CINXE.COM
Map projection - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Map projection - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"03244ac7-e8b3-484e-8d1c-0fd1d749b082","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Map_projection","wgTitle":"Map projection","wgCurRevisionId":1246447225,"wgRevisionId":1246447225,"wgArticleId":51784,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: unfit URL","Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from November 2019","Articles with unsourced statements from August 2016","Pages displaying short descriptions of redirect targets via Module:Annotated link","Pages displaying wikidata descriptions as a fallback via Module:Annotated link","Pages using Sister project links with hidden wikidata", "Map projections","Cartography","Infographics","Descriptive geometry","Geodesy"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Map_projection","wgRelevantArticleId":51784,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":60000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false, "wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q186386","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media", "site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Claudius_Ptolemy-_The_World.jpg/1200px-Claudius_Ptolemy-_The_World.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="864"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Claudius_Ptolemy-_The_World.jpg/800px-Claudius_Ptolemy-_The_World.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="576"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Claudius_Ptolemy-_The_World.jpg/640px-Claudius_Ptolemy-_The_World.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="461"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Map projection - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Map_projection"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Map_projection&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Map_projection"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Map_projection rootpage-Map_projection skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Map+projection" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Map+projection" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Map+projection" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Map+projection" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Metric_properties_of_maps" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Metric_properties_of_maps"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Metric properties of maps</span> </div> </a> <button aria-controls="toc-Metric_properties_of_maps-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Metric properties of maps subsection</span> </button> <ul id="toc-Metric_properties_of_maps-sublist" class="vector-toc-list"> <li id="toc-Distortion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Distortion"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Distortion</span> </div> </a> <ul id="toc-Distortion-sublist" class="vector-toc-list"> <li id="toc-Other_distortion_metrics" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Other_distortion_metrics"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1.1</span> <span>Other distortion metrics</span> </div> </a> <ul id="toc-Other_distortion_metrics-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Design_and_construction" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Design_and_construction"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Design and construction</span> </div> </a> <button aria-controls="toc-Design_and_construction-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Design and construction subsection</span> </button> <ul id="toc-Design_and_construction-sublist" class="vector-toc-list"> <li id="toc-Choosing_a_projection_surface" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Choosing_a_projection_surface"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Choosing a projection surface</span> </div> </a> <ul id="toc-Choosing_a_projection_surface-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Aspect_of_the_projection" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Aspect_of_the_projection"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Aspect of the projection</span> </div> </a> <ul id="toc-Aspect_of_the_projection-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notable_lines" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Notable_lines"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Notable lines</span> </div> </a> <ul id="toc-Notable_lines-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Scale" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Scale"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Scale</span> </div> </a> <ul id="toc-Scale-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Choosing_a_model_for_the_shape_of_the_body" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Choosing_a_model_for_the_shape_of_the_body"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Choosing a model for the shape of the body</span> </div> </a> <ul id="toc-Choosing_a_model_for_the_shape_of_the_body-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Classification" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Classification"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Classification</span> </div> </a> <ul id="toc-Classification-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Projections_by_surface" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Projections_by_surface"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Projections by surface</span> </div> </a> <button aria-controls="toc-Projections_by_surface-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Projections by surface subsection</span> </button> <ul id="toc-Projections_by_surface-sublist" class="vector-toc-list"> <li id="toc-Cylindrical" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cylindrical"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Cylindrical</span> </div> </a> <ul id="toc-Cylindrical-sublist" class="vector-toc-list"> <li id="toc-Normal_cylindrical" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Normal_cylindrical"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.1</span> <span>Normal cylindrical</span> </div> </a> <ul id="toc-Normal_cylindrical-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Transverse_cylindrical" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Transverse_cylindrical"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.2</span> <span>Transverse cylindrical</span> </div> </a> <ul id="toc-Transverse_cylindrical-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Oblique_cylindrical" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Oblique_cylindrical"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.3</span> <span>Oblique cylindrical</span> </div> </a> <ul id="toc-Oblique_cylindrical-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Pseudocylindrical" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pseudocylindrical"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Pseudocylindrical</span> </div> </a> <ul id="toc-Pseudocylindrical-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hybrid" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hybrid"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Hybrid</span> </div> </a> <ul id="toc-Hybrid-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conic" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conic"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Conic</span> </div> </a> <ul id="toc-Conic-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Pseudoconic" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pseudoconic"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Pseudoconic</span> </div> </a> <ul id="toc-Pseudoconic-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Azimuthal_(projections_onto_a_plane)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Azimuthal_(projections_onto_a_plane)"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Azimuthal (projections onto a plane)</span> </div> </a> <ul id="toc-Azimuthal_(projections_onto_a_plane)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Polyhedral" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Polyhedral"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7</span> <span>Polyhedral</span> </div> </a> <ul id="toc-Polyhedral-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Projections_by_preservation_of_a_metric_property" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Projections_by_preservation_of_a_metric_property"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Projections by preservation of a metric property</span> </div> </a> <button aria-controls="toc-Projections_by_preservation_of_a_metric_property-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Projections by preservation of a metric property subsection</span> </button> <ul id="toc-Projections_by_preservation_of_a_metric_property-sublist" class="vector-toc-list"> <li id="toc-Conformal" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conformal"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Conformal</span> </div> </a> <ul id="toc-Conformal-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Equal-area" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Equal-area"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Equal-area</span> </div> </a> <ul id="toc-Equal-area-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Equidistant" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Equidistant"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Equidistant</span> </div> </a> <ul id="toc-Equidistant-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gnomonic" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gnomonic"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Gnomonic</span> </div> </a> <ul id="toc-Gnomonic-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Retroazimuthal" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Retroazimuthal"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>Retroazimuthal</span> </div> </a> <ul id="toc-Retroazimuthal-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Compromise_projections" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Compromise_projections"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6</span> <span>Compromise projections</span> </div> </a> <ul id="toc-Compromise_projections-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Suitability_of_projections_for_application" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Suitability_of_projections_for_application"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Suitability of projections for application</span> </div> </a> <ul id="toc-Suitability_of_projections_for_application-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <button aria-controls="toc-References-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle References subsection</span> </button> <ul id="toc-References-sublist" class="vector-toc-list"> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sources" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Sources</span> </div> </a> <ul id="toc-Sources-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Map projection</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 54 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-54" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">54 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A5%D8%B3%D9%82%D8%A7%D8%B7_%D8%A7%D9%84%D8%AE%D8%B1%D8%A7%D8%A6%D8%B7" title="إسقاط الخرائط – Arabic" lang="ar" hreflang="ar" data-title="إسقاط الخرائط" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Proyeici%C3%B3n_cartogr%C3%A1fica" title="Proyeición cartográfica – Asturian" lang="ast" hreflang="ast" data-title="Proyeición cartográfica" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Kartoqrafik_proyeksiyalar" title="Kartoqrafik proyeksiyalar – Azerbaijani" lang="az" hreflang="az" data-title="Kartoqrafik proyeksiyalar" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AE%E0%A6%BE%E0%A6%A8%E0%A6%9A%E0%A6%BF%E0%A6%A4%E0%A7%8D%E0%A6%B0_%E0%A6%85%E0%A6%AD%E0%A6%BF%E0%A6%95%E0%A7%8D%E0%A6%B7%E0%A7%87%E0%A6%AA" title="মানচিত্র অভিক্ষেপ – Bangla" lang="bn" hreflang="bn" data-title="মানচিত্র অভিক্ষেপ" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D1%82%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D0%B8%D0%BA_%D0%BF%D1%80%D0%BE%D0%B5%D0%BA%D1%86%D0%B8%D1%8F%D0%BB%D0%B0%D1%80" title="Картографик проекциялар – Bashkir" lang="ba" hreflang="ba" data-title="Картографик проекциялар" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D1%82%D0%B0%D0%B3%D1%80%D0%B0%D1%84%D1%96%D1%87%D0%BD%D0%B0%D1%8F_%D0%BF%D1%80%D0%B0%D0%B5%D0%BA%D1%86%D1%8B%D1%8F" title="Картаграфічная праекцыя – Belarusian" lang="be" hreflang="be" data-title="Картаграфічная праекцыя" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%A8%E0%A4%95%E0%A5%8D%E0%A4%B6%E0%A4%BE_%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A5%8B%E0%A4%9C%E0%A5%87%E0%A4%95%E0%A5%8D%E0%A4%B6%E0%A4%A8" title="नक्शा प्रोजेक्शन – Bhojpuri" lang="bh" hreflang="bh" data-title="नक्शा प्रोजेक्शन" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D1%82%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D1%81%D0%BA%D0%B0_%D0%BF%D1%80%D0%BE%D0%B5%D0%BA%D1%86%D0%B8%D1%8F" title="Картографска проекция – Bulgarian" lang="bg" hreflang="bg" data-title="Картографска проекция" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Projecci%C3%B3_cartogr%C3%A0fica" title="Projecció cartogràfica – Catalan" lang="ca" hreflang="ca" data-title="Projecció cartogràfica" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Mapov%C3%A9_zobrazen%C3%AD" title="Mapové zobrazení – Czech" lang="cs" hreflang="cs" data-title="Mapové zobrazení" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Kortprojektion" title="Kortprojektion – Danish" lang="da" hreflang="da" data-title="Kortprojektion" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Kartennetzentwurf" title="Kartennetzentwurf – German" lang="de" hreflang="de" data-title="Kartennetzentwurf" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Kaardiprojektsioon" title="Kaardiprojektsioon – Estonian" lang="et" hreflang="et" data-title="Kaardiprojektsioon" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A7%CE%B1%CF%81%CF%84%CE%BF%CE%B3%CF%81%CE%B1%CF%86%CE%B9%CE%BA%CE%AE_%CF%80%CF%81%CE%BF%CE%B2%CE%BF%CE%BB%CE%AE" title="Χαρτογραφική προβολή – Greek" lang="el" hreflang="el" data-title="Χαρτογραφική προβολή" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Proyecci%C3%B3n_cartogr%C3%A1fica" title="Proyección cartográfica – Spanish" lang="es" hreflang="es" data-title="Proyección cartográfica" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Proiekzio_kartografiko" title="Proiekzio kartografiko – Basque" lang="eu" hreflang="eu" data-title="Proiekzio kartografiko" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B3%DB%8C%D8%B3%D8%AA%D9%85_%D8%AA%D8%B5%D9%88%DB%8C%D8%B1_%D9%86%D9%82%D8%B4%D9%87" title="سیستم تصویر نقشه – Persian" lang="fa" hreflang="fa" data-title="سیستم تصویر نقشه" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Projection_cartographique" title="Projection cartographique – French" lang="fr" hreflang="fr" data-title="Projection cartographique" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Teilgean_l%C3%A9arsc%C3%A1ile" title="Teilgean léarscáile – Irish" lang="ga" hreflang="ga" data-title="Teilgean léarscáile" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Proxecci%C3%B3n_cartogr%C3%A1fica" title="Proxección cartográfica – Galician" lang="gl" hreflang="gl" data-title="Proxección cartográfica" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%A7%80%EB%8F%84_%ED%88%AC%EC%98%81%EB%B2%95" title="지도 투영법 – Korean" lang="ko" hreflang="ko" data-title="지도 투영법" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AE%E0%A4%BE%E0%A4%A8%E0%A4%9A%E0%A4%BF%E0%A4%A4%E0%A5%8D%E0%A4%B0_%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A5%87%E0%A4%AA" title="मानचित्र प्रक्षेप – Hindi" lang="hi" hreflang="hi" data-title="मानचित्र प्रक्षेप" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Kartografska_projekcija" title="Kartografska projekcija – Croatian" lang="hr" hreflang="hr" data-title="Kartografska projekcija" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Proyeksi_peta" title="Proyeksi peta – Indonesian" lang="id" hreflang="id" data-title="Proyeksi peta" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Kortav%C3%B6rpun" title="Kortavörpun – Icelandic" lang="is" hreflang="is" data-title="Kortavörpun" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Proiezione_cartografica" title="Proiezione cartografica – Italian" lang="it" hreflang="it" data-title="Proiezione cartografica" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%99%D7%98%D7%9C_(%D7%99%D7%99%D7%A6%D7%95%D7%92_%D7%92%D7%A8%D7%A4%D7%99)" title="היטל (ייצוג גרפי) – Hebrew" lang="he" hreflang="he" data-title="היטל (ייצוג גרפי)" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D1%82%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D0%B8%D1%8F%D0%BB%D1%8B%D2%9B_%D0%BF%D1%80%D0%BE%D0%B5%D0%BA%D1%86%D0%B8%D1%8F" title="Картографиялық проекция – Kazakh" lang="kk" hreflang="kk" data-title="Картографиялық проекция" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Pwojeksyon_konik" title="Pwojeksyon konik – Haitian Creole" lang="ht" hreflang="ht" data-title="Pwojeksyon konik" data-language-autonym="Kreyòl ayisyen" data-language-local-name="Haitian Creole" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D1%82%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D0%B8%D1%8F%D0%BB%D1%8B%D0%BA_%D0%BF%D1%80%D0%BE%D0%B5%D0%BA%D1%86%D0%B8%D1%8F%D0%BB%D0%B0%D1%80" title="Картографиялык проекциялар – Kyrgyz" lang="ky" hreflang="ky" data-title="Картографиялык проекциялар" data-language-autonym="Кыргызча" data-language-local-name="Kyrgyz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Projektiounsmodell" title="Projektiounsmodell – Luxembourgish" lang="lb" hreflang="lb" data-title="Projektiounsmodell" data-language-autonym="Lëtzebuergesch" data-language-local-name="Luxembourgish" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Kartografin%C4%97_projekcija" title="Kartografinė projekcija – Lithuanian" lang="lt" hreflang="lt" data-title="Kartografinė projekcija" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Vet%C3%BClettan" title="Vetülettan – Hungarian" lang="hu" hreflang="hu" data-title="Vetülettan" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D1%82%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D1%81%D0%BA%D0%B0_%D0%BF%D1%80%D0%BE%D0%B5%D0%BA%D1%86%D0%B8%D1%98%D0%B0" title="Картографска проекција – Macedonian" lang="mk" hreflang="mk" data-title="Картографска проекција" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Unjuran_peta" title="Unjuran peta – Malay" lang="ms" hreflang="ms" data-title="Unjuran peta" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Kaartprojectie" title="Kaartprojectie – Dutch" lang="nl" hreflang="nl" data-title="Kaartprojectie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%8A%95%E5%BD%B1%E6%B3%95_(%E5%9C%B0%E5%9B%B3)" title="投影法 (地図) – Japanese" lang="ja" hreflang="ja" data-title="投影法 (地図)" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Kartprojeksjon" title="Kartprojeksjon – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Kartprojeksjon" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Projeccion_cartografica" title="Projeccion cartografica – Occitan" lang="oc" hreflang="oc" data-title="Projeccion cartografica" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Xaritagrafik_proyeksiyalar" title="Xaritagrafik proyeksiyalar – Uzbek" lang="uz" hreflang="uz" data-title="Xaritagrafik proyeksiyalar" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Odwzorowanie_kartograficzne" title="Odwzorowanie kartograficzne – Polish" lang="pl" hreflang="pl" data-title="Odwzorowanie kartograficzne" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Proje%C3%A7%C3%A3o_cartogr%C3%A1fica" title="Projeção cartográfica – Portuguese" lang="pt" hreflang="pt" data-title="Projeção cartográfica" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Proiec%C8%9Bie_cartografic%C4%83" title="Proiecție cartografică – Romanian" lang="ro" hreflang="ro" data-title="Proiecție cartografică" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D1%82%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BF%D1%80%D0%BE%D0%B5%D0%BA%D1%86%D0%B8%D1%8F" title="Картографическая проекция – Russian" lang="ru" hreflang="ru" data-title="Картографическая проекция" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Map_projection" title="Map projection – Simple English" lang="en-simple" hreflang="en-simple" data-title="Map projection" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Kartografska_projekcija" title="Kartografska projekcija – Slovenian" lang="sl" hreflang="sl" data-title="Kartografska projekcija" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D1%82%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D1%81%D0%BA%D0%B0_%D0%BF%D1%80%D0%BE%D1%98%D0%B5%D0%BA%D1%86%D0%B8%D1%98%D0%B0" title="Картографска пројекција – Serbian" lang="sr" hreflang="sr" data-title="Картографска пројекција" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Karttaprojektio" title="Karttaprojektio – Finnish" lang="fi" hreflang="fi" data-title="Karttaprojektio" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Kartprojektion" title="Kartprojektion – Swedish" lang="sv" hreflang="sv" data-title="Kartprojektion" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%AA%E0%B9%89%E0%B8%99%E0%B9%82%E0%B8%84%E0%B8%A3%E0%B8%87%E0%B9%81%E0%B8%9C%E0%B8%99%E0%B8%97%E0%B8%B5%E0%B9%88" title="เส้นโครงแผนที่ – Thai" lang="th" hreflang="th" data-title="เส้นโครงแผนที่" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Harita_projeksiyonu" title="Harita projeksiyonu – Turkish" lang="tr" hreflang="tr" data-title="Harita projeksiyonu" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D1%82%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D1%96%D1%87%D0%BD%D0%B0_%D0%BF%D1%80%D0%BE%D1%94%D0%BA%D1%86%D1%96%D1%8F" title="Картографічна проєкція – Ukrainian" lang="uk" hreflang="uk" data-title="Картографічна проєкція" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%9C%B0%E5%9C%96%E6%8A%95%E5%BD%B1" title="地圖投影 – Cantonese" lang="yue" hreflang="yue" data-title="地圖投影" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%9C%B0%E5%9B%BE%E6%8A%95%E5%BD%B1" title="地图投影 – Chinese" lang="zh" hreflang="zh" data-title="地图投影" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q186386#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Map_projection" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Map_projection" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Map_projection"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Map_projection&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Map_projection&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Map_projection"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Map_projection&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Map_projection&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Map_projection" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Map_projection" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Map_projection&oldid=1246447225" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Map_projection&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Map_projection&id=1246447225&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMap_projection"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMap_projection"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Map_projection&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Map_projection&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Map_projections" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q186386" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Systematic representation of the surface of a sphere or ellipsoid onto a plane</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Claudius_Ptolemy-_The_World.