CINXE.COM

Astronomy & Astrophysics (A&A)

<!DOCTYPE html> <html xml:lang="en-gb" lang="en-gb" dir="ltr"> <head> <meta name="viewport" content="width=device-width, initial-scale=1.0, shrink-to-fit=no"> <base href="https://www.aanda.org/highlights" /> <meta http-equiv="content-type" content="text/html; charset=utf-8" /> <meta name="keywords" content="Astronomy &amp; Astrophysics, A&amp;A, ESO, EDP Sciences" /> <meta name="robots" content="index, follow, noarchive" /> <meta name="description" content="Astronomy &amp; Astrophysics (A&amp;A) is an international journal which publishes papers on all aspects of astronomy and astrophysics" /> <title>Astronomy &amp; Astrophysics (A&amp;A)</title> <link href="/highlights?format=feed&amp;type=rss" rel="alternate" type="application/rss+xml" title="RSS 2.0" /> <link href="/highlights?format=feed&amp;type=atom" rel="alternate" type="application/atom+xml" title="Atom 1.0" /> <link rel="stylesheet" href="/libraries/jquery/jquery.multiselect.css" type="text/css" /> <link rel="stylesheet" href="/libraries/jquery/jquery.qtip/jquery.qtip.min.css" type="text/css" /> <link rel="stylesheet" href="/libraries/jquery/jquery.magnific-popup.css" type="text/css" /> <link rel="stylesheet" href="https://ajax.googleapis.com/ajax/libs/jqueryui/1.12.0/themes/smoothness/jquery-ui.css" type="text/css" /> <link rel="stylesheet" href="/templates/template1/css/mod_solr.css" type="text/css" /> <script src="/media/system/js/mootools-core.js" type="text/javascript"></script> <script src="/media/system/js/core.js" type="text/javascript"></script> <script src="/media/system/js/caption.js" type="text/javascript"></script> <script src="/media/system/js/mootools-more.js" type="text/javascript"></script> <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js" type="text/javascript"></script> <script src="/plugins/system/jqueryeasy/jquerynoconflict.js" type="text/javascript"></script> <script src="https://ajax.googleapis.com/ajax/libs/jqueryui/1.12.0/jquery-ui.min.js" type="text/javascript"></script> <script src="/libraries/jquery/jquery.multiselect.min.js" type="text/javascript"></script> <script src="/libraries/jquery/jquery.magnific-popup.min.js" type="text/javascript"></script> <script src="/libraries/jquery/jquery.qtip/jquery.qtip.min.js" type="text/javascript"></script> <script src="https://www.googletagmanager.com/gtag/js?id=G-S2LKMZBHJL" type="text/javascript"></script> <script src="/libraries/jquery/jquery.autocomplete.js" type="text/javascript"></script> <script type="text/javascript"> window.addEvent('load', function() { new JCaption('img.caption'); }); window.addEvent('domready', function() { $$('.hasTip').each(function(el) { var title = el.get('title'); if (title) { var parts = title.split('::', 2); el.store('tip:title', parts[0]); el.store('tip:text', parts[1]); } }); var JTooltips = new Tips($$('.hasTip'), { maxTitleChars: 50, fixed: false}); }); window.dataLayer = window.dataLayer || []; function gtag() {dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-S2LKMZBHJL', { 'edpsname': 'aa', 'site_name': 'Astronomy & Astrophysics (A&A)', 'plateform': 'journal', 'plateform_type': 'edp', 'server_host': 'ovh-canada' });gtag('config', 'G-T2TE0Y7XE9', { 'edpsname': 'aa', 'site_name': 'Astronomy & Astrophysics (A&A)', 'plateform': 'journal', 'plateform_type': 'edp', 'server_host': 'ovh-canada' });gtag('config', 'user_properties', { 'edpsname': 'aa', 'site_name': 'Astronomy & Astrophysics (A&A)', 'plateform': 'journal', 'plateform_type': 'edp', 'server_host': 'ovh-canada' }); </script> <link href="/templates/template1/images/aa/favicon.ico" rel="shortcut icon" type="image/vnd.microsoft.icon" /> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css2?family=Crimson+Text&family=Open+Sans:wght@400;600&display=swap" rel="stylesheet"> <link href="/templates/source/css/article.css" rel="stylesheet" type="text/css"/> <link href="/templates/template1/css/cookie.css" rel="stylesheet" type="text/css"/> <link href="/templates/template1/css/commun_v3.css" rel="stylesheet" type="text/css"/> <link href="/templates/template1/css/template1.css" rel="stylesheet" type="text/css"/> <link href="/templates/source/css/flags25.css" rel="stylesheet" type="text/css"/> <link href="/templates/template1/css/aa.css" rel="stylesheet" type="text/css"/> <link href="/templates/source/js/mmenu2/dist/css/jquery.mmenu.all.css" rel="stylesheet" type="text/css"/> <!--[if IE]> <link rel="stylesheet" href="/templates/template1/css/ie.css" type="text/css" /> <script src="/templates/template1/html5-ie.js"></script> <![endif]--> </head> <body id="com_content" class="aa marketing "> <div id="journal-webpage"> <header> <div class="header-edp"> <div class="wrap "> <div class="logo-edp"> <a href="https://www.edpsciences.org" target="_blank"><img src="/templates/source/images/logos/logo_edp_105.svg" alt="EDP Sciences logo"></a> </div> <nav class="edp-nav"> <ul> <li><a href="https://publications.edpsciences.org/">Journals</a></li> <li><a href="https://www.edpsciences.org/en/books">Books</a></li> <li><a href="https://www.webofconferences.org/">Conferences</a></li> </ul> </nav> <div class="header_cart"> <a href="#" class="cart-box" id="cart-info" title="Display your shopping cart"> <span class="ico ico-cart"></span> <span class="cart-counter hidden">0</span> </a> </div> <div class="reg_info auth"> <div class="btn-nav"> <span class="ico16 white subs"></span><span>Subscriber Authentication Point </span> <nav class="user"> <ul> <li> <a href="/component/authenticate/?task=login"> Sign in with login/password </a> </li> <li> <a href="/component/authenticate/?task=access"> Your subscription </a> </li> </ul> </nav> </div> </div> <div class="reg_info account"> <div class="btn-nav"> <span class="ico16 white login"></span> <span class="reg_info-user">EDPS Account</span> <nav class="user"> <ul> <li><a href="/component/services/">Login</a></li> </ul> </nav> </div> </div> <div class="clear"></div> </div> </div> <div class="header-nav"> <div class="wrap"> <a href="/" class="logo" title="Journal homepage"><img src="/templates/template1/images/aa/logo_aa.svg" alt="Astronomy & Astrophysics (A&A)"></a> <nav class="menu"> <ul class="menu"> <li class="item-122"><a href="/component/issues/?task=all&amp;Itemid=122" >All volumes</a></li><li class="item-443"><a href="/for-authors" >For authors</a></li></ul> </nav> <div class="custom search default"> <span class="ico ico-search" title="Display the search engine">Search</span> </div> <a href="#menu-mobile" class="nav-mobile-link">Menu</a> </div> <nav id="menu-mobile"> <ul class="menu"> <li class="item-145 deeper parent"><span class="separator">About A&amp;A</span> <ul><li class="item-137"><a href="/about-aa/aims-and-scope" >Aims and scope</a></li><li class="item-143"><a href="/about-aa/history" >History</a></li><li class="item-136"><a href="/about-aa/editors-of-aa" >Editors of A&amp;A</a></li><li class="item-140"><a href="/about-aa/board-of-directors" >Board of Directors</a></li><li class="item-138"><a href="/about-aa/indexed-in" >Indexed in</a></li><li class="item-139"><a href="/about-aa/copyright" >Copyright</a></li><li class="item-162"><a href="/images/stories/leaflet/aa_leaflet.pdf" target="_blank" >A&amp;A leaflet (PDF)</a></li><li class="item-530"><a href="https://www.edpsciences.org/images/stories/librarians/EDP-AA-S2O.pdf" target="_blank" >A&amp;A S2O leaflet (PDF)</a></li><li class="item-197"><a href="/about-aa/masthead" >Masthead</a></li></ul></li><li class="item-424 deeper parent"><span class="separator">Browse articles</span> <ul><li class="item-427"><a href="/component/issues/?task=all" >All volumes</a></li><li class="item-429"><a href="/component/list/?task=topic" >Special issues</a></li><li class="item-432"><a href="/component/forthcoming/" >Forthcoming</a></li><li class="item-435 active"><a href="/highlights" >Highlights</a></li><li class="item-221"><a href="/2024-press-releases" >Press releases</a></li><li class="item-533"><a