – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Шырата" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%85%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A4%BE%E0%A4%82%E0%A4%B6" title="अक्षांश – Bhojpuri" lang="bh" hreflang="bh" data-title="अक्षांश" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D1%81%D0%BA%D0%B0_%D1%88%D0%B8%D1%80%D0%B8%D0%BD%D0%B0" title="Географска ширина – Bulgarian" lang="bg" hreflang="bg" data-title="Географска ширина" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bo mw-list-item"><a href="https://bo.wikipedia.org/wiki/%E0%BD%A0%E0%BD%95%E0%BE%B2%E0%BD%BA%E0%BD%91%E0%BC%8B%E0%BD%90%E0%BD%B2%E0%BD%82" title="འཕྲེད་ཐིག – Tibetan" lang="bo" hreflang="bo" data-title="འཕྲེད་ཐིག" data-language-autonym="བོད་ཡིག" data-language-local-name="Tibetan" class="interlanguage-link-target"><span>བོད་ཡིག</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Geografska_%C5%A1irina" title="Geografska širina – Bosnian" lang="bs" hreflang="bs" data-title="Geografska širina" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Ledred" title="Ledred – Breton" lang="br" hreflang="br" data-title="Ledred" data-language-autonym="Brezhoneg" data-language-local-name="Breton" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Latitud" title="Latitud – Catalan" lang="ca" hreflang="ca" data-title="Latitud" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%90%D0%BD_(%D0%BA%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82)" title="Ан (координат) – Chuvash" lang="cv" hreflang="cv" data-title="Ан (координат)" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-ceb mw-list-item"><a href="https://ceb.wikipedia.org/wiki/Latitud" title="Latitud – Cebuano" lang="ceb" hreflang="ceb" data-title="Latitud" data-language-autonym="Cebuano" data-language-local-name="Cebuano" class="interlanguage-link-target"><span>Cebuano</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Zem%C4%9Bpisn%C3%A1_%C5%A1%C3%AD%C5%99ka" title="Zeměpisná šířka – Czech" lang="cs" hreflang="cs" data-title="Zeměpisná šířka" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Mbariro_dzeTaranyika" title="Mbariro dzeTaranyika – Shona" lang="sn" hreflang="sn" data-title="Mbariro dzeTaranyika" data-language-autonym="ChiShona" data-language-local-name="Shona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Lledred" title="Lledred – Welsh" lang="cy" hreflang="cy" data-title="Lledred" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Geographische_Breite" title="Geographische Breite – German" lang="de" hreflang="de" data-title="Geographische Breite" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-dsb mw-list-item"><a href="https://dsb.wikipedia.org/wiki/Geografiska_%C5%A1yrina" title="Geografiska šyrina – Lower Sorbian" lang="dsb" hreflang="dsb" data-title="Geografiska šyrina" data-language-autonym="Dolnoserbski" data-language-local-name="Lower Sorbian" class="interlanguage-link-target"><span>Dolnoserbski</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Geograafiline_laius" title="Geograafiline laius – Estonian" lang="et" hreflang="et" data-title="Geograafiline laius" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%93%CE%B5%CF%89%CE%B3%CF%81%CE%B1%CF%86%CE%B9%CE%BA%CF%8C_%CF%80%CE%BB%CE%AC%CF%84%CE%BF%CF%82" title="Γεωγραφικό πλάτος – Greek" lang="el" hreflang="el" data-title="Γεωγραφικό πλάτος" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Latitud" title="Latitud – Spanish" lang="es" hreflang="es" data-title="Latitud" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Latitudo" title="Latitudo – Esperanto" lang="eo" hreflang="eo" data-title="Latitudo" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Latitude" title="Latitude – Basque" lang="eu" hreflang="eu" data-title="Latitude" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B9%D8%B1%D8%B6_%D8%AC%D8%BA%D8%B1%D8%A7%D9%81%DB%8C%D8%A7%DB%8C%DB%8C" title="عرض جغرافیایی – Persian" lang="fa" hreflang="fa" data-title="عرض جغرافیایی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Latitude" title="Latitude – French" lang="fr" hreflang="fr" data-title="Latitude" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-fy mw-list-item"><a href="https://fy.wikipedia.org/wiki/Breedtegraad" title="Breedtegraad – Western Frisian" lang="fy" hreflang="fy" data-title="Breedtegraad" data-language-autonym="Frysk" data-language-local-name="Western Frisian" class="interlanguage-link-target"><span>Frysk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Domhanleithead" title="Domhanleithead – Irish" lang="ga" hreflang="ga" data-title="Domhanleithead" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Latitude" title="Latitude – Galician" lang="gl" hreflang="gl" data-title="Latitude" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9C%84%EB%8F%84" title="위도 – Korean" lang="ko" hreflang="ko" data-title="위도" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B1%D5%B7%D5%AD%D5%A1%D6%80%D5%B0%D5%A1%D5%A3%D6%80%D5%A1%D5%AF%D5%A1%D5%B6_%D5%AC%D5%A1%D5%B5%D5%B6%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Աշխարհագրական լայնություն – Armenian" lang="hy" hreflang="hy" data-title="Աշխարհագրական լայնություն" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%85%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A4%BE%E0%A4%82%E0%A4%B6_%E0%A4%B0%E0%A5%87%E0%A4%96%E0%A4%BE%E0%A4%8F%E0%A4%81" title="अक्षांश रेखाएँ – Hindi" lang="hi" hreflang="hi" data-title="अक्षांश रेखाएँ" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hsb mw-list-item"><a href="https://hsb.wikipedia.org/wiki/Geografiska_%C5%A1%C4%9Brokos%C4%87" title="Geografiska šěrokosć – Upper Sorbian" lang="hsb" hreflang="hsb" data-title="Geografiska šěrokosć" data-language-autonym="Hornjoserbsce" data-language-local-name="Upper Sorbian" class="interlanguage-link-target"><span>Hornjoserbsce</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Zemljopisna_%C5%A1irina" title="Zemljopisna širina – Croatian" lang="hr" hreflang="hr" data-title="Zemljopisna širina" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Latitudo" title="Latitudo – Ido" lang="io" hreflang="io" data-title="Latitudo" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-ig mw-list-item"><a href="https://ig.wikipedia.org/wiki/Latitude" title="Latitude – Igbo" lang="ig" hreflang="ig" data-title="Latitude" data-language-autonym="Igbo" data-language-local-name="Igbo" class="interlanguage-link-target"><span>Igbo</span></a></li><li class="interlanguage-link interwiki-ilo mw-list-item"><a href="https://ilo.wikipedia.org/wiki/Latitud" title="Latitud – Iloko" lang="ilo" hreflang="ilo" data-title="Latitud" data-language-autonym="Ilokano" data-language-local-name="Iloko" class="interlanguage-link-target"><span>Ilokano</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Garis_lintang" title="Garis lintang – Indonesian" lang="id" hreflang="id" data-title="Garis lintang" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-os mw-list-item"><a href="https://os.wikipedia.org/wiki/%D0%A3%C3%A6%D1%80%D1%85%D0%B0%D0%B4" title="Уæрхад – Ossetic" lang="os" hreflang="os" data-title="Уæрхад" data-language-autonym="Ирон" data-language-local-name="Ossetic" class="interlanguage-link-target"><span>Ирон</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Breiddargr%C3%A1%C3%B0a" title="Breiddargráða – Icelandic" lang="is" hreflang="is" data-title="Breiddargráða" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Latitudine" title="Latitudine – Italian" lang="it" hreflang="it" data-title="Latitudine" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A7%D7%95_%D7%A8%D7%95%D7%97%D7%91" title="קו רוחב – Hebrew" lang="he" hreflang="he" data-title="קו רוחב" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%85%E0%B2%95%E0%B3%8D%E0%B2%B7%E0%B2%BE%E0%B2%82%E0%B2%B6" title="ಅಕ್ಷಾಂಶ – Kannada" lang="kn" hreflang="kn" data-title="ಅಕ್ಷಾಂಶ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%92%E1%83%90%E1%83%9C%E1%83%94%E1%83%93%E1%83%98" title="განედი – Georgian" lang="ka" hreflang="ka" data-title="განედი" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%95%D0%BD%D0%B4%D1%96%D0%BA" title="Ендік – Kazakh" lang="kk" hreflang="kk" data-title="Ендік" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Latitid" title="Latitid – Haitian Creole" lang="ht" hreflang="ht" data-title="Latitid" data-language-autonym="Kreyòl ayisyen" data-language-local-name="Haitian Creole" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/H%C3%AAl%C3%AEpan" title="Hêlîpan – Kurdish" lang="ku" hreflang="ku" data-title="Hêlîpan" data-language-autonym="Kurdî" data-language-local-name="Kurdish" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%9A%D0%B5%D2%A3%D0%B4%D0%B8%D0%BA" title="Кеңдик – Kyrgyz" lang="ky" hreflang="ky" data-title="Кеңдик" data-language-autonym="Кыргызча" data-language-local-name="Kyrgyz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BB%80%E0%BA%AA%E0%BA%B1%E0%BB%89%E0%BA%99%E0%BA%82%E0%BA%B0%E0%BB%9C%E0%BA%B2%E0%BA%99" title="ເສັ້ນຂະໜານ – Lao" lang="lo" hreflang="lo" data-title="ເສັ້ນຂະໜານ" data-language-autonym="ລາວ" data-language-local-name="Lao" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Latitudo_geographica" title="Latitudo geographica – Latin" lang="la" hreflang="la" data-title="Latitudo geographica" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/%C4%A2eogr%C4%81fiskais_platums" title="Ģeogrāfiskais platums – Latvian" lang="lv" hreflang="lv" data-title="Ģeogrāfiskais platums" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Geographesch_Breet" title="Geographesch Breet – Luxembourgish" lang="lb" hreflang="lb" data-title="Geographesch Breet" data-language-autonym="Lëtzebuergesch" data-language-local-name="Luxembourgish" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Platuma" title="Platuma – Lithuanian" lang="lt" hreflang="lt" data-title="Platuma" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-ln mw-list-item"><a href="https://ln.wikipedia.org/wiki/Monk%C9%94%CC%81l%C9%94%CC%81t%C9%94%CC%81_mw%C3%A2_libale" title="Monkɔ́lɔ́tɔ́ mwâ libale – Lingala" lang="ln" hreflang="ln" data-title="Monkɔ́lɔ́tɔ́ mwâ libale" data-language-autonym="Lingála" data-language-local-name="Lingala" class="interlanguage-link-target"><span>Lingála</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Latitudin" title="Latitudin – Lombard" lang="lmo" hreflang="lmo" data-title="Latitudin" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-mai mw-list-item"><a href="https://mai.wikipedia.org/wiki/%E0%A4%85%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A4%BE%E0%A4%82%E0%A4%B6" title="अक्षांश – Maithili" lang="mai" hreflang="mai" data-title="अक्षांश" data-language-autonym="मैथिली" data-language-local-name="Maithili" class="interlanguage-link-target"><span>मैथिली</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D1%81%D0%BA%D0%B0_%D1%88%D0%B8%D1%80%D0%B8%D0%BD%D0%B0" title="Географска ширина – Macedonian" lang="mk" hreflang="mk" data-title="Географска ширина" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Laharam-pehintany" title="Laharam-pehintany – Malagasy" lang="mg" hreflang="mg" data-title="Laharam-pehintany" data-language-autonym="Malagasy" data-language-local-name="Malagasy" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%85%E0%B4%95%E0%B5%8D%E0%B4%B7%E0%B4%BE%E0%B4%82%E0%B4%B6%E0%B4%82" title="അക്ഷാംശം – Malayalam" lang="ml" hreflang="ml" data-title="അക്ഷാംശം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%85%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A4%BE%E0%A4%82%E0%A4%B6" title="अक्षांश – Marathi" lang="mr" hreflang="mr" data-title="अक्षांश" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Latitud" title="Latitud – Malay" lang="ms" hreflang="ms" data-title="Latitud" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-cdo mw-list-item"><a href="https://cdo.wikipedia.org/wiki/%C5%AAi-d%C3%B4" title="Ūi-dô – Mindong" lang="cdo" hreflang="cdo" data-title="Ūi-dô" data-language-autonym="閩東語 / Mìng-dĕ̤ng-ngṳ̄" data-language-local-name="Mindong" class="interlanguage-link-target"><span>閩東語 / Mìng-dĕ̤ng-ngṳ̄</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%9C%E1%80%90%E1%80%B9%E1%80%90%E1%80%AE%E1%80%80%E1%80%BB%E1%80%B0" title="လတ္တီကျူ – Burmese" lang="my" hreflang="my" data-title="လတ္တီကျူ" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burmese" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Breedtegraad" title="Breedtegraad – Dutch" lang="nl" hreflang="nl" data-title="Breedtegraad" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nds-nl mw-list-item"><a href="https://nds-nl.wikipedia.org/wiki/Breedtegraod" title="Breedtegraod – Low Saxon" lang="nds-NL" hreflang="nds-NL" data-title="Breedtegraod" data-language-autonym="Nedersaksies" data-language-local-name="Low Saxon" class="interlanguage-link-target"><span>Nedersaksies</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%85%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A4%BE%E0%A4%82%E0%A4%B6" title="अक्षांश – Nepali" lang="ne" hreflang="ne" data-title="अक्षांश" data-language-autonym="नेपाली" data-language-local-name="Nepali" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%B7%AF%E5%BA%A6" title="緯度 – Japanese" lang="ja" hreflang="ja" data-title="緯度" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Geograafisk_breetje" title="Geograafisk breetje – Northern Frisian" lang="frr" hreflang="frr" data-title="Geograafisk breetje" data-language-autonym="Nordfriisk" data-language-local-name="Northern Frisian" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Breddegrad" title="Breddegrad – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Breddegrad" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Breiddegrad" title="Breiddegrad – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Breiddegrad" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Latitud" title="Latitud – Occitan" lang="oc" hreflang="oc" data-title="Latitud" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-mhr mw-list-item"><a href="https://mhr.wikipedia.org/wiki/%D0%9B%D0%BE%D0%BF%D1%82%D1%8B%D0%BA" title="Лоптык – Eastern Mari" lang="mhr" hreflang="mhr" data-title="Лоптык" data-language-autonym="Олык марий" data-language-local-name="Eastern Mari" class="interlanguage-link-target"><span>Олык марий</span></a></li><li class="interlanguage-link interwiki-or mw-list-item"><a href="https://or.wikipedia.org/wiki/%E0%AC%85%E0%AC%95%E0%AD%8D%E0%AC%B7%E0%AC%BE%E0%AC%82%E0%AC%B6" title="ଅକ୍ଷାଂଶ – Odia" lang="or" hreflang="or" data-title="ଅକ୍ଷାଂଶ" data-language-autonym="ଓଡ଼ିଆ" data-language-local-name="Odia" class="interlanguage-link-target"><span>ଓଡ଼ିଆ</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Sararran_Dagalee" title="Sararran Dagalee – Oromo" lang="om" hreflang="om" data-title="Sararran Dagalee" data-language-autonym="Oromoo" data-language-local-name="Oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Kenglik" title="Kenglik – Uzbek" lang="uz" hreflang="uz" data-title="Kenglik" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%85%E0%A8%95%E0%A8%B8%E0%A8%BC%E0%A8%BE%E0%A8%82%E0%A8%B8%E0%A8%BC_%E0%A8%B0%E0%A9%87%E0%A8%96%E0%A8%BE" title="ਅਕਸ਼ਾਂਸ਼ ਰੇਖਾ – Punjabi" lang="pa" hreflang="pa" data-title="ਅਕਸ਼ਾਂਸ਼ ਰੇਖਾ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D8%B9%D8%B1%D8%B6_%D8%A8%D9%84%D8%AF" title="عرض بلد – Western Punjabi" lang="pnb" hreflang="pnb" data-title="عرض بلد" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-blk mw-list-item"><a href="https://blk.wikipedia.org/wiki/%E1%80%9C%E1%80%90%E1%80%B9%E1%80%90%E1%80%AE%E1%80%85%E1%80%BB%E1%80%AF" title="လတ္တီစျု – Pa&#039;O" lang="blk" hreflang="blk" data-title="လတ္တီစျု" data-language-autonym="ပအိုဝ်ႏဘာႏသာႏ" data-language-local-name="Pa&#039;O" class="interlanguage-link-target"><span>ပအိုဝ်ႏဘာႏသာႏ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Szeroko%C5%9B%C4%87_geograficzna" title="Szerokość geograficzna – Polish" lang="pl" hreflang="pl" data-title="Szerokość geograficzna" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Latitude" title="Latitude – Portuguese" lang="pt" hreflang="pt" data-title="Latitude" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Latitudine" title="Latitudine – Romanian" lang="ro" hreflang="ro" data-title="Latitudine" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A8%D0%B8%D1%80%D0%BE%D1%82%D0%B0" title="Широта – Russian" lang="ru" hreflang="ru" data-title="Широта" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%9A%D1%8D%D1%82%D0%B8%D1%80%D1%8D%D1%8D%D2%BB%D0%B8%D0%BD" title="Кэтирээһин – Yakut" lang="sah" hreflang="sah" data-title="Кэтирээһин" data-language-autonym="Саха тыла" data-language-local-name="Yakut" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-sat mw-list-item"><a href="https://sat.wikipedia.org/wiki/%E1%B1%9A%E1%B1%A0%E1%B1%AA%E1%B1%B7%E1%B1%9F%E1%B1%B8%E1%B1%A5_%E1%B1%9C%E1%B1%9F%E1%B1%A8" title="ᱚᱠᱪᱷᱟᱸᱥ ᱜᱟᱨ – Santali" lang="sat" hreflang="sat" data-title="ᱚᱠᱪᱷᱟᱸᱥ ᱜᱟᱨ" data-language-autonym="ᱥᱟᱱᱛᱟᱲᱤ" data-language-local-name="Santali" class="interlanguage-link-target"><span>ᱥᱟᱱᱛᱟᱲᱤ</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Gjer%C3%ABsia_gjeografike" title="Gjerësia gjeografike – Albanian" lang="sq" hreflang="sq" data-title="Gjerësia gjeografike" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Latit%C3%B9dini" title="Latitùdini – Sicilian" lang="scn" hreflang="scn" data-title="Latitùdini" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%85%E0%B6%9A%E0%B7%8A%E0%B7%82%E0%B7%8F%E0%B6%82%E0%B7%81" title="අක්ෂාංශ – Sinhala" lang="si" hreflang="si" data-title="අක්ෂාංශ" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Latitude" title="Latitude – Simple English" lang="en-simple" hreflang="en-simple" data-title="Latitude" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Zemepisn%C3%A1_%C5%A1%C3%ADrka" title="Zemepisná šírka – Slovak" lang="sk" hreflang="sk" data-title="Zemepisná šírka" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Zemljepisna_%C5%A1irina" title="Zemljepisna širina – Slovenian" lang="sl" hreflang="sl" data-title="Zemljepisna širina" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Szyroko%C5%9B%C4%87_geograficzno" title="Szyrokość geograficzno – Silesian" lang="szl" hreflang="szl" data-title="Szyrokość geograficzno" data-language-autonym="Ślůnski" data-language-local-name="Silesian" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Lool" title="Lool – Somali" lang="so" hreflang="so" data-title="Lool" data-language-autonym="Soomaaliga" data-language-local-name="Somali" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%BE%DB%8E%DA%B5%DB%8C_%D9%BE%D8%A7%D9%86%DB%8C" title="ھێڵی پانی – Central Kurdish" lang="ckb" hreflang="ckb" data-title="ھێڵی پانی" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D1%81%D0%BA%D0%B0_%D1%88%D0%B8%D1%80%D0%B8%D0%BD%D0%B0" title="Географска ширина – Serbian" lang="sr" hreflang="sr" data-title="Географска ширина" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Geografska_%C5%A1irina" title="Geografska širina – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Geografska širina" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Garis_datar" title="Garis datar – Sundanese" lang="su" hreflang="su" data-title="Garis datar" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Leveysaste" title="Leveysaste – Finnish" lang="fi" hreflang="fi" data-title="Leveysaste" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Latitud" title="Latitud – Swedish" lang="sv" hreflang="sv" data-title="Latitud" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl badge-Q70893996 mw-list-item" title=""><a href="https://tl.wikipedia.org/wiki/Latitud" title="Latitud – Tagalog" lang="tl" hreflang="tl" data-title="Latitud" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A8%E0%AE%BF%E0%AE%B2%E0%AE%A8%E0%AF%87%E0%AE%B0%E0%AF%8D%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AF%8B%E0%AE%9F%E0%AF%81" title="நிலநேர்க்கோடு – Tamil" lang="ta" hreflang="ta" data-title="நிலநேர்க்கோடு" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Tehri" title="Tehri – Kabyle" lang="kab" hreflang="kab" data-title="Tehri" data-language-autonym="Taqbaylit" data-language-local-name="Kabyle" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%85%E0%B0%95%E0%B1%8D%E0%B0%B7%E0%B0%BE%E0%B0%82%E0%B0%B6%E0%B0%82" title="అక్షాంశం – Telugu" lang="te" hreflang="te" data-title="అక్షాంశం" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A5%E0%B8%B0%E0%B8%95%E0%B8%B4%E0%B8%88%E0%B8%B9%E0%B8%94" title="ละติจูด – Thai" lang="th" hreflang="th" data-title="ละติจูด" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%90%D1%80%D0%B7%D0%B8_%D2%B7%D1%83%D2%93%D1%80%D0%BE%D1%84%D0%B8%D1%91%D3%A3" title="Арзи ҷуғрофиёӣ – Tajik" lang="tg" hreflang="tg" data-title="Арзи ҷуғрофиёӣ" data-language-autonym="Тоҷикӣ" data-language-local-name="Tajik" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Enlem" title="Enlem – Turkish" lang="tr" hreflang="tr" data-title="Enlem" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A8%D0%B8%D1%80%D0%BE%D1%82%D0%B0" title="Широта – Ukrainian" lang="uk" hreflang="uk" data-title="Широта" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%B9%D8%B1%D8%B6_%D8%A8%D9%84%D8%AF" title="عرض بلد – Urdu" lang="ur" hreflang="ur" data-title="عرض بلد" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-ug mw-list-item"><a href="https://ug.wikipedia.org/wiki/%D9%83%DB%95%DA%AD%D9%84%D9%89%D9%83" title="كەڭلىك – Uyghur" lang="ug" hreflang="ug" data-title="كەڭلىك" data-language-autonym="ئۇيغۇرچە / Uyghurche" data-language-local-name="Uyghur" class="interlanguage-link-target"><span>ئۇيغۇرچە / Uyghurche</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/Latitudine" title="Latitudine – Venetian" lang="vec" hreflang="vec" data-title="Latitudine" data-language-autonym="Vèneto" data-language-local-name="Venetian" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/V%C4%A9_%C4%91%E1%BB%99" title="Vĩ độ – Vietnamese" lang="vi" hreflang="vi" data-title="Vĩ độ" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-vls mw-list-item"><a href="https://vls.wikipedia.org/wiki/Br%C3%AAedtegroad" title="Brêedtegroad – West Flemish" lang="vls" hreflang="vls" data-title="Brêedtegroad" data-language-autonym="West-Vlams" data-language-local-name="West Flemish" class="interlanguage-link-target"><span>West-Vlams</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Latitud" title="Latitud – Waray" lang="war" hreflang="war" data-title="Latitud" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wo mw-list-item"><a href="https://wo.wikipedia.org/wiki/Tus-wu-gaar" title="Tus-wu-gaar – Wolof" lang="wo" hreflang="wo" data-title="Tus-wu-gaar" data-language-autonym="Wolof" data-language-local-name="Wolof" class="interlanguage-link-target"><span>Wolof</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E7%B7%AF%E5%BA%A6" title="緯度 – Wu" lang="wuu" hreflang="wuu" data-title="緯度" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%92%D7%90%D7%A8%D7%98%D7%9C_%D7%9C%D7%99%D7%A0%D7%99%D7%A2_(%D7%92%D7%A2%D7%90%D7%92%D7%A8%D7%90%D7%A4%D7%99%D7%A2)" title="גארטל ליניע (געאגראפיע) – Yiddish" lang="yi" hreflang="yi" data-title="גארטל ליניע (געאגראפיע)" data-language-autonym="ייִדיש" data-language-local-name="Yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%B7%AF" title="緯 – Cantonese" lang="yue" hreflang="yue" data-title="緯" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Ver%C4%B1niye" title="Verıniye – Zazaki" lang="diq" hreflang="diq" data-title="Verıniye" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%BA%AC%E5%BA%A6" title="纬度 – Chinese" lang="zh" hreflang="zh" data-title="纬度" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q34027#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Latitude" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Latitude" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Latitude"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Latitude&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Latitude&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Latitude"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Latitude&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Latitude&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Latitude" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Latitude" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Latitude&amp;oldid=1257340328" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Latitude&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Latitude&amp;id=1257340328&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLatitude"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLatitude"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Latitude&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Latitude&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Latitudes" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q34027" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Geographic coordinate specifying north–south position</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about the geographical reference system. For other uses, see <a href="/wiki/Latitude_(disambiguation)" class="mw-disambig" title="Latitude (disambiguation)">Latitude (disambiguation)</a>.