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Claudius_Ptolemy-_The_World.jpg/310px-Claudius_Ptolemy-_The_World.jpg" decoding="async" width="310" height="223" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Claudius_Ptolemy-_The_World.jpg/465px-Claudius_Ptolemy-_The_World.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Claudius_Ptolemy-_The_World.jpg/620px-Claudius_Ptolemy-_The_World.jpg 2x" data-file-width="8073" data-file-height="5813" /></a><figcaption>A medieval depiction of the <a href="/wiki/Ecumene" title="Ecumene">Ecumene</a> (1482, Johannes Schnitzer, engraver), constructed after the coordinates in Ptolemy's <a href="/wiki/Geography_(Ptolemy)" title="Geography (Ptolemy)"><i>Geography</i></a> and using his second map projection</figcaption></figure> <p>In <a href="/wiki/Cartography" title="Cartography">cartography</a>, a <b>map projection</b> is any of a broad set of <a href="/wiki/Transformation_(function)" title="Transformation (function)"> transformations</a> employed to represent the curved two-dimensional <a href="/wiki/Surface_(mathematics)" title="Surface (mathematics)">surface</a> of a <a href="/wiki/Globe" title="Globe">globe</a> on a <a href="/wiki/Plane_(mathematics)" title="Plane (mathematics)">plane</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> In a map projection, <a href="/wiki/Coordinates" class="mw-redirect" title="Coordinates">coordinates</a>, often expressed as <a href="/wiki/Latitude" title="Latitude">latitude</a> and <a href="/wiki/Longitude" title="Longitude">longitude</a>, of locations from the surface of the globe are transformed to coordinates on a plane.<sup id="cite_ref-Snyder1453_4-0" class="reference"><a href="#cite_note-Snyder1453-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-EGmap_5-0" class="reference"><a href="#cite_note-EGmap-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> Projection is a necessary step in creating a two-dimensional map and is one of the essential elements of cartography. </p><p>All projections of a sphere on a plane necessarily distort the surface in some way.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Depending on the purpose of the map, some distortions are acceptable and others are not; therefore, different map projections exist in order to preserve some properties of the sphere-like body at the expense of other properties. The study of map projections is primarily about the characterization of their distortions. There is no limit to the number of possible map projections.<sup id="cite_ref-SnyderFlattening_7-0" class="reference"><a href="#cite_note-SnyderFlattening-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 1">: 1 </span></sup> More generally, projections are considered in several fields of pure mathematics, including <a href="/wiki/Differential_geometry" title="Differential geometry">differential geometry</a>, <a href="/wiki/Projective_geometry" title="Projective geometry">projective geometry</a>, and <a href="/wiki/Manifold" title="Manifold">manifolds</a>. However, the term "map projection" refers specifically to a <a href="/wiki/Cartography" title="Cartography">cartographic</a> projection. </p><p>Despite the name's literal meaning, projection is not limited to <a href="/wiki/Perspective_(graphical)" title="Perspective (graphical)">perspective</a> projections, such as those resulting from casting a shadow on a screen, or the <a href="/wiki/Rectilinear_projection" class="mw-redirect" title="Rectilinear projection">rectilinear</a> image produced by a <a href="/wiki/Pinhole_camera" title="Pinhole camera">pinhole camera</a> on a flat film plate. Rather, any mathematical function that transforms coordinates from the curved surface distinctly and smoothly to the plane is a projection. Few projections in practical use are perspective.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (November 2019)">citation needed</span></a></i>]</sup> </p><p>Most of this article assumes that the surface to be mapped is that of a sphere. The <a href="/wiki/Earth" title="Earth">Earth</a> and other large <a href="/wiki/Celestial_bodies" class="mw-redirect" title="Celestial bodies">celestial bodies</a> are generally better modeled as <a href="/wiki/Oblate_spheroid" class="mw-redirect" title="Oblate spheroid">oblate spheroids</a>, whereas small objects such as <a href="/wiki/Asteroid" title="Asteroid">asteroids</a> often have irregular shapes. The surfaces of planetary bodies can be mapped even if they are too irregular to be modeled well with a sphere or ellipsoid.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> Therefore, more generally, a map projection is any method of flattening a continuous curved surface onto a plane.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (November 2019)">citation needed</span></a></i>]</sup> </p><p>The most well-known map projection is the <a href="/wiki/Mercator_projection" title="Mercator projection">Mercator projection</a>.<sup id="cite_ref-SnyderFlattening_7-1" class="reference"><a href="#cite_note-SnyderFlattening-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 45">: 45 </span></sup> This map projection has the property of being <a href="/wiki/Conformal_map_projection" title="Conformal map projection">conformal</a>. However, it has been criticized throughout the 20th century for enlarging regions further from the equator.<sup id="cite_ref-SnyderFlattening_7-2" class="reference"><a href="#cite_note-SnyderFlattening-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 156–157">: 156–157 </span></sup> To contrast, <a href="/wiki/Equal-area_projection" title="Equal-area projection">equal-area projections</a> such as the <a href="/wiki/Sinusoidal_projection" title="Sinusoidal projection">Sinusoidal projection</a> and the <a href="/wiki/Gall%E2%80%93Peters_projection" title="Gall–Peters projection">Gall–Peters projection</a> show the correct sizes of countries relative to each other, but distort angles. The <a href="/wiki/National_Geographic_Society" title="National Geographic Society">National Geographic Society</a> and most atlases favor map projections that compromise between area and angular distortion, such as the <a href="/wiki/Robinson_projection" title="Robinson projection">Robinson projection</a> and the <a href="/wiki/Winkel_tripel_projection" title="Winkel tripel projection">Winkel tripel projection</a>.<sup id="cite_ref-SnyderFlattening_7-3" class="reference"><a href="#cite_note-SnyderFlattening-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Metric_properties_of_maps">Metric properties of maps</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=1" title="Edit section: Metric properties of maps"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Frame"><a href="/wiki/File:USGS_map_Albers_conic_tall.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/d/da/USGS_map_Albers_conic_tall.gif" decoding="async" width="335" height="195" class="mw-file-element" data-file-width="335" data-file-height="195" /></a><figcaption>An <a href="/wiki/Albers_projection" title="Albers projection">Albers projection</a> shows areas accurately, but distorts shapes.</figcaption></figure> <p>Many properties can be measured on the Earth's surface independently of its geography: </p> <ul><li><a href="/wiki/Area" title="Area">Area</a></li> <li><a href="/wiki/Shape" title="Shape">Shape</a></li> <li><a href="/wiki/Direction_(geometry)" title="Direction (geometry)">Direction</a></li> <li><a href="/wiki/Bearing_(navigation)" title="Bearing (navigation)">Bearing</a></li> <li><a href="/wiki/Distance" title="Distance">Distance</a></li></ul> <p>Map projections can be constructed to preserve some of these properties at the expense of others. Because the Earth's curved surface is not <a href="/wiki/Isometry" title="Isometry">isometric</a> to a plane, preservation of shapes inevitably requires a variable <a href="/wiki/Scale_(map)" title="Scale (map)">scale</a> and, consequently, non-proportional presentation of areas. Similarly, an area-preserving projection can not be <a href="/wiki/Conformal_map" title="Conformal map">conformal</a>, resulting in shapes and bearings distorted in most places of the map. Each projection preserves, compromises, or approximates basic metric properties in different ways. The purpose of the map determines which projection should form the base for the map. Because maps have many different purposes, a diversity of projections have been created to suit those purposes. </p><p>Another consideration in the configuration of a projection is its compatibility with data sets to be used on the map. Data sets are geographic information; their collection depends on the chosen <a href="/wiki/Datum_(geodesy)" class="mw-redirect" title="Datum (geodesy)">datum</a> (model) of the Earth. Different datums assign slightly different coordinates to the same location, so in <a href="/wiki/Scale_(map)#Terminology" title="Scale (map)">large scale</a> maps, such as those from national mapping systems, it is important to match the datum to the projection. The slight differences in coordinate assignation between different datums is not a concern for world maps or those of large regions, where such differences are reduced to imperceptibility. </p> <div class="mw-heading mw-heading3"><h3 id="Distortion">Distortion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=2" title="Edit section: Distortion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Tissot%27s_indicatrix" title="Tissot's indicatrix">Tissot's indicatrix</a></div> <p><a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a>'s <i><a href="/wiki/Theorema_Egregium" title="Theorema Egregium">Theorema Egregium</a></i> proved that a sphere's surface cannot be represented on a plane without distortion. The same applies to other reference surfaces used as models for the Earth, such as oblate <a href="/wiki/Spheroid" title="Spheroid">spheroids</a>, <a href="/wiki/Ellipsoids" class="mw-redirect" title="Ellipsoids">ellipsoids</a>, and <a href="/wiki/Geoid" title="Geoid">geoids</a>. Since any map projection is a representation of one of those surfaces on a plane, all map projections distort.<sup id="cite_ref-EGmap_5-1" class="reference"><a href="#cite_note-EGmap-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Tissot_mercator.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Tissot_mercator.png/220px-Tissot_mercator.png" decoding="async" width="220" height="204" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Tissot_mercator.png/330px-Tissot_mercator.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Tissot_mercator.png/440px-Tissot_mercator.png 2x" data-file-width="777" data-file-height="720" /></a><figcaption>Tissot's indicatrices on the <a href="/wiki/Mercator_projection" title="Mercator projection">Mercator projection</a></figcaption></figure> <p>The classical way of showing the distortion inherent in a projection is to use <a href="/wiki/Tissot%27s_indicatrix" title="Tissot's indicatrix">Tissot's indicatrix</a>. For a given point, using the scale factor <i>h</i> along the meridian, the scale factor <i>k</i> along the parallel, and the angle <i>θ</i>′ between them, <a href="/wiki/Nicolas_Auguste_Tissot" title="Nicolas Auguste Tissot">Nicolas Tissot</a> described how to construct an ellipse that illustrates the amount and orientation of the components of distortion.<sup id="cite_ref-SnyderFlattening_7-4" class="reference"><a href="#cite_note-SnyderFlattening-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 147–149">: 147–149 </span></sup><sup id="cite_ref-WorkingManual_10-0" class="reference"><a href="#cite_note-WorkingManual-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 24">: 24 </span></sup> By spacing the ellipses regularly along the meridians and parallels, the network of indicatrices shows how distortion varies across the map. </p> <div class="mw-heading mw-heading4"><h4 id="Other_distortion_metrics">Other distortion metrics</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=3" title="Edit section: Other distortion metrics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Many other ways have been described of showing the distortion in projections.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> Like Tissot's indicatrix, the <b>Goldberg-Gott indicatrix</b> is based on infinitesimals, and depicts <i>flexion</i> and <i>skewness</i> (bending and lopsidedness) distortions.<sup id="cite_ref-Goldberg-Gott_13-0" class="reference"><a href="#cite_note-Goldberg-Gott-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p>Rather than the original (enlarged) infinitesimal circle as in Tissot's indicatrix, some visual methods project finite shapes that span a part of the map. For example, a <a href="/wiki/Small_circle" class="mw-redirect" title="Small circle">small circle</a> of fixed radius (e.g., 15 degrees <a href="/wiki/Angular_radius" class="mw-redirect" title="Angular radius">angular radius</a>).<sup id="cite_ref-tiss_14-0" class="reference"><a href="#cite_note-tiss-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> Sometimes <a href="/wiki/Spherical_triangle" class="mw-redirect" title="Spherical triangle">spherical triangles</a> are used.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (August 2016)">citation needed</span></a></i>]</sup> In the first half of the 20th century, projecting a human head onto different projections was common to show how distortion varies across one projection as compared to another.<sup id="cite_ref-rutgers_15-0" class="reference"><a href="#cite_note-rutgers-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> In dynamic media, shapes of familiar coastlines and boundaries can be dragged across an interactive map to show how the projection distorts sizes and shapes according to position on the map.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p><p>Another way to visualize local distortion is through grayscale or color gradations whose shade represents the magnitude of the angular deformation or areal inflation. Sometimes both are shown simultaneously by blending two colors to create a <a href="/wiki/Bivariate_map" class="mw-redirect" title="Bivariate map">bivariate map</a>.<sup id="cite_ref-cornucopia_17-0" class="reference"><a href="#cite_note-cornucopia-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>To measure distortion globally across areas instead of at just a single point necessarily involves choosing priorities to reach a compromise. Some schemes use distance distortion as a proxy for the combination of angular deformation and areal inflation; such methods arbitrarily choose what paths to measure and how to weight them in order to yield a single result. Many have been described.<sup id="cite_ref-Goldberg-Gott_13-1" class="reference"><a href="#cite_note-Goldberg-Gott-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-AB_Peters_18-0" class="reference"><a href="#cite_note-AB_Peters-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-GMC_19-0" class="reference"><a href="#cite_note-GMC-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Laskowski_20-0" class="reference"><a href="#cite_note-Laskowski-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Airy_21-0" class="reference"><a href="#cite_note-Airy-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Design_and_construction">Design and construction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=4" title="Edit section: Design and construction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The creation of a map projection involves two steps: </p> <ol><li>Selection of a model for the shape of the Earth or planetary body (usually choosing between a <a href="/wiki/Sphere" title="Sphere">sphere</a> or <a href="/wiki/Ellipsoid" title="Ellipsoid">ellipsoid</a>). Because the Earth's actual shape is irregular, information is lost in this step.</li> <li>Transformation of geographic coordinates (<a href="/wiki/Longitude" title="Longitude">longitude</a> and <a href="/wiki/Latitude" title="Latitude">latitude</a>) to <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">Cartesian</a> (<i>x</i>,<i>y</i>) or <a href="/wiki/Polar_coordinate_system" title="Polar coordinate system">polar</a> (<i>r</i>, <i>θ</i>) plane coordinates. In large-scale maps, Cartesian coordinates normally have a simple relation to <a href="/wiki/Easting_and_northing" class="mw-redirect" title="Easting and northing">eastings and northings</a> defined as a grid superimposed on the projection. In small-scale maps, eastings and northings are not meaningful, and grids are not superimposed.</li></ol> <p>Some of the simplest map projections are literal projections, as obtained by placing a light source at some definite point relative to the globe and projecting its features onto a specified surface. Although most projections are not defined in this way, picturing the light source-globe model can be helpful in understanding the basic concept of a map projection. </p> <div class="mw-heading mw-heading3"><h3 id="Choosing_a_projection_surface">Choosing a projection surface</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=5" title="Edit section: Choosing a projection surface"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Usgs_map_miller_cylindrical.PNG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/22/Usgs_map_miller_cylindrical.PNG/300px-Usgs_map_miller_cylindrical.PNG" decoding="async" width="300" height="128" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/2/22/Usgs_map_miller_cylindrical.PNG 1.5x" data-file-width="395" data-file-height="168" /></a><figcaption>A <a href="/wiki/Miller_cylindrical_projection" title="Miller cylindrical projection">Miller cylindrical projection</a> maps the globe onto a cylinder.</figcaption></figure> <p>A surface that can be unfolded or unrolled into a plane or sheet without stretching, tearing or shrinking is called a <i><a href="/wiki/Developable_surface" title="Developable surface">developable surface</a></i>. The <a href="/wiki/Cylinder_(geometry)" class="mw-redirect" title="Cylinder (geometry)">cylinder</a>, <a href="/wiki/Cone_(geometry)" class="mw-redirect" title="Cone (geometry)">cone</a> and the plane are all developable surfaces. The sphere and ellipsoid do not have developable surfaces, so any projection of them onto a plane will have to distort the image. (To compare, one cannot flatten an orange peel without tearing and warping it.) </p><p>One way of describing a projection is first to project from the Earth's surface to a developable surface such as a cylinder or cone, and then to unroll the surface into a plane. While the first step inevitably distorts some properties of the globe, the developable surface can then be unfolded without further distortion. </p> <div class="mw-heading mw-heading3"><h3 id="Aspect_of_the_projection">Aspect of the projection<span class="anchor" id="Aspect"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=6" title="Edit section: Aspect of the projection"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Usgs_map_traverse_mercator.PNG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Usgs_map_traverse_mercator.PNG/300px-Usgs_map_traverse_mercator.PNG" decoding="async" width="300" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Usgs_map_traverse_mercator.PNG/450px-Usgs_map_traverse_mercator.PNG 1.5x, //upload.wikimedia.org/wikipedia/commons/b/b9/Usgs_map_traverse_mercator.PNG 2x" data-file-width="479" data-file-height="239" /></a><figcaption>This <a href="/wiki/Transverse_Mercator_projection" title="Transverse Mercator projection">transverse Mercator projection</a> is mathematically the same as a standard Mercator, but oriented around a different axis.