href="/component/issues/?task=images" >Featured images</a></li></ul></li><li class="item-396 deeper parent"><a href="/for-authors" >For authors</a><ul><li class="item-161 deeper parent"><span class="separator">Author information</span> <ul><li class="item-186"><a href="/for-authors/author-information/paper-organization" >Paper organization</a></li><li class="item-232"><a href="/for-authors/author-information/news-from-the-editorial-office" >News from the Editorial Office</a></li><li class="item-192"><a href="/for-authors/author-information/page-charges" >Page charges</a></li><li class="item-173"><a href="/for-authors/author-information/acceptance-stage" >Acceptance stage</a></li><li class="item-159"><a href="/for-authors/author-information/production-stage" >Production stage</a></li><li class="item-233"><a href="/for-authors/author-information/copyright" >Copyright</a></li><li class="item-231"><a href="/for-authors/author-information/open-access" >Open Access</a></li><li class="item-196"><a href="/doc_journal/instructions/aadoc.pdf" target="_blank" >Author's guide (PDF)</a></li></ul></li><li class="item-189 deeper parent"><span class="separator">Language editing</span> <ul><li class="item-502"><a href="/for-authors/language-editing/1-introduction" >1. Introduction</a></li><li class="item-472"><a href="/for-authors/language-editing/2-main-guidelines" >2. Main guidelines for A&amp;A style</a></li><li class="item-475"><a href="/for-authors/language-editing/3-general-structure" >3. General structure</a></li><li class="item-478"><a href="/for-authors/language-editing/4-uk-versus-us-spelling-and-grammar" >4. UK versus US spelling and grammar</a></li><li class="item-481"><a href="/for-authors/language-editing/5-punctuation-and-style-concerns-regarding-equations-figures-tables-and-footnotes" >5. Punctuation and style concerns regarding equations, figures, tables, and footnotes</a></li><li class="item-484"><a href="/for-authors/language-editing/6-verb-tenses" >6. Verb tenses</a></li><li class="item-487"><a href="/for-authors/language-editing/7-general-hyphenation-guide" >7. General hyphenation guide</a></li><li class="item-490"><a href="/for-authors/language-editing/8-common-editing-issues" >8. Common editing issues</a></li><li class="item-493"><a href="/for-authors/language-editing/9-measurements-and-their-descriptions" >9. Measurements and their descriptions</a></li><li class="item-496"><a href="/for-authors/language-editing/10-suggested-resources-for-more-tips-on-language-editing-in-the-sciences" >10. Suggested resources for more tips on language editing in the sciences</a></li><li class="item-499"><a href="/images/stories/author/EnglishGuide-2021.pdf" target="_blank" >Full Guide (PDF file)</a></li></ul></li><li class="item-178 deeper parent"><span class="separator">LaTeX issues</span> <ul><li class="item-370"><a href="/for-authors/latex-issues/texnical-background-information" >TeXnical background information </a></li><li class="item-369"><a href="/for-authors/latex-issues/the-preamble-of-your-tex-file" >The preamble of your TEX file</a></li><li class="item-371"><a href="/for-authors/latex-issues/the-manuscript-header" >The manuscript header</a></li><li class="item-391"><a href="/for-authors/latex-issues/including-author-names-using-non-roman-alphabets" >Including author names using non-Roman alphabets</a></li><li class="item-372"><a href="/for-authors/latex-issues/the-main-text" >The main text</a></li><li class="item-373"><a href="/for-authors/latex-issues/figures" >Figures</a></li><li class="item-374"><a href="/for-authors/latex-issues/tables" >Tables</a></li><li class="item-375"><a href="/for-authors/latex-issues/multi-media" >Multimedia </a></li><li class="item-376"><a href="/for-authors/latex-issues/references" >References </a></li><li class="item-377"><a href="/for-authors/latex-issues/typography" >Typography</a></li><li class="item-378"><a href="/for-authors/latex-issues/appendices" >Appendices </a></li><li class="item-380"><a href="/for-authors/latex-issues/astronomical-objects-linking-to-databases" >Astronomical objects: linking to databases </a></li><li class="item-381"><a href="/for-authors/latex-issues/latex-examples" >LaTeX examples</a></li><li class="item-466"><a href="/for-authors/latex-issues/information-files" >Information files</a></li></ul></li><li class="item-456"><a href="https://writingstudio.aws.edpsciences.org/login" target="_blank" >Writing studio</a></li><li class="item-459"><a href="/for-authors/submit-an-article" >Submit an article</a></li></ul></li><li class="item-440"><a href="/component/journal_price/" >Subscriber information</a></li><li class="item-514"><a href="/subscribe-to-open-faqs" >Subscribe to Open (S2O) FAQs</a></li><li class="item-437"><a href="/component/services/" >Reader's services</a></li><li class="item-127"><a href="/news" >News</a></li></ul> </nav> </div> <div id="search" class="hidden"> <div class="wrap-search"> <form action="/component/solr/?task=quick_search" method="post"> <div class="wrap"> <div class="inputs"> <input type="text" name="q" /> <button type="submit" value="search"> <span class="ico ico-search" title="Search"></span> </button> </div> <div class="s_volume_page"> <a href="/component/searcharticle/?by=vol-page">Access by volume/page</a> </div> <div class="advanced"><a href="/component/solr/">Advanced Search</a></div> </div> </form> </div> </div> <script type="text/javascript"> jQuery(function ($) { var source = function (request, callback) { var term = request.term; $.ajax({ url: '/index.php', dataType: 'json', method: 'GET', data: { option: 'com_solr', task: 'auto_complete', query: term }, success: function (data) { var suggestions = []; try { data.suggest.default[term].suggestions.forEach(function (s) { suggestions.push(s.term)}) } catch (e) { } callback(suggestions); }, error: function (err) { callback([]); } }); }; $('#search').find('input[name=q]').autocomplete({ source: source }); }); </script> <div class="header-cover"> <div class="wrap"> </div> </div> </header> <main class="aa" id="main"> <!--div class="wrap"> <p>Message placeholder</p> </div--> <div class="wrap" > <div class="breadcrumbs"> <a href="/" class="pathway">Home</a> <img src="/media/system/images/arrow.png" alt="" /> <span>Highlights</span></div> <div id="content" class="id-222 "> <div> <nav class="nav-article nav-buttons"> <ul class="menu"> <li class="item-145 deeper parent"><span class="separator">About A&amp;A</span> <ul><li class="item-137"><a href="/about-aa/aims-and-scope" >Aims and scope</a></li><li class="item-143"><a href="/about-aa/history" >History</a></li><li class="item-136"><a href="/about-aa/editors-of-aa" >Editors of A&amp;A</a></li><li class="item-140"><a href="/about-aa/board-of-directors" >Board of Directors</a></li><li class="item-138"><a href="/about-aa/indexed-in" >Indexed in</a></li><li class="item-139"><a href="/about-aa/copyright" >Copyright</a></li><li class="item-162"><a href="/images/stories/leaflet/aa_leaflet.pdf" target="_blank" >A&amp;A leaflet (PDF)</a></li><li class="item-530"><a href="https://www.edpsciences.org/images/stories/librarians/EDP-AA-S2O.pdf" target="_blank" >A&amp;A S2O leaflet (PDF)</a></li><li class="item-197"><a href="/about-aa/masthead" >Masthead</a></li></ul></li><li class="item-424 deeper parent"><span class="separator">Browse articles</span> <ul><li class="item-427"><a href="/component/issues/?task=all" >All volumes</a></li><li class="item-429"><a href="/component/list/?task=topic" >Special issues</a></li><li class="item-432"><a href="/component/forthcoming/" >Forthcoming</a></li><li class="item-435 active"><a href="/highlights" >Highlights</a></li><li class="item-221"><a href="/2024-press-releases" >Press releases</a></li><li class="item-533"><a href="/component/issues/?task=images" >Featured images</a></li></ul></li><li class="item-396 deeper parent"><a href="/for-authors" >For authors</a><ul><li class="item-161 deeper parent"><span class="separator">Author