CINXE.COM

Timeline of quantum mechanics - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Timeline of quantum mechanics - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"8e84f87d-a495-4c6a-9332-7720a4d2d184","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Timeline_of_quantum_mechanics","wgTitle":"Timeline of quantum mechanics","wgCurRevisionId":1238544102,"wgRevisionId":1238544102,"wgArticleId":24084197,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Webarchive template wayback links","CS1 maint: multiple names: authors list","CS1 errors: periodical ignored","Articles with short description","Short description is different from Wikidata","Articles that may contain original research from April 2012","All articles that may contain original research","Wikipedia articles in need of updating from April 2024","All Wikipedia articles in need of updating","History of physics","Physics timelines", "Quantum mechanics"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Timeline_of_quantum_mechanics","wgRelevantArticleId":24084197,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":80000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true, "wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q7806180","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site", "mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Timeline of quantum mechanics - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Timeline_of_quantum_mechanics"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Timeline_of_quantum_mechanics"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Timeline_of_quantum_mechanics rootpage-Timeline_of_quantum_mechanics skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Timeline+of+quantum+mechanics" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Timeline+of+quantum+mechanics" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Timeline+of+quantum+mechanics" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Timeline+of+quantum+mechanics" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-19th_century" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#19th_century"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>19th century</span> </div> </a> <ul id="toc-19th_century-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-20th_century" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#20th_century"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>20th century</span> </div> </a> <button aria-controls="toc-20th_century-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle 20th century subsection</span> </button> <ul id="toc-20th_century-sublist" class="vector-toc-list"> <li id="toc-1900–1909" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1900–1909"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>1900–1909</span> </div> </a> <ul id="toc-1900–1909-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1910–1919" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1910–1919"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>1910–1919</span> </div> </a> <ul id="toc-1910–1919-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1920–1929" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1920–1929"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>1920–1929</span> </div> </a> <ul id="toc-1920–1929-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1930–1939" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1930–1939"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>1930–1939</span> </div> </a> <ul id="toc-1930–1939-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1940–1949" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1940–1949"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>1940–1949</span> </div> </a> <ul id="toc-1940–1949-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1950–1959" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1950–1959"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>1950–1959</span> </div> </a> <ul id="toc-1950–1959-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1960–1969" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1960–1969"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7</span> <span>1960–1969</span> </div> </a> <ul id="toc-1960–1969-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1971–1979" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1971–1979"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.8</span> <span>1971–1979</span> </div> </a> <ul id="toc-1971–1979-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-1980–1999" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#1980–1999"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.9</span> <span>1980–1999</span> </div> </a> <ul id="toc-1980–1999-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-21st_century" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#21st_century"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>21st century</span> </div> </a> <ul id="toc-21st_century-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliography" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliography"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Bibliography</span> </div> </a> <ul