</figcaption></figure> <p>Once a choice is made between projecting onto a cylinder, cone, or plane, the <b>aspect</b> of the shape must be specified. The aspect describes how the developable surface is placed relative to the globe: it may be <i>normal</i> (such that the surface's axis of symmetry coincides with the Earth's axis), <i>transverse</i> (at right angles to the Earth's axis) or <i>oblique</i> (any angle in between). </p> <div class="mw-heading mw-heading3"><h3 id="Notable_lines">Notable lines</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=7" title="Edit section: Notable lines"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Comparison_of_cartography_surface_development.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c1/Comparison_of_cartography_surface_development.svg/300px-Comparison_of_cartography_surface_development.svg.png" decoding="async" width="300" height="225" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c1/Comparison_of_cartography_surface_development.svg/450px-Comparison_of_cartography_surface_development.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c1/Comparison_of_cartography_surface_development.svg/600px-Comparison_of_cartography_surface_development.svg.png 2x" data-file-width="512" data-file-height="384" /></a><figcaption>Comparison of tangent and secant cylindrical, conic and azimuthal map projections with standard parallels shown in red</figcaption></figure> <p>The developable surface may also be either <i><a href="/wiki/Tangent" title="Tangent">tangent</a></i> or <i><a href="/wiki/Secant_line" title="Secant line">secant</a></i> to the sphere or ellipsoid. Tangent means the surface touches but does not slice through the globe; secant means the surface does slice through the globe. Moving the developable surface away from contact with the globe never preserves or optimizes metric properties, so that possibility is not discussed further here. </p><p>Tangent and secant lines (<i>standard lines</i>) are represented undistorted. If these lines are a parallel of latitude, as in conical projections, it is called a <i>standard parallel</i>. The <i>central meridian</i> is the meridian to which the globe is rotated before projecting. The central meridian (usually written <i>λ</i><sub>0</sub>) and a parallel of origin (usually written <i>φ</i><sub>0</sub>) are often used to define the origin of the map projection.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Scale">Scale</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=8" title="Edit section: Scale"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Map_scale_factor" class="mw-redirect" title="Map scale factor">Map scale factor</a></div> <p>A <a href="/wiki/Globe" title="Globe">globe</a> is the only way to represent the Earth with constant <a href="/wiki/Scale_(map)" title="Scale (map)">scale</a> throughout the entire map in all directions. A map cannot achieve that property for any area, no matter how small. It can, however, achieve constant scale along specific lines. </p><p>Some possible properties are: </p> <ul><li>The scale depends on location, but not on direction. This is equivalent to preservation of angles, the defining characteristic of a <a href="/wiki/Conformal_map" title="Conformal map">conformal map</a>.</li> <li>Scale is constant along any parallel in the direction of the parallel. This applies for any cylindrical or pseudocylindrical projection in normal aspect.</li> <li>Combination of the above: the scale depends on latitude only, not on longitude or direction. This applies for the <a href="/wiki/Mercator_projection" title="Mercator projection">Mercator projection</a> in normal aspect.</li> <li>Scale is constant along all straight lines radiating from a particular geographic location. This is the defining characteristic of an equidistant projection such as the <a href="/wiki/Azimuthal_equidistant_projection" title="Azimuthal equidistant projection">azimuthal equidistant projection</a>. There are also projections (Maurer's <a href="/wiki/Two-point_equidistant_projection" title="Two-point equidistant projection">two-point equidistant projection</a>, Close) where true distances from <i>two</i> points are preserved.<sup id="cite_ref-SnyderFlattening_7-5" class="reference"><a href="#cite_note-SnyderFlattening-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 234">: 234 </span></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Choosing_a_model_for_the_shape_of_the_body">Choosing a model for the shape of the body</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=9" title="Edit section: Choosing a model for the shape of the body"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Projection construction is also affected by how the shape of the Earth or planetary body is approximated. In the following section on projection categories, the earth is taken as a <a href="/wiki/Sphere" title="Sphere">sphere</a> in order to simplify the discussion. However, the Earth's actual shape is closer to an oblate <a href="/wiki/Ellipsoid" title="Ellipsoid">ellipsoid</a>. Whether spherical or ellipsoidal, the principles discussed hold without loss of generality. </p><p>Selecting a model for a shape of the Earth involves choosing between the advantages and disadvantages of a sphere versus an ellipsoid. Spherical models are useful for small-scale maps such as world atlases and globes, since the error at that scale is not usually noticeable or important enough to justify using the more complicated ellipsoid. The ellipsoidal model is commonly used to construct <a href="/wiki/Topographic_map" title="Topographic map">topographic maps</a> and for other large- and medium-scale maps that need to accurately depict the land surface. <a href="/wiki/Latitude#Auxiliary_latitudes" title="Latitude">Auxiliary latitudes</a> are often employed in projecting the ellipsoid. </p><p><span class="anchor" id="geoid"></span>A third model is the <a href="/wiki/Geoid" title="Geoid">geoid</a>, a more complex and accurate representation of Earth's shape coincident with what <a href="/wiki/Mean_sea_level" class="mw-redirect" title="Mean sea level">mean sea level</a> would be if there were no winds, tides, or land. Compared to the best fitting ellipsoid, a geoidal model would change the characterization of important properties such as distance, <a href="#Conformal">conformality</a> and <a href="#Equal-area">equivalence</a>. Therefore, in geoidal projections that preserve such properties, the mapped <a href="/wiki/Geographic_coordinate_system#Geographic_latitude_and_longitude" title="Geographic coordinate system">graticule</a> would deviate from a mapped ellipsoid's graticule. Normally the geoid is not used as an <a href="/wiki/Earth_model" class="mw-redirect" title="Earth model">Earth model</a> for projections, however, because Earth's shape is very regular, with the <a href="/wiki/Undulation_of_the_geoid" class="mw-redirect" title="Undulation of the geoid">undulation of the geoid</a> amounting to less than 100 m from the ellipsoidal model out of the 6.3 million m <a href="/wiki/Earth_radius" title="Earth radius">Earth radius</a>. For irregular planetary bodies such as <a href="/wiki/Asteroids" class="mw-redirect" title="Asteroids">asteroids</a>, however, sometimes models analogous to the geoid are used to project maps from.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p><p>Other regular solids are sometimes used as generalizations for smaller bodies' geoidal equivalent. For example, <a href="/wiki/Io_(moon)" title="Io (moon)">Io</a> is better modeled by triaxial ellipsoid or prolated spheroid with small eccentricities. <a href="/wiki/Haumea" title="Haumea">Haumea</a>'s shape is a <a href="/wiki/Jacobi_ellipsoid" title="Jacobi ellipsoid">Jacobi ellipsoid</a>, with its major <a href="/wiki/Axis_of_rotation" class="mw-redirect" title="Axis of rotation">axis</a> twice as long as its minor and with its middle axis one and half times as long as its minor. See <a href="/wiki/Map_projection_of_the_triaxial_ellipsoid" title="Map projection of the triaxial ellipsoid">map projection of the triaxial ellipsoid</a> for further information. </p> <div class="mw-heading mw-heading2"><h2 id="Classification">Classification</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=10" title="Edit section: Classification"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One way to classify map projections is based on the type of surface onto which the globe is projected. In this scheme, the projection process is described as placing a hypothetical projection surface the size of the desired study area in contact with part of the Earth, transferring features of the Earth's surface onto the projection surface, then unraveling and scaling the projection surface into a flat map. The most common projection surfaces are cylindrical (e.g., <a href="/wiki/Mercator_projection" title="Mercator projection">Mercator</a>), conic (e.g., <a href="/wiki/Albers_projection" title="Albers projection">Albers</a>), and planar (e.g., <a href="/wiki/Stereographic_projection_in_cartography" class="mw-redirect" title="Stereographic projection in cartography">stereographic</a>). Many mathematical projections, however, do not neatly fit into any of these three projection methods. Hence other peer categories have been described in the literature, such as pseudoconic, pseudocylindrical, pseudoazimuthal, retroazimuthal, and <a href="/wiki/Polyconic_projection" class="mw-redirect" title="Polyconic projection">polyconic</a>. </p><p>Another way to classify projections is according to properties of the model they preserve. Some of the more common categories are: </p> <ul><li>Preserving direction (<i>azimuthal or zenithal</i>), a trait possible only from one or two points to every other point<sup id="cite_ref-WorkingManual_10-1" class="reference"><a href="#cite_note-WorkingManual-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 192">: 192 </span></sup></li> <li>Preserving shape locally (<i><a href="#Conformal">conformal</a></i> or <i>orthomorphic</i>)</li> <li>Preserving area (<i>equal-area</i> or <i>equiareal</i> or <i>equivalent</i> or <i>authalic</i>)</li> <li>Preserving distance (<i>equidistant</i>), a trait possible only between one or two points and every other point</li> <li>Preserving shortest route, a trait preserved only by the <a href="/wiki/Gnomonic_projection" title="Gnomonic projection">gnomonic projection</a></li></ul> <p>Because the sphere is not a <a href="/wiki/Developable_surface" title="Developable surface">developable surface</a>, it is impossible to construct a map projection that is both equal-area and conformal. </p> <div class="mw-heading mw-heading2"><h2 id="Projections_by_surface">Projections by surface</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=11" title="Edit section: Projections by surface"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The three developable surfaces (plane, cylinder, cone) provide useful models for understanding, describing, and developing map projections. However, these models are limited in two fundamental ways. For one thing, most world projections in use do not fall into any of those categories. For another thing, even most projections that do fall into those categories are not naturally attainable through physical projection. As <a href="/wiki/L._P._Lee" class="mw-redirect" title="L. P. Lee">L. P. Lee</a> notes, </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>No reference has been made in the above definitions to cylinders, cones or planes. The projections are termed cylindric or conic because they can be regarded as developed on a cylinder or a cone, as the case may be, but it is as well to dispense with picturing cylinders and cones, since they have given rise to much misunderstanding. Particularly is this so with regard to the conic projections with two standard parallels: they may be regarded as developed on cones, but they are cones which bear no simple relationship to the sphere. In reality, cylinders and cones provide us with convenient descriptive terms, but little else.<sup id="cite_ref-Lee_29-0" class="reference"><a href="#cite_note-Lee-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup></p></blockquote> <p>Lee's objection refers to the way the terms <i>cylindrical</i>, <i>conic</i>, and <i>planar</i> (azimuthal) have been abstracted in the field of map projections. If maps were projected as in light shining through a globe onto a developable surface, then the spacing of parallels would follow a very limited set of possibilities. Such a cylindrical projection (for example) is one which: </p> <ol><li>Is rectangular;</li> <li>Has straight vertical meridians, spaced evenly;</li> <li>Has straight parallels symmetrically placed about the equator;</li> <li>Has parallels constrained to where they fall when light shines through the globe onto the cylinder, with the light source someplace along the line formed by the intersection of the prime meridian with the equator, and the center of the sphere.</li></ol> <p>(If you rotate the globe before projecting then the parallels and meridians will not necessarily still be straight lines. Rotations are normally ignored for the purpose of classification.) </p><p>Where the light source emanates along the line described in this last constraint is what yields the differences between the various "natural" cylindrical projections. But the term <i>cylindrical</i> as used in the field of map projections relaxes the last constraint entirely. Instead the parallels can be placed according to any algorithm the designer has decided suits the needs of the map. The famous Mercator projection is one in which the placement of parallels does not arise by projection; instead parallels are placed how they need to be in order to satisfy the property that a course of constant bearing is always plotted as a straight line. </p> <div class="mw-heading mw-heading3"><h3 id="Cylindrical">Cylindrical</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=12" title="Edit section: Cylindrical"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/List_of_map_projections#Cylindrical" title="List of map projections">List of map projections § Cylindrical</a></div> <div class="mw-heading mw-heading4"><h4 id="Normal_cylindrical">Normal cylindrical</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=13" title="Edit section: Normal cylindrical"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Frame"><a href="/wiki/File:Usgs_map_mercator.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/62/Usgs_map_mercator.svg/413px-Usgs_map_mercator.svg.png" decoding="async" width="413" height="181" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/62/Usgs_map_mercator.svg/620px-Usgs_map_mercator.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/62/Usgs_map_mercator.svg/826px-Usgs_map_mercator.svg.png 2x" data-file-width="413" data-file-height="181" /></a><figcaption>The Mercator projection shows <a href="/wiki/Rhumbs" class="mw-redirect" title="Rhumbs">rhumbs</a> as straight lines. A rhumb is a course of constant bearing. Bearing is the compass direction of movement.</figcaption></figure> <p>A normal cylindrical projection is any projection in which <a href="/wiki/Meridian_(geography)" title="Meridian (geography)">meridians</a> are mapped to equally spaced vertical lines and <a href="/wiki/Circles_of_latitude" class="mw-redirect" title="Circles of latitude">circles of latitude</a> (parallels) are mapped to horizontal lines. </p><p>The mapping of meridians to vertical lines can be visualized by imagining a cylinder whose axis coincides with the Earth's axis of rotation. This cylinder is wrapped around the Earth, projected onto, and then unrolled. </p><p>By the geometry of their construction, cylindrical projections stretch distances east-west. The amount of stretch is the same at any chosen latitude on all cylindrical projections, and is given by the <a href="/wiki/Trigonometric_function" class="mw-redirect" title="Trigonometric function">secant</a> of the <a href="/wiki/Latitude" title="Latitude">latitude</a> as a multiple of the equator's scale. The various cylindrical projections are distinguished from each other solely by their north-south stretching (where latitude is given by φ): </p> <ul><li>North-south stretching equals east-west stretching (<a href="/wiki/Secant_(trigonometry)" class="mw-redirect" title="Secant (trigonometry)">sec</a> <i>φ</i>): The east-west scale matches the north-south scale: conformal cylindrical or <a href="/wiki/Mercator_projection" title="Mercator projection">Mercator</a>; this distorts areas excessively in high latitudes.</li> <li>North-south stretching grows with latitude faster than east-west stretching (sec<sup>2</sup> <i>φ</i>): The cylindric perspective (or <a href="/wiki/Central_cylindrical_projection" title="Central cylindrical projection">central cylindrical</a>) projection; unsuitable because distortion is even worse than in the Mercator projection.</li> <li>North-south stretching grows with latitude, but less quickly than the east-west stretching: such as the <a href="/wiki/Miller_cylindrical_projection" title="Miller cylindrical projection">Miller cylindrical projection</a> (sec <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">⁠<span class="tion"><span class="num">4</span><span class="sr-only">/</span><span class="den">5</span></span>⁠</span><i>φ</i>).</li> <li>North-south distances neither stretched nor compressed (1): <a href="/wiki/Equirectangular_projection" title="Equirectangular projection">equirectangular projection</a> or "plate carrée".</li> <li>North-south compression equals the cosine of the latitude (the reciprocal of east-west stretching): <a href="/wiki/Cylindrical_equal-area_projection" title="Cylindrical equal-area projection">equal-area cylindrical</a>. This projection has many named specializations differing only in the scaling constant, such as the <a href="/wiki/Gall%E2%80%93Peters_projection" title="Gall–Peters projection">Gall–Peters</a> or Gall orthographic (undistorted at the 45° parallels), <a href="/wiki/Behrmann_projection" title="Behrmann projection">Behrmann</a> (undistorted at the 30° parallels), and <a href="/wiki/Lambert_cylindrical_equal-area_projection" title="Lambert cylindrical equal-area projection">Lambert cylindrical equal-area</a> (undistorted at the equator). Since this projection scales north-south distances by the reciprocal of east-west stretching, it preserves area at the expense of shapes.</li></ul> <p>In the first case (Mercator), the east-west scale always equals the north-south scale. In the second case (central cylindrical), the north-south scale exceeds the east-west scale everywhere away from the equator. Each remaining case has a pair of <a href="/wiki/Secant_line" title="Secant line">secant lines</a>—a pair of identical latitudes of opposite sign (or else the equator) at which the east-west scale matches the north-south-scale. </p><p>Normal cylindrical projections map the whole Earth as a finite rectangle, except in the first two cases, where the rectangle stretches infinitely tall while retaining constant width. </p> <div class="mw-heading mw-heading4"><h4 id="Transverse_cylindrical">Transverse cylindrical</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=14" title="Edit section: Transverse cylindrical"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A transverse cylindrical projection is a cylindrical projection that in the tangent case uses a great circle along a meridian as contact line for the cylinder. </p><p>See: <a href="/wiki/Transverse_Mercator_projection" title="Transverse Mercator projection">transverse Mercator</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Oblique_cylindrical">Oblique cylindrical</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=15" title="Edit section: Oblique cylindrical"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Cylindrical_Equal-Area_Projection_Oblique_Case_Map_of_the_World.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Cylindrical_Equal-Area_Projection_Oblique_Case_Map_of_the_World.png/400px-Cylindrical_Equal-Area_Projection_Oblique_Case_Map_of_the_World.png" decoding="async" width="400" height="170" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Cylindrical_Equal-Area_Projection_Oblique_Case_Map_of_the_World.png/600px-Cylindrical_Equal-Area_Projection_Oblique_Case_Map_of_the_World.png 1.5x, //upload.wikimedia.org/wikipedia/commons/8/85/Cylindrical_Equal-Area_Projection_Oblique_Case_Map_of_the_World.png 2x" data-file-width="634" data-file-height="270" /></a><figcaption>Cylindrical equal-area projection with oblique orientation</figcaption></figure> <p>An oblique cylindrical projection aligns with a great circle, but not the equator and not a meridian. </p> <div class="mw-heading mw-heading3"><h3 id="Pseudocylindrical">Pseudocylindrical</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=16" title="Edit section: Pseudocylindrical"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/List_of_map_projections#pseudocylindrical" title="List of map projections">List of map projections § pseudocylindrical</a></div> <figure class="mw-halign-right" typeof="mw:File/Frame"><a href="/wiki/File:Usgs_map_sinousidal_equal_area.PNG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/c/c7/Usgs_map_sinousidal_equal_area.PNG" decoding="async" width="570" height="213" class="mw-file-element" data-file-width="570" data-file-height="213" /></a><figcaption>A sinusoidal projection shows relative sizes accurately, but grossly distorts shapes. Distortion can be reduced by "<a href="/wiki/Interrupted_projection" class="mw-redirect" title="Interrupted projection">interrupting</a>" the map.