information</span> <ul><li class="item-186"><a href="/for-authors/author-information/paper-organization" >Paper organization</a></li><li class="item-232"><a href="/for-authors/author-information/news-from-the-editorial-office" >News from the Editorial Office</a></li><li class="item-192"><a href="/for-authors/author-information/page-charges" >Page charges</a></li><li class="item-173"><a href="/for-authors/author-information/acceptance-stage" >Acceptance stage</a></li><li class="item-159"><a href="/for-authors/author-information/production-stage" >Production stage</a></li><li class="item-233"><a href="/for-authors/author-information/copyright" >Copyright</a></li><li class="item-231"><a href="/for-authors/author-information/open-access" >Open Access</a></li><li class="item-196"><a href="/doc_journal/instructions/aadoc.pdf" target="_blank" >Author's guide (PDF)</a></li></ul></li><li class="item-189 deeper parent"><span class="separator">Language editing</span> <ul><li class="item-502"><a href="/for-authors/language-editing/1-introduction" >1. Introduction</a></li><li class="item-472"><a href="/for-authors/language-editing/2-main-guidelines" >2. Main guidelines for A&amp;A style</a></li><li class="item-475"><a href="/for-authors/language-editing/3-general-structure" >3. General structure</a></li><li class="item-478"><a href="/for-authors/language-editing/4-uk-versus-us-spelling-and-grammar" >4. UK versus US spelling and grammar</a></li><li class="item-481"><a href="/for-authors/language-editing/5-punctuation-and-style-concerns-regarding-equations-figures-tables-and-footnotes" >5. Punctuation and style concerns regarding equations, figures, tables, and footnotes</a></li><li class="item-484"><a href="/for-authors/language-editing/6-verb-tenses" >6. Verb tenses</a></li><li class="item-487"><a href="/for-authors/language-editing/7-general-hyphenation-guide" >7. General hyphenation guide</a></li><li class="item-490"><a href="/for-authors/language-editing/8-common-editing-issues" >8. Common editing issues</a></li><li class="item-493"><a href="/for-authors/language-editing/9-measurements-and-their-descriptions" >9. Measurements and their descriptions</a></li><li class="item-496"><a href="/for-authors/language-editing/10-suggested-resources-for-more-tips-on-language-editing-in-the-sciences" >10. Suggested resources for more tips on language editing in the sciences</a></li><li class="item-499"><a href="/images/stories/author/EnglishGuide-2021.pdf" target="_blank" >Full Guide (PDF file)</a></li></ul></li><li class="item-178 deeper parent"><span class="separator">LaTeX issues</span> <ul><li class="item-370"><a href="/for-authors/latex-issues/texnical-background-information" >TeXnical background information </a></li><li class="item-369"><a href="/for-authors/latex-issues/the-preamble-of-your-tex-file" >The preamble of your TEX file</a></li><li class="item-371"><a href="/for-authors/latex-issues/the-manuscript-header" >The manuscript header</a></li><li class="item-391"><a href="/for-authors/latex-issues/including-author-names-using-non-roman-alphabets" >Including author names using non-Roman alphabets</a></li><li class="item-372"><a href="/for-authors/latex-issues/the-main-text" >The main text</a></li><li class="item-373"><a href="/for-authors/latex-issues/figures" >Figures</a></li><li class="item-374"><a href="/for-authors/latex-issues/tables" >Tables</a></li><li class="item-375"><a href="/for-authors/latex-issues/multi-media" >Multimedia </a></li><li class="item-376"><a href="/for-authors/latex-issues/references" >References </a></li><li class="item-377"><a href="/for-authors/latex-issues/typography" >Typography</a></li><li class="item-378"><a href="/for-authors/latex-issues/appendices" >Appendices </a></li><li class="item-380"><a href="/for-authors/latex-issues/astronomical-objects-linking-to-databases" >Astronomical objects: linking to databases </a></li><li class="item-381"><a href="/for-authors/latex-issues/latex-examples" >LaTeX examples</a></li><li class="item-466"><a href="/for-authors/latex-issues/information-files" >Information files</a></li></ul></li><li class="item-456"><a href="https://writingstudio.aws.edpsciences.org/login" target="_blank" >Writing studio</a></li><li class="item-459"><a href="/for-authors/submit-an-article" >Submit an article</a></li></ul></li><li class="item-440"><a href="/component/journal_price/" >Subscriber information</a></li><li class="item-514"><a href="/subscribe-to-open-faqs" >Subscribe to Open (S2O) FAQs</a></li><li class="item-437"><a href="/component/services/" >Reader's services</a></li><li class="item-127"><a href="/news" >News</a></li></ul> </nav> <div id="system-message-container"> </div> <nav class="component-nav"> <h3 class="pr-title">A&A Highlighted papers by year</h3> <ul class="menu pr"> <li class="item-531"><a href="/2024-highlights" >2024</a></li><li class="item-523"><a href="/2023-highlights" >2023</a></li><li class="item-517"><a href="/2022-highlights" >2022</a></li><li class="item-505"><a href="/2021-highlights" >2021</a></li><li class="item-467"><a href="/2020-highlights" >2020</a></li><li class="item-464"><a href="/2019-highlights" >2019</a></li><li class="item-412"><a href="/2018-highlights" >2018</a></li><li class="item-407"><a href="/2017-highlights" >2017</a></li><li class="item-399"><a href="/2016-highlights" >2016</a></li><li class="item-393"><a href="/2015-highlights" >2015</a></li><li class="item-126"><a href="/2014-highlights" >2014</a></li><li class="item-236"><a href="/2013-highlights" >2013</a></li><li class="item-125"><a href="/2012-highlights" >2012</a></li><li class="item-226"><a href="/2011-highlights" >2011</a></li><li class="item-228"><a href="/2010-highlights" >2010</a></li><li class="item-225"><a href="/2009-highlights" >2009</a></li><li class="item-224"><a href="/2008-highlights" >2008</a></li><li class="item-223"><a href="/2007-highlights" >2007</a></li></ul> <div class="btn-rss"><a title="Subscribe to A&amp;A press releases rss feed" href="http://feeds.feedburner.com/aa_highlights?format=xml" target="_blank" class="rss_btn">A&A highlights <span>&nbsp;</span></a></div> <h1> <span class="subheading-category">Latest highlights</span> </h1> </nav> <div class="blog hl"> <div class="news-container"> <div class="items-row cols-2 row-0"> <div class="item column-1"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 26 November 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 691</span><br /><span class="section">7. Stellar structure and evolution</span></p> <h2>Main sequence dynamo magnetic fields emerging in the white dwarf phase</h2> <span class="author">by Maria Camisassa, J.R. Fuentes, Matthias R. Schreiber, Alberto Rebassa-Mansergas, Santiago Torres, Roberto Raddi, Inma Dominguez <a href="https://www.aanda.org/10.1051/0004-6361/202452539"> 2024, A&amp;A, 691, L21</a> </span> <a href="/images/stories/highlight/vol691/aa52539.jpg" target="_blank" title="Click for full size image" class="a-img-hl"><img class="img-hl" src="/images/stories/highlight/vol691/aa52539_small.jpg" alt="alt" /></a> <p> Observations reveal a higher incidence of magnetism in older white dwarfs (WDs) with fully or partially crystallized cores compared to those with entirely liquid cores. The crystallization-driven dynamo mechanism invoked to explain these results has been challenged by recent numerical simulations, and in this work the authors explore an alternative hypothesis for the surface emergence of magnetic fields in isolated WDs. According to their scenario, WDs with masses higher than 0.55 solar masses are the descendants of main-sequence stars with convective cores able to generate strong dynamo magnetic fields, as indicated by asteroseismic evidence of strong magnetic fields buried within the interiors of red giant branch stars and by magnetohydrodynamic simulations. Assuming that subsequent convective zones disrupt these magnetic fields, the authors estimated the time when they should emerge to the