id="toc-Bibliography-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Timeline of quantum mechanics</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 3 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-3" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">3 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AC%D8%AF%D9%88%D9%84_%D8%B2%D9%85%D8%A7%D9%86%DB%8C_%D9%85%DA%A9%D8%A7%D9%86%DB%8C%DA%A9_%DA%A9%D9%88%D8%A7%D9%86%D8%AA%D9%88%D9%85%DB%8C" title="جدول زمانی مکانیک کوانتومی – Persian" lang="fa" hreflang="fa" data-title="جدول زمانی مکانیک کوانتومی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Cronologia_della_meccanica_quantistica" title="Cronologia della meccanica quantistica – Italian" lang="it" hreflang="it" data-title="Cronologia della meccanica quantistica" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%A6%E3%81%AE%E5%B9%B4%E8%A1%A8" title="量子力学の年表 – Japanese" lang="ja" hreflang="ja" data-title="量子力学の年表" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q7806180#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Timeline_of_quantum_mechanics" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Timeline_of_quantum_mechanics" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Timeline_of_quantum_mechanics"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Timeline_of_quantum_mechanics"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Timeline_of_quantum_mechanics" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Timeline_of_quantum_mechanics" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;oldid=1238544102" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Timeline_of_quantum_mechanics&amp;id=1238544102&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTimeline_of_quantum_mechanics"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTimeline_of_quantum_mechanics"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Timeline_of_quantum_mechanics&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://en.wikiversity.org/wiki/WikiJournal_of_Science/Submissions/Abridged_timeline_of_quantum_mechanics" hreflang="en"><span>Wikiversity</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q7806180" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/History_of_quantum_mechanics" title="History of quantum mechanics">history of quantum mechanics</a> and <a href="/wiki/Timeline_of_particle_physics" class="mw-redirect" title="Timeline of particle physics">timeline of particle physics</a></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Original_research plainlinks metadata ambox ambox-content ambox-Original_research" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/40px-Ambox_important.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/60px-Ambox_important.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/80px-Ambox_important.svg.png 2x" data-file-width="40" data-file-height="40" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>possibly contains <a href="/wiki/Wikipedia:No_original_research" title="Wikipedia:No original research">original research</a></b>.<span class="hide-when-compact"> Please <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit">improve it</a> by <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verifying</a> the claims made and adding <a href="/wiki/Wikipedia:Citing_sources#Inline_citations" title="Wikipedia:Citing sources">inline citations</a>. Statements consisting only of original research should be removed.</span> <span class="date-container"><i>(<span class="date">April 2012</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>The <b>timeline of quantum mechanics</b> is a list of key events in the <a href="/wiki/History_of_quantum_mechanics" title="History of quantum mechanics">history of quantum mechanics</a>, <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theories</a> and <a href="/wiki/Quantum_chemistry" title="Quantum chemistry">quantum chemistry</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="19th_century">19th century</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit&amp;section=1" title="Edit section: 19th century"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Becquerel_plate.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Becquerel_plate.jpg/220px-Becquerel_plate.jpg" decoding="async" width="220" height="178" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Becquerel_plate.jpg/330px-Becquerel_plate.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Becquerel_plate.jpg/440px-Becquerel_plate.jpg 2x" data-file-width="492" data-file-height="397" /></a><figcaption>Image of Becquerel's photographic plate that has been fogged by exposure to radiation from a uranium salt. The shadow of a metal <a href="/wiki/Maltese_Cross_(symbol)" class="mw-redirect" title="Maltese Cross (symbol)">Maltese Cross</a> placed between the plate and the uranium salt is clearly visible.</figcaption></figure> <ul><li>1801 – <a href="/wiki/Thomas_Young_(scientist)" title="Thomas Young (scientist)">Thomas Young</a> establishes that light made up of waves with his <a href="/wiki/Double-slit_experiment" title="Double-slit experiment">Double-slit experiment</a>.