</figcaption></figure> <p>Pseudocylindrical projections represent the <i>central</i> <a href="/wiki/Meridian_(geography)" title="Meridian (geography)">meridian</a> as a straight line segment. Other meridians are longer than the central meridian and bow outward, away from the central meridian. Pseudocylindrical projections map <a href="/wiki/Circle_of_latitude" title="Circle of latitude">parallels</a> as straight lines. Along parallels, each point from the surface is mapped at a distance from the central meridian that is proportional to its difference in longitude from the central meridian. Therefore, meridians are equally spaced along a given parallel. On a pseudocylindrical map, any point further from the equator than some other point has a higher latitude than the other point, preserving north-south relationships. This trait is useful when illustrating phenomena that depend on latitude, such as climate. Examples of pseudocylindrical projections include: </p> <ul><li><a href="/wiki/Sinusoidal_projection" title="Sinusoidal projection">Sinusoidal</a>, which was the first pseudocylindrical projection developed. On the map, as in reality, the length of each parallel is proportional to the cosine of the latitude.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> The area of any region is true.</li> <li><a href="/wiki/Collignon_projection" title="Collignon projection">Collignon projection</a>, which in its most common forms represents each meridian as two straight line segments, one from each pole to the equator.</li></ul> <table> <tbody><tr> <td> <ul><li><a href="/wiki/Tobler_hyperelliptical_projection" title="Tobler hyperelliptical projection">Tobler hyperelliptical</a></li></ul> <dl><dd><span typeof="mw:File"><a href="/wiki/File:Tobler_hyperelliptical_projection_SW.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/34/Tobler_hyperelliptical_projection_SW.jpg/200px-Tobler_hyperelliptical_projection_SW.jpg" decoding="async" width="200" height="101" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/34/Tobler_hyperelliptical_projection_SW.jpg/300px-Tobler_hyperelliptical_projection_SW.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/34/Tobler_hyperelliptical_projection_SW.jpg/400px-Tobler_hyperelliptical_projection_SW.jpg 2x" data-file-width="2058" data-file-height="1035" /></a></span></dd></dl> </td> <td> <ul><li><a href="/wiki/Mollweide_projection" title="Mollweide projection">Mollweide</a></li></ul> <dl><dd><span typeof="mw:File"><a href="/wiki/File:Mollweide_projection_SW.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Mollweide_projection_SW.jpg/200px-Mollweide_projection_SW.jpg" decoding="async" width="200" height="101" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Mollweide_projection_SW.jpg/300px-Mollweide_projection_SW.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Mollweide_projection_SW.jpg/400px-Mollweide_projection_SW.jpg 2x" data-file-width="2058" data-file-height="1036" /></a></span></dd></dl> </td> <td> <ul><li><a href="/wiki/Goode_homolosine_projection" title="Goode homolosine projection">Goode homolosine</a></li></ul> <dl><dd><span typeof="mw:File"><a href="/wiki/File:Goode_homolosine_projection_SW.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Goode_homolosine_projection_SW.jpg/200px-Goode_homolosine_projection_SW.jpg" decoding="async" width="200" height="87" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Goode_homolosine_projection_SW.jpg/300px-Goode_homolosine_projection_SW.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Goode_homolosine_projection_SW.jpg/400px-Goode_homolosine_projection_SW.jpg 2x" data-file-width="2058" data-file-height="900" /></a></span></dd></dl> </td></tr> <tr> <td> <ul><li><a href="/wiki/Eckert_IV_projection" title="Eckert IV projection">Eckert IV</a></li></ul> <dl><dd><span typeof="mw:File"><a href="/wiki/File:Ecker_IV_projection_SW.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Ecker_IV_projection_SW.jpg/200px-Ecker_IV_projection_SW.jpg" decoding="async" width="200" height="101" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Ecker_IV_projection_SW.jpg/300px-Ecker_IV_projection_SW.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c5/Ecker_IV_projection_SW.jpg/400px-Ecker_IV_projection_SW.jpg 2x" data-file-width="2058" data-file-height="1036" /></a></span></dd></dl> </td> <td> <ul><li><a href="/wiki/Eckert_VI_projection" title="Eckert VI projection">Eckert VI</a></li></ul> <dl><dd><span typeof="mw:File"><a href="/wiki/File:Ecker_VI_projection_SW.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/90/Ecker_VI_projection_SW.jpg/200px-Ecker_VI_projection_SW.jpg" decoding="async" width="200" height="101" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/90/Ecker_VI_projection_SW.jpg/300px-Ecker_VI_projection_SW.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/90/Ecker_VI_projection_SW.jpg/400px-Ecker_VI_projection_SW.jpg 2x" data-file-width="2058" data-file-height="1036" /></a></span></dd></dl> </td> <td> <ul><li><a href="/wiki/Kavrayskiy_VII_projection" title="Kavrayskiy VII projection">Kavrayskiy VII</a></li></ul> <dl><dd><span typeof="mw:File"><a href="/wiki/File:Kavraiskiy_VII_projection_SW.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Kavraiskiy_VII_projection_SW.jpg/200px-Kavraiskiy_VII_projection_SW.jpg" decoding="async" width="200" height="116" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Kavraiskiy_VII_projection_SW.jpg/300px-Kavraiskiy_VII_projection_SW.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Kavraiskiy_VII_projection_SW.jpg/400px-Kavraiskiy_VII_projection_SW.jpg 2x" data-file-width="2058" data-file-height="1194" /></a></span></dd></dl> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Hybrid">Hybrid</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=17" title="Edit section: Hybrid"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/HEALPix" title="HEALPix">HEALPix</a> projection combines an equal-area cylindrical projection in equatorial regions with the <a href="/wiki/Collignon_projection" title="Collignon projection">Collignon projection</a> in polar areas. </p> <div class="mw-heading mw-heading3"><h3 id="Conic">Conic</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=18" title="Edit section: Conic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Frame"><a href="/wiki/File:USGS_map_Albers_conic_tall.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/d/da/USGS_map_Albers_conic_tall.gif" decoding="async" width="335" height="195" class="mw-file-element" data-file-width="335" data-file-height="195" /></a><figcaption>Albers conic</figcaption></figure> <p>The term "conic projection" is used to refer to any projection in which <a href="/wiki/Meridian_(geography)" title="Meridian (geography)">meridians</a> are mapped to equally spaced lines radiating out from the apex and <a href="/wiki/Circles_of_latitude" class="mw-redirect" title="Circles of latitude">circles of latitude</a> (parallels) are mapped to circular arcs centered on the apex.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> </p><p>When making a conic map, the map maker arbitrarily picks two standard parallels. Those standard parallels may be visualized as <a href="/wiki/Secant_line" title="Secant line">secant lines</a> where the cone intersects the globe—or, if the map maker chooses the same parallel twice, as the tangent line where the cone is tangent to the globe. The resulting conic map has low distortion in scale, shape, and area near those standard parallels. Distances along the parallels to the north of both standard parallels or to the south of both standard parallels are stretched; distances along parallels between the standard parallels are compressed. When a single standard parallel is used, distances along all other parallels are stretched. </p><p>Conic projections that are commonly used are: </p> <ul><li><a href="/wiki/Equidistant_conic_projection" title="Equidistant conic projection">Equidistant conic</a>, which keeps parallels evenly spaced along the meridians to preserve a constant distance scale along each meridian, typically the same or similar scale as along the standard parallels.</li> <li><a href="/wiki/Albers_conic_projection" class="mw-redirect" title="Albers conic projection">Albers conic</a>, which adjusts the north-south distance between non-standard parallels to compensate for the east-west stretching or compression, giving an equal-area map.</li> <li><a href="/wiki/Lambert_conformal_conic_projection" title="Lambert conformal conic projection">Lambert conformal conic</a>, which adjusts the north-south distance between non-standard parallels to equal the east-west stretching, giving a conformal map.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Pseudoconic">Pseudoconic</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=19" title="Edit section: Pseudoconic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Bonne_projection" title="Bonne projection">Bonne</a>, an equal-area projection on which most meridians and parallels appear as curved lines. It has a configurable standard parallel along which there is no distortion.</li> <li><a href="/wiki/Werner_projection" title="Werner projection">Werner cordiform</a>, upon which distances are correct from one pole, as well as along all parallels.</li> <li><a href="/wiki/Polyconic_projection" class="mw-redirect" title="Polyconic projection">American polyconic</a> and other projections in the <a href="/wiki/Polyconic_projection_class" title="Polyconic projection class">polyconic projection class</a>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Azimuthal_(projections_onto_a_plane)"><span id="Azimuthal_.28projections_onto_a_plane.29"></span>Azimuthal (projections onto a plane)<span class="anchor" id="Azimuthal"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=20" title="Edit section: Azimuthal (projections onto a plane)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/List_of_map_projections#azimuthal" title="List of map projections">List of map projections § azimuthal</a></div> <figure class="mw-halign-right" typeof="mw:File/Frame"><a href="/wiki/File:Usgs_map_azimuthal_equidistant.PNG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/6/64/Usgs_map_azimuthal_equidistant.PNG" decoding="async" width="487" height="162" class="mw-file-element" data-file-width="487" data-file-height="162" /></a><figcaption>An azimuthal equidistant projection shows distances and directions accurately from the center point, but distorts shapes and sizes elsewhere.</figcaption></figure> <p><a href="/wiki/Azimuth" title="Azimuth">Azimuthal</a> projections have the property that directions from a central point are preserved and therefore <a href="/wiki/Great_circle" title="Great circle">great circles</a> through the central point are represented by straight lines on the map. These projections also have radial symmetry in the scales and hence in the distortions: map distances from the central point are computed by a function <i>r</i>(<i>d</i>) of the true distance <i>d</i>, independent of the angle; correspondingly, circles with the central point as center are mapped into circles which have as center the central point on the map. </p><p>The mapping of radial lines can be visualized by imagining a <a href="/wiki/Plane_(geometry)" class="mw-redirect" title="Plane (geometry)">plane</a> tangent to the Earth, with the central point as <a href="/wiki/Tangent" title="Tangent">tangent</a> point. </p><p>The radial scale is <i>r′</i>(<i>d</i>) and the transverse scale <i>r</i>(<i>d</i>)/(<i>R</i> sin <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><i>d</i></span><span class="sr-only">/</span><span class="den"><i>R</i></span></span>⁠</span>) where <i>R</i> is the radius of the Earth. </p><p>Some azimuthal projections are true <a href="/wiki/Perspective_projection" class="mw-redirect" title="Perspective projection">perspective projections</a>; that is, they can be constructed mechanically, projecting the surface of the Earth by extending lines from a <a href="/w/index.php?title=Point_of_perspective&action=edit&redlink=1" class="new" title="Point of perspective (page does not exist)">point of perspective</a> (along an infinite line through the tangent point and the tangent point's <a href="/wiki/Antipodal_point" title="Antipodal point">antipode</a>) onto the plane: </p> <ul><li>The <a href="/wiki/Gnomonic_projection" title="Gnomonic projection">gnomonic projection</a> displays <a href="/wiki/Great_circle" title="Great circle">great circles</a> as straight lines. Can be constructed by using a point of perspective at the center of the Earth. <i>r</i>(<i>d</i>) = <i>c</i> tan <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><i>d</i></span><span class="sr-only">/</span><span class="den"><i>R</i></span></span>⁠</span>; so that even just a hemisphere is already infinite in extent.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Orthographic_projection_(cartography)" class="mw-redirect" title="Orthographic projection (cartography)">orthographic projection</a> maps each point on the Earth to the closest point on the plane. Can be constructed from a point of perspective an infinite distance from the tangent point; <i>r</i>(<i>d</i>) = <i>c</i> sin <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><i>d</i></span><span class="sr-only">/</span><span class="den"><i>R</i></span></span>⁠</span>.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> Can display up to a hemisphere on a finite circle. Photographs of Earth from far enough away, such as the <a href="/wiki/Moon" title="Moon">Moon</a>, approximate this perspective.</li> <li>Near-sided perspective projection, which simulates the view from space at a finite distance and therefore shows less than a full hemisphere, such as used in <i><a href="/wiki/The_Blue_Marble_2012" class="mw-redirect" title="The Blue Marble 2012">The Blue Marble 2012</a></i>).<sup id="cite_ref-PROJ_7.1.1_documentation_2020_35-0" class="reference"><a href="#cite_note-PROJ_7.1.1_documentation_2020-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/General_Perspective_projection" title="General Perspective projection">General Perspective projection</a> can be constructed by using a point of perspective outside the Earth. Photographs of Earth (such as those from the <a href="/wiki/International_Space_Station" title="International Space Station">International Space Station</a>) give this perspective. It is a generalization of near-sided perspective projection, allowing tilt.</li> <li>The <a href="/wiki/Stereographic_projection_in_cartography" class="mw-redirect" title="Stereographic projection in cartography">stereographic projection</a>, which is conformal, can be constructed by using the tangent point's <a href="/wiki/Antipodal_point" title="Antipodal point">antipode</a> as the point of perspective. <i>r</i>(<i>d</i>) = <i>c</i> tan <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><i>d</i></span><span class="sr-only">/</span><span class="den">2<i>R</i></span></span>⁠</span>; the scale is <i>c</i>/(2<i>R</i> cos<sup>2</sup> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><i>d</i></span><span class="sr-only">/</span><span class="den">2<i>R</i></span></span>⁠</span>).<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> Can display nearly the entire sphere's surface on a finite circle. The sphere's full surface requires an infinite map.</li></ul> <p>Other azimuthal projections are not true <a href="/wiki/Perspective_(graphical)" title="Perspective (graphical)">perspective</a> projections: </p> <ul><li><a href="/wiki/Azimuthal_equidistant_projection" title="Azimuthal equidistant projection">Azimuthal equidistant</a>: <i>r</i>(<i>d</i>) = <i>cd</i>; it is used by <a href="/wiki/Amateur_radio" title="Amateur radio">amateur radio</a> operators to know the direction to point their antennas toward a point and see the distance to it. Distance from the tangent point on the map is proportional to surface distance on the Earth (;<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> for the case where the tangent point is the North Pole, see the <a href="/wiki/Flag_of_the_United_Nations" title="Flag of the United Nations">flag of the United Nations</a>)</li> <li><a href="/wiki/Lambert_azimuthal_equal-area_projection" title="Lambert azimuthal equal-area projection">Lambert azimuthal equal-area</a>. Distance from the tangent point on the map is proportional to straight-line distance through the Earth: <i>r</i>(<i>d</i>) = <i>c</i> sin <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><i>d</i></span><span class="sr-only">/</span><span class="den">2<i>R</i></span></span>⁠</span><sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup></li> <li><a href="/w/index.php?title=Logarithmic_azimuthal_projection&action=edit&redlink=1" class="new" title="Logarithmic azimuthal projection (page does not exist)">Logarithmic azimuthal</a> is constructed so that each point's distance from the center of the map is the logarithm of its distance from the tangent point on the Earth. <i>r</i>(<i>d</i>) = <i>c</i> ln <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><i>d</i></span><span class="sr-only">/</span><span class="den"><i>d</i><sub>0</sub></span></span>⁠</span>); locations closer than at a distance equal to the constant <i>d</i><sub>0</sub> are not shown.<sup id="cite_ref-Enlarging_39-0" class="reference"><a href="#cite_note-Enlarging-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup></li></ul> <div class="thumb tnone" style="margin-left:auto;margin-right:auto;overflow:hidden;width:auto;max-width:608px"><div class="thumbinner"><div class="noresize" style="overflow:auto"><span typeof="mw:File"><a href="/wiki/File:Comparison_azimuthal_projections.svg" class="mw-file-description" title="Comparison of some azimuthal projections centred on 90° N at the same scale, ordered by projection altitude in Earth radii. (click for detail)"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Comparison_azimuthal_projections.svg/600px-Comparison_azimuthal_projections.svg.png" decoding="async" width="600" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Comparison_azimuthal_projections.svg/900px-Comparison_azimuthal_projections.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Comparison_azimuthal_projections.svg/1200px-Comparison_azimuthal_projections.svg.png 2x" data-file-width="512" data-file-height="171" /></a></span></div><div class="thumbcaption"><div class="magnify"><a href="/wiki/File:Comparison_azimuthal_projections.svg" title="File:Comparison azimuthal projections.svg"> </a></div>Comparison of some azimuthal projections centred on 90° N at the same scale, ordered by projection altitude in Earth radii. <a class="external text" href="https://upload.wikimedia.org/wikipedia/commons/b/ba/Comparison_azimuthal_projections.svg">(click for detail)</a></div></div></div> <div class="mw-heading mw-heading3"><h3 id="Polyhedral">Polyhedral</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=21" title="Edit section: Polyhedral"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/List_of_map_projections#Polyhedral" title="List of map projections">List of map projections § Polyhedral</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Dymaxion_projection.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/Dymaxion_projection.png/220px-Dymaxion_projection.png" decoding="async" width="220" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/Dymaxion_projection.png/330px-Dymaxion_projection.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/53/Dymaxion_projection.png/440px-Dymaxion_projection.png 2x" data-file-width="2180" data-file-height="1030" /></a><figcaption>Buckminster Fuller's Dymaxion map</figcaption></figure> <p><a href="/wiki/Polyhedral_map_projection" title="Polyhedral map projection">Polyhedral map projections</a> use a <a href="/wiki/Polyhedron" title="Polyhedron">polyhedron</a> to subdivide the globe into faces, and then projects each face to the globe. The most well-known polyhedral map projection is Buckminster Fuller's <a href="/wiki/Dymaxion_map" title="Dymaxion map">Dymaxion map</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Projections_by_preservation_of_a_metric_property">Projections by preservation of a metric property</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=22" title="Edit section: Projections by preservation of a metric property"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Frame"><a href="/wiki/File:Usgs_map_stereographic.PNG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/1/1e/Usgs_map_stereographic.PNG" decoding="async" width="534" height="181" class="mw-file-element" data-file-width="534" data-file-height="181" /></a><figcaption>A <a href="/wiki/Stereographic_projection" title="Stereographic projection">stereographic projection</a> is conformal and perspective but not equal area or equidistant.