surface (breakout times) for WDs with carbon-oxygen cores. They find that this emergence should occur during the WD phase for WDs with masses higher than about 0.65 M_\odot$ and that it can account for a significant portion of the observed magnetic WDs. </p> </div> <div class="item-separator"></div> </div> <div class="item column-2"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 02 July 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 687</span><br /><span class="section">6. Interstellar and circumstellar matter</span></p> <h2>Narrow absorption lines from intervening material in supernovae. I. Measurements and temporal evolution</h2> <span class="author">by Santiago Gonzalez-Gaitan, Claudia P. Gutierrez, Joseph P. Anderson, Antonia Morales-Garoffolo, Lluis Galbany, Sabyasachi Goswami, Ana M. Mourao , Seppo Mattila, Mark Sullivan <a href="https://www.aanda.org/10.1051/0004-6361/202348818"> 2024, A&amp;A, 687, A108</a> </span> <p/> It has often been noted by historians and sociologists of science that negative or null results remain in desk drawers. This paper stands as a striking counterexample. The authors present a meticulous study of the absorption lines from presumed circumstellar and galactic environments in early supernova spectra. The result is a caution regarding the interpretation of these lines and their variability, as well as a set of recipes for automated detection and measurement. In this age of big data and machine learning, such studies are needed to provide essential, real-world constraints. <p> </div> <div class="item-separator"></div> </div> <span class="row-separator"></span> </div> <div class="items-row cols-2 row-1"> <div class="item column-1"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 16 October 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 690</span><br /><span class="section">4. Extragalactic astronomy</span></p> <h2>Multi-wavelength spectroscopic analysis of the ULX Holmberg II X-1 and its nebula suggests the presence of a heavy black hole accreting from a B-type donor</h2> <span class="author">by S. Reyero Serantes, L. Oskinova, W.-R. Hamann, et al. <a href="https://www.aanda.org/10.1051/0004-6361/202451324"> 2024, A&amp;A, 690, A347</a> </span> </a> <p/> UltraLuminous X-ray sources (ULXs) are extragalactic X-ray sources brighter than ~5x1039 erg s-1, so that the radiation pressure, in normal conditions, can stop accretion unless the central object has a mass larger than ~40 M⊙. ULXs were discovered in the first X-ray images obtained by the Einstein satellite, back in the 1980s. These sources were indeed interpreted as the result of accretion onto intermediate-mass black holes in binary systems. This framework was revolutionised in 2014 by the discovery of coherent pulsations from one of the ULXs in the star-forming galaxy M82. Since then, the presence of intermediate-mass black holes in ULXs has always been regarded with caution. Beamed emission or a high magnetic field neutron star were often invoked to explain the overwhelming luminosity. In this paper, Reyero Serantes and collaborators carried out a multiwavelength spectral analysis of one of the brightest ULXs, Holmberg II X-1, and its circumstellar nebula. Studying the nebula, which acts as a calorimeter, and the ULX source itself, the authors were not able to find evidence of beaming. All the observational properties were accounted for by a close binary consisting of ≳ 66 M⊙ black hole accreting matter from a ~22 M⊙ B-supergiant companion. Holmberg II X-1 provides one of the first pieces of evidence for the progenitors of gravitational wave black hole binary mergers. <p> </div> <div class="item-separator"></div> </div> <div class="item column-2"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 27 June 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 687</span><br /><span class="section">1. Letter-to-the-Editor</span></p> <h2>Resonant sub-Neptunes are puffier</h2> <span class="author">by Adrien Leleu, Jean-Baptiste Delisle, Remo Burn, André Izidoro, Stéphane Udry, Xavier Dumusque, Christophe Lovis, Sarah Millholland, Léna Parc, François Bouchy, Vincent Bourrier, Yann Alibert, João Faria, Christoph Mordasini, and Damien Ségransan <a href="https://www.aanda.org/10.1051/0004-6361/202450587"> 2024, A&amp;A, 687, L1</a> </span> <p> Exoplanets whose masses have been measured through transit timing variations (TTVs) have systematically lower densities than those whose masses have been measured with radial velocities (RVs). This discrepancy was initially feared to reflect shortcomings in the TTV mass measurement methods. It was later attributed to either a measurement bias, from RVs struggling to measure masses as low as TTVs can for planetary systems close to a dynamical resonance, or to a true difference in the properties of resonant and nonresonant planets. Leleu et al establish through a careful statistical analysis that the latter is true: that resonant planets, including those measured only through RVs, do have lower densities, and that the density of a planet increases with its distance from a resonance. They show that these observational trends have counterparts in synthetic planet populations, in which the nonresonant planets went through giant collisions that both increased their densities and expanded their orbits. </p> </div> <div class="item-separator"></div> </div> <span class="row-separator"></span> </div> <div class="items-row cols-2 row-2"> <div class="item column-1"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 08 October 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 690</span><br /><span class="section">9. The Sun and the Heliosphere</span></p> <h2>The solar beryllium abundance revisited with 3D non-LTE models</h2> <span class="author">by A. M. Amarsi, D. Ogneva, G. Buldgen, N. Grevesse, Y. Zhou, P. S. Barklem <a href="https://www.aanda.org/10.1051/0004-6361/202451778"> 2024, A&A, 690, A128</a> </span> <p/> The solar chemical composition is a key reference in astronomy, serving as a yardstick against which all other cosmic objects may be compared, and as a test of stellar evolution models. In this study, the authors revisit the beryllium abundance in the solar atmosphere by analyzing the Be II 313.107 nm resonance line in the solar spectrum. This is the first work to employ 3D non-LTE models together with a comprehensive calibration technique to account for missing line and continuous opacity. The authors find an abundance that is 0.17 dex lower than the value commonly adopted since 2004. It is also 0.11 dex lower than the initial beryllium abundance in the protosun, as inferred from the CI chondrite class of meteorites, which suggests that material from the solar convective zone has been mixed into the radiative interior, where beryllium ignites at temperatures of around 3.5 million K. This result places stringent constraints on the, as of yet unknown, physical process responsible for the observed depletion, which in turn opens new avenues for detailed studies of the dynamical processes acting in the solar interior and their impact on the evolution of the Sun and solar twins. <p> </div> <div class="item-separator"></div> </div> <div class="item column-2"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 20 June 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 686</span><br /><span class="section">10. Planets and planetary systems</span></p> <h2>Into the thick of it: ALMA 0.45 mm observations of HL Tau at a resolution of 2 au</h2> <span class="author">by Osmar M. Guerra-Alvarado, Carlos Carrasco-González, Enrique Macías, Nienke van der Marel, Adrien Houge, Luke T. Maud, Paola Pinilla, Marion Villenave, Yoshiharu Asaki, Elizabeth Humphreys <a href="https://www.aanda.org/10.1051/0004-6361/202349046"> 2024, A&amp;A, 686, A298</a> </span> <a href="/images/stories/highlight/vol686/49046Guerra-Alvarado.jpg" target="_blank" title="Click for full size image" class="a-img-hl"><img