</div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Division_of_the_Earth_into_Gauss-Krueger_zones_-_Globe.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/Division_of_the_Earth_into_Gauss-Krueger_zones_-_Globe.svg/200px-Division_of_the_Earth_into_Gauss-Krueger_zones_-_Globe.svg.png" decoding="async" width="200" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/Division_of_the_Earth_into_Gauss-Krueger_zones_-_Globe.svg/300px-Division_of_the_Earth_into_Gauss-Krueger_zones_-_Globe.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/44/Division_of_the_Earth_into_Gauss-Krueger_zones_-_Globe.svg/400px-Division_of_the_Earth_into_Gauss-Krueger_zones_-_Globe.svg.png 2x" data-file-width="948" data-file-height="948" /></a><figcaption>Earth's <a href="/wiki/Graticule_(cartography)" title="Graticule (cartography)"><i>graticule</i></a>. The vertical lines from pole to pole are lines of constant <a href="/wiki/Longitude" title="Longitude">longitude</a>, or <i>meridians</i>. The circles parallel to the <a href="/wiki/Equator" title="Equator">equator</a> are lines of constant latitude, or <i>parallels</i>. The graticule shows the latitude and longitude of points on the surface. In this example meridians are spaced at 6° intervals and parallels at 4° intervals.</figcaption></figure> <p>In <a href="/wiki/Geography" title="Geography">geography</a>, <b>latitude</b> is a <a href="/wiki/Geographic_coordinate_system" title="Geographic coordinate system">coordinate</a> that specifies the <a href="/wiki/North" title="North">north</a>–<a href="/wiki/South" title="South">south</a> position of a point on the surface of <a href="/wiki/The_Earth" class="mw-redirect" title="The Earth">the Earth</a> or another celestial body. Latitude is given as an angle that ranges from −90° at the south pole to 90° at the north pole, with 0° at the <a href="/wiki/Equator" title="Equator">Equator</a>. <a href="/wiki/Parallel_(latitude)" class="mw-redirect" title="Parallel (latitude)">Lines of constant latitude</a>, or <i>parallels</i>, run east–west as circles parallel to the equator. Latitude and <a href="/wiki/Longitude" title="Longitude">longitude</a> are used together as a coordinate pair to specify a location on the surface of the Earth. </p><p>On its own, the term "latitude" normally refers to the <i>geodetic latitude</i> as defined below. Briefly, the geodetic latitude of a point is the angle formed between the vector perpendicular (or <i><a href="/wiki/Normal_(geometry)" title="Normal (geometry)">normal</a></i>) to the ellipsoidal surface from the point, and the <a href="/wiki/Equatorial_plane" class="mw-redirect" title="Equatorial plane">plane of the equator</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Background">Background</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=1" title="Edit section: Background"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Two levels of abstraction are employed in the definitions of latitude and longitude. In the first step the physical surface is modeled by the <a href="/wiki/Geoid" title="Geoid">geoid</a>, a surface which approximates the <a href="/wiki/Sea_level" title="Sea level">mean sea level</a> over the oceans and its continuation under the land masses. The second step is to approximate the geoid by a mathematically simpler reference surface. The simplest choice for the reference surface is a <a href="/wiki/Sphere" title="Sphere">sphere</a>, but the geoid is more accurately modeled by an <a href="/wiki/Ellipsoid_of_revolution" class="mw-redirect" title="Ellipsoid of revolution">ellipsoid of revolution</a>. The definitions of latitude and longitude on such reference surfaces are detailed in the following sections. Lines of constant latitude and longitude together constitute a <a href="/wiki/Geographic_coordinate_system" title="Geographic coordinate system">graticule</a> on the reference surface. The latitude of a point on the <i>actual</i> surface is that of the corresponding point on the reference surface, the correspondence being along the <a href="/wiki/Normal_(geometry)" title="Normal (geometry)">normal</a> to the reference surface, which passes through the point on the physical surface. Latitude and longitude together with some specification of <a href="/wiki/Altitude" title="Altitude">height</a> constitute a <a href="/wiki/Geographic_coordinate_system" title="Geographic coordinate system">geographic coordinate system</a> as defined in the specification of the ISO 19111 standard.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>Since there are many different <a href="/wiki/Reference_ellipsoid" class="mw-redirect" title="Reference ellipsoid">reference ellipsoids</a>, the precise latitude of a feature on the surface is not unique: this is stressed in the ISO standard which states that "without the full specification of the coordinate reference system, coordinates (that is latitude and longitude) are ambiguous at best and meaningless at worst". This is of great importance in accurate applications, such as a <a href="/wiki/Global_Positioning_System" title="Global Positioning System">Global Positioning System</a> (GPS), but in common usage, where high accuracy is not required, the reference ellipsoid is not usually stated. </p><p>In English texts, the latitude angle, defined below, is usually denoted by the Greek lower-case letter <a href="/wiki/Phi_(letter)" class="mw-redirect" title="Phi (letter)">phi</a> (<span class="texhtml mvar" style="font-style:italic;">ϕ</span> or <span class="texhtml mvar" style="font-style:italic;">φ</span>). It is measured in <a href="/wiki/Degree_(angle)" title="Degree (angle)">degrees</a>, <a href="/wiki/Arcminute" class="mw-redirect" title="Arcminute">minutes and seconds</a> or <a href="/wiki/Decimal_degrees" title="Decimal degrees">decimal degrees</a>, north or south of the equator. For navigational purposes positions are given in degrees and decimal minutes. For instance, <a href="/wiki/The_Needles" title="The Needles">The Needles</a> lighthouse is at 50°39.734′ N 001°35.500′ W.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>This article relates to coordinate systems for the Earth: it may be adapted to cover the Moon, planets and other celestial objects (<a href="/wiki/Planetographic_latitude" class="mw-redirect" title="Planetographic latitude">planetographic latitude</a>). </p><p>For a brief history, see <a href="/wiki/History_of_latitude" title="History of latitude">History of latitude</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Determination">Determination</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=2" title="Edit section: Determination"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Longitude_determination" class="mw-redirect" title="Longitude determination">Longitude determination</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Celestial_navigation#Latitude" title="Celestial navigation">Celestial navigation §&#160;Latitude</a></div> <p>In <a href="/wiki/Celestial_navigation" title="Celestial navigation">celestial navigation</a>, latitude is determined with the <a href="/wiki/Meridian_altitude" title="Meridian altitude">meridian altitude</a> method. More precise measurement of latitude requires an understanding of the gravitational field of the Earth, either to set up <a href="/wiki/Theodolite" title="Theodolite">theodolites</a> or to determine GPS satellite orbits. The study of the <a href="/wiki/Figure_of_the_Earth" title="Figure of the Earth">figure of the Earth</a> together with its gravitational field is the science of <a href="/wiki/Geodesy" title="Geodesy">geodesy</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Latitude_on_the_sphere">Latitude on the sphere<span class="anchor" id="Spherical"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=3" title="Edit section: Latitude on the sphere"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Latitude_and_longitude_graticule_on_a_sphere.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Latitude_and_longitude_graticule_on_a_sphere.svg/200px-Latitude_and_longitude_graticule_on_a_sphere.svg.png" decoding="async" width="200" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Latitude_and_longitude_graticule_on_a_sphere.svg/300px-Latitude_and_longitude_graticule_on_a_sphere.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Latitude_and_longitude_graticule_on_a_sphere.svg/400px-Latitude_and_longitude_graticule_on_a_sphere.svg.png 2x" data-file-width="825" data-file-height="825" /></a><figcaption>A perspective view of the Earth showing how latitude (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span>) and longitude (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span>) are defined on a spherical model. The graticule spacing is 10 degrees.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="The_graticule_on_the_sphere">The graticule on the sphere</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=4" title="Edit section: The graticule on the sphere"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The graticule is formed by the lines of constant latitude and constant longitude, which are constructed with reference to the rotation axis of the Earth. The primary reference points are the <a href="/wiki/Geographical_pole" title="Geographical pole">poles</a> where the axis of rotation of the Earth intersects the reference surface. Planes which contain the rotation axis intersect the surface at the <a href="/wiki/Meridian_(geography)" title="Meridian (geography)">meridians</a>; and the angle between any one meridian plane and that through Greenwich (the <a href="/wiki/Prime_Meridian" class="mw-redirect" title="Prime Meridian">Prime Meridian</a>) defines the longitude: meridians are lines of constant longitude. The plane through the centre of the Earth and perpendicular to the rotation axis intersects the surface at a great circle called the <a href="/wiki/Equator" title="Equator">Equator</a>. Planes parallel to the equatorial plane intersect the surface in circles of constant latitude; these are the parallels. The Equator has a latitude of 0°, the <a href="/wiki/North_Pole" title="North Pole">North Pole</a> has a latitude of 90° North (written 90°&#160;N or +90°), and the <a href="/wiki/South_Pole" title="South Pole">South Pole</a> has a latitude of 90° South (written 90°&#160;S or −90°). The latitude of an arbitrary point is the angle between the equatorial plane and the normal to the surface at that point: the normal to the surface of the sphere is along the radial vector. </p><p>The latitude, as defined in this way for the sphere, is often termed the spherical latitude, to avoid ambiguity with the geodetic latitude and the auxiliary latitudes defined in subsequent sections of this article. </p> <div class="mw-heading mw-heading3"><h3 id="Named_latitudes_on_the_Earth">Named latitudes on the Earth</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=5" title="Edit section: Named latitudes on the Earth"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:December_solstice_geometry.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8e/December_solstice_geometry.svg/300px-December_solstice_geometry.svg.png" decoding="async" width="300" height="205" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8e/December_solstice_geometry.svg/450px-December_solstice_geometry.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8e/December_solstice_geometry.svg/600px-December_solstice_geometry.svg.png 2x" data-file-width="367" data-file-height="251" /></a><figcaption>The orientation of the Earth at the December solstice</figcaption></figure> <p>Besides the equator, four other parallels are of significance: </p> <dl><dd><table class="wikitable"> <tbody><tr> <td><a href="/wiki/Arctic_Circle" title="Arctic Circle">Arctic Circle</a></td> <td>66° 34′ (66.57°) N </td></tr> <tr> <td><a href="/wiki/Tropic_of_Cancer" title="Tropic of Cancer">Tropic of Cancer</a></td> <td>23° 26′ (23.43°) N </td></tr> <tr> <td><a href="/wiki/Tropic_of_Capricorn" title="Tropic of Capricorn">Tropic of Capricorn</a></td> <td>23° 26′ (23.43°) S </td></tr> <tr> <td><a href="/wiki/Antarctic_Circle" title="Antarctic Circle">Antarctic Circle</a></td> <td>66° 34′ (66.57°) S </td></tr></tbody></table></dd></dl> <p>The plane of the Earth's orbit about the Sun is called the <a href="/wiki/Ecliptic" title="Ecliptic">ecliptic</a>, and the plane perpendicular to the rotation axis of the Earth is the equatorial plane. The angle between the ecliptic and the equatorial plane is called variously the axial tilt, the obliquity, or the inclination of the ecliptic, and it is conventionally denoted by <span class="texhtml mvar" style="font-style:italic;">i</span>. The latitude of the tropical circles is equal to <span class="texhtml mvar" style="font-style:italic;">i</span> and the latitude of the polar circles is its complement (90° - <i>i</i>). The axis of rotation varies slowly over time and the values given here are those for the current <a href="/wiki/Epoch_(astronomy)" title="Epoch (astronomy)">epoch</a>. The time variation is discussed more fully in the article on <a href="/wiki/Axial_tilt" title="Axial tilt">axial tilt</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> </p><p>The figure shows the geometry of a <a href="/wiki/Cross_section_(geometry)" title="Cross section (geometry)">cross-section</a> of the plane perpendicular to the ecliptic and through the centres of the Earth and the Sun at the December <a href="/wiki/Solstice" title="Solstice">solstice</a> when the Sun is overhead at some point of the <a href="/wiki/Tropic_of_Capricorn" title="Tropic of Capricorn">Tropic of Capricorn</a>. The south polar latitudes below the <a href="/wiki/Antarctic_Circle" title="Antarctic Circle">Antarctic Circle</a> are in daylight, whilst the north polar latitudes above the Arctic Circle are in night. The situation is reversed at the June solstice, when the Sun is overhead at the Tropic of Cancer. Only at latitudes in between the two <a href="/wiki/Tropics" title="Tropics">tropics</a> is it possible for the Sun to be directly overhead (at the <a href="/wiki/Zenith" title="Zenith">zenith</a>). </p><p>On <a href="/wiki/Map_projections" class="mw-redirect" title="Map projections">map projections</a> there is no universal rule as to how meridians and parallels should appear. The examples below show the named parallels (as red lines) on the commonly used <a href="/wiki/Mercator_projection" title="Mercator projection">Mercator projection</a> and the <a href="/wiki/Transverse_Mercator_projection" title="Transverse Mercator projection">Transverse Mercator projection</a>. On the former the parallels are horizontal and the meridians are vertical, whereas on the latter there is no exact relationship of parallels and meridians with horizontal and vertical: both are complicated curves. </p> <table style="margin: 1em auto 1em auto"> <tbody><tr valign="top"> <th width="1%"> </th> <th width="36%">Normal Mercator </th> <th width="3%"> </th> <th width="36%">Transverse Mercator </th> <th width="1%"> </th></tr> <tr valign="top"> <td> </td> <td align="center" width="200px"><figure class="mw-halign-center" typeof="mw:File"><a href="/wiki/File:MercNormSph_enhanced.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/MercNormSph_enhanced.png/200px-MercNormSph_enhanced.png" decoding="async" width="200" height="199" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/MercNormSph_enhanced.png/300px-MercNormSph_enhanced.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/53/MercNormSph_enhanced.png/400px-MercNormSph_enhanced.png 2x" data-file-width="800" data-file-height="797" /></a><figcaption></figcaption></figure> </td> <td> <p>\ </p> </td> <td align="center" width="200px"><figure class="mw-halign-center" typeof="mw:File"><a href="/wiki/File:MercTranSph_enhanced.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/MercTranSph_enhanced.png/200px-MercTranSph_enhanced.png" decoding="async" width="200" height="201" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/MercTranSph_enhanced.png/300px-MercTranSph_enhanced.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c9/MercTranSph_enhanced.png/400px-MercTranSph_enhanced.png 2x" data-file-width="1068" data-file-height="1073" /></a><figcaption></figcaption></figure> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Latitude_on_the_ellipsoid">Latitude on the ellipsoid</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=6" title="Edit section: Latitude on the ellipsoid"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Ellipsoids">Ellipsoids</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=7" title="Edit section: Ellipsoids"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Ellipsoid_of_revolution" class="mw-redirect" title="Ellipsoid of revolution">Ellipsoid of revolution</a></div> <p>In 1687 <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a> published the <i><a href="/wiki/Philosophi%C3%A6_Naturalis_Principia_Mathematica" title="Philosophiæ Naturalis Principia Mathematica">Philosophiæ Naturalis Principia Mathematica</a></i>, in which he proved that a rotating self-gravitating fluid body in equilibrium takes the form of an <a href="/wiki/Oblate_spheroid" class="mw-redirect" title="Oblate spheroid">oblate</a> ellipsoid.<sup id="cite_ref-newton_4-0" class="reference"><a href="#cite_note-newton-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> (This article uses the term <i>ellipsoid</i> in preference to the older term <i>spheroid</i>.) Newton's result was confirmed by geodetic measurements in the 18th century. (See <a href="/wiki/Meridian_arc" title="Meridian arc">Meridian arc</a>.) An oblate ellipsoid is the three-dimensional surface generated by the rotation of an ellipse about its shorter axis (minor axis). "Oblate ellipsoid of revolution" is abbreviated to 'ellipsoid' in the remainder of this article. (Ellipsoids which do not have an axis of symmetry are termed <a href="/wiki/Triaxial_ellipsoid" class="mw-redirect" title="Triaxial ellipsoid">triaxial</a>.) </p><p>Many different <a href="/wiki/Figure_of_the_Earth" title="Figure of the Earth">reference ellipsoids</a> have been used in the history of <a href="/wiki/Geodesy" title="Geodesy">geodesy</a>. In pre-satellite days they were devised to give a good fit to the <a href="/wiki/Geoid" title="Geoid">geoid</a> over the limited area of a survey but, with the advent of <a href="/wiki/GPS" class="mw-redirect" title="GPS">GPS</a>, it has become natural to use reference ellipsoids (such as <a href="/wiki/WGS84" class="mw-redirect" title="WGS84">WGS84</a>) with centre at the centre of mass of the Earth and minor axis aligned to the rotation axis of the Earth. These geocentric ellipsoids are usually within 100&#160;m (330&#160;ft) of the geoid. Since latitude is defined with respect to an ellipsoid, the position of a given point is different on each ellipsoid: one cannot exactly specify the latitude and longitude of a geographical feature without specifying the ellipsoid used. Many maps maintained by national agencies are based on older ellipsoids, so one must know how the latitude and longitude values are transformed from one ellipsoid to another. GPS handsets include software to carry out <a href="/wiki/Datum_(geodesy)" class="mw-redirect" title="Datum (geodesy)">datum transformations</a> which link WGS84 to the local reference ellipsoid with its associated grid. </p> <div class="mw-heading mw-heading3"><h3 id="The_geometry_of_the_ellipsoid">The geometry of the ellipsoid</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=8" title="Edit section: The geometry of the ellipsoid"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Ellipsoid_parametric_euler_mono.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3d/Ellipsoid_parametric_euler_mono.svg/200px-Ellipsoid_parametric_euler_mono.svg.png" decoding="async" width="200" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3d/Ellipsoid_parametric_euler_mono.svg/300px-Ellipsoid_parametric_euler_mono.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3d/Ellipsoid_parametric_euler_mono.svg/400px-Ellipsoid_parametric_euler_mono.svg.png 2x" data-file-width="480" data-file-height="480" /></a><figcaption>A sphere of radius <i>a</i> compressed along the <i>z</i> axis to form an oblate ellipsoid of revolution.</figcaption></figure> <p>The shape of an ellipsoid of revolution is determined by the shape of the <a href="/wiki/Ellipse" title="Ellipse">ellipse</a> which is rotated about its minor (shorter) axis. Two parameters are required. One is invariably the equatorial radius, which is the <a href="/wiki/Ellipse" title="Ellipse">semi-major axis</a>, <span class="texhtml mvar" style="font-style:italic;">a</span>. The other parameter is usually (1)&#160;the polar radius or <a href="/wiki/Ellipse" title="Ellipse">semi-minor axis</a>, <span class="texhtml mvar" style="font-style:italic;">b</span>; or (2)&#160;the (first) <a href="/wiki/Flattening" title="Flattening">flattening</a>, <span class="texhtml mvar" style="font-style:italic;">f</span>; or (3)&#160;the <a href="/wiki/Ellipse" title="Ellipse">eccentricity</a>, <span class="texhtml mvar" style="font-style:italic;">e</span>. These parameters are not independent: they are related by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f={\frac {a-b}{a}},\qquad e^{2}=2f-f^{2},\qquad b=a(1-f)=a{\sqrt {1-e^{2}}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> </mrow> <mi>a</mi> </mfrac> </mrow> <mo>,</mo> <mspace width="2em" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>2</mn> <mi>f</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mspace width="2em" /> <mi>b</mi> <mo>=</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f={\frac {a-b}{a}},\qquad e^{2}=2f-f^{2},\qquad b=a(1-f)=a{\sqrt {1-e^{2}}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d176b5a394f9d591c6242a6e8754f0c3a6e76e90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:60.775ex; height:5.343ex;" alt="{\displaystyle f={\frac {a-b}{a}},\qquad e^{2}=2f-f^{2},\qquad b=a(1-f)=a{\sqrt {1-e^{2}}}\,.