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Conformal">Conformal</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=23" title="Edit section: Conformal"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Conformal_map_projection" title="Conformal map projection">Conformal map projection</a></div> <p><a href="/wiki/Conformal_map" title="Conformal map">Conformal</a>, or orthomorphic, map projections preserve angles locally, implying that they map infinitesimal circles of constant size anywhere on the Earth to infinitesimal circles of varying sizes on the map. In contrast, mappings that are not conformal distort most such small circles into <a href="/wiki/Tissot%27s_indicatrix" title="Tissot's indicatrix">ellipses of distortion</a>. An important consequence of conformality is that relative angles at each point of the map are correct, and the local scale (although varying throughout the map) in every direction around any one point is constant. These are some conformal projections: </p> <ul><li><a href="/wiki/Mercator_projection" title="Mercator projection">Mercator</a>: <a href="/wiki/Rhumb_line" title="Rhumb line">Rhumb lines</a> are represented by straight segments</li> <li><a href="/wiki/Transverse_Mercator_projection" title="Transverse Mercator projection">Transverse Mercator</a></li> <li><a href="/wiki/Stereographic_projection_in_cartography" class="mw-redirect" title="Stereographic projection in cartography">Stereographic</a>: Any <a href="/wiki/Circle_of_a_sphere" class="mw-redirect" title="Circle of a sphere">circle of a sphere</a>, great and small, maps to a circle or straight line.</li> <li><a href="/wiki/Roussilhe_oblique_stereographic_projection" title="Roussilhe oblique stereographic projection">Roussilhe</a></li> <li><a href="/wiki/Lambert_conformal_conic_projection" title="Lambert conformal conic projection">Lambert conformal conic</a></li> <li><a href="/wiki/Peirce_quincuncial_projection" title="Peirce quincuncial projection">Peirce quincuncial projection</a></li> <li><a href="/wiki/Adams_hemisphere-in-a-square_projection" title="Adams hemisphere-in-a-square projection">Adams hemisphere-in-a-square projection</a></li> <li><a href="/wiki/Guyou_hemisphere-in-a-square_projection" title="Guyou hemisphere-in-a-square projection">Guyou hemisphere-in-a-square projection</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Equal-area">Equal-area</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=24" title="Edit section: Equal-area"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Equal-area_projection" title="Equal-area projection">Equal-area projection</a></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Mollweide_projection_SW.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Mollweide_projection_SW.jpg/300px-Mollweide_projection_SW.jpg" decoding="async" width="300" height="151" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Mollweide_projection_SW.jpg/450px-Mollweide_projection_SW.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Mollweide_projection_SW.jpg/600px-Mollweide_projection_SW.jpg 2x" data-file-width="2058" data-file-height="1036" /></a><figcaption> The equal-area <a href="/wiki/Mollweide_projection" title="Mollweide projection">Mollweide projection</a></figcaption></figure> <p>Equal-area maps preserve area measure, generally distorting shapes in order to do so. Equal-area maps are also called <i>equivalent</i> or <i>authalic</i>. These are some projections that preserve area: </p> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 25em;"> <ul><li><a href="/wiki/Albers_conic_projection" class="mw-redirect" title="Albers conic projection">Albers conic</a></li> <li><a href="/wiki/Boggs_eumorphic_projection" title="Boggs eumorphic projection">Boggs eumorphic</a></li> <li><a href="/wiki/Bonne_projection" title="Bonne projection">Bonne</a></li> <li><a href="/wiki/Bottomley_projection" title="Bottomley projection">Bottomley</a></li> <li><a href="/wiki/Collignon_projection" title="Collignon projection">Collignon</a></li> <li><a href="/wiki/Cylindrical_equal-area_projection" title="Cylindrical equal-area projection">Cylindrical equal-area</a></li> <li><a href="/wiki/Eckert_II_projection" title="Eckert II projection">Eckert II</a>, <a href="/wiki/Eckert_IV_projection" title="Eckert IV projection">IV</a> and <a href="/wiki/Eckert_VI_projection" title="Eckert VI projection">VI</a></li> <li><a href="/wiki/Equal_Earth_projection" title="Equal Earth projection">Equal Earth</a></li> <li><a href="/wiki/Gall%E2%80%93Peters_projection" title="Gall–Peters projection">Gall orthographic</a> (also known as Gall–Peters, or Peters, projection)</li> <li><a href="/wiki/Goode_homolosine_projection" title="Goode homolosine projection">Goode's homolosine</a></li> <li><a href="/wiki/Hammer_projection" title="Hammer projection">Hammer</a></li> <li><a href="/wiki/Hobo%E2%80%93Dyer_projection" title="Hobo–Dyer projection">Hobo–Dyer</a></li> <li><a href="/wiki/Lambert_azimuthal_equal-area_projection" title="Lambert azimuthal equal-area projection">Lambert azimuthal equal-area</a></li> <li><a href="/wiki/Lambert_cylindrical_equal-area_projection" title="Lambert cylindrical equal-area projection">Lambert cylindrical equal-area</a></li> <li><a href="/wiki/Mollweide_projection" title="Mollweide projection">Mollweide</a></li> <li><a href="/wiki/Sinusoidal_projection" title="Sinusoidal projection">Sinusoidal</a></li> <li><a href="/wiki/Strebe_1995_projection" title="Strebe 1995 projection">Strebe 1995</a></li> <li><a href="/wiki/Snyder_equal-area_projection" title="Snyder equal-area projection">Snyder's equal-area polyhedral projection</a>, used for <a href="/wiki/Geodesic_grid" title="Geodesic grid">geodesic grids</a>.</li> <li><a href="/wiki/Tobler_hyperelliptical_projection" title="Tobler hyperelliptical projection">Tobler hyperelliptical</a></li> <li><a href="/wiki/Werner_projection" title="Werner projection">Werner</a></li></ul> </div> <div class="mw-heading mw-heading3"><h3 id="Equidistant">Equidistant</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=25" title="Edit section: Equidistant"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Two-point_equidistant_projection_SW.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/76/Two-point_equidistant_projection_SW.jpg/220px-Two-point_equidistant_projection_SW.jpg" decoding="async" width="220" height="172" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/76/Two-point_equidistant_projection_SW.jpg/330px-Two-point_equidistant_projection_SW.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/76/Two-point_equidistant_projection_SW.jpg/440px-Two-point_equidistant_projection_SW.jpg 2x" data-file-width="2044" data-file-height="1601" /></a><figcaption>A <a href="/wiki/Two-point_equidistant_projection" title="Two-point equidistant projection">two-point equidistant projection</a> of Eurasia</figcaption></figure> <p>If the length of the line segment connecting two projected points on the plane is proportional to the geodesic (shortest surface) distance between the two unprojected points on the globe, then we say that distance has been preserved between those two points. An <b>equidistant projection</b> preserves distances from one or two special points to all other points. The special point or points may get stretched into a line or curve segment when projected. In that case, the point on the line or curve segment closest to the point being measured to must be used to measure the distance. </p> <ul><li><a href="/wiki/Plate_carr%C3%A9e_projection" class="mw-redirect" title="Plate carrée projection">Plate carrée</a>: Distances from the two poles are preserved, in equatorial aspect.</li> <li><a href="/wiki/Azimuthal_equidistant_projection" title="Azimuthal equidistant projection">Azimuthal equidistant</a>: Distances from the center and edge are preserved.</li> <li><a href="/wiki/Equidistant_conic_projection" title="Equidistant conic projection">Equidistant conic</a>: Distances from the two poles are preserved, in equatorial aspect.</li> <li><a href="/wiki/Werner_cordiform_projection" class="mw-redirect" title="Werner cordiform projection">Werner cordiform</a> Distances from the <a href="/wiki/North_Pole" title="North Pole">North Pole</a> are preserved, in equatorial aspect.</li> <li><a href="/wiki/Two-point_equidistant_projection" title="Two-point equidistant projection">Two-point equidistant</a>: Two "control points" are arbitrarily chosen by the map maker; distances from each control point are preserved.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Gnomonic">Gnomonic</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=26" title="Edit section: Gnomonic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Frame"><a href="/wiki/File:Usgs_map_gnomic.PNG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/8/81/Usgs_map_gnomic.PNG" decoding="async" width="508" height="167" class="mw-file-element" data-file-width="508" data-file-height="167" /></a><figcaption>The <a href="/wiki/Gnomonic_projection" title="Gnomonic projection">Gnomonic projection</a> is thought to be the oldest map projection, developed by <a href="/wiki/Thales" class="mw-redirect" title="Thales">Thales</a> in the 6th century BC</figcaption></figure> <p><a href="/wiki/Great_circle" title="Great circle">Great circles</a> are displayed as straight lines: </p> <ul><li><a href="/wiki/Gnomonic_projection" title="Gnomonic projection">Gnomonic projection</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Retroazimuthal">Retroazimuthal</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=27" title="Edit section: Retroazimuthal"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Direction to a fixed location B (the bearing at the starting location A of the shortest route) corresponds to the direction on the map from A to B: </p> <ul><li><a href="/wiki/Littrow_projection" title="Littrow projection">Littrow</a>—the only conformal retroazimuthal projection</li> <li><a href="/wiki/Hammer_retroazimuthal_projection" title="Hammer retroazimuthal projection">Hammer retroazimuthal</a>—also preserves distance from the central point</li> <li><a href="/wiki/Craig_retroazimuthal_projection" title="Craig retroazimuthal projection">Craig retroazimuthal</a> <i>aka</i> Mecca or Qibla—also has vertical meridians</li></ul> <div class="mw-heading mw-heading3"><h3 id="Compromise_projections">Compromise projections</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=28" title="Edit section: Compromise projections"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Frame"><a href="/wiki/File:Usgs_map_robinson.PNG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/0/03/Usgs_map_robinson.PNG" decoding="async" width="484" height="179" class="mw-file-element" data-file-width="484" data-file-height="179" /></a><figcaption>The <a href="/wiki/Robinson_projection" title="Robinson projection">Robinson projection</a> was adopted by <i><a href="/wiki/National_Geographic_(magazine)" class="mw-redirect" title="National Geographic (magazine)">National Geographic</a></i> magazine in 1988 but abandoned by them in about 1997 for the <a href="/wiki/Winkel_tripel_projection" title="Winkel tripel projection">Winkel tripel</a>.</figcaption></figure> <p>Compromise projections give up the idea of perfectly preserving metric properties, seeking instead to strike a balance between distortions, or to simply make things look right. Most of these types of projections distort shape in the polar regions more than at the equator. These are some compromise projections: </p> <ul><li><a href="/wiki/Robinson_projection" title="Robinson projection">Robinson</a></li> <li><a href="/wiki/Van_der_Grinten_projection" title="Van der Grinten projection">van der Grinten</a></li> <li><a href="/wiki/Miller_cylindrical_projection" title="Miller cylindrical projection">Miller cylindrical</a></li> <li><a href="/wiki/Winkel_tripel_projection" title="Winkel tripel projection">Winkel Tripel</a></li> <li><a href="/wiki/Dymaxion_map" title="Dymaxion map">Buckminster Fuller's Dymaxion</a></li> <li><a href="/wiki/Bernard_J._S._Cahill" title="Bernard J. S. Cahill">B. J. S. Cahill's Butterfly Map</a></li> <li><a href="/wiki/Kavrayskiy_VII_projection" title="Kavrayskiy VII projection">Kavrayskiy VII projection</a></li> <li><a href="/wiki/Wagner_VI_projection" title="Wagner VI projection">Wagner VI projection</a></li> <li><a href="/wiki/Chamberlin_trimetric_projection" title="Chamberlin trimetric projection">Chamberlin trimetric</a></li> <li><a href="/wiki/Oronce_Fin%C3%A9" class="mw-redirect" title="Oronce Finé">Oronce Finé</a>'s cordiform</li> <li><a href="/wiki/AuthaGraph_projection" title="AuthaGraph projection">AuthaGraph projection</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Suitability_of_projections_for_application">Suitability of projections for application</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=29" title="Edit section: Suitability of projections for application"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The mathematics of projection do not permit any particular map projection to be best for everything.<sup id="cite_ref-Enlarging_39-1" class="reference"><a href="#cite_note-Enlarging-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> Something will always be distorted. Thus, many projections exist to serve the many uses of maps and their vast range of scales. </p><p>Modern national mapping systems typically employ a <a href="/wiki/Transverse_Mercator_projection" title="Transverse Mercator projection">transverse Mercator</a> or close variant for <a href="/wiki/Scale_(map)#Large_scale,_medium_scale,_small_scale" title="Scale (map)">large-scale maps</a> in order to preserve <a href="/wiki/Conformal_map" title="Conformal map">conformality</a> and low variation in scale over small areas. For <a href="/wiki/Scale_(map)#Large_scale,_medium_scale,_small_scale" title="Scale (map)">smaller-scale</a> maps, such as those spanning continents or the entire world, many projections are in common use according to their fitness for the purpose, such as <a href="/wiki/Winkel_tripel_projection" title="Winkel tripel projection">Winkel tripel</a>, <a href="/wiki/Robinson_projection" title="Robinson projection">Robinson</a> and <a href="/wiki/Mollweide_projection" title="Mollweide projection">Mollweide</a>.<sup id="cite_ref-choosing_40-0" class="reference"><a href="#cite_note-choosing-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> Reference maps of the world often appear on <a href="#Compromise_projections">compromise projections</a>. Due to distortions inherent in any map of the world, the choice of projection becomes largely one of aesthetics. </p><p>Thematic maps normally require an <a href="#Equal-area">equal area projection</a> so that phenomena per unit area are shown in correct proportion.<sup id="cite_ref-slocum_41-0" class="reference"><a href="#cite_note-slocum-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> However, representing area ratios correctly necessarily distorts shapes more than many maps that are not equal-area. </p><p>The <a href="/wiki/Mercator_projection" title="Mercator projection">Mercator projection</a>, developed for navigational purposes, has often been used in world maps where other projections would have been more appropriate.<sup id="cite_ref-Bauer_42-0" class="reference"><a href="#cite_note-Bauer-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Miller_43-0" class="reference"><a href="#cite_note-Miller-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Raisz_44-0" class="reference"><a href="#cite_note-Raisz-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-RobinsonElements_45-0" class="reference"><a href="#cite_note-RobinsonElements-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> This problem has long been recognized even outside professional circles. For example, a 1943 <i><a href="/wiki/New_York_Times" class="mw-redirect" title="New York Times">New York Times</a></i> editorial states: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>The time has come to discard [the Mercator] for something that represents the continents and directions less deceptively ... Although its usage ... has diminished ... it is still highly popular as a wall map apparently in part because, as a rectangular map, it fills a rectangular wall space with more map, and clearly because its familiarity breeds more popularity.<sup id="cite_ref-SnyderFlattening_7-6" class="reference"><a href="#cite_note-SnyderFlattening-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 166">: 166 </span></sup></p></blockquote> <p>A controversy in the 1980s over the <a href="/wiki/Peters_map" class="mw-redirect" title="Peters map">Peters map</a> motivated the American Cartographic Association (now the <a href="/wiki/Cartography_and_Geographic_Information_Society" title="Cartography and Geographic Information Society">Cartography and Geographic Information Society</a>) to produce a series of booklets (including <i>Which Map Is Best</i><sup id="cite_ref-ACA1986_46-0" class="reference"><a href="#cite_note-ACA1986-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup>) designed to educate the public about map projections and distortion in maps. In 1989 and 1990, after some internal debate, seven North American geographic organizations adopted a resolution recommending against using any rectangular projection (including Mercator and Gall–Peters) for reference maps of the world.<sup id="cite_ref-Robinson_47-0" class="reference"><a href="#cite_note-Robinson-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-AmericanCartographer_48-0" class="reference"><a href="#cite_note-AmericanCartographer-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=30" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1184024115"><div class="div-col"> <ul><li><a href="/wiki/Geodetic_datum" title="Geodetic datum">Geodetic datum</a> – Reference frame for measuring location</li> <li><a href="/wiki/Geographic_information_system" title="Geographic information system">Geographic information system</a> (<abbr>GIS</abbr>) – System to capture, manage, and present geographic data</li> <li><a href="/wiki/Geoinformatics" title="Geoinformatics">Geoinformatics</a> – Application of information science methods in geography and geosciences</li> <li><a href="/wiki/Grid_reference" class="mw-redirect" title="Grid reference">Grid reference</a> – Cartesian geographic coordinate system<span style="display:none" class="category-annotation-with-redirected-description">Pages displaying short descriptions of redirect targets</span></li> <li><a href="/wiki/List_of_map_projections" title="List of map projections">List of map projections</a></li> <li><a href="/wiki/Plan_(drawing)" title="Plan (drawing)">Plan (drawing)</a> – drawings or diagrams used to describe an object<span style="display:none" class="category-wikidata-fallback-annotation">Pages displaying wikidata descriptions as a fallback</span></li> <li><a href="/wiki/Rubbersheeting" title="Rubbersheeting">Rubbersheeting</a></li> <li><a href="/wiki/South-up_map_orientation" title="South-up map orientation">South-up map orientation</a> – Map orientation</li> <li><a href="/wiki/UV_mapping" title="UV mapping">UV mapping</a> – Process of projecting a 3D model's surface to a 2D image for texture mapping</li> <li><a href="/wiki/World_map" title="World map">World map</a> – Map of most or all of the surface of the Earth</li> <li><a href="/wiki/Spherical_image_projection" class="mw-redirect" title="Spherical image projection">Spherical image projection</a> – Video projection technique<span style="display:none" class="category-annotation-with-redirected-description">Pages displaying short descriptions of redirect targets</span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=31" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Citations">Citations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=32" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFLambertTobler2011" class="citation book cs1">Lambert, Johann; Tobler, Waldo (2011). <i>Notes and comments on the composition of terrestrial and celestial maps</i>. Redlands, CA: ESRI Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-58948-281-4" title="Special:BookSources/978-1-58948-281-4"><bdi>978-1-58948-281-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Notes+and+comments+on+the+composition+of+terrestrial+and+celestial+maps&rft.place=Redlands%2C+CA&rft.pub=ESRI+Press&rft.date=2011&rft.isbn=978-1-58948-281-4&rft.aulast=Lambert&rft.aufirst=Johann&rft.au=Tobler%2C+Waldo&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichardusAdler1972" class="citation book cs1">Richardus, Peter; Adler, Ron (1972). <i>map projections</i>. New York, NY: American Elsevier Publishing Company, inc. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-444-10362-7" title="Special:BookSources/0-444-10362-7"><bdi>0-444-10362-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=map+projections&rft.place=New+York%2C+NY&rft.pub=American+Elsevier+Publishing+Company%2C+inc.&rft.date=1972&rft.isbn=0-444-10362-7&rft.aulast=Richardus&rft.aufirst=Peter&rft.au=Adler%2C+Ron&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobinsonRandallMorrisonMuehrcke1985" class="citation book cs1">Robinson, Arthur; Randall, Sale; Morrison, Joel; Muehrcke, Phillip (1985). <i>Elements of Cartography</i> (fifth ed.). Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-09877-9" title="Special:BookSources/0-471-09877-9"><bdi>0-471-09877-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elements+of+Cartography&rft.edition=fifth&rft.pub=Wiley&rft.date=1985&rft.isbn=0-471-09877-9&rft.aulast=Robinson&rft.aufirst=Arthur&rft.au=Randall%2C+Sale&rft.au=Morrison%2C+Joel&rft.au=Muehrcke%2C+Phillip&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-Snyder1453-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-Snyder1453_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSnyder,_J.P.Voxland,_P.M.1989" class="citation book cs1"><a href="/wiki/John_P._Snyder" title="John P. Snyder">Snyder, J.P.</a>; Voxland, P.M. (1989). "An album of map projections". <a rel="nofollow" class="external text" href="https://pubs.usgs.gov/pp/1453/report.pdf"><i>Album of Map Projections</i></a> <span class="cs1-format">(PDF)</span>. U.S. Geological Survey Professional Paper. Vol. 1453. United States Government Printing Office. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.3133%2Fpp1453">10.3133/pp1453</a><span class="reference-accessdate">. Retrieved <span class="nowrap">8 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=An+album+of+map+projections&rft.btitle=Album+of+Map+Projections&rft.series=U.S.