class="img-hl" src="/images/stories/highlight/vol686/49046Guerra-Alvarado-small.jpg" alt="alt" /></a> <p> The disk orbiting the pre-main-sequence star HL Tau presents a series of striking bright and dark rings that have been mapped with the ALMA telescope in an already iconic image. The origin of these rings is still under debate, but a favored interpretation is that they originate from the interaction between the disk and its nascent planets. To further characterize the dust in the HL Tau disk, Osmar Guerra-Alvarado and collaborators present new ALMA images with a higher resolution of 2 au at a wavelength of 0.45 mm. At this higher frequency, the emission from the dust is optically thick and therefore highly sensitive to the temperature structure of the dust. These new images reveal an asymmetry in the emission coming from the first ring that is interpreted as a combination of very optically thick emission, a moderately inclined disk, and a large dust scale height. The images, in addition, show an increase in brightness temperature inside the estimated water snow line. This could indicate a pileup of small particles due to a decrease in the drift velocity of the small grains after crossing the water snow line. </p> </div> <div class="item-separator"></div> </div> <span class="row-separator"></span> </div> <div class="items-row cols-2 row-3"> <div class="item column-1"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 04 October 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 690</span><br /><span class="section">7. Stellar structure and evolution</span></p> <h2>Asymmetries in asymptotic giant branch stars and their winds. I. From 3D RHD models to synthetic observables</h2> <span class="author">by Joachim Wiegert, Bernd Freytag, Susanne Höfner <a href="https://www.aanda.org/10.1051/0004-6361/202450077"> 2024, A&amp;A, 690, A162</a> </span> <a href="/images/stories/highlight/vol690/aa50077.jpg" target="_blank" title="Click for full size image" class="a-img-hl"><img class="img-hl" src="/images/stories/highlight/vol690/aa50077small.jpg" alt="alt" /></a> <p> Between JWST and ALMA, the ability to spatially resolve the environments of evolved stars has become almost routine. This paper illustrates the wealth of possible structures that can result from asymptotic giant branch evolution. Combining state-of-the-art hydrodynamic modeling and a suite of radiative transfer models, this study presents synthetic spectral energy distributions and monochromatic images for a range of dust properties and viewing angles for realistic observing constraints of distance and angular resolution. However, these dramatic simulations also demonstrate the requirements for the proper interpretation of observed structures: channel maps and multiwavelength comparisons are essential. </p> </div> <div class="item-separator"></div> </div> <div class="item column-2"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 05 June 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 686</span><br /><span class="section">5. Galactic structure, stellar clusters and populations</span></p> <h2>22Ne distillation and the cooling sequence of the old metal-rich open cluster NGC 6791</h2> <span class="author">by Maurizio Salaris, Simon Blouin, Santi Cassisi, Luigi R. Bedin <a href="https://www.aanda.org/10.1051/0004-6361/202449209">2024, A&amp;A, 686, A153</a> </span> <a href="/images/stories/highlight/vol686/49209salaris.jpg" target="_blank" title="Click for full size image" class="a-img-hl"><img class="img-hl" src="/images/stories/highlight/vol686/49209salaris-small.jpg" alt="alt" /></a> <p> There is a significant correlation between the luminosity of white dwarfs (WDs) and their cooling age, rendering WDs invaluable as cosmic timekeepers. However, the accuracy of this temporal gauge hinges upon precise WD models, particularly the processes governing their energy reservoirs. Recent simulations have unveiled a notable phenomenon: the efficient transport of 22Ne within a CO WD toward its core, resulting in the release of gravitational energy and consequent cooling delays spanning several gigayears. This paper presents pioneering calculations that integrate CO crystallization, phase separation, 22Ne diffusion in the liquid phase, and distillation during CO crystallization. The novel model successfully replicates the faint end of the luminosity function observed in WDs within the old, metal-rich open cluster NGC 6791. A forthcoming comparison with the color-magnitude diagram of NGC 6791 observed by the James Webb Space Telescope (JWST) holds promise for validating the models and refining our understanding of neon distillation efficiency. </p> </div> <div class="item-separator"></div> </div> <span class="row-separator"></span> </div> <div class="items-row cols-2 row-4"> <div class="item column-1"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 26 September 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 689</span><br /><span class="section">14. Catalogs and data</span></p> <h2>The VISTA Variables in the Vía Láctea eXtended (VVVX) ESO public survey: Completion of the observations and legacy</h2> <span class="author">by R. K. Saito, M. Hempel, J. Alonso-García, P. W. Lucas, et al. <a href="https://www.aanda.org/10.1051/0004-6361/202450584"> 2024, A&amp;A, 689, A148</a> </span> <p> The low-latitude regions of the Milky Way are a hostile environment for optical astronomers, owing to the high extinction obscuring the targets of interest. Therefore, it is imperative to resort to large-scale, infrared surveys to unravel the diverse populations and astrophysics that make up the central parts of our Galaxy. With the final release of its vast dataset (several tens of Tb), the VISTA Variables in the Vía Láctea eXtended (VVVX) survey lays a new foundation for studying stellar populations at low latitudes in the infrared JHKs filters. Combining the earlier VVV and its extension (VVVX), 4% of the sky was sampled at a time coverage of 4200 hours over 15 years. This all came to fruition by the release of data for over 1.5 billion point sources, including their proper motions and distances, using well-calibrated distance indicators such as red clump or variable RR Lyrae stars. The resulting unique map allows for a vast range of science returns, from the discovery and characterization of hidden star clusters, to the study of low-mass stars and exoplanets, monitoring of microlensing events, and, last but not least, the eponymous variable stars. </p> </div> <div class="item-separator"></div> </div> <div class="item column-2"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 05 June 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 686</span><br /><span class="section">10. Planets and planetary systems</span></p> <h2>A 3D picture of moist-convection inhibition in hydrogen-rich atmospheres: Implications for K2-18b</h2> <span class="author">by Jérémy Leconte, Aymeric Spiga, Noé Clément, et al. <a href="https://www.aanda.org/10.1051/0004-6361/202348928">2024, A&amp;A, 686, A131</a> </span> <p> The issue of convective inhibition has received increased attention from a diverse range of planetary research groups around the world as its centrality to understanding the atmospheric dynamics and thermal evolution of the Solar System and exoplanets has become increasingly apparent. So far, researchers have relied primarily on linear stability analysis to draw conclusions, and the applicability of the involved assumptions to real systems has been suspect. This work addresses the major shortcoming of prior works by constructing highly detailed, physically realistic, 3D, cloud-resolving simulations of model planetary atmospheres to (computationally) demonstrate the phenomenon empirically. The insights from these high-fidelity simulations are used to construct self-consistent 1D models, which are then compared against analytical theory. This paper represents a giant leap forward in our understanding of the fundamental