}"></span></dd></dl> <p>Many other parameters (see <a href="/wiki/Ellipse" title="Ellipse">ellipse</a>, <a href="/wiki/Ellipsoid" title="Ellipsoid">ellipsoid</a>) appear in the study of geodesy, geophysics and map projections but they can all be expressed in terms of one or two members of the set <span class="texhtml mvar" style="font-style:italic;">a</span>, <span class="texhtml mvar" style="font-style:italic;">b</span>, <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">e</span>. Both <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">e</span> are small and often appear in series expansions in calculations; they are of the order <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">298</span></span>&#8288;</span> and 0.0818 respectively. Values for a number of ellipsoids are given in <a href="/wiki/Figure_of_the_Earth" title="Figure of the Earth">Figure of the Earth</a>. Reference ellipsoids are usually defined by the semi-major axis and the <i>inverse</i> flattening, <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>f</i></span></span>&#8288;</span></span>. For example, the defining values for the <a href="/wiki/WGS84" class="mw-redirect" title="WGS84">WGS84</a> ellipsoid, used by all GPS devices, are<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li><span class="texhtml mvar" style="font-style:italic;">a</span> (equatorial radius): <span class="nowrap"><span data-sort-value="7006637813700000000♠"></span>6<span style="margin-left:.25em;">378</span><span style="margin-left:.25em;">137</span>.0&#160;m</span> exactly</li> <li><span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>f</i></span></span>&#8288;</span></span> (inverse flattening): <span class="nowrap"><span data-sort-value="7002298257223563000♠"></span>298.257<span style="margin-left:.25em;">223</span><span style="margin-left:.25em;">563</span></span> exactly</li></ul> <p>from which are derived </p> <ul><li><span class="texhtml mvar" style="font-style:italic;">b</span> (polar radius): <span class="nowrap"><span data-sort-value="7006635675231425000♠"></span>6<span style="margin-left:.25em;">356</span><span style="margin-left:.25em;">752</span>.314<span style="margin-left:.25em;">25</span>&#160;m</span></li> <li><span class="texhtml"><i>e</i><sup>2</sup></span> (eccentricity squared): <span class="nowrap"><span data-sort-value="6997669437999014000♠"></span>0.006<span style="margin-left:.25em;">694</span><span style="margin-left:.25em;">379</span><span style="margin-left:.25em;">990</span><span style="margin-left:.25em;">14</span></span></li></ul> <p>The difference between the semi-major and semi-minor axes is about 21&#160;km (13 miles) and as fraction of the semi-major axis it equals the flattening; on a computer monitor the ellipsoid could be sized as 300 by 299 pixels. This would barely be distinguishable from a 300-by-300-pixel sphere, so illustrations usually exaggerate the flattening. </p> <div class="mw-heading mw-heading3"><h3 id="Geodetic_and_geocentric_latitudes">Geodetic and geocentric latitudes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=9" title="Edit section: Geodetic and geocentric latitudes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Geodetic_coordinates#Geodetic_vs._geocentric_coordinates" title="Geodetic coordinates">Geodetic coordinates §&#160;Geodetic vs. geocentric coordinates</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Latitude_and_longitude_graticule_on_an_ellipsoid.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Latitude_and_longitude_graticule_on_an_ellipsoid.svg/200px-Latitude_and_longitude_graticule_on_an_ellipsoid.svg.png" decoding="async" width="200" height="182" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Latitude_and_longitude_graticule_on_an_ellipsoid.svg/300px-Latitude_and_longitude_graticule_on_an_ellipsoid.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Latitude_and_longitude_graticule_on_an_ellipsoid.svg/400px-Latitude_and_longitude_graticule_on_an_ellipsoid.svg.png 2x" data-file-width="825" data-file-height="750" /></a><figcaption>The definition of geodetic latitude (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span>) and longitude (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span>) on an ellipsoid. The normal to the surface does not pass through the centre, except at the equator and at the poles.</figcaption></figure> <p>The graticule on the ellipsoid is constructed in exactly the same way as on the sphere. The normal at a point on the surface of an ellipsoid does not pass through the centre, except for points on the equator or at the poles, but the definition of latitude remains unchanged as the angle between the normal and the equatorial plane. The terminology for latitude must be made more precise by distinguishing: </p> <ul><li><span class="anchor" id="Geodetic"></span><i><a href="/wiki/Geodetic_latitude" class="mw-redirect" title="Geodetic latitude">Geodetic latitude</a></i>: the angle between the normal and the equatorial plane. The standard notation in English publications is <span class="texhtml mvar" style="font-style:italic;">ϕ</span>. This is the definition assumed when the word latitude is used without qualification. The definition must be accompanied with a specification of the ellipsoid.</li> <li><span class="anchor" id="Geocentric"></span><i><a href="/wiki/Geocentric_latitude" class="mw-redirect" title="Geocentric latitude">Geocentric latitude</a></i> (also known as <i>spherical latitude</i>, after the <a href="/wiki/3D_polar_angle" class="mw-redirect" title="3D polar angle">3D polar angle</a>): the angle between the radius (from centre to the point on the surface) and the equatorial plane. (Figure <a href="#Geocentric_latitude">below</a>). There is no standard notation: examples from various texts include <span class="texhtml mvar" style="font-style:italic;">θ</span>, <span class="texhtml mvar" style="font-style:italic;">ψ</span>, <span class="texhtml mvar" style="font-style:italic;">q</span>, <span class="texhtml mvar" style="font-style:italic;">ϕ′</span>, <span class="texhtml"><i>ϕ</i><sub>c</sub></span>, <span class="texhtml"><i>ϕ</i><sub>g</sub></span>. This article uses <span class="texhtml mvar" style="font-style:italic;">θ</span>.</li></ul> <p><b>Geographic latitude</b> must be used with care, as some authors use it as a synonym for geodetic latitude whilst others use it as an alternative to the <a href="#Astronomical_latitude">astronomical latitude</a>. "Latitude" (unqualified) should normally refer to the geodetic latitude. </p><p>The importance of specifying the reference datum may be illustrated by a simple example. On the reference ellipsoid for WGS84, the centre of the <a href="/wiki/Eiffel_Tower" title="Eiffel Tower">Eiffel Tower</a> has a geodetic latitude of 48°&#160;51′&#160;29″&#160;N, or 48.8583°&#160;N and longitude of 2°&#160;17′&#160;40″&#160;E or 2.2944°E. The same coordinates on the datum <a href="/wiki/ED50" title="ED50">ED50</a> define a point on the ground which is 140 metres (460 feet) distant from the tower.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (December 2011)">citation needed</span></a></i>&#93;</sup> A web search may produce several different values for the latitude of the tower; the reference ellipsoid is rarely specified. </p> <div class="mw-heading mw-heading2"><h2 id="Meridian_distance">Meridian distance<span class="anchor" id="Length_of_a_degree_of_latitude"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=10" title="Edit section: Meridian distance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Meridian_arc" title="Meridian arc">Meridian arc</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Length_of_a_degree_of_longitude" class="mw-redirect" title="Length of a degree of longitude">Length of a degree of longitude</a></div> <p>The length of a degree of latitude depends on the <a href="/wiki/Figure_of_the_Earth" title="Figure of the Earth">figure of the Earth</a> assumed. </p> <div class="mw-heading mw-heading3"><h3 id="Meridian_distance_on_the_sphere">Meridian distance on the sphere</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=11" title="Edit section: Meridian distance on the sphere"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>On the sphere the normal passes through the centre and the latitude (<span class="texhtml mvar" style="font-style:italic;">ϕ</span>) is therefore equal to the angle subtended at the centre by the meridian arc from the equator to the point concerned. If the <a href="/wiki/Meridian_arc" title="Meridian arc">meridian distance</a> is denoted by <span class="texhtml"><i>m</i>(<i>ϕ</i>)</span> then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m(\phi )={\frac {\pi }{180^{\circ }}}R\phi _{\mathrm {degrees} }=R\phi _{\mathrm {radians} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <msup> <mn>180</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> </mfrac> </mrow> <mi>R</mi> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">s</mi> </mrow> </mrow> </msub> <mo>=</mo> <mi>R</mi> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">s</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m(\phi )={\frac {\pi }{180^{\circ }}}R\phi _{\mathrm {degrees} }=R\phi _{\mathrm {radians} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/508adf4208d93637637efa0bca3d57f2a6613bc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:34.013ex; height:4.843ex;" alt="{\displaystyle m(\phi )={\frac {\pi }{180^{\circ }}}R\phi _{\mathrm {degrees} }=R\phi _{\mathrm {radians} }}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">R</span> denotes the <a href="/wiki/Earth_radius#Mean_radii" title="Earth radius">mean radius</a> of the Earth. <span class="texhtml mvar" style="font-style:italic;">R</span> is equal to 6,371&#160;km or 3,959 miles. No higher accuracy is appropriate for <span class="texhtml mvar" style="font-style:italic;">R</span> since higher-precision results necessitate an ellipsoid model. With this value for <span class="texhtml mvar" style="font-style:italic;">R</span> the meridian length of 1 degree of latitude on the sphere is 111.2 km (69.1 statute miles) (60.0 nautical miles). The length of one minute of latitude is 1.853 km (1.151 statute miles) (1.00 nautical miles), while the length of 1 second of latitude is 30.8&#160;m or 101 feet (see <a href="/wiki/Nautical_mile" title="Nautical mile">nautical mile</a>). </p> <div class="mw-heading mw-heading3"><h3 id="Meridian_distance_on_the_ellipsoid">Meridian distance on the ellipsoid</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=12" title="Edit section: Meridian distance on the ellipsoid"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Meridian_arc" title="Meridian arc">Meridian arc</a> and standard texts<sup id="cite_ref-torge_6-0" class="reference"><a href="#cite_note-torge-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-osborne_7-0" class="reference"><a href="#cite_note-osborne-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-rapp_8-0" class="reference"><a href="#cite_note-rapp-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> it is shown that the distance along a meridian from latitude <span class="texhtml mvar" style="font-style:italic;">ϕ</span> to the equator is given by (<span class="texhtml mvar" style="font-style:italic;">ϕ</span> in radians) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m(\phi )=\int _{0}^{\phi }M(\phi ')\,d\phi '=a\left(1-e^{2}\right)\int _{0}^{\phi }\left(1-e^{2}\sin ^{2}\phi '\right)^{-{\frac {3}{2}}}\,d\phi '}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msubsup> <mi>M</mi> <mo stretchy="false">(</mo> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>a</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2032;</mo> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m(\phi )=\int _{0}^{\phi }M(\phi ')\,d\phi '=a\left(1-e^{2}\right)\int _{0}^{\phi }\left(1-e^{2}\sin ^{2}\phi '\right)^{-{\frac {3}{2}}}\,d\phi '}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/105b6ed018f6f75a9118e3b7cb02309733fd4e0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:61.539ex; height:6.343ex;" alt="{\displaystyle m(\phi )=\int _{0}^{\phi }M(\phi &#039;)\,d\phi &#039;=a\left(1-e^{2}\right)\int _{0}^{\phi }\left(1-e^{2}\sin ^{2}\phi &#039;\right)^{-{\frac {3}{2}}}\,d\phi &#039;}"></span></dd></dl> <p>where <span class="texhtml"><i>M</i>(<i>ϕ</i>)</span> is the meridional <a href="/wiki/Radius_of_curvature_(applications)" class="mw-redirect" title="Radius of curvature (applications)">radius of curvature</a>. </p><p>The <i><a href="/wiki/Quarter_meridian" class="mw-redirect" title="Quarter meridian">quarter meridian</a></i> distance from the equator to the pole is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\mathrm {p} }=m\left({\frac {\pi }{2}}\right)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">p</mi> </mrow> </mrow> </msub> <mo>=</mo> <mi>m</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\mathrm {p} }=m\left({\frac {\pi }{2}}\right)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f09cc186defc619dca86a937548c4a0de7d00279" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.043ex; height:4.843ex;" alt="{\displaystyle m_{\mathrm {p} }=m\left({\frac {\pi }{2}}\right)\,}"></span></dd></dl> <p>For <a href="/wiki/WGS84" class="mw-redirect" title="WGS84">WGS84</a> this distance is <span class="nowrap"><span data-sort-value="7007100019657290000♠"></span>10<span style="margin-left:.25em;">001</span>.965<span style="margin-left:.25em;">729</span>&#160;km</span>. </p><p>The evaluation of the meridian distance integral is central to many studies in geodesy and map projection. It can be evaluated by expanding the integral by the binomial series and integrating term by term: see <a href="/wiki/Meridian_arc" title="Meridian arc">Meridian arc</a> for details. The length of the meridian arc between two given latitudes is given by replacing the limits of the integral by the latitudes concerned. The length of a <i>small</i> meridian arc is given by<sup id="cite_ref-osborne_7-1" class="reference"><a href="#cite_note-osborne-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-rapp_8-1" class="reference"><a href="#cite_note-rapp-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta m(\phi )=M(\phi )\,\delta \phi =a\left(1-e^{2}\right)\left(1-e^{2}\sin ^{2}\phi \right)^{-{\frac {3}{2}}}\,\delta \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mi>m</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>M</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>&#x03B4;<!-- δ --></mi> <mi>&#x03D5;<!-- ϕ --></mi> <mo>=</mo> <mi>a</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mspace width="thinmathspace" /> <mi>&#x03B4;<!-- δ --></mi> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta m(\phi )=M(\phi )\,\delta \phi =a\left(1-e^{2}\right)\left(1-e^{2}\sin ^{2}\phi \right)^{-{\frac {3}{2}}}\,\delta \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9722821ccc0c337366b9ab1d994c3bf2fd72827" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:51.389ex; height:4.509ex;" alt="{\displaystyle \delta m(\phi )=M(\phi )\,\delta \phi =a\left(1-e^{2}\right)\left(1-e^{2}\sin ^{2}\phi \right)^{-{\frac {3}{2}}}\,\delta \phi }"></span></dd></dl> <table class="wikitable" style="margin:1em auto 1em auto;float:right;clear:right;"> <tbody><tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span></th> <th><span class="texhtml">Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">lat</sub></span></span></span></th> <th><span class="texhtml">Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">long</sub></span></span></span> </th></tr> <tr style="text-align:right;"> <td>0°</td> <td>110.574&#160;km</td> <td>111.320&#160;km </td></tr> <tr style="text-align:right;"> <td>15°</td> <td>110.649&#160;km</td> <td>107.550&#160;km </td></tr> <tr style="text-align:right;"> <td>30°</td> <td>110.852&#160;km</td> <td>96.486&#160;km </td></tr> <tr style="text-align:right;"> <td>45°</td> <td>111.132&#160;km</td> <td>78.847&#160;km </td></tr> <tr style="text-align:right;"> <td>60°</td> <td>111.412&#160;km</td> <td>55.800&#160;km </td></tr> <tr style="text-align:right;"> <td>75°</td> <td>111.618&#160;km</td> <td>28.902&#160;km </td></tr> <tr style="text-align:right;"> <td>90°</td> <td>111.694&#160;km</td> <td>0.000&#160;km </td></tr></tbody></table> <p>When the latitude difference is 1 degree, corresponding to <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><span class="texhtml mvar" style="font-style:italic;">π</span></span><span class="sr-only">/</span><span class="den">180</span></span>&#8288;</span> radians, the arc distance is about </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{\text{lat}}^{1}={\frac {\pi a\left(1-e^{2}\right)}{180^{\circ }\left(1-e^{2}\sin ^{2}\phi \right)^{\frac {3}{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>lat</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mn>180</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{\text{lat}}^{1}={\frac {\pi a\left(1-e^{2}\right)}{180^{\circ }\left(1-e^{2}\sin ^{2}\phi \right)^{\frac {3}{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23040206d0511e78a15b4d5b540bab2063e2c393" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:28.639ex; height:8.509ex;" alt="{\displaystyle \Delta _{\text{lat}}^{1}={\frac {\pi a\left(1-e^{2}\right)}{180^{\circ }\left(1-e^{2}\sin ^{2}\phi \right)^{\frac {3}{2}}}}}"></span></dd></dl> <p>The distance in metres (correct to 0.01 metre) between latitudes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span>&#160;−&#160;0.5 degrees and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span>&#160;+&#160;0.5 degrees on the WGS84 spheroid is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{\text{lat}}^{1}=111\,132.954-559.822\cos 2\phi +1.175\cos 4\phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>lat</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mn>111</mn> <mspace width="thinmathspace" /> <mn>132.954</mn> <mo>&#x2212;<!-- − --></mo> <mn>559.822</mn> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> <mi>&#x03D5;<!-- ϕ --></mi> <mo>+</mo> <mn>1.175</mn> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>4</mn> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{\text{lat}}^{1}=111\,132.954-559.822\cos 2\phi +1.175\cos 4\phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6c1269b3f1e5227960b5981f7f89b63bdd51a95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:50.147ex; height:3.176ex;" alt="{\displaystyle \Delta _{\text{lat}}^{1}=111\,132.954-559.822\cos 2\phi +1.175\cos 4\phi }"></span></dd></dl> <p>The variation of this distance with latitude (on <a href="/wiki/WGS84" class="mw-redirect" title="WGS84">WGS84</a>) is shown in the table along with the <a href="/wiki/Length_of_a_degree_of_longitude" class="mw-redirect" title="Length of a degree of longitude">length of a degree of longitude</a> (east–west distance): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta _{\text{long}}^{1}={\frac {\pi a\cos \phi }{180^{\circ }{\sqrt {1-e^{2}\sin ^{2}\phi }}}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>long</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C0;<!-- π --></mi> <mi>a</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <msup> <mn>180</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2218;<!-- ∘ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta _{\text{long}}^{1}={\frac {\pi a\cos \phi }{180^{\circ }{\sqrt {1-e^{2}\sin ^{2}\phi }}}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc4eef2001bf30bead7f2674bec10a21f89710d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:28.581ex; height:8.176ex;" alt="{\displaystyle \Delta _{\text{long}}^{1}={\frac {\pi a\cos \phi }{180^{\circ }{\sqrt {1-e^{2}\sin ^{2}\phi }}}}\,}"></span></dd></dl> <p>A calculator for any latitude is provided by the U.S. Government's <a href="/wiki/National_Geospatial-Intelligence_Agency" title="National Geospatial-Intelligence Agency">National Geospatial-Intelligence Agency</a> (NGA).<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p><p>The following graph illustrates the variation of both a degree of latitude and a degree of longitude with latitude. </p> <figure class="mw-default-size mw-halign-center" typeof="mw:File/Thumb"><a href="/wiki/File:WGS84_angle_to_distance_conversion.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d0/WGS84_angle_to_distance_conversion.svg/410px-WGS84_angle_to_distance_conversion.svg.png" decoding="async" width="410" height="328" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d0/WGS84_angle_to_distance_conversion.svg/615px-WGS84_angle_to_distance_conversion.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d0/WGS84_angle_to_distance_conversion.svg/820px-WGS84_angle_to_distance_conversion.svg.png 2x" data-file-width="512" data-file-height="410" /></a><figcaption>The definition of geodetic latitude (<span class="texhtml mvar" style="font-style:italic;">ϕ</span>) and geocentric latitude (<span class="texhtml mvar" style="font-style:italic;">θ</span>).</figcaption></figure> <div class="mw-heading mw-heading2"><h2 id="Auxiliary_latitudes">Auxiliary latitudes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=13" title="Edit section: Auxiliary latitudes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are six <b>auxiliary latitudes</b> that have applications to special problems in geodesy, geophysics and the theory of map projections: </p> <ul><li><a href="/wiki/Geocentric_latitude" class="mw-redirect" title="Geocentric latitude">Geocentric latitude</a></li> <li>Parametric (or reduced) latitude</li> <li>Rectifying latitude</li> <li><a href="/wiki/Authalic_latitude" class="mw-redirect" title="Authalic latitude">Authalic latitude</a></li> <li>Conformal latitude</li> <li>Isometric latitude</li></ul> <p>The definitions given in this section all relate to locations on the reference ellipsoid but the first two auxiliary latitudes, like the geodetic latitude, can be extended to define a three-dimensional <a href="/wiki/Geographic_coordinate_system" title="Geographic coordinate system">geographic coordinate system</a> as discussed <a href="#Latitude_and_coordinate_systems">below</a>. The remaining latitudes are not used in this way; they are used <i>only</i> as intermediate constructs in map projections of the reference ellipsoid to the plane or in calculations of geodesics on the ellipsoid. Their numerical values are not of interest. For example, no one would need to calculate the authalic latitude of the Eiffel Tower. </p><p>The expressions below give the auxiliary latitudes in terms of the geodetic latitude, the semi-major axis, <span class="texhtml mvar" style="font-style:italic;">a</span>, and the eccentricity, <span class="texhtml mvar" style="font-style:italic;">e</span>. (For inverses see <a href="#Inverse_formulae_and_series">below</a>.) The forms given are, apart from notational variants, those in the standard reference for map projections, namely "Map projections: a working manual" by J. P. Snyder.<sup id="cite_ref-snyder_10-0" class="reference"><a href="#cite_note-snyder-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> Derivations of these expressions may be found in Adams<sup id="cite_ref-adams1921_11-0" class="reference"><a href="#cite_note-adams1921-11"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> and online publications by Osborne<sup id="cite_ref-osborne_7-2" class="reference"><a href="#cite_note-osborne-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> and Rapp.<sup id="cite_ref-rapp_8-2" class="reference"><a href="#cite_note-rapp-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Geocentric_latitude">Geocentric latitude</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=14" title="Edit section: Geocentric latitude"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="#Geodetic_and_geocentric_latitudes">§&#160;Geodetic and geocentric latitudes</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Geocentric_coords_03.