+Geological+Survey+Professional+Paper&rft.pub=United+States+Government+Printing+Office&rft.date=1989&rft_id=info%3Adoi%2F10.3133%2Fpp1453&rft.au=Snyder%2C+J.P.&rft.au=Voxland%2C+P.M.&rft_id=https%3A%2F%2Fpubs.usgs.gov%2Fpp%2F1453%2Freport.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-EGmap-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-EGmap_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-EGmap_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGhaderpour2016" class="citation journal cs1">Ghaderpour, E. (2016). "Some equal-area, conformal and conventional map projections: a tutorial review". <i>Journal of Applied Geodesy</i>. <b>10</b> (3): 197–209. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1412.7690">1412.7690</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016JAGeo..10..197G">2016JAGeo..10..197G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fjag-2015-0033">10.1515/jag-2015-0033</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:124618009">124618009</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Applied+Geodesy&rft.atitle=Some+equal-area%2C+conformal+and+conventional+map+projections%3A+a+tutorial+review&rft.volume=10&rft.issue=3&rft.pages=197-209&rft.date=2016&rft_id=info%3Aarxiv%2F1412.7690&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A124618009%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1515%2Fjag-2015-0033&rft_id=info%3Abibcode%2F2016JAGeo..10..197G&rft.aulast=Ghaderpour&rft.aufirst=E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMonmonier2018" class="citation book cs1">Monmonier, Mark (2018). <i>How to lie with maps</i> (3rd ed.). The University of Chicago Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-226-43592-3" title="Special:BookSources/978-0-226-43592-3"><bdi>978-0-226-43592-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=How+to+lie+with+maps&rft.edition=3rd&rft.pub=The+University+of+Chicago+Press&rft.date=2018&rft.isbn=978-0-226-43592-3&rft.aulast=Monmonier&rft.aufirst=Mark&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-SnyderFlattening-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-SnyderFlattening_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-SnyderFlattening_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-SnyderFlattening_7-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-SnyderFlattening_7-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-SnyderFlattening_7-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-SnyderFlattening_7-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-SnyderFlattening_7-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSnyder,_John_P.1993" class="citation book cs1"><a href="/wiki/John_P._Snyder" title="John P. Snyder">Snyder, John P.</a> (1993). <i>Flattening the earth: two thousand years of map projections</i>. <a href="/wiki/University_of_Chicago_Press" title="University of Chicago Press">University of Chicago Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-226-76746-9" title="Special:BookSources/0-226-76746-9"><bdi>0-226-76746-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Flattening+the+earth%3A+two+thousand+years+of+map+projections&rft.pub=University+of+Chicago+Press&rft.date=1993&rft.isbn=0-226-76746-9&rft.au=Snyder%2C+John+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHargitaiWangStookeKarachevtseva2017" class="citation cs2">Hargitai, Henrik; Wang, Jue; Stooke, Philip J.; Karachevtseva, Irina; Kereszturi, Akos; Gede, Mátyás (2017), <i>Map Projections in Planetary Cartography</i>, Lecture Notes in Geoinformation and Cartography, Springer International Publishing, pp. 177–202, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-51835-0_7">10.1007/978-3-319-51835-0_7</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-51834-3" title="Special:BookSources/978-3-319-51834-3"><bdi>978-3-319-51834-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Map+Projections+in+Planetary+Cartography&rft.series=Lecture+Notes+in+Geoinformation+and+Cartography&rft.pages=177-202&rft.pub=Springer+International+Publishing&rft.date=2017&rft_id=info%3Adoi%2F10.1007%2F978-3-319-51835-0_7&rft.isbn=978-3-319-51834-3&rft.aulast=Hargitai&rft.aufirst=Henrik&rft.au=Wang%2C+Jue&rft.au=Stooke%2C+Philip+J.&rft.au=Karachevtseva%2C+Irina&rft.au=Kereszturi%2C+Akos&rft.au=Gede%2C+M%C3%A1ty%C3%A1s&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSingh2017" class="citation news cs1">Singh, Ishveena (25 April 2017). <a rel="nofollow" class="external text" href="https://geoawesomeness.com/best-map-projection/">"Which is the best map projection?"</a>. <i>Geoawesomeness</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geoawesomeness&rft.atitle=Which+is+the+best+map+projection%3F&rft.date=2017-04-25&rft.aulast=Singh&rft.aufirst=Ishveena&rft_id=https%3A%2F%2Fgeoawesomeness.com%2Fbest-map-projection%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-WorkingManual-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-WorkingManual_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-WorkingManual_10-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSnyder1987" class="citation book cs1"><a href="/wiki/John_P._Snyder" title="John P. Snyder">Snyder, John Parr</a> (1987). <i>Map projections: A working manual</i>. United States Geological Survey Professional Paper. Vol. 1395. United States Government Printing Office. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3133%2Fpp1395">10.3133/pp1395</a></span>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780318235622" title="Special:BookSources/9780318235622"><bdi>9780318235622</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Map+projections%3A+A+working+manual&rft.series=United+States+Geological+Survey+Professional+Paper&rft.pub=United+States+Government+Printing+Office&rft.date=1987&rft_id=info%3Adoi%2F10.3133%2Fpp1395&rft.isbn=9780318235622&rft.aulast=Snyder&rft.aufirst=John+Parr&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMulcahyClarke2001" class="citation journal cs1">Mulcahy, Karen A.; Clarke, Keith C. (January 2001). <a rel="nofollow" class="external text" href="http://www.geog.ucsb.edu/~kclarke/Geography232/MulcahyClarke2001.pdf">"Symbolization of Map Projection Distortion: A Review"</a> <span class="cs1-format">(PDF)</span>. <i>Cartography and Geographic Information Science</i>. <b>28</b> (3). Cartography and Geographic Information Society: 167–182. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1559%2F152304001782153044">10.1559/152304001782153044</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:26611469">26611469</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cartography+and+Geographic+Information+Science&rft.atitle=Symbolization+of+Map+Projection+Distortion%3A+A+Review&rft.volume=28&rft.issue=3&rft.pages=167-182&rft.date=2001-01&rft_id=info%3Adoi%2F10.1559%2F152304001782153044&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A26611469%23id-name%3DS2CID&rft.aulast=Mulcahy&rft.aufirst=Karen+A.&rft.au=Clarke%2C+Keith+C.&rft_id=http%3A%2F%2Fwww.geog.ucsb.edu%2F~kclarke%2FGeography232%2FMulcahyClarke2001.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCanters2002" class="citation book cs1">Canters, Frank (2002). <i>Small-scale map projection design</i>. Research monographs in geographic information systems. London: Taylor & Francis. p. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=8cR7yG5ohHoC&pg=PA291">291</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780203472095" title="Special:BookSources/9780203472095"><bdi>9780203472095</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Small-scale+map+projection+design&rft.place=London&rft.series=Research+monographs+in+geographic+information+systems&rft.pages=291&rft.pub=Taylor+%26+Francis&rft.date=2002&rft.isbn=9780203472095&rft.aulast=Canters&rft.aufirst=Frank&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-Goldberg-Gott-13"><span class="mw-cite-backlink">^ <a href="#cite_ref-Goldberg-Gott_13-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Goldberg-Gott_13-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldbergGott_III2007" class="citation journal cs1">Goldberg, David M.; Gott III, J. Richard (2007). <a rel="nofollow" class="external text" href="http://www.physics.drexel.edu/~goldberg/projections/goldberg_gott.pdf">"Flexion and Skewness in Map Projections of the Earth"</a> <span class="cs1-format">(PDF)</span>. <i>Cartographica</i>. <b>42</b> (4): 297–318. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0608501">astro-ph/0608501</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.3138%2Fcarto.42.4.297">10.3138/carto.42.4.297</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11359702">11359702</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2011-11-14</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cartographica&rft.atitle=Flexion+and+Skewness+in+Map+Projections+of+the+Earth&rft.volume=42&rft.issue=4&rft.pages=297-318&rft.date=2007&rft_id=info%3Aarxiv%2Fastro-ph%2F0608501&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11359702%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.3138%2Fcarto.42.4.297&rft.aulast=Goldberg&rft.aufirst=David+M.&rft.au=Gott+III%2C+J.+Richard&rft_id=http%3A%2F%2Fwww.physics.drexel.edu%2F~goldberg%2Fprojections%2Fgoldberg_gott.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-tiss-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-tiss_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWirthKun2015" class="citation conference cs1">Wirth, Ervin; Kun, Péter (July 2015). <a rel="nofollow" class="external text" href="http://www.geolab.polimi.it/wp-content/uploads/GW12_FOSS4G-eu15.pdf">"Real-time projection visualisation with Indicatrix Mapper QGIS Plugin"</a> <span class="cs1-format">(PDF)</span>. In Brovelli, Maria Antonia; Minghini, Marco; Negreti, Marco (eds.). <i>Open Innovation for Europe</i>. FOSS4G Europe 2015. Geomatics Workbooks. Vol. 12. Como, Italy: Polytechnic University of Milan. pp. 697–700. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1591-092X">1591-092X</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220723153559/http://www.geolab.polimi.it/wp-content/uploads/GW12_FOSS4G-eu15.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 23 July 2022.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.atitle=Real-time+projection+visualisation+with+Indicatrix+Mapper+QGIS+Plugin&rft.btitle=Open+Innovation+for+Europe&rft.place=Como%2C+Italy&rft.series=Geomatics+Workbooks&rft.pages=697-700&rft.pub=Polytechnic+University+of+Milan&rft.date=2015-07&rft.issn=1591-092X&rft.aulast=Wirth&rft.aufirst=Ervin&rft.au=Kun%2C+P%C3%A9ter&rft_id=http%3A%2F%2Fwww.geolab.polimi.it%2Fwp-content%2Fuploads%2FGW12_FOSS4G-eu15.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-rutgers-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-rutgers_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJacobs2013" class="citation news cs1">Jacobs, Frank (18 September 2013). <a rel="nofollow" class="external text" href="http://bigthink.com/strange-maps/624-this-is-your-brain-on-maps">"This is your brain on maps"</a>. Strange Maps. <i>Big Think</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Big+Think&rft.atitle=This+is+your+brain+on+maps&rft.date=2013-09-18&rft.aulast=Jacobs&rft.aufirst=Frank&rft_id=http%3A%2F%2Fbigthink.com%2Fstrange-maps%2F624-this-is-your-brain-on-maps&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVan_Damme" class="citation web cs1">Van Damme, Bramus. <a rel="nofollow" class="external text" href="https://bramus.github.io/mercator-puzzle-redux/">"Mercator Puzzle Redux"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">24 January</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Mercator+Puzzle+Redux&rft.aulast=Van+Damme&rft.aufirst=Bramus&rft_id=https%3A%2F%2Fbramus.github.io%2Fmercator-puzzle-redux%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-cornucopia-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-cornucopia_17-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.mapthematics.com/Downloads/Images/Cornucopia33.jpg">"A cornucopia of map projections"</a>. <i>Mapthematics</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Mapthematics&rft.atitle=A+cornucopia+of+map+projections&rft_id=http%3A%2F%2Fwww.mapthematics.com%2FDownloads%2FImages%2FCornucopia33.jpg&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-AB_Peters-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-AB_Peters_18-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeters1978" class="citation journal cs1">Peters, A. B. (1978). "Uber Weltkartenverzerrunngen und Weltkartenmittelpunkte". <i><a href="/w/index.php?title=Kartographische_Nachrichten&action=edit&redlink=1" class="new" title="Kartographische Nachrichten (page does not exist)">Kartographische Nachrichten</a><span class="noprint" style="font-size:85%; font-style: normal;"> [<a href="https://de.wikipedia.org/wiki/Kartographische_Nachrichten" class="extiw" title="de:Kartographische Nachrichten">de</a>]</span></i>: 106–113.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Kartographische+Nachrichten%3Cspan+class%3D%22noprint%22+style%3D%22font-size%3A85%25%3B+font-style%3A+normal%3B+%22%3E+%26%2391%3Bde%26%2393%3B%3C%2Fspan%3E&rft.atitle=Uber+Weltkartenverzerrunngen+und+Weltkartenmittelpunkte&rft.pages=106-113&rft.date=1978&rft.aulast=Peters&rft.aufirst=A.+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-GMC-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-GMC_19-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGott,_IIIMugnoloColley2006" class="citation arxiv cs1">Gott, III, J. Richard; Mugnolo, Charles; Colley, Wesley N. (2006). "Map projections for minimizing distance errors". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0608500v1">astro-ph/0608500v1</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Map+projections+for+minimizing+distance+errors&rft.date=2006&rft_id=info%3Aarxiv%2Fastro-ph%2F0608500v1&rft.aulast=Gott%2C+III&rft.aufirst=J.+Richard&rft.au=Mugnolo%2C+Charles&rft.au=Colley%2C+Wesley+N.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-Laskowski-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-Laskowski_20-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLaskowski1997" class="citation journal cs1">Laskowski, P. (1997). <a rel="nofollow" class="external text" href="https://doi.org/10.3138%2FY51X-1590-PV21-136G">"Distortion-spectrum fundamentals: A new tool for analyzing and visualizing map distortions"</a>. <i>Cartographica</i>. <b>34</b> (3). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3138%2FY51X-1590-PV21-136G">10.3138/Y51X-1590-PV21-136G</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cartographica&rft.atitle=Distortion-spectrum+fundamentals%3A+A+new+tool+for+analyzing+and+visualizing+map+distortions&rft.volume=34&rft.issue=3&rft.date=1997&rft_id=info%3Adoi%2F10.3138%2FY51X-1590-PV21-136G&rft.aulast=Laskowski&rft.aufirst=P.&rft_id=https%3A%2F%2Fdoi.org%2F10.3138%252FY51X-1590-PV21-136G&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-Airy-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-Airy_21-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAiry1861" class="citation journal cs1">Airy, G.B. (1861). "Explanation of a projection by balance of errors for maps applying to a very large extent of the Earth's surface; and comparison of this projection with other projections". <i>London, Edinburgh, and Dublin Philosophical Magazine</i>. 4. <b>22</b> (149): 409–421. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F14786446108643179">10.1080/14786446108643179</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=London%2C+Edinburgh%2C+and+Dublin+Philosophical+Magazine&rft.atitle=Explanation+of+a+projection+by+balance+of+errors+for+maps+applying+to+a+very+large+extent+of+the+Earth%27s+surface%3B+and+comparison+of+this+projection+with+other+projections&rft.volume=22&rft.issue=149&rft.pages=409-421&rft.date=1861&rft_id=info%3Adoi%2F10.1080%2F14786446108643179&rft.aulast=Airy&rft.aufirst=G.B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlbrecht" class="citation web cs1">Albrecht, Jochen. <a rel="nofollow" class="external text" href="http://www.geography.hunter.cuny.edu/~jochen/GTECH361/lectures/lecture04/concepts/Map%20coordinate%20systems/Projection%20parameters.htm">"Projection parameters"</a>. City University of New York.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Projection+parameters&rft.pub=City+University+of+New+York&rft.aulast=Albrecht&rft.aufirst=Jochen&rft_id=http%3A%2F%2Fwww.geography.hunter.cuny.edu%2F~jochen%2FGTECH361%2Flectures%2Flecture04%2Fconcepts%2FMap%2520coordinate%2520systems%2FProjection%2520parameters.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20181128234249/edndoc.esri.com/arcsde/9.2/concepts/geometry/coordref/coordsys/projected/mapprojections.htm">"Map projections"</a>. <i>ArcSDE Developer Help</i>. Archived from <a rel="nofollow" class="external text" href="http://edndoc.esri.com/arcsde/9.2/concepts/geometry/coordref/coordsys/projected/mapprojections.htm">the original</a> on 28 November 2018.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ArcSDE+Developer+Help&rft.atitle=Map+projections&rft_id=http%3A%2F%2Fedndoc.esri.com%2Farcsde%2F9.2%2Fconcepts%2Fgeometry%2Fcoordref%2Fcoordsys%2Fprojected%2Fmapprojections.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChengLorre2000" class="citation journal cs1">Cheng, Y.; Lorre, J. J. (2000). "Equal Area Map Projection for Irregularly Shaped Objects". <i>Cartography and Geographic Information Science</i>. <b>27</b> (2): 91. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1559%2F152304000783547957">10.1559/152304000783547957</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:128490229">128490229</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cartography+and+Geographic+Information+Science&rft.atitle=Equal+Area+Map+Projection+for+Irregularly+Shaped+Objects&rft.volume=27&rft.issue=2&rft.pages=91&rft.date=2000&rft_id=info%3Adoi%2F10.1559%2F152304000783547957&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A128490229%23id-name%3DS2CID&rft.aulast=Cheng&rft.aufirst=Y.&rft.au=Lorre%2C+J.+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStooke1998" class="citation journal cs1">Stooke, P. J. (1998). "Mapping Worlds with Irregular Shapes". <i>The Canadian Geographer</i>. <b>42</b>: 61. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1541-0064.1998.tb01553.x">10.1111/j.1541-0064.1998.tb01553.x</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Canadian+Geographer&rft.atitle=Mapping+Worlds+with+Irregular+Shapes&rft.volume=42&rft.pages=61&rft.date=1998&rft_id=info%3Adoi%2F10.1111%2Fj.1541-0064.1998.tb01553.x&rft.aulast=Stooke&rft.aufirst=P.+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShingarevaBugaevskyNyrtsov2000" class="citation journal cs1">Shingareva, K.B.; Bugaevsky, L.M.; Nyrtsov, M. (2000). <a rel="nofollow" class="external text" href="http://www.lsgi.polyu.edu.hk/staff/ZL.Li/vol_2_2/06_nyrtsov.pdf">"Mathematical Basis for Non-spherical Celestial Bodies Maps"</a> <span class="cs1-format">(PDF)</span>. <i>Journal of Geospatial Engineering</i>. <b>2</b> (2): 45–50.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Geospatial+Engineering&rft.atitle=Mathematical+Basis+for+Non-spherical+Celestial+Bodies+Maps&rft.volume=2&rft.issue=2&rft.pages=45-50&rft.date=2000&rft.aulast=Shingareva&rft.aufirst=K.B.&rft.au=Bugaevsky%2C+L.M.&rft.au=Nyrtsov%2C+M.&rft_id=http%3A%2F%2Fwww.lsgi.polyu.edu.hk%2Fstaff%2FZL.Li%2Fvol_2_2%2F06_nyrtsov.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNyrtsov2003" class="citation journal cs1">Nyrtsov, M.V. (August 2003). <a rel="nofollow" class="external text" href="http://icaci.org/files/documents/ICC_proceedings/ICC2003/Papers/141.pdf">"The Classification of Projections of Irregularly-shaped Celestial Bodies"</a> <span class="cs1-format">(PDF)</span>. <i>Proceedings of the 21st International Cartographic Conference (ICC)</i>: 1158–1164.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+21st+International+Cartographic+Conference+%28ICC%29&rft.atitle=The+Classification+of+Projections+of+Irregularly-shaped+Celestial+Bodies&rft.pages=1158-1164&rft.date=2003-08&rft.aulast=Nyrtsov&rft.aufirst=M.V.&rft_id=http%3A%2F%2Ficaci.org%2Ffiles%2Fdocuments%2FICC_proceedings%2FICC2003%2FPapers%2F141.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClarkClark2013" class="citation book cs1">Clark, P. E.; Clark, C. S. (2013). "CSNB Mapping Applied to Irregular Bodies". <i>Constant-Scale Natural Boundary Mapping to Reveal Global and Cosmic Processes</i>. SpringerBriefs in Astronomy. p. 71. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4614-7762-4_6">10.1007/978-1-4614-7762-4_6</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4614-7761-7" title="Special:BookSources/978-1-4614-7761-7"><bdi>978-1-4614-7761-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=CSNB+Mapping+Applied+to+Irregular+Bodies&rft.btitle=Constant-Scale+Natural+Boundary+Mapping+to+Reveal+Global+and+Cosmic+Processes&rft.series=SpringerBriefs+in+Astronomy&rft.pages=71&rft.date=2013&rft_id=info%3Adoi%2F10.1007%2F978-1-4614-7762-4_6&rft.isbn=978-1-4614-7761-7&rft.aulast=Clark&rft.aufirst=P.+E.&rft.au=Clark%2C+C.+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-Lee-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lee_29-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLee1944" class="citation journal cs1"><a href="/wiki/Laurence_Patrick_Lee" title="Laurence Patrick Lee">Lee, L.P.</a> (1944). "The nomenclature and classification of map projections". <i>Empire Survey Review</i>. <b>VII</b> (51): 190–200. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1179%2Fsre.1944.7.51.190">10.1179/sre.1944.7.51.190</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Empire+Survey+Review&rft.atitle=The+nomenclature+and+classification+of+map+projections&rft.volume=VII&rft.issue=51&rft.pages=190-200&rft.date=1944&rft_id=info%3Adoi%2F10.1179%2Fsre.1944.7.51.190&rft.aulast=Lee&rft.aufirst=L.P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span> p. 193</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><span class="citation mathworld" id="Reference-Mathworld-Sinusoidal_Projection"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/SinusoidalProjection.html">"Sinusoidal Projection"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Sinusoidal+Projection&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FSinusoidalProjection.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFuruti2016" class="citation web cs1">Furuti, Carlos A. (11 April 2016). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20161212000553/progonos.com/furuti/MapProj/Normal/ProjCon/projCon.html">"Conic Projections"</a>. <i>Prógonos</i>. Archived from the original on 12 December 2016.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Pr%C3%B3gonos&rft.atitle=Conic+Projections&rft.date=2016-04-11&rft.aulast=Furuti&rft.aufirst=Carlos+A.&rft_id=https%3A%2F%2Fwww.progonos.com%2Ffuruti%2FMapProj%2FNormal%2FProjCon%2FprojCon.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: unfit URL (<a href="/wiki/Category:CS1_maint:_unfit_URL" title="Category:CS1 maint: unfit URL">link</a>)</span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><span class="citation mathworld" id="Reference-Mathworld-Gnomonic_Projection"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/GnomonicProjection.html">"Gnomonic Projection"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Gnomonic+Projection&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FGnomonicProjection.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSavard" class="citation web cs1">Savard, John. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160430145233/members.shaw.ca/quadibloc/maps/maz0201.htm">"The Gnomonic Projection"</a>. Archived from <a rel="nofollow" class="external text" href="http://members.shaw.ca/quadibloc/maps/maz0201.htm">the original</a> on 30 April 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">November 18,</span> 2005</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=The+Gnomonic+Projection&rft.aulast=Savard&rft.aufirst=John&rft_id=http%3A%2F%2Fmembers.shaw.ca%2Fquadibloc%2Fmaps%2Fmaz0201.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><span class="citation mathworld" id="Reference-Mathworld-Orthographic_Projection"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/OrthographicProjection.html">"Orthographic Projection"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Orthographic+Projection&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FOrthographicProjection.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span></span> </li> <li id="cite_note-PROJ_7.1.1_documentation_2020-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-PROJ_7.1.1_documentation_2020_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://proj.org/operations/projections/nsper.html">"Near-sided perspective"</a>. <i>PROJ 7.1.1 documentation</i>. 2020-09-17<span class="reference-accessdate">. Retrieved <span class="nowrap">2020-10-05</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=PROJ+7.1.1+documentation&rft.atitle=Near-sided+perspective&rft.date=2020-09-17&rft_id=https%3A%2F%2Fproj.org%2Foperations%2Fprojections%2Fnsper.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><span class="citation mathworld" id="Reference-Mathworld-Stereographic_Projection"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/StereographicProjection.html">"Stereographic Projection"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Stereographic+Projection&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FStereographicProjection.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><span class="citation mathworld" id="Reference-Mathworld-Azimuthal_Equidistant_Projection"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/AzimuthalEquidistantProjection.html">"Azimuthal Equidistant Projection"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Azimuthal+Equidistant+Projection&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FAzimuthalEquidistantProjection.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><span class="citation mathworld" id="Reference-Mathworld-Lambert_Azimuthal_Equal-Area_Projection"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/LambertAzimuthalEqual-AreaProjection.html">"Lambert Azimuthal Equal-Area Projection"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Lambert+Azimuthal+Equal-Area+Projection&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FLambertAzimuthalEqual-AreaProjection.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span></span> </li> <li id="cite_note-Enlarging-39"><span class="mw-cite-backlink">^ <a href="#cite_ref-Enlarging_39-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Enlarging_39-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSnyder1997" class="citation book cs1">Snyder, John P. (1997). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100702083430/http://www.gis.psu.edu/projection/chapter6.html">"Enlarging the Heart of a Map"</a>. In Robinson, Arthur H.; Snyder, John P. (eds.). <i>Matching the Map Projection to the Need</i>. Cartography and Geographic Information Society. Archived from <a rel="nofollow" class="external text" href="http://www.gis.psu.edu/projection/chapter6.html">the original</a> on 2 July 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">14 April</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Enlarging+the+Heart+of+a+Map&rft.btitle=Matching+the+Map+Projection+to+the+Need&rft.pub=Cartography+and+Geographic+Information+Society&rft.date=1997&rft.aulast=Snyder&rft.aufirst=John+P.&rft_id=http%3A%2F%2Fwww.gis.psu.edu%2Fprojection%2Fchapter6.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span><br />Reprinted in: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSnyder2017" class="citation book cs1">Snyder, John P. (2017). "Matching the Map Projection to the Need". In Lapaine, Miljenko; Usery, E. Lynn (eds.). <i>Choosing a Map Projection</i>. Lecture Notes in Geoinformation and Cartography. Cham, Switzerland: International Cartographic Association. pp. 78–83. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-51835-0_3">10.1007/978-3-319-51835-0_3</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-51835-0" title="Special:BookSources/978-3-319-51835-0"><bdi>978-3-319-51835-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Matching+the+Map+Projection+to+the+Need&rft.btitle=Choosing+a+Map+Projection&rft.place=Cham%2C+Switzerland&rft.series=Lecture+Notes+in+Geoinformation+and+Cartography&rft.pages=78-83&rft.pub=International+Cartographic+Association&rft.date=2017&rft_id=info%3Adoi%2F10.1007%2F978-3-319-51835-0_3&rft.isbn=978-3-319-51835-0&rft.aulast=Snyder&rft.aufirst=John+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-choosing-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-choosing_40-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><i>Choosing a World Map</i>. Falls Church, Virginia: American Congress on Surveying and Mapping. 1988. p. 1. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-9613459-2-6" title="Special:BookSources/0-9613459-2-6"><bdi>0-9613459-2-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Choosing+a+World+Map&rft.place=Falls+Church%2C+Virginia&rft.pages=1&rft.pub=American+Congress+on+Surveying+and+Mapping&rft.date=1988&rft.isbn=0-9613459-2-6&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-slocum-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-slocum_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSlocumRobert_B._McMasterFritz_C._KesslerHugh_H._Howard2005" class="citation book cs1">Slocum, Terry A.; Robert B. McMaster; Fritz C. Kessler; Hugh H. Howard (2005). <i>Thematic Cartography and Geographic Visualization</i> (2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall. p. 166. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-13-035123-7" title="Special:BookSources/0-13-035123-7"><bdi>0-13-035123-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Thematic+Cartography+and+Geographic+Visualization&rft.place=Upper+Saddle+River%2C+NJ&rft.pages=166&rft.edition=2nd&rft.pub=Pearson+Prentice+Hall&rft.date=2005&rft.isbn=0-13-035123-7&rft.aulast=Slocum&rft.aufirst=Terry+A.&rft.au=Robert+B.+McMaster&rft.au=Fritz+C.+Kessler&rft.au=Hugh+H.+Howard&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-Bauer-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bauer_42-0">^</a></b></span> <span class="reference-text">Bauer, H.A. (1942). "Globes, Maps, and Skyways (Air Education Series)". New York. p. 28</span> </li> <li id="cite_note-Miller-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-Miller_43-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiller1942" class="citation journal cs1">Miller, Osborn Maitland (1942). "Notes on Cylindrical World Map Projections". <i>Geographical Review</i>. <b>32</b> (3): 424–430. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F210384">10.2307/210384</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/210384">210384</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geographical+Review&rft.atitle=Notes+on+Cylindrical+World+Map+Projections&rft.volume=32&rft.issue=3&rft.pages=424-430&rft.date=1942&rft_id=info%3Adoi%2F10.2307%2F210384&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F210384%23id-name%3DJSTOR&rft.aulast=Miller&rft.aufirst=Osborn+Maitland&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-Raisz-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-Raisz_44-0">^</a></b></span> <span class="reference-text">Raisz, Erwin Josephus. (1938). <i>General Cartography</i>. New York: McGraw–Hill. 2d ed., 1948. p. 87.</span> </li> <li id="cite_note-RobinsonElements-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-RobinsonElements_45-0">^</a></b></span> <span class="reference-text">Robinson, Arthur Howard. (1960). <i>Elements of Cartography</i>, second edition. New York: John Wiley and Sons. p. 82.</span> </li> <li id="cite_note-ACA1986-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-ACA1986_46-0">^</a></b></span> <span class="reference-text">American Cartographic Association's Committee on Map Projections, 1986. <i>Which Map is Best</i> p. 12. Falls Church: American Congress on Surveying and Mapping.</span> </li> <li id="cite_note-Robinson-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-Robinson_47-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobinson1990" class="citation journal cs1">Robinson, Arthur (1990). "Rectangular World Maps—No!". <i>Professional Geographer</i>. <b>42</b> (1): 101–104. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.0033-0124.1990.00101.x">10.1111/j.0033-0124.1990.00101.x</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Professional+Geographer&rft.atitle=Rectangular+World+Maps%E2%80%94No%21&rft.volume=42&rft.issue=1&rft.pages=101-104&rft.date=1990&rft_id=info%3Adoi%2F10.1111%2Fj.0033-0124.1990.00101.x&rft.aulast=Robinson&rft.aufirst=Arthur&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> <li id="cite_note-AmericanCartographer-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-AmericanCartographer_48-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1">"Geographers and Cartographers Urge End to Popular Use of Rectangular Maps". <i>American Cartographer</i>. <b>16</b>: 222–223. 1989. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1559%2F152304089783814089">10.1559/152304089783814089</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Cartographer&rft.atitle=Geographers+and+Cartographers+Urge+End+to+Popular+Use+of+Rectangular+Maps&rft.volume=16&rft.pages=222-223&rft.date=1989&rft_id=info%3Adoi%2F10.1559%2F152304089783814089&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading3"><h3 id="Sources">Sources</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=33" title="Edit section: Sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li>Fran Evanisko, American River College, lectures for Geography 20: "Cartographic Design for GIS", Fall 2002</li> <li><a rel="nofollow" class="external text" href="https://anderson.map-projections.net/">Map Projections</a>—PDF versions of numerous projections, created and released into the Public Domain by Paul B. Anderson ... member of the International Cartographic Association's Commission on Map Projections</li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Map_projection&action=edit&section=34" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1250146164">.mw-parser-output .sister-box .side-box-abovebelow{padding:0.75em 0;text-align:center}.mw-parser-output .sister-box .side-box-abovebelow>b{display:block}.mw-parser-output .sister-box .side-box-text>ul{border-top:1px solid #aaa;padding:0.75em 0;width:217px;margin:0 auto}.mw-parser-output .sister-box .side-box-text>ul>li{min-height:31px}.mw-parser-output .sister-logo{display:inline-block;width:31px;line-height:31px;vertical-align:middle;text-align:center}.mw-parser-output .sister-link{display:inline-block;margin-left:4px;width:182px;vertical-align:middle}@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-v2.svg"]{background-color:white}}</style><div role="navigation" aria-labelledby="sister-projects" class="side-box metadata side-box-right sister-box sistersitebox plainlinks"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-abovebelow"> <b>Map projection</b> at Wikipedia's <a href="/wiki/Wikipedia:Wikimedia_sister_projects" title="Wikipedia:Wikimedia sister projects"><span id="sister-projects">sister projects</span></a></div> <div class="side-box-flex"> <div class="side-box-text plainlist"><ul><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/20px-Commons-logo.svg.png" decoding="async" width="20" height="27" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/40px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></span><span class="sister-link"><a href="https://commons.wikimedia.org/wiki/category:Map_projections" class="extiw" title="c:category:Map projections">Media</a> from Commons</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/27px-Wikidata-logo.svg.png" decoding="async" width="27" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/41px-Wikidata-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/54px-Wikidata-logo.svg.png 2x" data-file-width="1050" data-file-height="590" /></span></span></span><span class="sister-link"><a href="https://www.wikidata.org/wiki/Q186386" class="extiw" title="d:Q186386">Data</a> from Wikidata</span></li></ul></div></div> </div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://pubs.usgs.gov/pp/1453/report.pdf">"An Album of Map Projections"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=An+Album+of+Map+Projections&rft_id=http%3A%2F%2Fpubs.usgs.gov%2Fpp%2F1453%2Freport.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span> <span style="font-size:85%;">(12.6 MB)</span>, U.S. Geological Survey Professional Paper 1453, by John P. Snyder (USGS) and Philip M. Voxland (U. Minnesota), 1989.</li> <li><a rel="nofollow" class="external text" href="http://www.mapthematics.com/Projections/Images/Cornucopia33.jpg">A Cornucopia of Map Projections</a>, a visualization of distortion on a vast array of map projections in a single image.</li> <li><a rel="nofollow" class="external text" href="https://www.giss.nasa.gov/tools/gprojector/">G.Projector</a>, free software can render many projections (<a href="/wiki/NASA" title="NASA">NASA</a> <a href="/wiki/GISS" class="mw-redirect" title="GISS">GISS</a>).</li> <li><a rel="nofollow" class="external text" href="http://www.mapthematics.com/ProjectionsList.php">Color images of map projections and distortion</a> (Mapthematics.com).</li> <li><a rel="nofollow" class="external text" href="http://kartoweb.itc.nl/geometrics/Map%20projections/body.htm">Geometric aspects of mapping: map projection</a> (KartoWeb.itc.nl).</li> <li><a rel="nofollow" class="external text" href="http://www.se16.info/js/mapproj.htm">Java world map projections</a>, Henry Bottomley (SE16.info).</li> <li><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/topics/MapProjections.html">Map Projections</a> (MathWorld).</li> <li><a rel="nofollow" class="external text" href="http://www.mapref.org/">MapRef: The Internet Collection of MapProjections and Reference Systems in Europe</a></li> <li><a rel="nofollow" class="external text" href="http://trac.osgeo.org/proj/">PROJ.4 – Cartographic Projections Library</a>.</li> <li><a rel="nofollow" class="external text" href="http://www.radicalcartography.net/?projectionref">Projection Reference</a> Table of examples and properties of all common projections (RadicalCartography.net).</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://kartoweb.itc.nl/geometrics/Map%20projections/Understanding%20Map%20Projections.pdf">"Understanding Map Projections"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Understanding+Map+Projections&rft_id=http%3A%2F%2Fkartoweb.itc.nl%2Fgeometrics%2FMap%2520projections%2FUnderstanding%2520Map%2520Projections.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMap+projection" class="Z3988"></span> <span style="font-size:85%;">(1.70 MB)</span>, Melita Kennedy (<a href="/wiki/Esri" title="Esri">Esri</a>).</li> <li><a rel="nofollow" class="external text" href="http://demonstrations.wolfram.com/WorldMapProjections/">World Map Projections</a>, <a href="/wiki/Stephen_Wolfram" title="Stephen Wolfram">Stephen Wolfram</a> based on work by Yu-Sung Chang (<a href="/wiki/Wolfram_Demonstrations_Project" title="Wolfram Demonstrations Project">Wolfram Demonstrations Project</a>).</li> <li><a rel="nofollow" class="external text" href="http://map-projections.net/">Compare Map Projections</a></li> <li><a rel="nofollow" class="external text" href="https://www.thetruesize.com/">"the true size" page show size of countries without distortion from Mercator projection</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Map_projection" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Map_projections" title="Template:Map projections"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Map_projections" title="Template talk:Map projections"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Map_projections" title="Special:EditPage/Template:Map projections"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Map_projection" style="font-size:114%;margin:0 4em"><a class="mw-selflink selflink">Map projection</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/History_of_cartography" title="History of cartography">History</a></li> <li><a href="/wiki/List_of_map_projections" title="List of map projections">List</a></li> <li><a href="/wiki/Portal:Maps" title="Portal:Maps">Portal</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="By_surface" style="font-size:114%;margin:0 4em"><a class="mw-selflink-fragment" href="#Projections_by_surface">By surface</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink-fragment" href="#Cylindrical">Cylindrical</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight: normal;"><a href="/wiki/Mercator_projection" title="Mercator projection">Mercator</a>-conformal</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gauss%E2%80%93Kr%C3%BCger_coordinate_system" class="mw-redirect" title="Gauss–Krüger coordinate system">Gauss–Krüger</a></li> <li><a href="/wiki/Transverse_Mercator_projection" title="Transverse Mercator projection">Transverse Mercator</a></li> <li><a href="/wiki/Oblique_Mercator_projection" title="Oblique Mercator projection">Oblique Mercator</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight: normal;"><a href="/wiki/Cylindrical_equal-area_projection" title="Cylindrical equal-area projection">Equal-area</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cylindrical_equal-area_projection#Discussion" title="Cylindrical equal-area projection">Balthasart</a></li> <li><a href="/wiki/Behrmann_projection" title="Behrmann projection">Behrmann</a></li> <li><a href="/wiki/Gall%E2%80%93Peters_projection" title="Gall–Peters projection">Gall–Peters</a></li> <li><a href="/wiki/Hobo%E2%80%93Dyer_projection" title="Hobo–Dyer projection">Hobo–Dyer</a></li> <li><a href="/wiki/Lambert_cylindrical_equal-area_projection" title="Lambert cylindrical equal-area projection">Lambert</a></li> <li><a href="/wiki/Cylindrical_equal-area_projection#Discussion" title="Cylindrical equal-area projection">Smyth equal-surface</a></li> <li><a href="/wiki/Cylindrical_equal-area_projection#Discussion" title="Cylindrical equal-area projection">Trystan Edwards</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cassini_projection" title="Cassini projection">Cassini</a></li> <li><a href="/wiki/Central_cylindrical_projection" title="Central cylindrical projection">Central</a></li> <li><a href="/wiki/Equirectangular_projection" title="Equirectangular projection">Equirectangular</a></li> <li><a href="/wiki/Gall_stereographic_projection" title="Gall stereographic projection">Gall stereographic</a></li> <li><a href="/wiki/Gall_isographic_projection" title="Gall isographic projection">Gall isographic</a></li> <li><a href="/wiki/Miller_cylindrical_projection" title="Miller cylindrical projection">Miller</a></li> <li><a href="/wiki/Space-oblique_Mercator_projection" title="Space-oblique Mercator projection">Space-oblique Mercator</a></li> <li><a href="/wiki/Web_Mercator_projection" title="Web Mercator projection">Web Mercator</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink-fragment" href="#Pseudocylindrical">Pseudocylindrical</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Equal-area" scope="row" class="navbox-group" style="width:1%">Equal-area</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Collignon_projection" title="Collignon