fluid dynamics of planetary atmospheres in our Solar System and beyond, both lending credibility to existing studies and elucidating new phenomena. </p> </div> <div class="item-separator"></div> </div> <span class="row-separator"></span> </div> <div class="items-row cols-2 row-5"> <div class="item column-1"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 24 September 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 689</span><br /><span class="section">5. Galactic structure, stellar clusters and populations</span></p> <h2>eROSITA narrowband maps at the energies of soft X-ray emission lines</h2> <span class="author">by Xueying Zheng, Gabriele Ponti, Nicola Locatelli, et al. <a href="https://www.aanda.org/10.1051/0004-6361/202449398"> 2024, A&A, 689, A328</a> </span> <p/> The promise of the eROSITA mission is demonstrated in dramatic fashion with the publication of these soft X-ray emission line half-sky maps. Elucidating the hot phase of the interstellar medium requires observations in the soft X-ray band, below about 2 keV. The mission's most important innovation is its spectral resolution, which permits spectrophotometric mapping of the sky in the emission lines that dominate the cooling of the medium, principally during high-ionization stages of oxygen, in addition to the broadband continuum emission. This paper presents maps of the third and fourth Galactic quadrants, which show strong variations in the O VII/O VI line ratio (a proxy measure of temperature) along the Galactic plane and an asymmetry on the order of ten percent between the northern and southern hemispheres on scales of tens of degrees. Such structuring will be essential information for modeling the effects of stellar feedback, especially superbubbles, and the imbedding of molecular clouds within this medium. </p> </div> <div class="item-separator"></div> </div> <div class="item column-2"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 31 May 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 686</span><br /><span class="section">11. Celestial mechanics and astrometry</span></p> <h2>A new pulsar timing model for scalar-tensor gravity with applications to PSR J2222-0137 and pulsar-black hole binaries</h2> <span class="author">by A. Batrakov, H. Hu, N. Wex, P.C.C. Freire, V. Venkatraman Krishnan, M. Kramer, Y. J. Guo, L. Guillemot, J. W. McKee, I. Cognard, G. Theureau <a href="https://www.aanda.org/10.1051/0004-6361/202245246"> 2024, A&amp;A, 686, A101</a> </span> <a href="/images/stories/highlight/vol686/45246Batrakov.jpg" target="_blank" title="Click for full size image" class="a-img-hl"><img class="img-hl" src="/images/stories/highlight/vol686/45246Batrakov-small.jpg" alt="alt" /></a> <p> General relativity has been tested in great detail thanks to relativistic binary pulsars. The double binary pulsar PSR J0737-3039 allowed us to reach a 99.99% accuracy. Despite this, tests of alternative theories of gravity continue (and must continue for the good of science). In this paper, Batrakov and collaborators put forward a new formalism to enable the testing of scalar-tensor theories of gravity (STG). In this class of theories, an additional scalar field is coupled to matter such that the law of gravitation is dependent on velocity and/or location. The authors then apply this new formalism (called DDSTG) to the binary pulsar PSR J2222-0137, slightly improving the existing limits of STG theories. They also discuss the limits that can be reached with an as yet undiscovered neutron star-black hole binary system. </p> </div> <div class="item-separator"></div> </div> <span class="row-separator"></span> </div> <div class="items-row cols-2 row-6"> <div class="item column-1"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 21 August 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 688</span><br /><span class="section">4. Extragalactic astronomy</span></p> <h2>MHONGOOSE: A MeerKAT nearby galaxy survey</h2> <span class="author">by W.J.G. de Blok, J. Healy, F.M. Maccagni, et al. <a href="https://www.aanda.org/10.1051/0004-6361/202348297">2024, A&amp;A, 688, A109</a> </span> <p> The timescales for gas consumption by star formation for the inner regions of nearby spiral galaxies are much shorter than a Hubble time, so if these galaxies are to continue forming stars at their current rate, they need an external supply of gas. A possible source of this fresh material is the accretion of cold gas from the galactic halo, a process that could be observed through its HI emission signature. To search for this signature, the MHONGOOSE (MeerKAT HI Observations of Nearby Galactic Objects: Observing Southern Emitters) survey is using the MeerKAT interferometer in South Africa to perform ultra-deep HI observations of 30 nearby gas-rich spiral and dwarf galaxies. The goal of the survey is to detect and characterize any low-column density, potentially infalling atomic gas and to probe its link to star formation. While the survey is still ongoing, Erwin de Block and collaborators present an overview of the survey that includes the sample selection, survey design, and observation and reduction procedures. They also present initial results based on the full-depth data of a limited number of galaxies and single-track observations of the complete sample. </p> </div> <div class="item-separator"></div> </div> <div class="item column-2"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 29 May 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 686</span><br /><span class="section">10. Planets and planetary systems</span></p> <h2>Atmospheric entry and fragmentation of the small asteroid 2024 BX1: Bolide trajectory, orbit, dynamics, light curve, and spectrum</h2> <span class="author">by P. Spurny, J. Borovicka , L. Shrbeny, M. Hankey, R. Neubert <a href="https://www.aanda.org/10.1051/0004-6361/202449735">2024, A&amp;A, 686, A67</a> </span> <a href="/images/stories/highlight/vol685/aa49735.jpg" target="_blank" title="Click for full size image" class="a-img-hl"><img class="img-hl" src="/images/stories/highlight/vol685/aa49735_small.jpg" alt="alt" /></a> <p> The asteroid 2024 BX1 collided with Earth on January 21, 2024, a few hours after its discovery. In this paper, the authors analyze the fireball associated with the atmospheric entry and fragmentation of this asteroid. They utilize data recorded by the European Fireball Network, particularly its Czech component, and the AllSky7 network. The majority of the data consist of optical, that is to say photographic, and video recordings, though the authors also utilized radiometric and spectral records to determine asteroid properties. Leveraging these datasets and employing a method developed by one of the authors, they successfully pinpointed the trajectory of the bolide and its fragments with a sufficient accuracy to permit the recovery of meteorites. Specifically, they anticipate four fragments with a mass exceeding 100 grams. The asteroid is estimated to have had an initial mass of 140 kilograms and is classified as an aubrite, characterized by its low iron content. </p> </div> <div class="item-separator"></div> </div> <span class="row-separator"></span> </div> <div class="items-row cols-2 row-7"> <div class="item column-1"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 08 August 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 688</span><br /><span class="section">4. Extragalactic astronomy</span></p> <h2>A JVLA, LOFAR, e-Merlin, VLBA, and EVN study of RBS 797: can binary supermassive black holes explain the outburst history of the central radio galaxy?