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Geocentric_coords_03.svg/250px-Geocentric_coords_03.svg.png" decoding="async" width="250" height="207" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Geocentric_coords_03.svg/375px-Geocentric_coords_03.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Geocentric_coords_03.svg/500px-Geocentric_coords_03.svg.png 2x" data-file-width="316" data-file-height="262" /></a><figcaption>The definition of geodetic latitude (<span class="texhtml mvar" style="font-style:italic;">ϕ</span>) and geocentric latitude (<span class="texhtml mvar" style="font-style:italic;">θ</span>)</figcaption></figure> <p>The <b>geocentric latitude</b> is the angle between the equatorial plane and the radius from the centre to a point of interest. </p><p>When the point is on the surface of the ellipsoid, the relation between the geocentric latitude (<span class="texhtml mvar" style="font-style:italic;">θ</span>) and the geodetic latitude (<span class="texhtml mvar" style="font-style:italic;">ϕ</span>) is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta (\phi )=\tan ^{-1}\left(\left(1-e^{2}\right)\tan \phi \right)=\tan ^{-1}\left((1-f)^{2}\tan \phi \right)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta (\phi )=\tan ^{-1}\left(\left(1-e^{2}\right)\tan \phi \right)=\tan ^{-1}\left((1-f)^{2}\tan \phi \right)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be12bdcfb52b31afe5eb175478a51743a38ce0f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:54.614ex; height:3.343ex;" alt="{\displaystyle \theta (\phi )=\tan ^{-1}\left(\left(1-e^{2}\right)\tan \phi \right)=\tan ^{-1}\left((1-f)^{2}\tan \phi \right)\,.}"></span></dd></dl> <p>For points not on the surface of the ellipsoid, the relationship involves additionally the <a href="/wiki/Ellipsoidal_height" class="mw-redirect" title="Ellipsoidal height">ellipsoidal height</a> <i>h</i>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta (\phi ,h)=\tan ^{-1}\left({\frac {N(1-f)^{2}+h}{N+h}}\tan \phi \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>,</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>N</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>h</mi> </mrow> <mrow> <mi>N</mi> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta (\phi ,h)=\tan ^{-1}\left({\frac {N(1-f)^{2}+h}{N+h}}\tan \phi \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2c91758246aec3c0613c68412150d7d776ded5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:39.874ex; height:7.509ex;" alt="{\displaystyle \theta (\phi ,h)=\tan ^{-1}\left({\frac {N(1-f)^{2}+h}{N+h}}\tan \phi \right)}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">N</span> is the prime vertical radius of curvature. The geodetic and geocentric latitudes are equal at the equator and at the poles but at other latitudes they differ by a few minutes of arc. Taking the value of the squared eccentricity as 0.0067 (it depends on the choice of ellipsoid) the maximum difference of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi {-}\theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi {-}\theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fad050a806bb61857c84d009cfc72a3fec9ec8b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.284ex; height:2.509ex;" alt="{\displaystyle \phi {-}\theta }"></span> may be shown to be about 11.5 minutes of arc at a geodetic latitude of approximately 45°&#160;6′.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Parametric_latitude_(or_reduced_latitude)"><span id="Parametric_latitude_.28or_reduced_latitude.29"></span>Parametric latitude (or reduced latitude)<span class="anchor" id="Parametric_latitude"></span><span class="anchor" id="Reduced_latitude"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=15" title="Edit section: Parametric latitude (or reduced latitude)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Ellipsoid_reduced_angle_definition.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Ellipsoid_reduced_angle_definition.svg/200px-Ellipsoid_reduced_angle_definition.svg.png" decoding="async" width="200" height="195" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Ellipsoid_reduced_angle_definition.svg/300px-Ellipsoid_reduced_angle_definition.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Ellipsoid_reduced_angle_definition.svg/400px-Ellipsoid_reduced_angle_definition.svg.png 2x" data-file-width="330" data-file-height="321" /></a><figcaption>Definition of the parametric latitude (<span class="texhtml mvar" style="font-style:italic;">β</span>) on the ellipsoid</figcaption></figure> <p>The <b>parametric latitude</b> or <b>reduced latitude</b>, <span class="texhtml mvar" style="font-style:italic;">β</span>, is defined by the radius drawn from the centre of the ellipsoid to that point <span class="texhtml">Q</span> on the surrounding sphere (of radius <span class="texhtml mvar" style="font-style:italic;">a</span>) which is the projection parallel to the Earth's axis of a point <span class="texhtml">P</span> on the ellipsoid at latitude <span class="texhtml mvar" style="font-style:italic;">ϕ</span>. It was introduced by Legendre<sup id="cite_ref-legendre_13-0" class="reference"><a href="#cite_note-legendre-13"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> and Bessel<sup id="cite_ref-bessel_14-0" class="reference"><a href="#cite_note-bessel-14"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> who solved problems for geodesics on the ellipsoid by transforming them to an equivalent problem for spherical geodesics by using this smaller latitude. Bessel's notation, <span class="texhtml"><i>u</i>(<i>ϕ</i>)</span>, is also used in the current literature. The parametric latitude is related to the geodetic latitude by:<sup id="cite_ref-osborne_7-3" class="reference"><a href="#cite_note-osborne-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-rapp_8-3" class="reference"><a href="#cite_note-rapp-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta (\phi )=\tan ^{-1}\left({\sqrt {1-e^{2}}}\tan \phi \right)=\tan ^{-1}\left((1-f)\tan \phi \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta (\phi )=\tan ^{-1}\left({\sqrt {1-e^{2}}}\tan \phi \right)=\tan ^{-1}\left((1-f)\tan \phi \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73a42a66b39844ce024d63ac0ffeb3c4ac3b08d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:53.287ex; height:4.843ex;" alt="{\displaystyle \beta (\phi )=\tan ^{-1}\left({\sqrt {1-e^{2}}}\tan \phi \right)=\tan ^{-1}\left((1-f)\tan \phi \right)}"></span></dd></dl> <p>The alternative name arises from the parameterization of the equation of the ellipse describing a meridian section. In terms of Cartesian coordinates <span class="texhtml mvar" style="font-style:italic;">p</span>, the distance from the minor axis, and <span class="texhtml mvar" style="font-style:italic;">z</span>, the distance above the equatorial plane, the equation of the <a href="/wiki/Ellipse" title="Ellipse">ellipse</a> is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {p^{2}}{a^{2}}}+{\frac {z^{2}}{b^{2}}}=1\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {p^{2}}{a^{2}}}+{\frac {z^{2}}{b^{2}}}=1\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b55d30cf33f6eccc1558881edcfd2dfe423c5dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:14.236ex; height:6.009ex;" alt="{\displaystyle {\frac {p^{2}}{a^{2}}}+{\frac {z^{2}}{b^{2}}}=1\,.}"></span></dd></dl> <p>The Cartesian coordinates of the point are parameterized by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=a\cos \beta \,,\qquad z=b\sin \beta \,;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mi>a</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B2;<!-- β --></mi> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="2em" /> <mi>z</mi> <mo>=</mo> <mi>b</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B2;<!-- β --></mi> <mspace width="thinmathspace" /> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=a\cos \beta \,,\qquad z=b\sin \beta \,;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab1ea1af54648e83df7ac4fba6091bbc9bc65b34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:28.051ex; height:2.509ex;" alt="{\displaystyle p=a\cos \beta \,,\qquad z=b\sin \beta \,;}"></span></dd></dl> <p>Cayley suggested the term <i>parametric latitude</i> because of the form of these equations.<sup id="cite_ref-cayley_15-0" class="reference"><a href="#cite_note-cayley-15"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p><p>The parametric latitude is not used in the theory of map projections. Its most important application is in the theory of ellipsoid geodesics, (<a href="/wiki/Vincenty%27s_formulae" title="Vincenty&#39;s formulae">Vincenty</a>, Karney<sup id="cite_ref-Karney_16-0" class="reference"><a href="#cite_note-Karney-16"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup>). </p> <div class="mw-heading mw-heading3"><h3 id="Rectifying_latitude">Rectifying latitude</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=16" title="Edit section: Rectifying latitude"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Rectifying_radius" class="mw-redirect" title="Rectifying radius">Rectifying radius</a></div> <p>The <b>rectifying latitude</b>, <span class="texhtml mvar" style="font-style:italic;">μ</span>, is the meridian distance scaled so that its value at the poles is equal to 90 degrees or <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><span class="texhtml mvar" style="font-style:italic;">π</span></span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span> radians: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu (\phi )={\frac {\pi }{2}}{\frac {m(\phi )}{m_{\mathrm {p} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">p</mi> </mrow> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu (\phi )={\frac {\pi }{2}}{\frac {m(\phi )}{m_{\mathrm {p} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/349ea19e122303e5b69ddfd8be93244b25788c3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.934ex; height:6.343ex;" alt="{\displaystyle \mu (\phi )={\frac {\pi }{2}}{\frac {m(\phi )}{m_{\mathrm {p} }}}}"></span></dd></dl> <p>where the meridian distance from the equator to a latitude <span class="texhtml mvar" style="font-style:italic;">ϕ</span> is (see <a href="/wiki/Meridian_arc" title="Meridian arc">Meridian arc</a>) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m(\phi )=a\left(1-e^{2}\right)\int _{0}^{\phi }\left(1-e^{2}\sin ^{2}\phi '\right)^{-{\frac {3}{2}}}\,d\phi '\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2032;</mo> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2032;</mo> </msup> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m(\phi )=a\left(1-e^{2}\right)\int _{0}^{\phi }\left(1-e^{2}\sin ^{2}\phi '\right)^{-{\frac {3}{2}}}\,d\phi '\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d68ac2a2a87186fe170c3413ad1d6b214ad387c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:45.417ex; height:6.343ex;" alt="{\displaystyle m(\phi )=a\left(1-e^{2}\right)\int _{0}^{\phi }\left(1-e^{2}\sin ^{2}\phi &#039;\right)^{-{\frac {3}{2}}}\,d\phi &#039;\,,}"></span></dd></dl> <p>and the length of the meridian quadrant from the equator to the pole (the <a href="/wiki/Meridian_arc#Polar_distance" title="Meridian arc">polar distance</a>) is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\mathrm {p} }=m\left({\frac {\pi }{2}}\right)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">p</mi> </mrow> </mrow> </msub> <mo>=</mo> <mi>m</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\mathrm {p} }=m\left({\frac {\pi }{2}}\right)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feaed75d16edd488d2ae9b3fcf3d164198d1d4fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.077ex; height:4.843ex;" alt="{\displaystyle m_{\mathrm {p} }=m\left({\frac {\pi }{2}}\right)\,.}"></span></dd></dl> <p>Using the rectifying latitude to define a latitude on a sphere of radius </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R={\frac {2m_{\mathrm {p} }}{\pi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">p</mi> </mrow> </mrow> </msub> </mrow> <mi>&#x03C0;<!-- π --></mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R={\frac {2m_{\mathrm {p} }}{\pi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3c5625835b98da55e6ea02beb168219a8abef06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.048ex; height:5.509ex;" alt="{\displaystyle R={\frac {2m_{\mathrm {p} }}{\pi }}}"></span></dd></dl> <p>defines a projection from the ellipsoid to the sphere such that all meridians have true length and uniform scale. The sphere may then be projected to the plane with an <a href="/wiki/Equirectangular_projection" title="Equirectangular projection">equirectangular projection</a> to give a double projection from the ellipsoid to the plane such that all meridians have true length and uniform meridian scale. An example of the use of the rectifying latitude is the <a href="/wiki/Equidistant_conic_projection" title="Equidistant conic projection">equidistant conic projection</a>. (Snyder, Section 16).<sup id="cite_ref-snyder_10-1" class="reference"><a href="#cite_note-snyder-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> The rectifying latitude is also of great importance in the construction of the <a href="/wiki/Transverse_Mercator_projection" title="Transverse Mercator projection">Transverse Mercator projection</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Authalic_latitude">Authalic latitude</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=17" title="Edit section: Authalic latitude"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Authalic_radius" class="mw-redirect" title="Authalic radius">Authalic radius</a></div> <p>The <b>authalic latitude</b> (after the Greek for "<a href="https://en.wiktionary.org/wiki/authalic" class="extiw" title="wiktionary:authalic">same area</a>"), <span class="texhtml mvar" style="font-style:italic;">ξ</span>, gives an <a href="/wiki/Equal-area_projection" title="Equal-area projection">equal-area projection</a> to a sphere. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi (\phi )=\sin ^{-1}\left({\frac {q(\phi )}{q_{\mathrm {p} }}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>q</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mrow> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">p</mi> </mrow> </mrow> </msub> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi (\phi )=\sin ^{-1}\left({\frac {q(\phi )}{q_{\mathrm {p} }}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc893a2c538edce543f6f2c8e4f8eed929ea83d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:21.033ex; height:6.343ex;" alt="{\displaystyle \xi (\phi )=\sin ^{-1}\left({\frac {q(\phi )}{q_{\mathrm {p} }}}\right)}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}q(\phi )&amp;={\frac {\left(1-e^{2}\right)\sin \phi }{1-e^{2}\sin ^{2}\phi }}-{\frac {1-e^{2}}{2e}}\ln \left({\frac {1-e\sin \phi }{1+e\sin \phi }}\right)\\[2pt]&amp;={\frac {\left(1-e^{2}\right)\sin \phi }{1-e^{2}\sin ^{2}\phi }}+{\frac {1-e^{2}}{e}}\tanh ^{-1}(e\sin \phi )\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.5em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>q</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>e</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>e</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>e</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>e</mi> </mfrac> </mrow> <msup> <mi>tanh</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>e</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}q(\phi )&amp;={\frac {\left(1-e^{2}\right)\sin \phi }{1-e^{2}\sin ^{2}\phi }}-{\frac {1-e^{2}}{2e}}\ln \left({\frac {1-e\sin \phi }{1+e\sin \phi }}\right)\\[2pt]&amp;={\frac {\left(1-e^{2}\right)\sin \phi }{1-e^{2}\sin ^{2}\phi }}+{\frac {1-e^{2}}{e}}\tanh ^{-1}(e\sin \phi )\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b256b2b2f95ca49231dfb329dd724cdbd2de7d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:48.738ex; height:14.843ex;" alt="{\displaystyle {\begin{aligned}q(\phi )&amp;={\frac {\left(1-e^{2}\right)\sin \phi }{1-e^{2}\sin ^{2}\phi }}-{\frac {1-e^{2}}{2e}}\ln \left({\frac {1-e\sin \phi }{1+e\sin \phi }}\right)\\[2pt]&amp;={\frac {\left(1-e^{2}\right)\sin \phi }{1-e^{2}\sin ^{2}\phi }}+{\frac {1-e^{2}}{e}}\tanh ^{-1}(e\sin \phi )\end{aligned}}}"></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}q_{\mathrm {p} }=q\left({\frac {\pi }{2}}\right)&amp;=1-{\frac {1-e^{2}}{2e}}\ln \left({\frac {1-e}{1+e}}\right)\\&amp;=1+{\frac {1-e^{2}}{e}}\tanh ^{-1}e\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">p</mi> </mrow> </mrow> </msub> <mo>=</mo> <mi>q</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>e</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>e</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>e</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>e</mi> </mfrac> </mrow> <msup> <mi>tanh</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>e</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}q_{\mathrm {p} }=q\left({\frac {\pi }{2}}\right)&amp;=1-{\frac {1-e^{2}}{2e}}\ln \left({\frac {1-e}{1+e}}\right)\\&amp;=1+{\frac {1-e^{2}}{e}}\tanh ^{-1}e\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7447963fa3c0dd43284a844f87ac2ae8732810b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:38.182ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}q_{\mathrm {p} }=q\left({\frac {\pi }{2}}\right)&amp;=1-{\frac {1-e^{2}}{2e}}\ln \left({\frac {1-e}{1+e}}\right)\\&amp;=1+{\frac {1-e^{2}}{e}}\tanh ^{-1}e\end{aligned}}}"></span></dd></dl> <p>and the radius of the sphere is taken as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{q}=a{\sqrt {\frac {q_{\mathrm {p} }}{2}}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">p</mi> </mrow> </mrow> </msub> <mn>2</mn> </mfrac> </msqrt> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{q}=a{\sqrt {\frac {q_{\mathrm {p} }}{2}}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/410e3824d4063dc2ceef3089f832b3f559284a28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:13.458ex; height:6.343ex;" alt="{\displaystyle R_{q}=a{\sqrt {\frac {q_{\mathrm {p} }}{2}}}\,.}"></span></dd></dl> <p>An example of the use of the authalic latitude is the <a href="/wiki/Albers_projection" title="Albers projection">Albers equal-area conic projection</a>.<sup id="cite_ref-snyder_10-2" class="reference"><a href="#cite_note-snyder-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: §14">&#58;&#8202;§14&#8202;</span></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Conformal_latitude">Conformal latitude</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=18" title="Edit section: Conformal latitude"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>conformal latitude</b>, <span class="texhtml mvar" style="font-style:italic;">χ</span>, gives an angle-preserving (<a href="/wiki/Conformal_map" title="Conformal map">conformal</a>) transformation to the sphere. <sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\chi (\phi )&amp;=2\tan ^{-1}\left[\left({\frac {1+\sin \phi }{1-\sin \phi }}\right)\left({\frac {1-e\sin \phi }{1+e\sin \phi }}\right)^{e}\right]^{\frac {1}{2}}-{\frac {\pi }{2}}\\[2pt]&amp;=2\tan ^{-1}\left[\tan \left({\frac {\phi }{2}}+{\frac {\pi }{4}}\right)\left({\frac {1-e\sin \phi }{1+e\sin \phi }}\right)^{\frac {e}{2}}\right]-{\frac {\pi }{2}}\\[2pt]&amp;=\tan ^{-1}\left[\sinh \left(\sinh ^{-1}(\tan \phi )-e\tanh ^{-1}(e\sin \phi )\right)\right]\\&amp;=\operatorname {gd} \left[\operatorname {gd} ^{-1}(\phi )-e\tanh ^{-1}(e\sin \phi )\right]\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.5em 0.5em 0.3em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mrow> <mo>[</mo> <mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>e</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>e</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03D5;<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>e</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>e</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>e</mi> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mi>sinh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>sinh</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>e</mi> <msup> <mi>tanh</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>e</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>gd</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <msup> <mi>gd</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>e</mi> <msup> <mi>tanh</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>e</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\chi (\phi )&amp;=2\tan ^{-1}\left[\left({\frac {1+\sin \phi }{1-\sin \phi }}\right)\left({\frac {1-e\sin \phi }{1+e\sin \phi }}\right)^{e}\right]^{\frac {1}{2}}-{\frac {\pi }{2}}\\[2pt]&amp;=2\tan ^{-1}\left[\tan \left({\frac {\phi }{2}}+{\frac {\pi }{4}}\right)\left({\frac {1-e\sin \phi }{1+e\sin \phi }}\right)^{\frac {e}{2}}\right]-{\frac {\pi }{2}}\\[2pt]&amp;=\tan ^{-1}\left[\sinh \left(\sinh ^{-1}(\tan \phi )-e\tanh ^{-1}(e\sin \phi )\right)\right]\\&amp;=\operatorname {gd} \left[\operatorname {gd} ^{-1}(\phi )-e\tanh ^{-1}(e\sin \phi )\right]\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eea5beec16e6a78772ab9d8ffd9123b9ae6e89e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.005ex; width:55.036ex; height:23.176ex;" alt="{\displaystyle {\begin{aligned}\chi (\phi )&amp;=2\tan ^{-1}\left[\left({\frac {1+\sin \phi }{1-\sin \phi }}\right)\left({\frac {1-e\sin \phi }{1+e\sin \phi }}\right)^{e}\right]^{\frac {1}{2}}-{\frac {\pi }{2}}\\[2pt]&amp;=2\tan ^{-1}\left[\tan \left({\frac {\phi }{2}}+{\frac {\pi }{4}}\right)\left({\frac {1-e\sin \phi }{1+e\sin \phi }}\right)^{\frac {e}{2}}\right]-{\frac {\pi }{2}}\\[2pt]&amp;=\tan ^{-1}\left[\sinh \left(\sinh ^{-1}(\tan \phi )-e\tanh ^{-1}(e\sin \phi )\right)\right]\\&amp;=\operatorname {gd} \left[\operatorname {gd} ^{-1}(\phi )-e\tanh ^{-1}(e\sin \phi )\right]\end{aligned}}}"></span></dd></dl> <p>where <span class="texhtml">gd(<i>x</i>)</span> is the <a href="/wiki/Gudermannian_function" title="Gudermannian function">Gudermannian function</a>. (See also <a href="/wiki/Mercator_projection#Alternative_expressions" title="Mercator projection">Mercator projection</a>.) </p><p>The conformal latitude defines a transformation from the ellipsoid to a sphere of <i>arbitrary</i> radius such that the angle of intersection between any two lines on the ellipsoid is the same as the corresponding angle on the sphere (so that the shape of <i>small</i> elements is well preserved). A further conformal transformation from the sphere to the plane gives a conformal double projection from the ellipsoid to the plane. This is not the only way of generating such a conformal projection. For example, the 'exact' version of the <a href="/wiki/Transverse_Mercator_projection" title="Transverse Mercator projection">Transverse Mercator projection</a> on the ellipsoid is not a double projection. (It does, however, involve a generalisation of the conformal latitude to the complex plane). </p> <div class="mw-heading mw-heading3"><h3 id="Isometric_latitude">Isometric latitude</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=19" title="Edit section: Isometric latitude"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>isometric latitude</b>, <span class="texhtml mvar" style="font-style:italic;">ψ</span>, is used in the development of the ellipsoidal versions of the normal <a href="/wiki/Mercator_projection" title="Mercator projection">Mercator projection</a> and the <a href="/wiki/Transverse_Mercator_projection" title="Transverse Mercator projection">Transverse Mercator projection</a>. The name "isometric" arises from the fact that at any point on the ellipsoid equal increments of <span class="texhtml mvar" style="font-style:italic;">ψ</span> and longitude <span class="texhtml mvar" style="font-style:italic;">λ</span> give rise to equal distance displacements along the meridians and parallels respectively. The <a href="/wiki/Geographic_coordinate_system" title="Geographic coordinate system">graticule</a> defined by the lines of constant <span class="texhtml mvar" style="font-style:italic;">ψ</span> and constant <span class="texhtml mvar" style="font-style:italic;">λ</span>, divides the surface of the ellipsoid into a mesh of squares (of varying size). The isometric latitude is zero at the equator but rapidly diverges from the geodetic latitude, tending to infinity at the poles. The conventional notation is given in Snyder (page 15):<sup id="cite_ref-snyder_10-3" class="reference"><a href="#cite_note-snyder-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\psi (\phi )&amp;=\ln \left[\tan \left({\frac {\pi }{4}}+{\frac {\phi }{2}}\right)\right]+{\frac {e}{2}}\ln \left[{\frac {1-e\sin \phi }{1+e\sin \phi }}\right]\\&amp;=\sinh ^{-1}(\tan \phi )-e\tanh ^{-1}(e\sin \phi )\\&amp;=\operatorname {gd} ^{-1}(\phi )-e\tanh ^{-1}(e\sin \phi ).