projection">Collignon</a></li> <li><a href="/wiki/Eckert_II_projection" title="Eckert II projection">Eckert II</a></li> <li><a href="/wiki/Eckert_IV_projection" title="Eckert IV projection">Eckert IV</a></li> <li><a href="/wiki/Eckert_VI_projection" title="Eckert VI projection">Eckert VI</a></li> <li><a href="/wiki/Equal_Earth_projection" title="Equal Earth projection">Equal Earth</a></li> <li><a href="/wiki/Goode_homolosine_projection" title="Goode homolosine projection">Goode homolosine</a></li> <li><a href="/wiki/Mollweide_projection" title="Mollweide projection">Mollweide</a></li> <li><a href="/wiki/Sinusoidal_projection" title="Sinusoidal projection">Sinusoidal</a></li> <li><a href="/wiki/Tobler_hyperelliptical_projection" title="Tobler hyperelliptical projection">Tobler hyperelliptical</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kavrayskiy_VII_projection" title="Kavrayskiy VII projection">Kavrayskiy VII</a></li> <li><a href="/wiki/Wagner_VI_projection" title="Wagner VI projection">Wagner VI</a></li> <li><a href="/wiki/Winkel_projection" title="Winkel projection">Winkel I and II</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink-fragment" href="#Conical">Conical</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Albers_projection" title="Albers projection">Albers</a></li> <li><a href="/wiki/Equidistant_conic_projection" title="Equidistant conic projection">Equidistant</a></li> <li><a href="/wiki/Lambert_conformal_conic_projection" title="Lambert conformal conic projection">Lambert conformal</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink-fragment" href="#Pseudoconical">Pseudoconical</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bonne_projection" title="Bonne projection">Bonne</a></li> <li><a href="/wiki/Bottomley_projection" title="Bottomley projection">Bottomley</a></li> <li><a href="/wiki/Polyconic_projection_class" title="Polyconic projection class">Polyconic</a> <ul><li><a href="/wiki/American_polyconic_projection" title="American polyconic projection">American</a></li> <li><a href="/wiki/Latitudinally_equal-differential_polyconic_projection" title="Latitudinally equal-differential polyconic projection">Chinese</a></li></ul></li> <li><a href="/wiki/Werner_projection" title="Werner projection">Werner</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink-fragment" href="#Azimuthal">Azimuthal<br /><span class="nobold">(planar)</span></a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="General_perspective" scope="row" class="navbox-group" style="width:1%;font-weight: normal;"><a href="/wiki/General_Perspective_projection" title="General Perspective projection">General perspective</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gnomonic_projection" title="Gnomonic projection">Gnomonic</a></li> <li><a href="/wiki/Orthographic_map_projection" title="Orthographic map projection">Orthographic</a></li> <li><a href="/wiki/Stereographic_map_projection" title="Stereographic map projection">Stereographic</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Azimuthal_equidistant_projection" title="Azimuthal equidistant projection">Equidistant</a></li> <li><a href="/wiki/Lambert_azimuthal_equal-area_projection" title="Lambert azimuthal equal-area projection">Lambert equal-area</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink-fragment" href="#Pseudoazimuthal">Pseudoazimuthal</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Aitoff_projection" title="Aitoff projection">Aitoff</a></li> <li><a href="/wiki/Hammer_projection" title="Hammer projection">Hammer</a></li> <li><a href="/wiki/Wiechel_projection" title="Wiechel projection">Wiechel</a></li> <li><a href="/wiki/Winkel_tripel_projection" title="Winkel tripel projection">Winkel tripel</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="By_metric" style="font-size:114%;margin:0 4em"><a class="mw-selflink-fragment" href="#Projections_by_preservation_of_a_metric_property">By metric</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Conformal_map_projection" title="Conformal map projection">Conformal</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adams_hemisphere-in-a-square_projection" title="Adams hemisphere-in-a-square projection">Adams hemisphere-in-a-square</a></li> <li><a href="/wiki/Gauss%E2%80%93Kr%C3%BCger_coordinate_system" class="mw-redirect" title="Gauss–Krüger coordinate system">Gauss–Krüger</a></li> <li><a href="/wiki/Guyou_hemisphere-in-a-square_projection" title="Guyou hemisphere-in-a-square projection">Guyou hemisphere-in-a-square</a></li> <li><a href="/wiki/Lambert_conformal_conic_projection" title="Lambert conformal conic projection">Lambert conformal conic</a></li> <li><a href="/wiki/Mercator_projection" title="Mercator projection">Mercator</a></li> <li><a href="/wiki/Peirce_quincuncial_projection" title="Peirce quincuncial projection">Peirce quincuncial</a></li> <li><a href="/wiki/Stereographic_projection" title="Stereographic projection">Stereographic</a></li> <li><a href="/wiki/Transverse_Mercator_projection" title="Transverse Mercator projection">Transverse Mercator</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Equal-area_projection" title="Equal-area projection">Equal-area</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight: normal;"><a href="/wiki/Bonne_projection" title="Bonne projection">Bonne</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Sinusoidal_projection" title="Sinusoidal projection">Sinusoidal</a></li> <li><a href="/wiki/Werner_projection" title="Werner projection">Werner</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight: normal;"><a href="/wiki/Bottomley_projection" title="Bottomley projection">Bottomley</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Sinusoidal_projection" title="Sinusoidal projection">Sinusoidal</a></li> <li><a href="/wiki/Werner_projection" title="Werner projection">Werner</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight: normal;"><a href="/wiki/Cylindrical_equal-area_projection" title="Cylindrical equal-area projection">Cylindrical</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cylindrical_equal-area_projection#Discussion" title="Cylindrical equal-area projection">Balthasart</a></li> <li><a href="/wiki/Behrmann_projection" title="Behrmann projection">Behrmann</a></li> <li><a href="/wiki/Gall%E2%80%93Peters_projection" title="Gall–Peters projection">Gall–Peters</a></li> <li><a href="/wiki/Hobo%E2%80%93Dyer_projection" title="Hobo–Dyer projection">Hobo–Dyer</a></li> <li><a href="/wiki/Lambert_cylindrical_equal-area_projection" title="Lambert cylindrical equal-area projection">Lambert cylindrical equal-area</a></li> <li><a href="/wiki/Cylindrical_equal-area_projection#Discussion" title="Cylindrical equal-area projection">Smyth equal-surface</a></li> <li><a href="/wiki/Cylindrical_equal-area_projection#Discussion" title="Cylindrical equal-area projection">Trystan Edwards</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight: normal;"><a href="/wiki/Tobler_hyperelliptical_projection" title="Tobler hyperelliptical projection">Tobler hyperelliptical</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Collignon_projection" title="Collignon projection">Collignon</a></li> <li><a href="/wiki/Mollweide_projection" title="Mollweide projection">Mollweide</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Albers_projection" title="Albers projection">Albers</a></li> <li><a href="/wiki/Hammer_projection#Briesemeister" title="Hammer projection">Briesemeister</a></li> <li><a href="/wiki/Eckert_II_projection" title="Eckert II projection">Eckert II</a></li> <li><a href="/wiki/Eckert_IV_projection" title="Eckert IV projection">Eckert IV</a></li> <li><a href="/wiki/Eckert_VI_projection" title="Eckert VI projection">Eckert VI</a></li> <li><a href="/wiki/Equal_Earth_projection" title="Equal Earth projection">Equal Earth</a></li> <li><a href="/wiki/Goode_homolosine_projection" title="Goode homolosine projection">Goode homolosine</a></li> <li><a href="/wiki/Hammer_projection" title="Hammer projection">Hammer</a></li> <li><a href="/wiki/Lambert_azimuthal_equal-area_projection" title="Lambert azimuthal equal-area projection">Lambert azimuthal equal-area</a></li> <li><a href="/wiki/Quadrilateralized_spherical_cube" title="Quadrilateralized spherical cube">Quadrilateralized spherical cube</a></li> <li><a href="/wiki/Strebe_1995_projection" title="Strebe 1995 projection">Strebe 1995</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink-fragment" href="#Equidistant">Equidistant in<br />some aspect</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Equidistant_conic_projection" title="Equidistant conic projection">Conic</a></li> <li><a href="/wiki/Equirectangular_projection" title="Equirectangular projection">Equirectangular</a></li> <li><a href="/wiki/Sinusoidal_projection" title="Sinusoidal projection">Sinusoidal</a></li> <li><a href="/wiki/Two-point_equidistant_projection" title="Two-point equidistant projection">Two-point</a></li> <li><a href="/wiki/Werner_projection" title="Werner projection">Werner</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink-fragment" href="#Gnomonic">Gnomonic</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gnomonic_projection" title="Gnomonic projection">Gnomonic</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink-fragment" href="#Rhumb_line">Loxodromic</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Loximuthal_projection" title="Loximuthal projection">Loximuthal</a></li> <li><a href="/wiki/Mercator_projection" title="Mercator projection">Mercator</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink-fragment" href="#Retroazimuthal">Retroazimuthal</a><br /><span class="nobold">(Mecca or Qibla)</span></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Craig_retroazimuthal_projection" title="Craig retroazimuthal projection">Craig</a></li> <li><a href="/wiki/Hammer_retroazimuthal_projection" title="Hammer retroazimuthal projection">Hammer</a></li> <li><a href="/wiki/Littrow_projection" title="Littrow projection">Littrow</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="By_construction" style="font-size:114%;margin:0 4em"><a class="mw-selflink-fragment" href="#Classification">By construction</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink-fragment" href="#Compromise_projections">Compromise</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chamberlin_trimetric_projection" title="Chamberlin trimetric projection">Chamberlin trimetric</a></li> <li><a href="/wiki/Kavrayskiy_VII_projection" title="Kavrayskiy VII projection">Kavrayskiy VII</a></li> <li><a href="/wiki/Miller_cylindrical_projection" title="Miller cylindrical projection">Miller cylindrical</a></li> <li><a href="/wiki/Natural_Earth_projection" title="Natural Earth projection">Natural Earth</a></li> <li><a href="/wiki/Robinson_projection" title="Robinson projection">Robinson</a></li> <li><a href="/wiki/Van_der_Grinten_projection" title="Van der Grinten projection">Van der Grinten</a></li> <li><a href="/wiki/Wagner_VI_projection" title="Wagner VI projection">Wagner VI</a></li> <li><a href="/wiki/Winkel_tripel_projection" title="Winkel tripel projection">Winkel tripel</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink-fragment" href="#Hybrid">Hybrid</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Goode_homolosine_projection" title="Goode homolosine projection">Goode homolosine</a></li> <li><a href="/wiki/HEALPix" title="HEALPix">HEALPix</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink-fragment" href="#Perspective_projections">Perspective</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Planar" scope="row" class="navbox-group" style="width:1%;font-weight: normal;"><a href="/wiki/General_Perspective_projection" title="General Perspective projection">Planar</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gnomonic_projection" title="Gnomonic projection">Gnomonic</a></li> <li><a href="/wiki/Orthographic_map_projection" title="Orthographic map projection">Orthographic</a></li> <li><a href="/wiki/Stereographic_projection" title="Stereographic projection">Stereographic</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Central_cylindrical_projection" title="Central cylindrical projection">Central cylindrical</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink-fragment" href="#Polyhedral">Polyhedral</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/AuthaGraph_projection" title="AuthaGraph projection">AuthaGraph</a></li> <li><a href="/wiki/Bernard_J._S._Cahill" title="Bernard J. S. Cahill">Cahill Butterfly</a></li> <li><a href="/wiki/Cahill%E2%80%93Keyes_projection" title="Cahill–Keyes projection">Cahill–Keyes M-shape</a></li> <li><a href="/wiki/Dymaxion_map" title="Dymaxion map">Dymaxion</a></li> <li><a href="/wiki/Snyder_equal-area_projection" title="Snyder equal-area projection">ISEA</a></li> <li><a href="/wiki/Quadrilateralized_spherical_cube" title="Quadrilateralized spherical cube">Quadrilateralized spherical cube</a></li> <li><a href="/wiki/Waterman_butterfly_projection" title="Waterman butterfly projection">Waterman butterfly</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="See_also" style="font-size:114%;margin:0 4em">See also</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Interruption_(map_projection)" title="Interruption (map projection)">Interruption (map projection)</a></li> <li><a href="/wiki/Latitude" title="Latitude">Latitude</a></li> <li><a href="/wiki/Longitude" title="Longitude">Longitude</a></li> <li><a href="/wiki/Tissot%27s_indicatrix" title="Tissot's indicatrix">Tissot's indicatrix</a></li> <li><a href="/wiki/Map_projection_of_the_tri-axial_ellipsoid" class="mw-redirect" title="Map projection of the tri-axial ellipsoid">Map projection of the tri-axial ellipsoid</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Atlas" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Atlas" title="Template:Atlas"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Atlas" title="Template talk:Atlas"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Atlas" title="Special:EditPage/Template:Atlas"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Atlas" style="font-size:114%;margin:0 4em"><a href="/wiki/Atlas" title="Atlas">Atlas</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cartography" title="Cartography">Cartography</a></li> <li><a href="/wiki/Geography" title="Geography">Geography</a></li> <li><a href="/wiki/Geovisualization" title="Geovisualization">Geovisualization</a></li> <li><a href="/wiki/Map" title="Map">Map</a></li> <li><a class="mw-selflink selflink">Map projection</a></li> <li><a href="/wiki/Topography" title="Topography">Topography</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Early_world_maps" title="Early world maps">Early world maps</a></li> <li><a href="/wiki/History_of_cartography" title="History of cartography">History of cartography</a></li> <li><a href="/wiki/List_of_cartographers" title="List of cartographers">List of cartographers</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Animated_mapping" title="Animated mapping">Animated mapping</a></li> <li><a href="/wiki/Cartogram" title="Cartogram">Cartogram</a></li> <li><a href="/wiki/Choropleth_map" title="Choropleth map">Choropleth map</a></li> <li><a href="/wiki/Geologic_map" title="Geologic map">Geologic map</a></li> <li><a href="/wiki/Linguistic_map" title="Linguistic map">Linguistic map</a></li> <li><a href="/wiki/Nautical_chart" title="Nautical chart">Nautical chart</a></li> <li><a href="/wiki/Pictorial_map" title="Pictorial map">Pictorial map</a></li> <li><a href="/wiki/Thematic_map" title="Thematic map">Thematic map</a></li> <li><a href="/wiki/Topographic_map" title="Topographic map">Topographic map</a></li> <li><a href="/wiki/Weather_map" title="Weather map">Weather map</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><b><a href="/wiki/Category:Maps" title="Category:Maps">Category:Maps</a></b></li> <li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Symbol_portal_class.svg" class="mw-file-description" title="Portal"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/16px-Symbol_portal_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/23px-Symbol_portal_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/31px-Symbol_portal_class.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span><b><a href="/wiki/Portal:Atlas" class="mw-redirect" title="Portal:Atlas">Portal:Atlas</a></b></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q186386#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q186386#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q186386#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="mapová zobrazení"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph973686&CON_LNG=ENG">Czech Republic</a></span></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalog.archives.gov/id/10640363">NARA</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐jgsst Cached time: 20241122141511 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.170 seconds Real time usage: 1.442 seconds Preprocessor visited node count: 8645/1000000 Post‐expand include size: 212904/2097152 bytes Template argument size: 6142/2097152 bytes Highest expansion depth: 18/100 Expensive parser function count: 9/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 200407/5000000 bytes Lua time usage: 0.719/10.000 seconds Lua memory usage: 17838085/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1240.752 1 -total 37.10% 460.320 1 Template:Reflist 15.19% 188.436 11 Template:Annotated_link 14.23% 176.527 13 Template:Cite_book 9.95% 123.462 14 Template:Cite_journal 9.34% 115.878 1 Template:Map_projections 9.14% 113.361 1 Template:Navbox_with_collapsible_groups 7.16% 88.866 1 Template:Short_description 5.21% 64.669 8 Template:Rp 4.96% 61.583 1 Template:Sisterlinks --> <!-- Saved in parser cache with key enwiki:pcache:idhash:51784-0!canonical and timestamp 20241122141511 and revision id 1246447225. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Map_projection&oldid=1246447225">https://en.wikipedia.org/w/index.php?title=Map_projection&oldid=1246447225</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Map_projections" title="Category:Map projections">Map projections</a></li><li><a href="/wiki/Category:Cartography" title="Category:Cartography">Cartography</a></li><li><a href="/wiki/Category:Infographics" title="Category:Infographics">Infographics</a></li><li><a href="/wiki/Category:Descriptive_geometry" title="Category:Descriptive geometry">Descriptive geometry</a></li><li><a href="/wiki/Category:Geodesy" title="Category:Geodesy">Geodesy</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_unfit_URL" title="Category:CS1 maint: unfit URL">CS1 maint: unfit URL</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_November_2019" title="Category:Articles with unsourced statements from November 2019">Articles with unsourced statements from November 2019</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_August_2016" title="Category:Articles with unsourced statements from August 2016">Articles with unsourced statements from August 2016</a></li><li><a href="/wiki/Category:Pages_displaying_short_descriptions_of_redirect_targets_via_Module:Annotated_link" title="Category:Pages displaying short descriptions of redirect targets via Module:Annotated link">Pages displaying short descriptions of redirect targets via Module:Annotated link</a></li><li><a href="/wiki/Category:Pages_displaying_wikidata_descriptions_as_a_fallback_via_Module:Annotated_link" title="Category:Pages displaying wikidata descriptions as a fallback via Module:Annotated link">Pages displaying wikidata descriptions as a fallback via Module:Annotated link</a></li><li><a href="/wiki/Category:Pages_using_Sister_project_links_with_hidden_wikidata" title="Category:Pages using Sister project links with hidden wikidata">Pages using Sister project links with hidden wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 19 September 2024, at 00:47<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Map_projection&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-czcdm","wgBackendResponseTime":167,"wgPageParseReport":{"limitreport":{"cputime":"1.170","walltime":"1.442","ppvisitednodes":{"value":8645,"limit":1000000},"postexpandincludesize":{"value":212904,"limit":2097152},"templateargumentsize":{"value":6142,"limit":2097152},"expansiondepth":{"value":18,"limit":100},"expensivefunctioncount":{"value":9,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":200407,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1240.752 1 -total"," 37.10% 460.320 1 Template:Reflist"," 15.19% 188.436 11 Template:Annotated_link"," 14.23% 176.527 13 Template:Cite_book"," 9.95% 123.462 14 Template:Cite_journal"," 9.34% 115.878 1 Template:Map_projections"," 9.14% 113.361 1 Template:Navbox_with_collapsible_groups"," 7.16% 88.866 1 Template:Short_description"," 5.21% 64.669 8 Template:Rp"," 4.96% 61.583 1 Template:Sisterlinks"]},"scribunto":{"limitreport-timeusage":{"value":"0.719","limit":"10.000"},"limitreport-memusage":{"value":17838085,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-jgsst","timestamp":"20241122141511","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Map projection","url":"https:\/\/en.wikipedia.org\/wiki\/Map_projection","sameAs":"http:\/\/www.wikidata.org\/entity\/Q186386","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q186386","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-05-09T20:40:27Z","dateModified":"2024-09-19T00:47:54Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/f\/f0\/Claudius_Ptolemy-_The_World.jpg","headline":"representation of the surface of a sphere or ellipsoid onto a plane map"}</script> </body> </html>