</li> <li>1859 – <a href="/wiki/Gustav_Kirchhoff" title="Gustav Kirchhoff">Gustav Kirchhoff</a> introduces the concept of a <a href="/wiki/Blackbody" class="mw-redirect" title="Blackbody">blackbody</a> and proves that its emission spectrum depends only on its temperature.<sup id="cite_ref-Peacock_1-0" class="reference"><a href="#cite_note-Peacock-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li> <li>1860–1900 – <a href="/wiki/Ludwig_Eduard_Boltzmann" class="mw-redirect" title="Ludwig Eduard Boltzmann">Ludwig Eduard Boltzmann</a>, <a href="/wiki/James_Clerk_Maxwell" title="James Clerk Maxwell">James Clerk Maxwell</a> and others develop the theory of <a href="/wiki/Statistical_mechanics" title="Statistical mechanics">statistical mechanics</a>. Boltzmann argues that <a href="/wiki/Entropy" title="Entropy">entropy</a> is a measure of disorder.<sup id="cite_ref-Peacock_1-1" class="reference"><a href="#cite_note-Peacock-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li> <li>1877 – Boltzmann suggests that the energy levels of a physical system could be discrete based on statistical mechanics and mathematical arguments; also produces the first circle diagram representation, or atomic model of a molecule (such as an iodine gas molecule) in terms of the overlapping terms α and β, later (in 1928) called molecular orbitals, of the constituting atoms.</li> <li>1885 – <a href="/wiki/Johann_Jakob_Balmer" title="Johann Jakob Balmer">Johann Jakob Balmer</a> discovers a numerical relationship between visible spectral lines of <a href="/wiki/Hydrogen" title="Hydrogen">hydrogen</a>, the <a href="/wiki/Balmer_series" title="Balmer series">Balmer series</a>.</li> <li>1887 – <a href="/wiki/Heinrich_Hertz" title="Heinrich Hertz">Heinrich Hertz</a> discovers the photoelectric effect, shown by Einstein in 1905 to involve <i>quanta</i> of light.</li> <li>1888 – Hertz demonstrates experimentally that electromagnetic waves exist, as predicted by Maxwell.<sup id="cite_ref-Peacock_1-2" class="reference"><a href="#cite_note-Peacock-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li> <li>1888 – <a href="/wiki/Johannes_Rydberg" title="Johannes Rydberg">Johannes Rydberg</a> modifies the Balmer formula to include all spectral series of lines for the hydrogen atom, producing the Rydberg formula that is employed later by <a href="/wiki/Niels_Bohr" title="Niels Bohr">Niels Bohr</a> and others to verify Bohr's first quantum model of the atom.</li> <li>1895 – <a href="/wiki/Wilhelm_Conrad_R%C3%B6ntgen" class="mw-redirect" title="Wilhelm Conrad Röntgen">Wilhelm Conrad Röntgen</a> discovers X-rays in experiments with electron beams in plasma.<sup id="cite_ref-Peacock_1-3" class="reference"><a href="#cite_note-Peacock-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li> <li>1896 – <a href="/wiki/Antoine_Henri_Becquerel" class="mw-redirect" title="Antoine Henri Becquerel">Antoine Henri Becquerel</a> accidentally discovers <a href="/wiki/Radioactivity" class="mw-redirect" title="Radioactivity">radioactivity</a> while investigating the work of <a href="/wiki/Wilhelm_Conrad_R%C3%B6ntgen" class="mw-redirect" title="Wilhelm Conrad Röntgen">Wilhelm Conrad Röntgen</a>; he finds that uranium salts emit radiation that resembled Röntgen's X-rays in their penetrating power. In one experiment, Becquerel wraps a sample of a phosphorescent substance, potassium uranyl sulfate, in photographic plates surrounded by very thick black paper in preparation for an experiment with bright sunlight; then, to his surprise, the photographic plates are already exposed before the experiment starts, showing a projected image of his sample.<sup id="cite_ref-Peacock_1-4" class="reference"><a href="#cite_note-Peacock-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup></li> <li>1896–1897 – <a href="/wiki/Pieter_Zeeman" title="Pieter Zeeman">Pieter Zeeman</a> first observes the <a href="/wiki/Zeeman_effect" title="Zeeman effect">Zeeman splitting effect</a> by applying a magnetic field to light sources.<sup id="cite_ref-Zeeman_3-0" class="reference"><a href="#cite_note-Zeeman-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup></li> <li>1896–1897 – <a href="/wiki/Marie_Curie" title="Marie Curie">Marie Curie</a> (née Skłodowska, Becquerel's doctoral student) investigates uranium salt samples using a very sensitive <a href="/wiki/Electrometer" title="Electrometer">electrometer</a> device that was invented 15 years before by her husband and his brother Jacques Curie to measure electrical charge. She discovers that rays emitted by the uranium salt samples make the surrounding air electrically conductive, and measures the emitted rays' intensity. In April 1898, through a systematic search of substances, she finds that <a href="/wiki/Thorium" title="Thorium">thorium</a> compounds, like those of uranium, emitted "Becquerel rays", thus preceding the work of <a href="/wiki/Frederick_Soddy" title="Frederick Soddy">Frederick Soddy</a> and <a href="/wiki/Ernest_Rutherford" title="Ernest Rutherford">Ernest Rutherford</a> on the nuclear decay of thorium to <a href="/wiki/Radium" title="Radium">radium</a> by three years.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup></li> <li>1897: <ul><li><a href="/wiki/Ivan_Borgman" title="Ivan Borgman">Ivan Borgman</a> demonstrates that <a href="/wiki/X-ray" title="X-ray">X-rays</a> and <a href="/wiki/Radioactive_material" class="mw-redirect" title="Radioactive material">radioactive materials</a> induce <a href="/wiki/Thermoluminescence" title="Thermoluminescence">thermoluminescence</a>.