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03D5;<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>e</mi> <mn>2</mn> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>e</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>e</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>sinh</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>e</mi> <msup> <mi>tanh</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>e</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>gd</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>e</mi> <msup> <mi>tanh</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>e</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\psi (\phi )&amp;=\ln \left[\tan \left({\frac {\pi }{4}}+{\frac {\phi }{2}}\right)\right]+{\frac {e}{2}}\ln \left[{\frac {1-e\sin \phi }{1+e\sin \phi }}\right]\\&amp;=\sinh ^{-1}(\tan \phi )-e\tanh ^{-1}(e\sin \phi )\\&amp;=\operatorname {gd} ^{-1}(\phi )-e\tanh ^{-1}(e\sin \phi ).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2999bd8461a831ee601ecad69062c5b30adec5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:47.521ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}\psi (\phi )&amp;=\ln \left[\tan \left({\frac {\pi }{4}}+{\frac {\phi }{2}}\right)\right]+{\frac {e}{2}}\ln \left[{\frac {1-e\sin \phi }{1+e\sin \phi }}\right]\\&amp;=\sinh ^{-1}(\tan \phi )-e\tanh ^{-1}(e\sin \phi )\\&amp;=\operatorname {gd} ^{-1}(\phi )-e\tanh ^{-1}(e\sin \phi ).\end{aligned}}}"></span></dd></dl> <p>For the <i>normal</i> Mercator projection (on the ellipsoid) this function defines the spacing of the parallels: if the length of the equator on the projection is <span class="texhtml mvar" style="font-style:italic;">E</span> (units of length or pixels) then the distance, <span class="texhtml mvar" style="font-style:italic;">y</span>, of a parallel of latitude <span class="texhtml mvar" style="font-style:italic;">ϕ</span> from the equator is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y(\phi )={\frac {E}{2\pi }}\psi (\phi )\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y(\phi )={\frac {E}{2\pi }}\psi (\phi )\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c3c8fdb803b473efe5685cc97cdcfe6622aa472" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:16.521ex; height:5.176ex;" alt="{\displaystyle y(\phi )={\frac {E}{2\pi }}\psi (\phi )\,.}"></span></dd></dl> <p>The isometric latitude <span class="texhtml mvar" style="font-style:italic;">ψ</span> is closely related to the conformal latitude <span class="texhtml mvar" style="font-style:italic;">χ</span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (\phi )=\operatorname {gd} ^{-1}\chi (\phi )\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>gd</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (\phi )=\operatorname {gd} ^{-1}\chi (\phi )\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7eaf60be567d5882f6b8a5b07f11fc3aafa2c157" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.665ex; height:3.176ex;" alt="{\displaystyle \psi (\phi )=\operatorname {gd} ^{-1}\chi (\phi )\,.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Inverse_formulae_and_series">Inverse formulae and series</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=20" title="Edit section: Inverse formulae and series"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The formulae in the previous sections give the auxiliary latitude in terms of the geodetic latitude. The expressions for the geocentric and parametric latitudes may be inverted directly but this is impossible in the four remaining cases: the rectifying, authalic, conformal, and isometric latitudes. There are two methods of proceeding. </p> <ul><li>The first is a numerical inversion of the defining equation for each and every particular value of the auxiliary latitude. The methods available are <a href="/wiki/Fixed-point_iteration" title="Fixed-point iteration">fixed-point iteration</a> and <a href="/wiki/Newton%27s_method" title="Newton&#39;s method">Newton–Raphson</a> root finding. <ul><li>When converting from isometric or conformal to geodetic, two iterations of Newton-Raphson gives <a href="/wiki/Double_precision" class="mw-redirect" title="Double precision">double precision</a> accuracy.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li>The other, more useful, approach is to express the auxiliary latitude as a series in terms of the geodetic latitude and then invert the series by the method of <a href="/wiki/Lagrange_reversion" class="mw-redirect" title="Lagrange reversion">Lagrange reversion</a>. Such series are presented by Adams who uses Taylor series expansions and gives coefficients in terms of the eccentricity.<sup id="cite_ref-adams1921_11-1" class="reference"><a href="#cite_note-adams1921-11"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> Orihuela<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> gives series for the conversions between all pairs of auxiliary latitudes in terms of the third flattening, <span class="texhtml"><i>n</i> = (<i>a</i> - <i>b</i>)/(<i>a</i> + <i>b</i>)</span>. Karney<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> establishes that the truncation errors for such series are consistently smaller that the equivalent series in terms of the eccentricity. The series method is not applicable to the isometric latitude and one must find the conformal latitude in an intermediate step.<sup id="cite_ref-osborne_7-4" class="reference"><a href="#cite_note-osborne-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Numerical_comparison_of_auxiliary_latitudes">Numerical comparison of auxiliary latitudes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=21" title="Edit section: Numerical comparison of auxiliary latitudes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File"><a href="/wiki/File:Auxiliary_Latitudes_Difference.svg" class="mw-file-description" title="inline"><img alt="inline" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/18/Auxiliary_Latitudes_Difference.svg/540px-Auxiliary_Latitudes_Difference.svg.png" decoding="async" width="540" height="360" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/18/Auxiliary_Latitudes_Difference.svg/810px-Auxiliary_Latitudes_Difference.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/18/Auxiliary_Latitudes_Difference.svg/1080px-Auxiliary_Latitudes_Difference.svg.png 2x" data-file-width="540" data-file-height="360" /></a><figcaption>inline</figcaption></figure> <p>The plot to the right shows the difference between the geodetic latitude and the auxiliary latitudes other than the isometric latitude (which diverges to infinity at the poles) for the case of the WGS84 ellipsoid. The differences shown on the plot are in arc minutes. In the Northern hemisphere (positive latitudes), <i>θ</i> ≤ <i>χ</i> ≤ <i>μ</i> ≤ <i>ξ</i> ≤ <i>β</i> ≤ <i>ϕ</i>; in the Southern hemisphere (negative latitudes), the inequalities are reversed, with equality at the equator and the poles. Although the graph appears symmetric about 45°, the minima of the curves actually lie between 45° 2′ and 45° 6′. Some representative data points are given in the table below. The conformal and geocentric latitudes are nearly indistinguishable, a fact that was exploited in the days of hand calculators to expedite the construction of map projections.<sup id="cite_ref-snyder_10-4" class="reference"><a href="#cite_note-snyder-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 108">&#58;&#8202;108&#8202;</span></sup> </p><p>To first order in the flattening <i>f</i>, the auxiliary latitudes can be expressed as <i>ζ</i> = <i>ϕ</i> − <i>Cf</i> sin 2<i>ϕ</i> where the constant <i>C</i> takes on the values [<style data-mw-deduplicate="TemplateStyles:r1154941027">.mw-parser-output .frac{white-space:nowrap}.mw-parser-output .frac .num,.mw-parser-output .frac .den{font-size:80%;line-height:0;vertical-align:super}.mw-parser-output .frac .den{vertical-align:sub}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="frac"><span class="num">1</span>&#8260;<span class="den">2</span></span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">2</span>&#8260;<span class="den">3</span></span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">3</span>&#8260;<span class="den">4</span></span>, 1, 1] for <i>ζ</i> = [<i>β</i>, <i>ξ</i>, <i>μ</i>, <i>χ</i>, <i>θ</i>]. </p> <table class="wikitable" style="margin: 1em auto 1em auto; text-align:right;"> <caption>Approximate difference from geodetic latitude (<span class="texhtml mvar" style="font-style:italic;">ϕ</span>) </caption> <tbody><tr> <th><span class="texhtml mvar" style="font-style:italic;">ϕ</span> </th> <th>Parametric<br /><span class="texhtml"><i>β</i> − <i>ϕ</i></span> </th> <th>Authalic<br /><span class="texhtml"><i>ξ</i> − <i>ϕ</i></span> </th> <th>Rectifying<br /><span class="texhtml"><i>μ</i> − <i>ϕ</i></span> </th> <th>Conformal<br /><span class="texhtml"><i>χ</i> − <i>ϕ</i></span> </th> <th>Geocentric<br /><span class="texhtml"><i>θ</i> − <i>ϕ</i></span> </th></tr> <tr> <td>0°</td> <td>0.00′</td> <td>0.00′</td> <td>0.00′</td> <td>0.00′</td> <td>0.00′ </td></tr> <tr> <td>15°</td> <td>−2.88′</td> <td>−3.84′</td> <td>−4.32′</td> <td>−5.76′</td> <td>−5.76′ </td></tr> <tr> <td>30°</td> <td>−5.00′</td> <td>−6.66′</td> <td>−7.49′</td> <td>−9.98′</td> <td>−9.98′ </td></tr> <tr> <td>45°</td> <td>−5.77′</td> <td>−7.70′</td> <td>−8.66′</td> <td>−11.54′</td> <td>−11.55′ </td></tr> <tr> <td>60°</td> <td>−5.00′</td> <td>−6.67′</td> <td>−7.51′</td> <td>−10.01′</td> <td>−10.02′ </td></tr> <tr> <td>75°</td> <td>−2.89′</td> <td>−3.86′</td> <td>−4.34′</td> <td>−5.78′</td> <td>−5.79′ </td></tr> <tr> <td>90°</td> <td>0.00′</td> <td>0.00′</td> <td>0.00′</td> <td>0.00′</td> <td>0.00′ </td></tr></tbody></table> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="Latitude_and_coordinate_systems">Latitude and coordinate systems</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=22" title="Edit section: Latitude and coordinate systems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The geodetic latitude, or any of the auxiliary latitudes defined on the reference ellipsoid, constitutes with longitude a two-dimensional <a href="/wiki/Coordinate_system" title="Coordinate system">coordinate system</a> on that ellipsoid. To define the position of an arbitrary point it is necessary to extend such a coordinate system into three dimensions. Three latitudes are used in this way: the geodetic, geocentric and parametric latitudes are used in geodetic coordinates, spherical polar coordinates and ellipsoidal coordinates respectively. </p> <div class="mw-heading mw-heading3"><h3 id="Geodetic_coordinates">Geodetic coordinates</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=23" title="Edit section: Geodetic coordinates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Geodetic_coordinates" title="Geodetic coordinates">Geodetic coordinates</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Geodetic_coordinates.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Geodetic_coordinates.svg/200px-Geodetic_coordinates.svg.png" decoding="async" width="200" height="179" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Geodetic_coordinates.svg/300px-Geodetic_coordinates.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Geodetic_coordinates.svg/400px-Geodetic_coordinates.svg.png 2x" data-file-width="300" data-file-height="268" /></a><figcaption> Geodetic coordinates <span class="texhtml">P(<i>ɸ</i>,<i>λ</i>,<i>h</i>)</span></figcaption></figure> <p>At an arbitrary point <span class="texhtml">P</span> consider the line <span class="texhtml">PN</span> which is normal to the reference ellipsoid. The geodetic coordinates <span class="texhtml">P(<i>ɸ</i>,<i>λ</i>,<i>h</i>)</span> are the latitude and longitude of the point <span class="texhtml">N</span> on the ellipsoid and the distance <span class="texhtml">PN</span>. This height differs from the height above the geoid or a reference height such as that above mean sea level at a specified location. The direction of <span class="texhtml">PN</span> will also differ from the direction of a vertical plumb line. The relation of these different heights requires knowledge of the shape of the geoid and also the gravity field of the Earth. </p> <div class="mw-heading mw-heading3"><h3 id="Spherical_polar_coordinates">Spherical polar coordinates</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=24" title="Edit section: Spherical polar coordinates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Geocentric_coords_02.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/Geocentric_coords_02.svg/200px-Geocentric_coords_02.svg.png" decoding="async" width="200" height="195" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/Geocentric_coords_02.svg/300px-Geocentric_coords_02.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/88/Geocentric_coords_02.svg/400px-Geocentric_coords_02.svg.png 2x" data-file-width="330" data-file-height="321" /></a><figcaption> Geocentric coordinate related to spherical polar coordinates <span class="texhtml">P(<i>r</i>,<i>θ</i>′,<i>λ</i>)</span></figcaption></figure> <p>The geocentric latitude <span class="texhtml mvar" style="font-style:italic;">θ</span> is the complement of the <i>polar angle</i> or <i><a href="/wiki/Colatitude" title="Colatitude">colatitude</a></i> <span class="texhtml mvar" style="font-style:italic;">θ′</span> in conventional <a href="/wiki/Spherical_polar_coordinates" class="mw-redirect" title="Spherical polar coordinates">spherical polar coordinates</a> in which the coordinates of a point are <span class="texhtml">P(<i>r</i>,<i>θ</i>′,<i>λ</i>)</span> where <span class="texhtml mvar" style="font-style:italic;">r</span> is the distance of <span class="texhtml">P</span> from the centre <span class="texhtml">O</span>, <span class="texhtml mvar" style="font-style:italic;">θ′</span> is the angle between the radius vector and the polar axis and <span class="texhtml mvar" style="font-style:italic;">λ</span> is longitude. Since the normal at a general point on the ellipsoid does not pass through the centre it is clear that points <span class="texhtml">P'</span> on the normal, which all have the same geodetic latitude, will have differing geocentric latitudes. Spherical polar coordinate systems are used in the analysis of the gravity field. </p> <div class="mw-heading mw-heading3"><h3 id="Ellipsoidal-harmonic_coordinates">Ellipsoidal-harmonic coordinates</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=25" title="Edit section: Ellipsoidal-harmonic coordinates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Ellipsoidal_coordinates.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Ellipsoidal_coordinates.svg/200px-Ellipsoidal_coordinates.svg.png" decoding="async" width="200" height="193" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Ellipsoidal_coordinates.svg/300px-Ellipsoidal_coordinates.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Ellipsoidal_coordinates.svg/400px-Ellipsoidal_coordinates.svg.png 2x" data-file-width="299" data-file-height="288" /></a><figcaption>Ellipsoidal coordinates <span class="texhtml">P(<i>u</i>,<i>β</i>,<i>λ</i>)</span></figcaption></figure> <p>The parametric latitude can also be extended to a three-dimensional coordinate system. For a point <span class="texhtml">P</span> not on the reference ellipsoid (semi-axes <span class="texhtml">OA</span> and <span class="texhtml">OB</span>) construct an auxiliary ellipsoid which is confocal (same foci <span class="texhtml">F</span>, <span class="texhtml">F′</span>) with the reference ellipsoid: the necessary condition is that the product <span class="texhtml mvar" style="font-style:italic;">ae</span> of semi-major axis and eccentricity is the same for both ellipsoids. Let <span class="texhtml mvar" style="font-style:italic;">u</span> be the semi-minor axis (<span class="texhtml">OD</span>) of the auxiliary ellipsoid. Further let <span class="texhtml mvar" style="font-style:italic;">β</span> be the parametric latitude of <span class="texhtml">P</span> on the auxiliary ellipsoid. The set <span class="texhtml">(<i>u</i>,<i>β</i>,<i>λ</i>)</span> define the <b>ellipsoidal-harmonic coordinates</b><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> or simply <i>ellipsoidal coordinates</i><sup id="cite_ref-torge_6-1" class="reference"><a href="#cite_note-torge-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: §4.2.2">&#58;&#8202;§4.2.2&#8202;</span></sup> (although that term is also used to refer to geodetic coordinate). These coordinates are the natural choice in models of the gravity field for a rotating ellipsoidal body. The above applies to a biaxial ellipsoid (a spheroid, as in <a href="/wiki/Oblate_spheroidal_coordinates" title="Oblate spheroidal coordinates">oblate spheroidal coordinates</a>); for a generalization, see <a href="/wiki/Triaxial_ellipsoidal_coordinates" class="mw-redirect" title="Triaxial ellipsoidal coordinates">triaxial ellipsoidal coordinates</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Coordinate_conversions">Coordinate conversions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=26" title="Edit section: Coordinate conversions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The relations between the above coordinate systems, and also Cartesian coordinates are not presented here. The transformation between geodetic and Cartesian coordinates may be found in <a href="/wiki/Geographic_coordinate_conversion" title="Geographic coordinate conversion">geographic coordinate conversion</a>. The relation of Cartesian and spherical polars is given in <a href="/wiki/Spherical_coordinate_system" title="Spherical coordinate system">spherical coordinate system</a>. The relation of Cartesian and ellipsoidal coordinates is discussed in Torge.<sup id="cite_ref-torge_6-2" class="reference"><a href="#cite_note-torge-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Astronomical_latitude">Astronomical latitude</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=27" title="Edit section: Astronomical latitude"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Geoida.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Geoida.svg/220px-Geoida.svg.png" decoding="async" width="220" height="102" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Geoida.svg/330px-Geoida.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/00/Geoida.svg/440px-Geoida.svg.png 2x" data-file-width="730" data-file-height="338" /></a><figcaption><div><ol><li>Ocean</li><li>Ellipsoid</li><li>Local plumb line</li><li>Continent</li><li>Geoid</li></ol></div></figcaption></figure> <p><b>Astronomical latitude</b> (<span class="texhtml">Φ</span>) is the angle between the equatorial plane and the true <a href="/wiki/Vertical_direction" class="mw-redirect" title="Vertical direction">vertical direction</a> at a point on the surface. The true vertical, the direction of a <a href="/wiki/Plumb_line" class="mw-redirect" title="Plumb line">plumb line</a>, is also the <a href="/wiki/Gravity_direction" class="mw-redirect" title="Gravity direction">gravity direction</a> (the resultant of the <a href="/wiki/Gravitational_acceleration" title="Gravitational acceleration">gravitational acceleration</a> (mass-based) and the <a href="/wiki/Centrifugal_acceleration" class="mw-redirect" title="Centrifugal acceleration">centrifugal acceleration</a>) at that latitude.<sup id="cite_ref-torge_6-3" class="reference"><a href="#cite_note-torge-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> Astronomic latitude is calculated from angles measured between the <a href="/wiki/Zenith" title="Zenith">zenith</a> and stars whose <a href="/wiki/Declination" title="Declination">declination</a> is accurately known. </p><p>In general the true vertical at a point on the surface does not exactly coincide with either the normal to the reference ellipsoid or the normal to the geoid. The geoid is an idealized, theoretical shape "at mean sea level". Points on land do not lie precisely on the geoid, and the vertical at a point at a specific time is influenced by tidal forces which the theoretical geoid averages out. The angle between the astronomic and geodetic normals is called <i><a href="/wiki/Vertical_deflection" title="Vertical deflection">vertical deflection</a></i> and is usually a few seconds of arc but it is important in geodesy.<sup id="cite_ref-torge_6-4" class="reference"><a href="#cite_note-torge-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-wellenhofmoritz_22-0" class="reference"><a href="#cite_note-wellenhofmoritz-22"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>Astronomical latitude is not to be confused with <a href="/wiki/Declination" title="Declination">declination</a>, the coordinate <a href="/wiki/Astronomer" title="Astronomer">astronomers</a> use in a similar way to specify the angular position of stars north–south of the <a href="/wiki/Celestial_equator" title="Celestial equator">celestial equator</a> (see <a href="/wiki/Equatorial_coordinates" class="mw-redirect" title="Equatorial coordinates">equatorial coordinates</a>), nor with <a href="/wiki/Ecliptic_latitude" class="mw-redirect" title="Ecliptic latitude">ecliptic latitude</a>, the coordinate that astronomers use to specify the angular position of stars north–south of the <a href="/wiki/Ecliptic" title="Ecliptic">ecliptic</a> (see <a href="/wiki/Ecliptic_coordinates" class="mw-redirect" title="Ecliptic coordinates">ecliptic coordinates</a>). </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=28" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 20em;"> <ul><li><a href="/wiki/Altitude" title="Altitude">Altitude</a> (<a href="/wiki/Sea_level" title="Sea level">mean sea level</a>)</li> <li><a href="/wiki/Bowditch%27s_American_Practical_Navigator" title="Bowditch&#39;s American Practical Navigator">Bowditch's American Practical Navigator</a></li> <li><a href="/wiki/Cardinal_direction" title="Cardinal direction">Cardinal direction</a></li> <li><a href="/wiki/Circle_of_latitude" title="Circle of latitude">Circle of latitude</a></li> <li><a href="/wiki/Colatitude" title="Colatitude">Colatitude</a></li> <li><a href="/wiki/Declination" title="Declination">Declination</a> on <a href="/wiki/Celestial_sphere" title="Celestial sphere">celestial sphere</a></li> <li><a href="/wiki/Degree_Confluence_Project" title="Degree Confluence Project">Degree Confluence Project</a></li> <li><a href="/wiki/Geodesy" title="Geodesy">Geodesy</a></li> <li><a href="/wiki/Geodetic_datum" title="Geodetic datum">Geodetic datum</a></li> <li><a href="/wiki/Geographic_coordinate_system" title="Geographic coordinate system">Geographic coordinate system</a></li> <li><a href="/wiki/Geographical_distance" title="Geographical distance">Geographical distance</a></li> <li><a href="/wiki/Geomagnetic_latitude" title="Geomagnetic latitude">Geomagnetic latitude</a></li> <li><a href="/wiki/Geotagging" title="Geotagging">Geotagging</a></li> <li><a href="/wiki/Great-circle_distance" title="Great-circle distance">Great-circle distance</a></li> <li><a href="/wiki/History_of_latitude" title="History of latitude">History of latitude</a></li> <li><a href="/wiki/Horse_latitudes" title="Horse latitudes">Horse latitudes</a></li> <li><a href="/wiki/International_Latitude_Service" title="International Latitude Service">International Latitude Service</a></li> <li><a href="/wiki/List_of_countries_by_latitude" title="List of countries by latitude">List of countries by latitude</a></li> <li><a href="/wiki/Longitude" title="Longitude">Longitude</a></li> <li><a href="/wiki/Natural_Area_Code" title="Natural Area Code">Natural Area Code</a></li> <li><a href="/wiki/Navigation" title="Navigation">Navigation</a></li> <li><a href="/wiki/Orders_of_magnitude_(length)" title="Orders of magnitude (length)">Orders of magnitude (length)</a></li> <li><a href="/wiki/World_Geodetic_System" title="World Geodetic System">World Geodetic System</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=29" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Footnotes">Footnotes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=30" title="Edit section: Footnotes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">The value of this angle today is 23°26′09.8″&#160;(or&#160;23.43605°). This figure is provided by <a href="/wiki/Template:Circle_of_latitude" title="Template:Circle of latitude">Template:Circle of latitude</a>.