</h2> <span class="author">by F. Ubertosi, M. Giroletti, M. Gitti, et al. <a href="https://www.aanda.org/10.1051/0004-6361/202349011"> 2024, A&amp;A, 688, A86</a> </span> <p> The study of precessing jets has been a small industry since the first radio imaging studies of SS 433. Inspired by that work, the authors present a new take on the dynamics and evolution using a multiwavelength approach, combining X-ray and radio data, to tease out the history of precessing jets launched from a possible binary supermassive black hole. The structures cover an enormous span of time and length scales, indicating different phases of nuclear activity. The outermost structures are some 30-50 Myr old, while the inner kiloparsec shows what the authors interpret as a precessing structure of variable intensity and alignment that they link to the activity of the central engine on timescales as short as months. The radio and X-ray morphologies provide a new signature of the presence of a binary central beast. </p> </div> <div class="item-separator"></div> </div> <div class="item column-2"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 27 May 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 685</span><br /><span class="section">7. Stellar structure and evolution</span></p> <h2>Discovery of a dormant 33 solar-mass black hole in pre-release Gaia astrometry</h2> <span class="author">by Gaia Collaboration: P. Panuzzo, T. Mazeh, F. Arenou, B. Holl, E. Caffau, A. Jorissen, C. Babusiaux, P. Gavras, J. Sahlmann, U. Bastian, Ł. Wyrzykowski, L. Eyer, et al. <a href="https://www.aanda.org/10.1051/0004-6361/202449763">2024, A&amp;A, 685, L2</a> </span> <a href="/images/stories/highlight/vol685/aa49763.jpg" target="_blank" title="Click for full size image" class="a-img-hl"><img class="img-hl" src="/images/stories/highlight/vol685/aa49763_small.jpg" alt="alt" /></a> <p> Detections of gravitational waves from merging black holes demonstrate that pairs of black holes more massive than 30 solar masses are relatively common in the nearby universe. Yet, the most massive black hole known to date in our Galaxy is 20 solar mass Cyg X1, with all others below or around 10 solar masses. As part of the validation effort for the fourth Gaia data release (DR4), the Gaia consortium identified a 33 solar mass black hole, Gaia BH3, through the astrometric apparent motion of its companion. Radial velocity measurements, from both Gaia and ground-based observatories, confirm the orbit. This detection fills the gap between the masses of previously known Galactic black holes and detections of mergers through gravitational waves. Analysis of an UVES spectrum of the companion shows that its metallicity is [Fe/H]=-2.6, consistent with the hypothesis that a low stellar metallicity helps form more massive black holes. This exciting discovery is no doubt only a harbinger of the detections to be expected in DR4, which will help characterize Galactic black holes as a population. </p> </div> <div class="item-separator"></div> </div> <span class="row-separator"></span> </div> <div class="items-row cols-2 row-8"> <div class="item column-1"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 06 August 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 688</span><br /><span class="section">8. Stellar atmospheres</span></p> <h2>3D non-local thermodynamic equilibrium magnesium abundances reveal a distinct halo population</h2> <span class="author">by T. Matsuno, A.M. Amarsi, M. Carlos, P.E. Nissen <a href="https://www.aanda.org/10.1051/0004-6361/202450057"> 2024, A&amp;A, 688, A77</a> </span> <p> Chemical abundances of stars are the fossil record of their formation environment and can be used to disentangle stellar populations with different origins, especially when they are measured with high precision. One example is the discovery of two major populations in the Milky Way halo, high-Mg stars and low-Mg stars, which are respectively considered to have formed in the Milky Way and in dwarf galaxies, disrupted by and accreted onto our Galaxy. </p> <p> The authors have employed state-of-the-art modeling of stellar spectra in 3D stellar atmospheres under nonlocal thermodynamic equilibrium (non-LTE) for precise and accurate Mg abundance measurements. They find that the 3D non-LTE analysis significantly improves the consistency of the Mg abundances derived from Mg I and Mg II lines. When the 3D non-LTE analysis is applied to the Mg abundance of Milky Way halo stars in the solar neighborhood, the authors find further subpopulations among the low-Mg stars that also show different kinematics and hence have different origins. This work demonstrates the importance of 3D non-LTE analysis for studying stellar populations in the Milky Way using the chemical abundances of stars. </p> </div> <div class="item-separator"></div> </div> <div class="item column-2"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 14 May 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 685</span><br /><span class="section">4. Extragalactic astronomy</span></p> <h2>A quasar-galaxy merger at z~6.2: Black hole mass and quasar properties from the NIRSpec spectrum</h2> <span class="author">by Federica Loiacono, Roberto Decarli, Marco Mignoli, Emanuele Paolo Farina, et al. <a href="https://www.aanda.org/10.1051/0004-6361/202348535">2024, A&amp;A, 684, A121</a> </span> <p> The authors used JWST NIRSpec to obtain high resolution integral field spectroscopy of the spectacular system composed of a quasar host interacting with two companion galaxies, namely PJ308-21 at z=6.23. The quasar has an inferred black hole mass of 2-3x10^9 Msol and an Eddington ratio of 0.67, which is in line with the population of the most distant quasars. Most notably, the new data reveal the presence of significant outflowing ionized gas, which was detected thanks to an accurate modeling of the [OIII] emission which is blue-shifted by almost 2000 km/s. Such high velocity outflows in early galaxies are predicted by models to play a significant role in regulating black hole and galaxy growth, but we have not been able to detect them unambiguously so far. This study might in fact be the first example of such strong outflows in the epoch of reionization and it confirms the unique capabilities of NIRSpec in allowing detailed studies of quasars at very early times even with modest integration times. </p> </div> <div class="item-separator"></div> </div> <span class="row-separator"></span> </div> <div class="items-row cols-2 row-9"> <div class="item column-1"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 05 July 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 687</span><br /><span class="section">5. Galactic structure, stellar clusters and populations</span></p> <h2>Chronology of our Galaxy from Gaia colour--magnitude diagram fitting (ChronoGal). I. The formation and evolution of the thin disc from the Gaia Catalogue of Nearby Stars</h2> <span class="author">by Gallart et al. <a href="https://www.aanda.org/10.1051/0004-6361/202349078"> 2024, A&amp;A, 687, A168</a> </span> <p> Studying the star formation history (SFH) of the Milky Way on a star-to-star basis is still an expensive endeavor. To address this, the authors introduce a new tool for deriving this SFH by fitting color-magnitude diagrams (CMDs) based on Gaia data. After being used to obtain the metallicity and age distributions of the solar neighborhood, the new method was applied to the complete catalog of stars within 100 pc of the Sun, comprising mostly (but not only) thin-disk stars. As a result, the authors find that stars at the solar radius predominantly formed at solar metallicities early on (~11 Gyr ago) until a break occurred and three stellar populations emerged from ``some dramatic event’’ in the Milky Way’s life. This period was then followed by more significant star formation that occurred in a bursty manner. Intriguingly, thick-disk stars were also found in the sample. The results could be independently confirmed with high-precision spectroscopy: the presented CMD fitting technique achieved an accuracy and precision better than 10%, thereby providing an important proof-of-concept for detailed, future studies of the formation history of the Milky Way disk(s). </p> </div> <div class="item-separator"></div> </div> <div class="item column-2"> <dl