</li> <li><a href="/wiki/J._J._Thomson" title="J. J. Thomson">J. J. Thomson</a>'s experimentation with <a href="/wiki/Cathode_ray" title="Cathode ray">cathode rays</a> led him to suggest a fundamental unit more than a 1,000 times smaller than an atom, based on the high <a href="/wiki/Charge-to-mass_ratio" class="mw-redirect" title="Charge-to-mass ratio">charge-to-mass ratio</a>. He called the particle a "corpuscle", but later scientists preferred the term <a href="/wiki/Electron" title="Electron">electron</a>.</li> <li><a href="/wiki/Joseph_Larmor" title="Joseph Larmor">Joseph Larmor</a> explained the splitting of the <a href="/wiki/Spectral_line" title="Spectral line">spectral lines</a> in a <a href="/wiki/Magnetic_field" title="Magnetic field">magnetic field</a> by the <a href="/wiki/Oscillation" title="Oscillation">oscillation</a> of electrons.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup></li> <li>Larmor, created the first solar system model of the atom in 1897. He also postulated the proton, calling it a "positive electron". He said the destruction of this type of atom making up matter "is an occurrence of infinitely small probability".<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li>1899–1903 – <a href="/wiki/Ernest_Rutherford" title="Ernest Rutherford">Ernest Rutherford</a> investigates radioactivity. He coins the terms <a href="/wiki/Alpha_ray" class="mw-redirect" title="Alpha ray">alpha</a> and <a href="/wiki/Beta_ray" class="mw-redirect" title="Beta ray">beta rays</a> in 1899 to describe the two distinct types of radiation emitted by <a href="/wiki/Thorium" title="Thorium">thorium</a> and <a href="/wiki/Uranium" title="Uranium">uranium</a> salts. Rutherford is joined at McGill University in 1900 by <a href="/wiki/Frederick_Soddy" title="Frederick Soddy">Frederick Soddy</a> and together they discover <a href="/wiki/Nuclear_transmutation" title="Nuclear transmutation">nuclear transmutation</a> when they find in 1902 that radioactive thorium is converting itself into <a href="/wiki/Radium" title="Radium">radium</a> through a process of <a href="/wiki/Nuclear_decay" class="mw-redirect" title="Nuclear decay">nuclear decay</a> and a gas (later found to be <span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span>He<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span>); they report their interpretation of radioactivity in 1903.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> Rutherford becomes known as the "father of <a href="/wiki/Nuclear_physics" title="Nuclear physics">nuclear physics</a>" with his <a href="/wiki/Rutherford_model" title="Rutherford model">nuclear atom model</a> of 1911.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="20th_century">20th century</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit&amp;section=2" title="Edit section: 20th century"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="1900–1909"><span id="1900.E2.80.931909"></span>1900–1909</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit&amp;section=3" title="Edit section: 1900–1909"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Einstein_patentoffice.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Einstein_patentoffice.jpg/220px-Einstein_patentoffice.jpg" decoding="async" width="220" height="288" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Einstein_patentoffice.jpg/330px-Einstein_patentoffice.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Einstein_patentoffice.jpg/440px-Einstein_patentoffice.jpg 2x" data-file-width="4360" data-file-height="5699" /></a><figcaption>Einstein, in 1905, when he wrote the <a href="/wiki/Annus_Mirabilis_papers" class="mw-redirect" title="Annus Mirabilis papers"><i>Annus Mirabilis</i> papers</a></figcaption></figure> <ul><li>1900 – To explain <a href="/wiki/Black-body_radiation" title="Black-body radiation">black-body radiation</a> (1862), <a href="/wiki/Max_Planck" title="Max Planck">Max Planck</a> suggests that electromagnetic energy could only be emitted in quantized form, i.e. the energy could only be a multiple of an elementary unit <i>E</i> = <i>hν</i>, where <i>h</i> is the <a href="/wiki/Planck_constant" title="Planck constant">Planck constant</a> and <i>ν</i> is the frequency of the radiation.</li> <li>1902 – To explain the <a href="/wiki/Octet_rule" title="Octet rule">octet rule</a> (1893), <a href="/wiki/Gilbert_N._Lewis" title="Gilbert N. Lewis">Gilbert N. Lewis</a> develops the "<a href="/wiki/Cubical_atom" title="Cubical atom">cubical atom</a>" theory in which electrons in the form of dots are positioned at the corner of a cube. Predicts that single, double, or triple "<a href="/wiki/Covalent_bond" title="Covalent bond">bonds</a>" result when two atoms are held together by multiple pairs of electrons (one pair for each bond) located between the two atoms.</li> <li>1903 – Antoine Becquerel, Pierre Curie and Marie Curie share the 1903 Nobel Prize in Physics for their work on <a href="/wiki/Radioactivity" class="mw-redirect" title="Radioactivity">spontaneous radioactivity</a>.