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">An elementary calculation involves differentiation to find the maximum difference of the geodetic and geocentric latitudes.</span> </li> </ol></div></div> <div class="mw-heading mw-heading3"><h3 id="Citations">Citations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=31" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://committee.iso.org/sites/tc211/home/projects/projects---complete-list/iso-19111.html">"ISO 19111 Geographic information — Referencing by coordinates"</a>. <i>ISO</i>. 2021-06-01<span class="reference-accessdate">. Retrieved <span class="nowrap">2022-01-16</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=ISO&amp;rft.atitle=ISO+19111+Geographic+information+%E2%80%94+Referencing+by+coordinates&amp;rft.date=2021-06-01&amp;rft_id=https%3A%2F%2Fcommittee.iso.org%2Fsites%2Ftc211%2Fhome%2Fprojects%2Fprojects---complete-list%2Fiso-19111.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThe_Corporation_of_Trinity_House2020" class="citation web cs1">The Corporation of Trinity House (10 January 2020). <a rel="nofollow" class="external text" href="https://www.trinityhouse.co.uk/notice-to-mariners/1/2020-needles-lighthouse">"1/2020 Needles Lighthouse"</a>. Notices to Mariners<span class="reference-accessdate">. Retrieved <span class="nowrap">24 May</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=1%2F2020+Needles+Lighthouse&amp;rft.series=Notices+to+Mariners&amp;rft.date=2020-01-10&amp;rft.au=The+Corporation+of+Trinity+House&amp;rft_id=https%3A%2F%2Fwww.trinityhouse.co.uk%2Fnotice-to-mariners%2F1%2F2020-needles-lighthouse&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span></span> </li> <li id="cite_note-newton-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-newton_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNewton" class="citation book cs1">Newton, Isaac. "Book III Proposition XIX Problem III". <a rel="nofollow" class="external text" href="https://archive.org/details/100878576"><i>Philosophiæ Naturalis Principia Mathematica</i></a>. Translated by Motte, Andrew. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/100878576/page/407">407</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Book+III+Proposition+XIX+Problem+III&amp;rft.btitle=Philosophi%C3%A6+Naturalis+Principia+Mathematica&amp;rft.pages=407&amp;rft.aulast=Newton&amp;rft.aufirst=Isaac&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2F100878576&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNational_Imagery_and_Mapping_Agency2004" class="citation web cs1">National Imagery and Mapping Agency (23 June 2004). <a rel="nofollow" class="external text" href="https://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf">"Department of Defense World Geodetic System 1984"</a> <span class="cs1-format">(PDF)</span>. National Imagery and Mapping Agency. p.&#160;3&#45;1. TR8350.2<span class="reference-accessdate">. Retrieved <span class="nowrap">25 April</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Department+of+Defense+World+Geodetic+System+1984&amp;rft.pages=3%26%2345%3B1&amp;rft.pub=National+Imagery+and+Mapping+Agency&amp;rft.date=2004-06-23&amp;rft.au=National+Imagery+and+Mapping+Agency&amp;rft_id=https%3A%2F%2Fearth-info.nga.mil%2FGandG%2Fpublications%2Ftr8350.2%2Fwgs84fin.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span></span> </li> <li id="cite_note-torge-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-torge_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-torge_6-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-torge_6-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-torge_6-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-torge_6-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTorge2001" class="citation book cs1">Torge, W. (2001). <i>Geodesy</i> (3rd&#160;ed.). De Gruyter. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-11-017072-8" title="Special:BookSources/3-11-017072-8"><bdi>3-11-017072-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geodesy&amp;rft.edition=3rd&amp;rft.pub=De+Gruyter&amp;rft.date=2001&amp;rft.isbn=3-11-017072-8&amp;rft.aulast=Torge&amp;rft.aufirst=W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span></span> </li> <li id="cite_note-osborne-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-osborne_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-osborne_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-osborne_7-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-osborne_7-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-osborne_7-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOsborne2013" class="citation book cs1">Osborne, Peter (2013). "Chapters&#160;5,6". <i>The Mercator Projections</i>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.5281%2Fzenodo.35392">10.5281/zenodo.35392</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapters+5%2C6&amp;rft.btitle=The+Mercator+Projections&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.5281%2Fzenodo.35392&amp;rft.aulast=Osborne&amp;rft.aufirst=Peter&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span> for LaTeX code and figures.</span> </li> <li id="cite_note-rapp-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-rapp_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-rapp_8-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-rapp_8-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-rapp_8-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRapp1991" class="citation book cs1">Rapp, Richard H. (1991). "Chapter 3". <i>Geometric Geodesy, Part I</i>. Columbus, OH: Dept. of Geodetic Science and Surveying, Ohio State Univ. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/1811%2F24333">1811/24333</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+3&amp;rft.btitle=Geometric+Geodesy%2C+Part+I&amp;rft.place=Columbus%2C+OH&amp;rft.pub=Dept.+of+Geodetic+Science+and+Surveying%2C+Ohio+State+Univ.&amp;rft.date=1991&amp;rft_id=info%3Ahdl%2F1811%2F24333&amp;rft.aulast=Rapp&amp;rft.aufirst=Richard+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20121211031023/http://msi.nga.mil/MSISiteContent/StaticFiles/Calculators/degree.html">"Length of degree calculator"</a>. National Geospatial-Intelligence Agency. Archived from <a rel="nofollow" class="external text" href="http://msi.nga.mil/MSISiteContent/StaticFiles/Calculators/degree.html">the original</a> on 2012-12-11<span class="reference-accessdate">. Retrieved <span class="nowrap">2011-02-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Length+of+degree+calculator&amp;rft.pub=National+Geospatial-Intelligence+Agency&amp;rft_id=http%3A%2F%2Fmsi.nga.mil%2FMSISiteContent%2FStaticFiles%2FCalculators%2Fdegree.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span></span> </li> <li id="cite_note-snyder-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-snyder_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-snyder_10-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-snyder_10-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-snyder_10-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-snyder_10-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSnyder1987" class="citation book cs1">Snyder, John P. (1987). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080516070706/http://pubs.er.usgs.gov/pubs/pp/pp1395"><i>Map Projections: A Working Manual</i></a>. U.S. Geological Survey Professional Paper 1395. Washington, DC: United States Government Printing Office. Archived from <a rel="nofollow" class="external text" href="https://pubs.er.usgs.gov/pubs/pp/pp1395">the original</a> on 2008-05-16<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-09-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Map+Projections%3A+A+Working+Manual&amp;rft.place=Washington%2C+DC&amp;rft.series=U.S.+Geological+Survey+Professional+Paper+1395&amp;rft.pub=United+States+Government+Printing+Office&amp;rft.date=1987&amp;rft.aulast=Snyder&amp;rft.aufirst=John+P.&amp;rft_id=https%3A%2F%2Fpubs.er.usgs.gov%2Fpubs%2Fpp%2Fpp1395&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span></span> </li> <li id="cite_note-adams1921-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-adams1921_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-adams1921_11-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAdams1921" class="citation book cs1"><a href="/wiki/Oscar_S._Adams" title="Oscar S. Adams">Adams, Oscar S.</a> (1921). <a rel="nofollow" class="external text" href="https://geodesy.noaa.gov/library/pdfs/Special_Publication_No_67.pdf"><i>Latitude Developments Connected With Geodesy and Cartography (with tables, including a table for Lambert equal area meridional projection</i></a> <span class="cs1-format">(PDF)</span>. Special Publication No. 67. US Coast and Geodetic Survey.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Latitude+Developments+Connected+With+Geodesy+and+Cartography+%28with+tables%2C+including+a+table+for+Lambert+equal+area+meridional+projection&amp;rft.series=Special+Publication+No.+67&amp;rft.pub=US+Coast+and+Geodetic+Survey&amp;rft.date=1921&amp;rft.aulast=Adams&amp;rft.aufirst=Oscar+S.&amp;rft_id=https%3A%2F%2Fgeodesy.noaa.gov%2Flibrary%2Fpdfs%2FSpecial_Publication_No_67.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span> (<i>Note</i>: Adams uses the nomenclature isometric latitude for the conformal latitude of this article (and throughout the modern literature).)</span> </li> <li id="cite_note-legendre-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-legendre_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLegendre1806" class="citation journal cs1 cs1-prop-long-vol">Legendre, A. M. (1806). "Analyse des triangles tracés sur la surface d'un sphéroïde". <i>Mém. Inst. Nat. Fr</i>. 1st semester: 130–161.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=M%C3%A9m.+Inst.+Nat.+Fr.&amp;rft.atitle=Analyse+des+triangles+trac%C3%A9s+sur+la+surface+d%27un+sph%C3%A9ro%C3%AFde&amp;rft.volume=1st+semester&amp;rft.pages=130-161&amp;rft.date=1806&amp;rft.aulast=Legendre&amp;rft.aufirst=A.+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span></span> </li> <li id="cite_note-bessel-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-bessel_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBessel1825" class="citation journal cs1">Bessel, F. W. (1825). "Über die Berechnung der geographischen Langen und Breiten aus geodatischen Vermessungen". <i>Astron. Nachr</i>. <b>4</b> (86): 241–254. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0908.1824">0908.1824</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010AN....331..852K">2010AN....331..852K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fasna.201011352">10.1002/asna.201011352</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118760590">118760590</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Astron.+Nachr.&amp;rft.atitle=%C3%9Cber+die+Berechnung+der+geographischen+Langen+und+Breiten+aus+geodatischen+Vermessungen&amp;rft.volume=4&amp;rft.issue=86&amp;rft.pages=241-254&amp;rft.date=1825&amp;rft_id=info%3Aarxiv%2F0908.1824&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118760590%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Fasna.201011352&amp;rft_id=info%3Abibcode%2F2010AN....331..852K&amp;rft.aulast=Bessel&amp;rft.aufirst=F.+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span><br /><b>Translation:</b> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKarneyDeakin2010" class="citation journal cs1">Karney, C. F. F.; Deakin, R. E. (2010). "The calculation of longitude and latitude from geodesic measurements". <i>Astron. Nachr</i>. <b>331</b> (8): 852–861. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0908.1824">0908.1824</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1825AN......4..241B">1825AN......4..241B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fasna.18260041601">10.1002/asna.18260041601</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118630614">118630614</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Astron.+Nachr.&amp;rft.atitle=The+calculation+of+longitude+and+latitude+from+geodesic+measurements&amp;rft.volume=331&amp;rft.issue=8&amp;rft.pages=852-861&amp;rft.date=2010&amp;rft_id=info%3Aarxiv%2F0908.1824&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118630614%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Fasna.18260041601&amp;rft_id=info%3Abibcode%2F1825AN......4..241B&amp;rft.aulast=Karney&amp;rft.aufirst=C.+F.+F.&amp;rft.au=Deakin%2C+R.+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span></span> </li> <li id="cite_note-cayley-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-cayley_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCayley1870" class="citation journal cs1">Cayley, A. (1870). "On the geodesic lines on an oblate spheroid". <i>Phil. Mag</i>. <b>40</b> (4th ser): 329–340. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F14786447008640411">10.1080/14786447008640411</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Phil.+Mag.&amp;rft.atitle=On+the+geodesic+lines+on+an+oblate+spheroid&amp;rft.volume=40&amp;rft.issue=4th+ser&amp;rft.pages=329-340&amp;rft.date=1870&amp;rft_id=info%3Adoi%2F10.1080%2F14786447008640411&amp;rft.aulast=Cayley&amp;rft.aufirst=A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span></span> </li> <li id="cite_note-Karney-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-Karney_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKarney2013" class="citation journal cs1">Karney, C. F. F. (2013). "Algorithms for geodesics". <i>Journal of Geodesy</i>. <b>87</b> (1): 43–55. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1109.4448">1109.4448</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013JGeod..87...43K">2013JGeod..87...43K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00190-012-0578-z">10.1007/s00190-012-0578-z</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119310141">119310141</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Geodesy&amp;rft.atitle=Algorithms+for+geodesics&amp;rft.volume=87&amp;rft.issue=1&amp;rft.pages=43-55&amp;rft.date=2013&amp;rft_id=info%3Aarxiv%2F1109.4448&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119310141%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs00190-012-0578-z&amp;rft_id=info%3Abibcode%2F2013JGeod..87...43K&amp;rft.aulast=Karney&amp;rft.aufirst=C.+F.+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLagrange1779" class="citation book cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Joseph-Louis_Lagrange" title="Joseph-Louis Lagrange">Lagrange, Joseph-Louis</a> (1779). <a rel="nofollow" class="external text" href="https://archive.org/details/oeuvresdelagrang04lagr/page/663">"Sur la Construction des Cartes Géographiques"</a>. <i>Oevres</i> (in French). Vol.&#160;IV. p.&#160;667.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Sur+la+Construction+des+Cartes+G%C3%A9ographiques&amp;rft.btitle=Oevres&amp;rft.pages=667&amp;rft.date=1779&amp;rft.aulast=Lagrange&amp;rft.aufirst=Joseph-Louis&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Foeuvresdelagrang04lagr%2Fpage%2F663&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKarney2011" class="citation journal cs1">Karney, Charles F. F. (August 2011). "Transverse Mercator with an accuracy of a few nanometers". <i>Journal of Geodesy</i>. <b>85</b> (8): 475–485. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1002.1417">1002.1417</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011JGeod..85..475K">2011JGeod..85..475K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00190-011-0445-3">10.1007/s00190-011-0445-3</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118619524">118619524</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Geodesy&amp;rft.atitle=Transverse+Mercator+with+an+accuracy+of+a+few+nanometers&amp;rft.volume=85&amp;rft.issue=8&amp;rft.pages=475-485&amp;rft.date=2011-08&amp;rft_id=info%3Aarxiv%2F1002.1417&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118619524%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs00190-011-0445-3&amp;rft_id=info%3Abibcode%2F2011JGeod..85..475K&amp;rft.aulast=Karney&amp;rft.aufirst=Charles+F.+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOrihuela2013" class="citation web cs1">Orihuela, Sebastián (2013). <a rel="nofollow" class="external text" href="https://www.academia.edu/7580468">"Funciones de Latitud"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Funciones+de+Latitud&amp;rft.date=2013&amp;rft.aulast=Orihuela&amp;rft.aufirst=Sebasti%C3%A1n&amp;rft_id=https%3A%2F%2Fwww.academia.edu%2F7580468&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKarney2023" class="citation journal cs1">Karney, Charles F. F. (2023). "On auxiliary latitudes". <i>Survey Review</i>. <b>56</b> (395): 165–180. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2212.05818">2212.05818</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00396265.2023.2217604">10.1080/00396265.2023.2217604</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Survey+Review&amp;rft.atitle=On+auxiliary+latitudes&amp;rft.volume=56&amp;rft.issue=395&amp;rft.pages=165-180&amp;rft.date=2023&amp;rft_id=info%3Aarxiv%2F2212.05818&amp;rft_id=info%3Adoi%2F10.1080%2F00396265.2023.2217604&amp;rft.aulast=Karney&amp;rft.aufirst=Charles+F.+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text">Holfmann-Wellenfor &amp; Moritz (2006) <i>Physical Geodesy</i>, p.240, eq. (6-6) to (6-10).</span> </li> <li id="cite_note-wellenhofmoritz-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-wellenhofmoritz_22-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHofmann-WellenhofMoritz2006" class="citation book cs1">Hofmann-Wellenhof, B.; Moritz, H. (2006). <i>Physical Geodesy</i> (2nd&#160;ed.). <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-211-33544-7" title="Special:BookSources/3-211-33544-7"><bdi>3-211-33544-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Physical+Geodesy&amp;rft.edition=2nd&amp;rft.date=2006&amp;rft.isbn=3-211-33544-7&amp;rft.aulast=Hofmann-Wellenhof&amp;rft.aufirst=B.&amp;rft.au=Moritz%2C+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALatitude" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Latitude&amp;action=edit&amp;section=32" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1250146164">.mw-parser-output .sister-box .side-box-abovebelow{padding:0.75em 0;text-align:center}.mw-parser-output .sister-box .side-box-abovebelow>b{display:block}.mw-parser-output .sister-box .side-box-text>ul{border-top:1px solid #aaa;padding:0.75em 0;width:217px;margin:0 auto}.mw-parser-output .sister-box .side-box-text>ul>li{min-height:31px}.mw-parser-output .sister-logo{display:inline-block;width:31px;line-height:31px;vertical-align:middle;text-align:center}.mw-parser-output .sister-link{display:inline-block;margin-left:4px;width:182px;vertical-align:middle}@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-v2.svg"]{background-color:white}}</style><div role="navigation" aria-labelledby="sister-projects" class="side-box metadata side-box-right sister-box sistersitebox plainlinks"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-abovebelow"> <b>Latitude</b> at Wikipedia's <a href="/wiki/Wikipedia:Wikimedia_sister_projects" title="Wikipedia:Wikimedia sister projects"><span id="sister-projects">sister projects</span></a></div> <div class="side-box-flex"> <div class="side-box-text plainlist"><ul><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/0/06/Wiktionary-logo-v2.svg/27px-Wiktionary-logo-v2.svg.png" decoding="async" width="27" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/0/06/Wiktionary-logo-v2.svg/41px-Wiktionary-logo-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/0/06/Wiktionary-logo-v2.svg/54px-Wiktionary-logo-v2.svg.png 2x" data-file-width="391" data-file-height="391" /></span></span></span><span class="sister-link"><a href="https://en.wiktionary.org/wiki/Special:Search/Latitude" class="extiw" title="wikt:Special:Search/Latitude">Definitions</a> from Wiktionary</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/20px-Commons-logo.svg.png" decoding="async" width="20" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/40px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></span><span class="sister-link"><a href="https://commons.wikimedia.org/wiki/Category:Latitudes" class="extiw" title="c:Category:Latitudes">Media</a> from Commons</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/27px-Wikinews-logo.svg.png" decoding="async" width="27" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/41px-Wikinews-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/Wikinews-logo.svg/54px-Wikinews-logo.svg.png 2x" data-file-width="759" data-file-height="415" /></span></span></span><span class="sister-link"><a href="https://en.wikinews.org/wiki/Special:Search/Latitude" class="extiw" title="n:Special:Search/Latitude">News</a> from Wikinews</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/23px-Wikiquote-logo.svg.png" decoding="async" width="23" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/35px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/46px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></span></span></span><span class="sister-link"><a href="https://en.wikiquote.org/wiki/Special:Search/Latitude" class="extiw" title="q:Special:Search/Latitude">Quotations</a> from Wikiquote</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/26px-Wikisource-logo.svg.png" decoding="async" width="26" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/39px-Wikisource-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/51px-Wikisource-logo.svg.png 2x" data-file-width="410" data-file-height="430" /></span></span></span><span class="sister-link"><a href="https://en.wikisource.org/wiki/Special:Search/Latitude" class="extiw" title="s:Special:Search/Latitude">Texts</a> from Wikisource</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/27px-Wikibooks-logo.svg.png" decoding="async" width="27" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/41px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/54px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></span></span></span><span class="sister-link"><a href="https://en.wikibooks.org/wiki/Special:Search/Latitude" class="extiw" title="b:Special:Search/Latitude">Textbooks</a> from Wikibooks</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/27px-Wikiversity_logo_2017.svg.png" decoding="async" width="27" height="22" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/41px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/54px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></span></span></span><span class="sister-link"><a href="https://en.wikiversity.org/wiki/Special:Search/Latitude" class="extiw" title="v:Special:Search/Latitude">Resources</a> from Wikiversity</span></li></ul></div></div> </div> <ul><li><a rel="nofollow" class="external text" href="http://earth-info.nga.mil/gns/html/">GEONets Names Server</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080309045124/http://earth-info.nga.mil/gns/html/">Archived</a> 2008-03-09 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. access to the <a href="/wiki/National_Geospatial-Intelligence_Agency" title="National Geospatial-Intelligence Agency">National Geospatial-Intelligence Agency</a>'s (NGA) database of foreign geographic feature names.