class="article-info"> <dt class="article-info-term">Details</dt> <dd class="published"> Published on 24 April 2024 </dd> </dl> <div class="intro-hl"> <p class="nfo"><span class="volume">Vol. 684</span><br /><span class="section">5. Galactic structure, stellar clusters and populations</span></p> <h2>Observed kinematics of the Milky Way nuclear stellar disk region</h2> <span class="author">by M. Zoccali, A. Rojas-Arriagada, E. Valenti, R. Contreras Ramos, A. Valenzuela-Navarro, C. Salvo-Guajardo <a href="https://www.aanda.org/10.1051/0004-6361/202347923">2024, A&amp;A, 684, A214</a> </span> <p>Zooming into the central regions of the Milky Way unravels a great deal of structures, though often obscured by large extinction. These comprise the Galactic bulge at the kiloparsec scale, down to stellar and gaseous components with a 100 pc extent, as also seen in other galaxies. In past works, a flat, stellar disk with a 150 pc radius was discovered, it appears to cohabit with the dense molecular disk in the inner regions, and it is believed to rotate faster than its surroundings. For the present work, the authors combined the kinematics of red clump stars (to alleviate reddening issues) from the infrared APOGEE and VVV surveys to search for rotation in fields in and outside of the purported stellar disk. A rotational signal — in the sense of eastward and westward motion — of stars of different magnitudes (read, distances) of the nuclear region was indeed detected as expected. However, the team also found a kinematic structure with only one velocity direction present, which they interpret as the missing component being vignetted by the molecular zone, blocking stars behind itself. Thus there appears to be no clear signal of the nuclear stellar disk as a distinct kinematic component, which highlights the need for also a careful analysis of comparison fields, ultimately shedding more light on the mystery of the Galactic central regions.</p> </div> <div class="item-separator"></div> </div> <span class="row-separator"></span> </div> </div> <div class="pagination"> <p class="counter"> Page 1 of 2 </p> <ul><li class="pagination-start"><span class="pagenav">Start</span></li><li class="pagination-prev"><span class="pagenav">Prev</span></li><li><span class="pagenav">1</span></li><li><a title="2" href="/highlights?start=20" class="pagenav">2</a></li><li class="pagination-next"><a title="Next" href="/highlights?start=20" class="pagenav">Next</a></li><li class="pagination-end"><a title="End" href="/highlights?start=20" class="pagenav">End</a></li></ul> </div> </div> <div class="clear"></div> </div> </div> </main> <footer> <div class="footer-journal"> <div class="wrap"> <div class="footer-infos"> <h3>Astronomy & Astrophysics (A&A)</h3> <div class="flexme flexme3"> <div class="c13"> <p> Editor-in-Chief: T. Forveille<br /> Letters Editor-in-Chief: J. Alves<br /> Managing Editor: D. Elbaz <br /> </p> </div> <div class="c13"> <p>ISSN: 0004-6361 ; e-ISSN: 1432-0746<br /> Frequency: 12 volumes per year<br /> Published by: EDP Sciences<br /> </p> </div> <div class="c13"> <p> &copy; The European Southern Observatory (<a target="_blank" href="http://www.eso.org/">ESO</a>) </p> </div> </div> </div> <div class="footer-social"> <ul class="ico-social"> <li><a class="twitter" title="Follow us on twitter" target="_blank" href="https://twitter.com/AandA_journal"></a></li> <li><a class="facebook" title="Follow us on Facebook" target="_blank" href="https://www.facebook.com/Astronomy-Astrophysics-192738067986000/"></a></li> <!--li><a class="linkedin" title="Follow us on LinkedIn" target="_blank" href="https://www.linkedin.com/company/edp-sciences"></a></li--> <!--li><a class="google" title="Follow us on Google+" target="_blank" href="https://plus.google.com/+EdpsciencesOrg"></a></li--> <li><a class="rss" title="Accéder aux flux RSS" href="/component/rsslist/?task=journal"></a></li> <li><a class="alert" title="Alerte courriel" href="/component/services/?label=toc_email"></a></li> </ul> </div> </div> </div> <div> </div> <div class="footer-edp"> <div class="wrap"> <a href="https://www.edpsciences.org/" target="_blank" title="EDP Sciences website"><img src="/templates/source/images/logos/logo_edp_fff.svg" alt="EDP Sciences"></a> <ul class="menu"> <li class="item-175"><a href="/mentions-legales" >Mentions légales</a></li><li class="item-174"><a href="https://www.edpsciences.org/en/contact-us/contact-form?subject=Astronomy%20%26%20Astrophysics&amp;contactid=5" >Contacts</a></li><li class="item-442"><a href="https://www.edpsciences.org/en/privacy-policy" target="_blank" >Privacy policy</a></li></ul> </div> </div> <div class="footer-ptf"> <div class="wrap"> <div class="position-footer-ptf"></div> <div class="link-vfp"><a href="https://www.vision4press.org" target="_blank">A Vision4Press website</a></div> </div> </div> </footer> </div> <script src="/templates/source/js/mmenu2/dist/js/jquery.mmenu.all.min.js"></script> <script src="/templates/template1/js/script.js"></script> <span class="translations" data-name="separator_and" data-value="and"></span> <span class="translations" data-name="select_all" data-value="Select all"></span> <span class="translations" data-name="unselect_all" data-value="Unselect all"></span> <span class="translations" data-name="show_short_summary" data-value="Show short summary"></span> <span class="translations" data-name="hide_short_summary" data-value="Hide short summary"></span> <span class="translations" data-name="cookie_text" data-value="By using this website, you agree that EDP Sciences may store web audience measurement cookies and, on some pages, cookies from social networks. <a href='/component/cookie_policy/'>More information and setup</a>"></span> <span class="translations" data-name="cookie_close" data-value="Click to close this notification"></span> <span class="translations" data-name="cookie_close_btn" data-value="OK"></span> <span class="translations" data-name="loading" data-value="Loading author..."></span> <span class="translations" data-name="view_fullscreen" data-value="Click to view fullscreen"></span> <span class="translations" data-name="hide_fullscreen" data-value="Click anywhere to hide the fullscreen overlay"></span> <span class="translations" data-name="play_movie" data-value="Click to play the movie"></span> <span class="translations" data-name="cookie_is_mobile" data-value=""></span> <span class="translations" data-name="add_to_cart" data-value="Add to cart"></span> <span class="translations" data-name="remove_from_cart" data-value="Remove from cart"></span> <span class="translations" data-name="loading_cart" data-value="Loading..."></span> <span class="translations" data-name="empty_cart" data-value="Your cart is empty"></span> <span class="translations" data-name="terms_agreeement" data-value="You must agree the Purchase Agreement Terms and Conditions."></span> <span class="translations" data-name="makeref_url" data-value="/component/makeref/?task=show&amp;type=html&amp;doi="></span> <span class="translations" data-name="set_cart_article_status_url" data-value="/component/services/?task=set_cart_article_status"></span> <span class="translations" data-name="get_shopping_cart_url" data-value="/component/services/?task=get_shopping_cart_list"></span> <span class="translations" data-name="clear_shopping_cart_url" data-value="/component/services/?task=clear_shopping_cart"></span> <span class="translations" data-name="get_billing_url" data-value="/component/services/?label=ppv&amp;task=get_billing"></span> <span class="translations" data-name="authors_url" data-value="/component/article/?task=get_authors"></span> <span id="google_analytics" data-host="ovh-canada" data-domain="www.aanda.org" data-t1="UA-39520934-1" data-t2="UA-5187131-2" class="hidden"></span> <div id="wait" style="display:none"></div> <script src="/templates/source/js/cookie.js"></script> <script src="/templates/source/js/common.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10