</li> <li><a rel="nofollow" class="external text" href="http://jan.ucc.nau.edu/~cvm/latlon_find_location.html">Resources for determining your latitude and longitude</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080519082322/http://jan.ucc.nau.edu/~cvm/latlon_find_location.html">Archived</a> 2008-05-19 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li><a rel="nofollow" class="external text" href="http://geography.about.com/library/howto/htdegrees.htm">Convert decimal degrees into degrees, minutes, seconds</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20121107190244/http://geography.about.com/library/howto/htdegrees.htm">Archived</a> 2012-11-07 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> – info about decimal to <a href="/wiki/Sexagesimal" title="Sexagesimal">sexagesimal</a> conversion.</li> <li><a rel="nofollow" class="external text" href="https://www.fcc.gov/mb/audio/bickel/DDDMMSS-decimal.html">Convert decimal degrees into degrees, minutes, seconds</a></li> <li><a rel="nofollow" class="external text" href="http://www.marinewaypoints.com/learn/greatcircle.shtml">Distance calculation based on latitude and longitude</a> – JavaScript version</li> <li><a rel="nofollow" class="external text" href="https://www.academia.edu/12297694/16th_Century_Latitude_Survey">16th Century Latitude Survey</a></li> <li><a rel="nofollow" class="external text" href="http://www.longcamp.com/nav.html">Determination of Latitude by Francis Drake on the Coast of California in 1579</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Circles_of_latitude_/_meridians" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Geographical_coordinates" title="Template:Geographical coordinates"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Geographical_coordinates" title="Template talk:Geographical coordinates"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Geographical_coordinates" title="Special:EditPage/Template:Geographical coordinates"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Circles_of_latitude_/_meridians" style="font-size:114%;margin:0 4em"><a href="/wiki/Circle_of_latitude" title="Circle of latitude">Circles of latitude</a> / <a href="/wiki/Meridian_(geography)" title="Meridian (geography)">meridians</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><div style="padding: 2.5em 9em 0em 3em; margin:0 auto; text-align:left; width:720px;"> <div role="img" class="noresize" style="width: 720px; line-height: 1; text-align: center; background-color: #ffffff; position: relative;"><span typeof="mw:File"><a href="/wiki/File:Earthmap720x360_grid.jpg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/1/1f/Earthmap720x360_grid.jpg" decoding="async" width="720" height="360" class="mw-file-element" data-file-width="720" data-file-height="360" /></a></span> <div style="position:absolute; left:66px; top:172px"><b><a href="/wiki/Equator" title="Equator"><span class="tmpl-colored-link" style="color: white; text-decoration: inherit;">Equator</span></a></b></div> <div style="position:absolute; left:66px; top:125.128px"><a href="/wiki/Tropic_of_Cancer" title="Tropic of Cancer"><span class="tmpl-colored-link" style="color: white; text-decoration: inherit;">Tropic of Cancer</span></a></div> <div style="position:absolute; left:66px; top:218.872px"><a href="/wiki/Tropic_of_Capricorn" title="Tropic of Capricorn"><span class="tmpl-colored-link" style="color: white; text-decoration: inherit;">Tropic of Capricorn</span></a></div> <div style="position:absolute; left:66px; top:38.872px"><a href="/wiki/Arctic_Circle" title="Arctic Circle"><span class="tmpl-colored-link" style="color: white; text-decoration: inherit;">Arctic Circle</span></a></div> <div style="position:absolute; left:66px; top:305.128px"><a href="/wiki/Antarctic_Circle" title="Antarctic Circle"><span class="tmpl-colored-link" style="color: white; text-decoration: inherit;">Antarctic Circle</span></a></div> <div style="position:absolute; left:462px; top:172px"><b><a href="/wiki/Equator" title="Equator"><span class="tmpl-colored-link" style="color: white; text-decoration: inherit;">Equator</span></a></b></div> <div style="position:absolute; left:462px; top:125.128px"><a href="/wiki/Tropic_of_Cancer" title="Tropic of Cancer"><span class="tmpl-colored-link" style="color: white; text-decoration: inherit;">Tropic of Cancer</span></a></div> <div style="position:absolute; left:462px; top:218.872px"><a href="/wiki/Tropic_of_Capricorn" title="Tropic of Capricorn"><span class="tmpl-colored-link" style="color: white; text-decoration: inherit;">Tropic of Capricorn</span></a></div> <div style="position:absolute; left:462px; top:38.872px"><a href="/wiki/Arctic_Circle" title="Arctic Circle"><span class="tmpl-colored-link" style="color: white; text-decoration: inherit;">Arctic Circle</span></a></div> <div style="position:absolute; left:462px; top:305.128px"><a href="/wiki/Antarctic_Circle" title="Antarctic Circle"><span class="tmpl-colored-link" style="color: white; text-decoration: inherit;">Antarctic Circle</span></a></div> <div style="position:absolute; left:721.2px; top:172px"><b><a href="/wiki/Equator" title="Equator">Equator</a></b></div> <div style="position:absolute; left:721.2px; top:125.128px"><a href="/wiki/Tropic_of_Cancer" title="Tropic of Cancer">Tropic of Cancer</a></div> <div style="position:absolute; left:721.2px; top:218.872px"><a href="/wiki/Tropic_of_Capricorn" title="Tropic of Capricorn">Tropic of Capricorn</a></div> <div style="position:absolute; left:721.2px; top:38.872px"><a href="/wiki/Arctic_Circle" title="Arctic Circle">Arctic Circle</a></div> <div style="position:absolute; left:721.2px; top:305.128px"><a href="/wiki/Antarctic_Circle" title="Antarctic Circle">Antarctic Circle</a></div> <div style="position:absolute; font-size:85%; left:350.4px; top:-11.6px"><b><a href="/wiki/Western_Hemisphere" title="Western Hemisphere">W</a><a href="/wiki/IERS_Reference_Meridian" title="IERS Reference Meridian">0°</a><a href="/wiki/Eastern_Hemisphere" title="Eastern Hemisphere">E</a></b></div> <div style="position:absolute; font-size:85%; left:415.2px; top:-11.6px"><a href="/wiki/30th_meridian_east" title="30th meridian east">30°</a></div> <div style="position:absolute; font-size:85%; left:476.4px; top:-11.6px"><a href="/wiki/60th_meridian_east" title="60th meridian east">60°</a></div> <div style="position:absolute; font-size:85%; left:534px; top:-11.6px"><a href="/wiki/90th_meridian_east" title="90th meridian east"><b>90°</b></a></div> <div style="position:absolute; font-size:85%; left:591.6px; top:-11.6px"><a href="/wiki/120th_meridian_east" title="120th meridian east">120°</a></div> <div style="position:absolute; font-size:85%; left:652.8px; top:-11.6px"><a href="/wiki/150th_meridian_east" title="150th meridian east">150°</a></div> <div style="position:absolute; font-size:85%; left:714px; top:-11.6px"><a href="/wiki/180th_meridian" title="180th meridian"><b>180°</b></a></div> <div style="position:absolute; font-size:85%; left:296.4px; top:-11.6px"><a href="/wiki/30th_meridian_west" title="30th meridian west">30°</a></div> <div style="position:absolute; font-size:85%; left:235.2px; top:-11.6px"><a href="/wiki/60th_meridian_west" title="60th meridian west">60°</a></div> <div style="position:absolute; font-size:85%; left:174px; top:-11.6px"><a href="/wiki/90th_meridian_west" title="90th meridian west"><b>90°</b></a></div> <div style="position:absolute; font-size:85%; left:112.8px; top:-11.6px"><a href="/wiki/120th_meridian_west" title="120th meridian west">120°</a></div> <div style="position:absolute; font-size:85%; left:53.4px; top:-11.6px"><a href="/wiki/150th_meridian_west" title="150th meridian west">150°</a></div> <div style="position:absolute; font-size:85%; left:-6px; top:-13.04px"><a href="/wiki/180th_meridian" title="180th meridian"><b>180°</b></a></div> <div style="position:absolute; font-size:85%; left:368.4px; top:-22.4px"><a href="/wiki/5th_meridian_east" title="5th meridian east">5°</a></div> <div style="position:absolute; font-size:85%; left:386.4px; top:-22.4px"><a href="/wiki/15th_meridian_east" title="15th meridian east">15°</a></div> <div style="position:absolute; font-size:85%; left:408px; top:-22.4px"><a href="/wiki/25th_meridian_east" title="25th meridian east">25°</a></div> <div style="position:absolute; font-size:85%; left:426px; top:-22.4px"><a href="/wiki/35th_meridian_east" title="35th meridian east">35°</a></div> <div style="position:absolute; font-size:85%; left:444px; top:-22.4px"><a href="/wiki/45th_meridian_east" title="45th meridian east">45°</a></div> <div style="position:absolute; font-size:85%; left:465.6px; top:-22.4px"><a href="/wiki/55th_meridian_east" title="55th meridian east">55°</a></div> <div style="position:absolute; font-size:85%; left:487.2px; top:-22.4px"><a href="/wiki/65th_meridian_east" title="65th meridian east">65°</a></div> <div style="position:absolute; font-size:85%; left:505.2px; top:-22.4px"><a href="/wiki/75th_meridian_east" title="75th meridian east">75°</a></div> <div style="position:absolute; font-size:85%; left:526.8px; top:-22.4px"><a href="/wiki/85th_meridian_east" title="85th meridian east">85°</a></div> <div style="position:absolute; font-size:85%; left:544.8px; top:-22.4px"><a href="/wiki/95th_meridian_east" title="95th meridian east">95°</a></div> <div style="position:absolute; font-size:85%; left:562.8px; top:-22.4px"><a href="/wiki/105th_meridian_east" title="105th meridian east">105°</a></div> <div style="position:absolute; font-size:85%; left:584.4px; top:-22.4px"><a href="/wiki/115th_meridian_east" title="115th meridian east">115°</a></div> <div style="position:absolute; font-size:85%; left:602.4px; top:-22.4px"><a href="/wiki/125th_meridian_east" title="125th meridian east">125°</a></div> <div style="position:absolute; font-size:85%; left:624px; top:-22.4px"><a href="/wiki/135th_meridian_east" title="135th meridian east">135°</a></div> <div style="position:absolute; font-size:85%; left:642px; top:-22.4px"><a href="/wiki/145th_meridian_east" title="145th meridian east">145°</a></div> <div style="position:absolute; font-size:85%; left:663.6px; top:-22.4px"><a href="/wiki/155th_meridian_east" title="155th meridian east">155°</a></div> <div style="position:absolute; font-size:85%; left:681.6px; top:-22.4px"><a href="/wiki/165th_meridian_east" title="165th meridian east">165°</a></div> <div style="position:absolute; font-size:85%; left:703.2px; top:-22.4px"><a href="/wiki/175th_meridian_east" title="175th meridian east">175°</a></div> <div style="position:absolute; font-size:85%; left:346.8px; top:-22.4px"><a href="/wiki/5th_meridian_west" title="5th meridian west">5°</a></div> <div style="position:absolute; font-size:85%; left:325.2px; top:-22.4px"><a href="/wiki/15th_meridian_west" title="15th meridian west">15°</a></div> <div style="position:absolute; font-size:85%; left:307.2px; top:-22.4px"><a href="/wiki/25th_meridian_west" title="25th meridian west">25°</a></div> <div style="position:absolute; font-size:85%; left:285.6px; top:-22.4px"><a href="/wiki/35th_meridian_west" title="35th meridian west">35°</a></div> <div style="position:absolute; font-size:85%; left:264px; top:-22.4px"><a href="/wiki/45th_meridian_west" title="45th meridian west">45°</a></div> <div style="position:absolute; font-size:85%; left:246px; top:-22.4px"><a href="/wiki/55th_meridian_west" title="55th meridian west">55°</a></div> <div style="position:absolute; font-size:85%; left:224.4px; top:-22.4px"><a href="/wiki/65th_meridian_west" title="65th meridian west">65°</a></div> <div style="position:absolute; font-size:85%; left:206.4px; top:-22.4px"><a href="/wiki/75th_meridian_west" title="75th meridian west">75°</a></div> <div style="position:absolute; font-size:85%; left:184.8px; top:-22.4px"><a href="/wiki/85th_meridian_west" title="85th meridian west">85°</a></div> <div style="position:absolute; font-size:85%; left:166.8px; top:-22.4px"><a href="/wiki/95th_meridian_west" title="95th meridian west">95°</a></div> <div style="position:absolute; font-size:85%; left:145.2px; top:-22.4px"><a href="/wiki/105th_meridian_west" title="105th meridian west">105°</a></div> <div style="position:absolute; font-size:85%; left:123.6px; top:-22.4px"><a href="/wiki/115th_meridian_west" title="115th meridian west">115°</a></div> <div style="position:absolute; font-size:85%; left:102px; top:-22.4px"><a href="/wiki/125th_meridian_west" title="125th meridian west">125°</a></div> <div style="position:absolute; font-size:85%; left:84px; top:-22.4px"><a href="/wiki/135th_meridian_west" title="135th meridian west">135°</a></div> <div style="position:absolute; font-size:85%; left:62.4px; top:-22.4px"><a href="/wiki/145th_meridian_west" title="145th meridian west">145°</a></div> <div style="position:absolute; font-size:85%; left:44.4px; top:-22.4px"><a href="/wiki/155th_meridian_west" title="155th meridian west">155°</a></div> <div style="position:absolute; font-size:85%; left:22.8px; top:-22.4px"><a href="/wiki/165th_meridian_west" title="165th meridian west">165°</a></div> <div style="position:absolute; font-size:85%; left:4.8px; top:-22.4px"><a href="/wiki/175th_meridian_west" title="175th meridian west">175°</a></div> <div style="position:absolute; font-size:85%; left:375.6px; top:-11.6px"><a href="/wiki/10th_meridian_east" title="10th meridian east">10°</a></div> <div style="position:absolute; font-size:85%; left:397.2px; top:-11.6px"><a href="/wiki/20th_meridian_east" title="20th meridian east">20°</a></div> <div style="position:absolute; font-size:85%; left:433.2px; top:-11.6px"><a href="/wiki/40th_meridian_east" title="40th meridian east">40°</a></div> <div style="position:absolute; font-size:85%; left:454.8px; top:-11.6px"><a href="/wiki/50th_meridian_east" title="50th meridian east">50°</a></div> <div style="position:absolute; font-size:85%; left:494.4px; top:-11.6px"><a href="/wiki/70th_meridian_east" title="70th meridian east">70°</a></div> <div style="position:absolute; font-size:85%; left:516px; top:-11.6px"><a href="/wiki/80th_meridian_east" title="80th meridian east">80°</a></div> <div style="position:absolute; font-size:85%; left:552px; top:-11.6px"><a href="/wiki/100th_meridian_east" title="100th meridian east">100°</a></div> <div style="position:absolute; font-size:85%; left:573.6px; top:-11.6px"><a href="/wiki/110th_meridian_east" title="110th meridian east">110°</a></div> <div style="position:absolute; font-size:85%; left:613.2px; top:-11.6px"><a href="/wiki/130th_meridian_east" title="130th meridian east">130°</a></div> <div style="position:absolute; font-size:85%; left:634.8px; top:-11.6px"><a href="/wiki/140th_meridian_east" title="140th meridian east">140°</a></div> <div style="position:absolute; font-size:85%; left:674.4px; top:-11.6px"><a href="/wiki/160th_meridian_east" title="160th meridian east">160°</a></div> <div style="position:absolute; font-size:85%; left:692.4px; top:-11.6px"><a href="/wiki/170th_meridian_east" title="170th meridian east">170°</a></div> <div style="position:absolute; font-size:85%; left:336px; top:-11.6px"><a href="/wiki/10th_meridian_west" title="10th meridian west">10°</a></div> <div style="position:absolute; font-size:85%; left:318px; top:-11.6px"><a href="/wiki/20th_meridian_west" title="20th meridian west">20°</a></div> <div style="position:absolute; font-size:85%; left:274.8px; top:-11.6px"><a href="/wiki/40th_meridian_west" title="40th meridian west">40°</a></div> <div style="position:absolute; font-size:85%; left:253.2px; top:-11.6px"><a href="/wiki/50th_meridian_west" title="50th meridian west">50°</a></div> <div style="position:absolute; font-size:85%; left:217.2px; top:-11.6px"><a href="/wiki/70th_meridian_west" title="70th meridian west">70°</a></div> <div style="position:absolute; font-size:85%; left:195.6px; top:-11.6px"><a href="/wiki/80th_meridian_west" title="80th meridian west">80°</a></div> <div style="position:absolute; font-size:85%; left:152.4px; top:-11.6px"><a href="/wiki/100th_meridian_west" title="100th meridian west">100°</a></div> <div style="position:absolute; font-size:85%; left:134.4px; top:-11.6px"><a href="/wiki/110th_meridian_west" title="110th meridian west">110°</a></div> <div style="position:absolute; font-size:85%; left:94.8px; top:-11.6px"><a href="/wiki/130th_meridian_west" title="130th meridian west">130°</a></div> <div style="position:absolute; font-size:85%; left:73.2px; top:-11.6px"><a href="/wiki/140th_meridian_west" title="140th meridian west">140°</a></div> <div style="position:absolute; font-size:85%; left:33.6px; top:-11.6px"><a href="/wiki/160th_meridian_west" title="160th meridian west">160°</a></div> <div style="position:absolute; font-size:85%; left:12px; top:-11.6px"><a href="/wiki/170th_meridian_west" title="170th meridian west">170°</a></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:175.6px"><b><a href="/wiki/Equator" title="Equator">0°</a></b></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:154px"><a href="/wiki/10th_parallel_north" title="10th parallel north">10°</a></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:136px"><a href="/wiki/20th_parallel_north" title="20th parallel north">20°</a></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:114.4px"><a href="/wiki/30th_parallel_north" title="30th parallel north">30°</a></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:96.4px"><a href="/wiki/40th_parallel_north" title="40th parallel north">40°</a></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:74.8px"><a href="/wiki/50th_parallel_north" title="50th parallel north">50°</a></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:56.8px"><a href="/wiki/60th_parallel_north" title="60th parallel north">60°</a></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:35.2px"><a href="/wiki/70th_parallel_north" title="70th parallel north">70°</a></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:13.6px"><a href="/wiki/80th_parallel_north" title="80th parallel north">80°</a></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:-4.4px"><a href="/wiki/North_Pole" title="North Pole">90°</a></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:197.2px"><a href="/wiki/10th_parallel_south" title="10th parallel south">10°</a></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:215.2px"><a href="/wiki/20th_parallel_south" title="20th parallel south">20°</a></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:236.8px"><a href="/wiki/30th_parallel_south" title="30th parallel south">30°</a></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:254.8px"><a href="/wiki/40th_parallel_south" title="40th parallel south">40°</a></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:276.4px"><a href="/wiki/50th_parallel_south" title="50th parallel south">50°</a></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:294.4px"><a href="/wiki/60th_parallel_south" title="60th parallel south">60°</a></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:316px"><a href="/wiki/70th_parallel_south" title="70th parallel south">70°</a></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:337.6px"><a href="/wiki/80th_parallel_south" title="80th parallel south">80°</a></div> <div style="position:absolute; font-size:85%; left:-13.2px; top:355.6px"><a href="/wiki/South_Pole" title="South Pole">90°</a></div> <div style="position:absolute; font-size:85%; left:-27.6px; top:164.08px"><a href="/wiki/5th_parallel_north" title="5th parallel north">5°</a> <b><a href="/wiki/Northern_Hemisphere" title="Northern Hemisphere">N</a></b></div> <div style="position:absolute; font-size:85%; left:-27.6px; top:146.8px"><a href="/wiki/15th_parallel_north" title="15th parallel north">15°</a></div> <div style="position:absolute; font-size:85%; left:-27.6px; top:125.2px"><a href="/wiki/25th_parallel_north" title="25th parallel north">25°</a></div> <div style="position:absolute; font-size:85%; left:-27.6px; top:103.6px"><a href="/wiki/35th_parallel_north" title="35th parallel north">35°</a></div> <div style="position:absolute; font-size:85%; left:-27.6px; top:85.6px"><a href="/wiki/45th_parallel_north" title="45th parallel north"><b>45°</b></a></div> <div style="position:absolute; font-size:85%; left:-27.6px; top:65.8px"><a href="/wiki/55th_parallel_north" title="55th parallel north">55°</a></div> <div style="position:absolute; font-size:85%; left:-27.6px; top:44.2px"><a href="/wiki/65th_parallel_north" title="65th parallel north">65°</a></div> <div style="position:absolute; font-size:85%; left:-27.6px; top:24.4px"><a href="/wiki/75th_parallel_north" title="75th parallel north">75°</a></div> <div style="position:absolute; font-size:85%; left:-27.6px; top:4.6px"><a href="/wiki/85th_parallel_north" title="85th parallel north">85°</a></div> <div style="position:absolute; font-size:85%; left:-27.6px; top:186.4px"><a href="/wiki/5th_parallel_south" title="5th parallel south">5°</a> <b><a href="/wiki/Southern_Hemisphere" title="Southern Hemisphere">S</a></b></div> <div style="position:absolute; font-size:85%; left:-27.6px; top:204.4px"><a href="/wiki/15th_parallel_south" title="15th parallel south">15°</a></div> <div style="position:absolute; font-size:85%; left:-27.6px; top:226px"><a href="/wiki/25th_parallel_south" title="25th parallel south">25°</a></div> <div style="position:absolute; font-size:85%; left:-27.6px; top:244px"><a href="/wiki/35th_parallel_south" title="35th parallel south">35°</a></div> <div style="position:absolute; font-size:85%; left:-27.6px; top:265.6px"><a href="/wiki/45th_parallel_south" title="45th parallel south"><b>45°</b></a></div> <div style="position:absolute; font-size:85%; left:-27.6px; top:283.6px"><a href="/wiki/55th_parallel_south" title="55th parallel south">55°</a></div> <div style="position:absolute; font-size:85%; left:-27.6px; top:305.2px"><a href="/wiki/65th_parallel_south" title="65th parallel south">65°</a></div> <div style="position:absolute; font-size:85%; left:-27.6px; top:326.8px"><a href="/wiki/75th_parallel_south" title="75th parallel south">75°</a></div> <div style="position:absolute; font-size:85%; left:-27.6px; top:344.8px"><a href="/wiki/Antarctica" title="Antarctica">85°</a></div> <div style="position:absolute; font-size:85%; left:170.4px; top:85.6px"><a href="/wiki/45%C3%9790_points" title="45×90 points"><span class="tmpl-colored-link" style="color: white; text-decoration: inherit;">45x90</span></a></div> <div style="position:absolute; font-size:85%; left:530.4px; top:85.6px"><a href="/wiki/45%C3%9790_points" title="45×90 points"><span class="tmpl-colored-link" style="color: white; text-decoration: inherit;">45x90</span></a></div> <div style="position:absolute; font-size:85%; left:170.4px; top:265.6px"><a href="/wiki/45%C3%9790_points" title="45×90 points"><span class="tmpl-colored-link" style="color: white; text-decoration: inherit;">45x90</span></a></div> <div style="position:absolute; font-size:85%; left:530.4px; top:265.6px"><a href="/wiki/45%C3%9790_points" title="45×90 points"><span class="tmpl-colored-link" style="color: white; text-decoration: inherit;">45x90</span></a></div> </div> </div></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Map_projection" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Map_projections" title="Template:Map projections"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Map_projections" title="Template talk:Map projections"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Map_projections" title="Special:EditPage/Template:Map projections"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Map_projection" style="font-size:114%;margin:0 4em"><a href="/wiki/Map_projection" title="Map projection">Map projection</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/History_of_cartography" title="History of cartography">History</a></li> <li><a href="/wiki/List_of_map_projections" title="List of map projections">List</a></li> <li><a href="/wiki/Portal:Maps" title="Portal:Maps">Portal</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="By_surface" style="font-size:114%;margin:0 4em"><a href="/wiki/Map_projection#Projections_by_surface" title="Map projection">By surface</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_projection#Cylindrical" title="Map projection">Cylindrical</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight: normal;"><a href="/wiki/Mercator_projection" title="Mercator projection">Mercator</a>-conformal</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gauss%E2%80%93Kr%C3%BCger_coordinate_system" class="mw-redirect" title="Gauss–Krüger coordinate system">Gauss–Krüger</a></li> <li><a href="/wiki/Transverse_Mercator_projection" title="Transverse Mercator projection">Transverse Mercator</a></li> <li><a href="/wiki/Oblique_Mercator_projection" title="Oblique Mercator projection">Oblique Mercator</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight: normal;"><a href="/wiki/Cylindrical_equal-area_projection" title="Cylindrical equal-area projection">Equal-area</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cylindrical_equal-area_projection#Discussion" title="Cylindrical equal-area projection">Balthasart</a></li> <li><a href="/wiki/Behrmann_projection" title="Behrmann projection">Behrmann</a></li> <li><a href="/wiki/Gall%E2%80%93Peters_projection" title="Gall–Peters projection">Gall–Peters</a></li> <li><a href="/wiki/Hobo%E2%80%93Dyer_projection" title="Hobo–Dyer projection">Hobo–Dyer</a></li> <li><a href="/wiki/Lambert_cylindrical_equal-area_projection" title="Lambert cylindrical equal-area projection">Lambert</a></li> <li><a href="/wiki/Cylindrical_equal-area_projection#Discussion" title="Cylindrical equal-area projection">Smyth equal-surface</a></li> <li><a href="/wiki/Cylindrical_equal-area_projection#Discussion" title="Cylindrical equal-area projection">Trystan Edwards</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cassini_projection" title="Cassini projection">Cassini</a></li> <li><a href="/wiki/Central_cylindrical_projection" title="Central cylindrical projection">Central</a></li> <li><a href="/wiki/Equirectangular_projection" title="Equirectangular projection">Equirectangular</a></li> <li><a href="/wiki/Gall_stereographic_projection" title="Gall stereographic projection">Gall stereographic</a></li> <li><a href="/wiki/Gall_isographic_projection" title="Gall isographic projection">Gall isographic</a></li> <li><a href="/wiki/Miller_cylindrical_projection" title="Miller cylindrical projection">Miller</a></li> <li><a href="/wiki/Space-oblique_Mercator_projection" title="Space-oblique Mercator projection">Space-oblique Mercator</a></li> <li><a href="/wiki/Web_Mercator_projection" title="Web Mercator projection">Web Mercator</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_projection#Pseudocylindrical" title="Map projection">Pseudocylindrical</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Equal-area" scope="row" class="navbox-group" style="width:1%">Equal-area</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Collignon_projection" title="Collignon projection">Collignon</a></li> <li><a href="/wiki/Eckert_II_projection" title="Eckert II projection">Eckert II</a></li> <li><a href="/wiki/Eckert_IV_projection" title="Eckert IV projection">Eckert IV</a></li> <li><a href="/wiki/Eckert_VI_projection" title="Eckert VI projection">Eckert VI</a></li> <li><a href="/wiki/Equal_Earth_projection" title="Equal Earth projection">Equal Earth</a></li> <li><a href="/wiki/Goode_homolosine_projection" title="Goode homolosine projection">Goode homolosine</a></li> <li><a href="/wiki/Mollweide_projection" title="Mollweide projection">Mollweide</a></li> <li><a href="/wiki/Sinusoidal_projection" title="Sinusoidal projection">Sinusoidal</a></li> <li><a href="/wiki/Tobler_hyperelliptical_projection" title="Tobler hyperelliptical projection">Tobler hyperelliptical</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kavrayskiy_VII_projection" title="Kavrayskiy VII projection">Kavrayskiy VII</a></li> <li><a href="/wiki/Wagner_VI_projection" title="Wagner VI projection">Wagner VI</a></li> <li><a href="/wiki/Winkel_projection" title="Winkel projection">Winkel I and II</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_projection#Conical" title="Map projection">Conical</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Albers_projection" title="Albers projection">Albers</a></li> <li><a href="/wiki/Equidistant_conic_projection" title="Equidistant conic projection">Equidistant</a></li> <li><a href="/wiki/Lambert_conformal_conic_projection" title="Lambert conformal conic projection">Lambert conformal</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_projection#Pseudoconical" title="Map projection">Pseudoconical</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bonne_projection" title="Bonne projection">Bonne</a></li> <li><a href="/wiki/Bottomley_projection" title="Bottomley projection">Bottomley</a></li> <li><a href="/wiki/Polyconic_projection_class" title="Polyconic projection class">Polyconic</a> <ul><li><a href="/wiki/American_polyconic_projection" title="American polyconic projection">American</a></li> <li><a href="/wiki/Latitudinally_equal-differential_polyconic_projection" title="Latitudinally equal-differential polyconic projection">Chinese</a></li></ul></li> <li><a href="/wiki/Werner_projection" title="Werner projection">Werner</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_projection#Azimuthal" title="Map projection">Azimuthal<br /><span class="nobold">(planar)</span></a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="General_perspective" scope="row" class="navbox-group" style="width:1%;font-weight: normal;"><a href="/wiki/General_Perspective_projection" title="General Perspective projection">General perspective</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gnomonic_projection" title="Gnomonic projection">Gnomonic</a></li> <li><a href="/wiki/Orthographic_map_projection" title="Orthographic map projection">Orthographic</a></li> <li><a href="/wiki/Stereographic_map_projection" title="Stereographic map projection">Stereographic</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Azimuthal_equidistant_projection" title="Azimuthal equidistant projection">Equidistant</a></li> <li><a href="/wiki/Lambert_azimuthal_equal-area_projection" title="Lambert azimuthal equal-area projection">Lambert equal-area</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_projection#Pseudoazimuthal" title="Map projection">Pseudoazimuthal</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Aitoff_projection" title="Aitoff projection">Aitoff</a></li> <li><a href="/wiki/Hammer_projection" title="Hammer projection">Hammer</a></li> <li><a href="/wiki/Wiechel_projection" title="Wiechel projection">Wiechel</a></li> <li><a href="/wiki/Winkel_tripel_projection" title="Winkel tripel projection">Winkel tripel</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="By_metric" style="font-size:114%;margin:0 4em"><a href="/wiki/Map_projection#Projections_by_preservation_of_a_metric_property" title="Map projection">By metric</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Conformal_map_projection" title="Conformal map projection">Conformal</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adams_hemisphere-in-a-square_projection" title="Adams hemisphere-in-a-square projection">Adams hemisphere-in-a-square</a></li> <li><a href="/wiki/Gauss%E2%80%93Kr%C3%BCger_coordinate_system" class="mw-redirect" title="Gauss–Krüger coordinate system">Gauss–Krüger</a></li> <li><a href="/wiki/Guyou_hemisphere-in-a-square_projection" title="Guyou hemisphere-in-a-square projection">Guyou hemisphere-in-a-square</a></li> <li><a href="/wiki/Lambert_conformal_conic_projection" title="Lambert conformal conic projection">Lambert conformal conic</a></li> <li><a href="/wiki/Mercator_projection" title="Mercator projection">Mercator</a></li> <li><a href="/wiki/Peirce_quincuncial_projection" title="Peirce quincuncial projection">Peirce quincuncial</a></li> <li><a href="/wiki/Stereographic_projection" title="Stereographic projection">Stereographic</a></li> <li><a href="/wiki/Transverse_Mercator_projection" title="Transverse Mercator projection">Transverse Mercator</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Equal-area_projection" title="Equal-area projection">Equal-area</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight: normal;"><a href="/wiki/Bonne_projection" title="Bonne projection">Bonne</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Sinusoidal_projection" title="Sinusoidal projection">Sinusoidal</a></li> <li><a href="/wiki/Werner_projection" title="Werner projection">Werner</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight: normal;"><a href="/wiki/Bottomley_projection" title="Bottomley projection">Bottomley</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Sinusoidal_projection" title="Sinusoidal projection">Sinusoidal</a></li> <li><a href="/wiki/Werner_projection" title="Werner projection">Werner</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight: normal;"><a href="/wiki/Cylindrical_equal-area_projection" title="Cylindrical equal-area projection">Cylindrical</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cylindrical_equal-area_projection#Discussion" title="Cylindrical equal-area projection">Balthasart</a></li> <li><a href="/wiki/Behrmann_projection" title="Behrmann projection">Behrmann</a></li> <li><a href="/wiki/Gall%E2%80%93Peters_projection" title="Gall–Peters projection">Gall–Peters</a></li> <li><a href="/wiki/Hobo%E2%80%93Dyer_projection" title="Hobo–Dyer projection">Hobo–Dyer</a></li> <li><a href="/wiki/Lambert_cylindrical_equal-area_projection" title="Lambert cylindrical equal-area projection">Lambert cylindrical equal-area</a></li> <li><a href="/wiki/Cylindrical_equal-area_projection#Discussion" title="Cylindrical equal-area projection">Smyth equal-surface</a></li> <li><a href="/wiki/Cylindrical_equal-area_projection#Discussion" title="Cylindrical equal-area projection">Trystan Edwards</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight: normal;"><a href="/wiki/Tobler_hyperelliptical_projection" title="Tobler hyperelliptical projection">Tobler hyperelliptical</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Collignon_projection" title="Collignon projection">Collignon</a></li> <li><a href="/wiki/Mollweide_projection" title="Mollweide projection">Mollweide</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Albers_projection" title="Albers projection">Albers</a></li> <li><a href="/wiki/Hammer_projection#Briesemeister" title="Hammer projection">Briesemeister</a></li> <li><a href="/wiki/Eckert_II_projection" title="Eckert II projection">Eckert II</a></li> <li><a href="/wiki/Eckert_IV_projection" title="Eckert IV projection">Eckert IV</a></li> <li><a href="/wiki/Eckert_VI_projection" title="Eckert VI projection">Eckert VI</a></li> <li><a href="/wiki/Equal_Earth_projection" title="Equal Earth projection">Equal Earth</a></li> <li><a href="/wiki/Goode_homolosine_projection" title="Goode homolosine projection">Goode homolosine</a></li> <li><a href="/wiki/Hammer_projection" title="Hammer projection">Hammer</a></li> <li><a href="/wiki/Lambert_azimuthal_equal-area_projection" title="Lambert azimuthal equal-area projection">Lambert azimuthal equal-area</a></li> <li><a href="/wiki/Quadrilateralized_spherical_cube" title="Quadrilateralized spherical cube">Quadrilateralized spherical cube</a></li> <li><a href="/wiki/Strebe_1995_projection" title="Strebe 1995 projection">Strebe 1995</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_projection#Equidistant" title="Map projection">Equidistant in<br />some aspect</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Equidistant_conic_projection" title="Equidistant conic projection">Conic</a></li> <li><a href="/wiki/Equirectangular_projection" title="Equirectangular projection">Equirectangular</a></li> <li><a href="/wiki/Sinusoidal_projection" title="Sinusoidal projection">Sinusoidal</a></li> <li><a href="/wiki/Two-point_equidistant_projection" title="Two-point equidistant projection">Two-point</a></li> <li><a href="/wiki/Werner_projection" title="Werner projection">Werner</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_projection#Gnomonic" title="Map projection">Gnomonic</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gnomonic_projection" title="Gnomonic projection">Gnomonic</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_projection#Rhumb_line" title="Map projection">Loxodromic</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Loximuthal_projection" title="Loximuthal projection">Loximuthal</a></li> <li><a href="/wiki/Mercator_projection" title="Mercator projection">Mercator</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_projection#Retroazimuthal" title="Map projection">Retroazimuthal</a><br /><span class="nobold">(Mecca or Qibla)</span></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Craig_retroazimuthal_projection" title="Craig retroazimuthal projection">Craig</a></li> <li><a href="/wiki/Hammer_retroazimuthal_projection" title="Hammer retroazimuthal projection">Hammer</a></li> <li><a href="/wiki/Littrow_projection" title="Littrow projection">Littrow</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="By_construction" style="font-size:114%;margin:0 4em"><a href="/wiki/Map_projection#Classification" title="Map projection">By construction</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_projection#Compromise_projections" title="Map projection">Compromise</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chamberlin_trimetric_projection" title="Chamberlin trimetric projection">Chamberlin trimetric</a></li> <li><a href="/wiki/Kavrayskiy_VII_projection" title="Kavrayskiy VII projection">Kavrayskiy VII</a></li> <li><a href="/wiki/Miller_cylindrical_projection" title="Miller cylindrical projection">Miller cylindrical</a></li> <li><a href="/wiki/Natural_Earth_projection" title="Natural Earth projection">Natural Earth</a></li> <li><a href="/wiki/Robinson_projection" title="Robinson projection">Robinson</a></li> <li><a href="/wiki/Van_der_Grinten_projection" title="Van der Grinten projection">Van der Grinten</a></li> <li><a href="/wiki/Wagner_VI_projection" title="Wagner VI projection">Wagner VI</a></li> <li><a href="/wiki/Winkel_tripel_projection" title="Winkel tripel projection">Winkel tripel</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_projection#Hybrid" title="Map projection">Hybrid</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Goode_homolosine_projection" title="Goode homolosine projection">Goode homolosine</a></li> <li><a href="/wiki/HEALPix" title="HEALPix">HEALPix</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_projection#Perspective_projections" title="Map projection">Perspective</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Planar" scope="row" class="navbox-group" style="width:1%;font-weight: normal;"><a href="/wiki/General_Perspective_projection" title="General Perspective projection">Planar</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gnomonic_projection" title="Gnomonic projection">Gnomonic</a></li> <li><a href="/wiki/Orthographic_map_projection" title="Orthographic map projection">Orthographic</a></li> <li><a href="/wiki/Stereographic_projection" title="Stereographic projection">Stereographic</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Central_cylindrical_projection" title="Central cylindrical projection">Central cylindrical</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_projection#Polyhedral" title="Map projection">Polyhedral</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/AuthaGraph_projection" title="AuthaGraph projection">AuthaGraph</a></li> <li><a href="/wiki/Bernard_J._S._Cahill" title="Bernard J. S. Cahill">Cahill Butterfly</a></li> <li><a href="/wiki/Cahill%E2%80%93Keyes_projection" title="Cahill–Keyes projection">Cahill–Keyes M-shape</a></li> <li><a href="/wiki/Dymaxion_map" title="Dymaxion map">Dymaxion</a></li> <li><a href="/wiki/Snyder_equal-area_projection" title="Snyder equal-area projection">ISEA</a></li> <li><a href="/wiki/Quadrilateralized_spherical_cube" title="Quadrilateralized spherical cube">Quadrilateralized spherical cube</a></li> <li><a href="/wiki/Waterman_butterfly_projection" title="Waterman butterfly projection">Waterman butterfly</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="See_also" style="font-size:114%;margin:0 4em">See also</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Interruption_(map_projection)" title="Interruption (map projection)">Interruption (map projection)</a></li> <li><a class="mw-selflink selflink">Latitude</a></li> <li><a href="/wiki/Longitude" title="Longitude">Longitude</a></li> <li><a href="/wiki/Tissot%27s_indicatrix" title="Tissot&#39;s indicatrix">Tissot's indicatrix</a></li> <li><a href="/wiki/Map_projection_of_the_tri-axial_ellipsoid" class="mw-redirect" title="Map projection of the tri-axial ellipsoid">Map projection of the tri-axial ellipsoid</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q34027#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4020220-3">Germany</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Latitude"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85074980">United States</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Latitude"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb11978073f">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Latitude"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb11978073f">BnF data</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Latitud"><a rel="nofollow" class="external text" href="http://catalogo.bne.es/uhtbin/authoritybrowse.cgi?action=display&amp;authority_id=XX4576413">Spain</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007558166205171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐lwkv4 Cached time: 20241122150213 Cache expiry: 3481 Reduced expiry: true Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.047 seconds Real time usage: 1.409 seconds Preprocessor visited node count: 16311/1000000 Post‐expand include size: 344935/2097152 bytes Template argument size: 24083/2097152 bytes Highest expansion depth: 19/100 Expensive parser function count: 11/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 111373/5000000 bytes Lua time usage: 0.490/10.000 seconds Lua memory usage: 10045136/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1100.849 1 -total 20.30% 223.517 2 Template:Reflist 18.89% 208.001 9 Template:Navbox 17.10% 188.264 1 Template:Geographical_coordinates 10.36% 114.070 5 Template:Cite_web 9.83% 108.217 1 Template:Short_description 9.53% 104.924 1 Template:Sister_project_links 6.01% 66.176 129 Template:Image_label 5.89% 64.852 114 Template:Image_label_small 4.96% 54.571 2 Template:Pagetype --> <!-- Saved in parser cache with key enwiki:pcache:idhash:17616-0!canonical and timestamp 20241122150213 and revision id 1257340328. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Latitude&amp;oldid=1257340328">https://en.wikipedia.org/w/index.php?title=Latitude&amp;oldid=1257340328</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Circles_of_latitude" title="Category:Circles of latitude">Circles of latitude</a></li><li><a href="/wiki/Category:Geodesy" title="Category:Geodesy">Geodesy</a></li><li><a href="/wiki/Category:Navigation" title="Category:Navigation">Navigation</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_December_2011" title="Category:Articles with unsourced statements from December 2011">Articles with unsourced statements from December 2011</a></li><li><a href="/wiki/Category:Pages_using_Sister_project_links_with_default_search" title="Category:Pages using Sister project links with default search">Pages using Sister project links with default search</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 14 November 2024, at 12:15<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Latitude&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-ckrcl","wgBackendResponseTime":181,"wgPageParseReport":{"limitreport":{"cputime":"1.047","walltime":"1.409","ppvisitednodes":{"value":16311,"limit":1000000},"postexpandincludesize":{"value":344935,"limit":2097152},"templateargumentsize":{"value":24083,"limit":2097152},"expansiondepth":{"value":19,"limit":100},"expensivefunctioncount":{"value":11,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":111373,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1100.849 1 -total"," 20.30% 223.517 2 Template:Reflist"," 18.89% 208.001 9 Template:Navbox"," 17.10% 188.264 1 Template:Geographical_coordinates"," 10.36% 114.070 5 Template:Cite_web"," 9.83% 108.217 1 Template:Short_description"," 9.53% 104.924 1 Template:Sister_project_links"," 6.01% 66.176 129 Template:Image_label"," 5.89% 64.852 114 Template:Image_label_small"," 4.96% 54.571 2 Template:Pagetype"]},"scribunto":{"limitreport-timeusage":{"value":"0.490","limit":"10.000"},"limitreport-memusage":{"value":10045136,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-lwkv4","timestamp":"20241122150213","ttl":3481,"transientcontent":true}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Latitude","url":"https:\/\/en.wikipedia.org\/wiki\/Latitude","sameAs":"http:\/\/www.wikidata.org\/entity\/Q34027","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q34027","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-03-27T18:30:29Z","dateModified":"2024-11-14T12:15:23Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/4\/44\/Division_of_the_Earth_into_Gauss-Krueger_zones_-_Globe.svg","headline":"angle between zenith and a plane parallel to the equator"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10