</li> <li>1904 – <a href="/wiki/Richard_Abegg" title="Richard Abegg">Richard Abegg</a> notes the pattern that the numerical difference between the maximum positive valence, such as +6 for H<sub>2</sub>SO<sub>4</sub>, and the maximum negative valence, such as −2 for H<sub>2</sub>S, of an element tends to be eight (<a href="/wiki/Abegg%27s_rule" title="Abegg&#39;s rule">Abegg's rule</a>).</li> <li>1905&#160;: <ul><li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> explains the <a href="/wiki/Photoelectric_effect" title="Photoelectric effect">photoelectric effect</a> (reported in 1887 by <a href="/wiki/Heinrich_Hertz" title="Heinrich Hertz">Heinrich Hertz</a>), i.e. that shining light on certain materials can function to eject electrons from the material. He postulates, as based on Planck's quantum hypothesis (1900), that light itself consists of individual quantum particles (photons).</li> <li>Einstein explains the effects of <a href="/wiki/Brownian_motion" title="Brownian motion">Brownian motion</a> as caused by the <a href="/wiki/Kinetic_energy" title="Kinetic energy">kinetic energy</a> (i.e., movement) of atoms, which was subsequently, experimentally verified by <a href="/wiki/Jean_Baptiste_Perrin" title="Jean Baptiste Perrin">Jean Baptiste Perrin</a>, thereby settling the century-long dispute about the validity of <a href="/wiki/John_Dalton" title="John Dalton">John Dalton</a>'s <a href="/wiki/Atomic_theory" class="mw-redirect" title="Atomic theory">atomic theory</a>.</li> <li>Einstein publishes his <a href="/wiki/Special_relativity" title="Special relativity">special theory of relativity</a></li> <li>Einstein theoretically derives the <a href="/wiki/Equivalence_of_matter_and_energy" class="mw-redirect" title="Equivalence of matter and energy">equivalence of matter and energy</a>.</li></ul></li> <li>1907 to 1917 – Ernest Rutherford: To test his <i>planetary</i> model of 1904, later known as the <a href="/wiki/Rutherford_model" title="Rutherford model">Rutherford model</a>, he sent a beam of positively charged <a href="/wiki/Alpha_particle" title="Alpha particle">alpha particles</a> onto a gold foil and noticed that some bounced back, thus showing that an atom has a small-sized positively charged <a href="/wiki/Atomic_nucleus" title="Atomic nucleus">atomic nucleus</a> at its center. However, he received in 1908 the Nobel Prize in Chemistry "for his investigations into the disintegration of the elements, and the chemistry of radioactive substances",<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> which followed on the work of Marie Curie, not for his planetary model of the atom; he is also widely credited with first "splitting the atom" in 1917. In 1911 Ernest Rutherford explained the <a href="/wiki/Geiger%E2%80%93Marsden_experiment" class="mw-redirect" title="Geiger–Marsden experiment">Geiger–Marsden experiment</a> by invoking a <a href="/wiki/Atomic_theory" class="mw-redirect" title="Atomic theory">nuclear atom model</a> and derived the <a href="/wiki/Cross_section_(physics)" title="Cross section (physics)">Rutherford cross section</a>.</li> <li>1909 – <a href="/wiki/Geoffrey_Ingram_Taylor" class="mw-redirect" title="Geoffrey Ingram Taylor">Geoffrey Ingram Taylor</a> demonstrates that interference patterns of light were generated even when the light energy introduced consisted of only one photon. This discovery of the <a href="/wiki/Wave%E2%80%93particle_duality" title="Wave–particle duality">wave–particle duality</a> of matter and energy is fundamental to the later development of <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a>.</li> <li>1909 and 1916 – Einstein shows that, if <a href="/wiki/Planck%27s_law_of_black-body_radiation" class="mw-redirect" title="Planck&#39;s law of black-body radiation">Planck's law of black-body radiation</a> is accepted, the energy quanta must also carry <a href="/wiki/Momentum" title="Momentum">momentum</a> <i>p</i> = <i>h</i> / <i>λ</i>, making them full-fledged <a href="/wiki/Particle" title="Particle">particles</a>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="1910–1919"><span id="1910.E2.80.931919"></span>1910–1919</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit&amp;section=4" title="Edit section: 1910–1919"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Scheme_of_Millikan%27s_apparatus.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Scheme_of_Millikan%27s_apparatus.jpg/220px-Scheme_of_Millikan%27s_apparatus.jpg" decoding="async" width="220" height="168" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Scheme_of_Millikan%27s_apparatus.jpg/330px-Scheme_of_Millikan%27s_apparatus.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Scheme_of_Millikan%27s_apparatus.jpg/440px-Scheme_of_Millikan%27s_apparatus.jpg 2x" data-file-width="9271" data-file-height="7091" /></a><figcaption>A schematic diagram of the apparatus for Millikan's refined oil drop experiment</figcaption></figure> <ul><li>1911: <ul><li><a href="/wiki/Lise_Meitner" title="Lise Meitner">Lise Meitner</a> and <a href="/wiki/Otto_Hahn" title="Otto Hahn">Otto Hahn</a> perform an experiment that shows that the energies of <a href="/wiki/Electron" title="Electron">electrons</a> emitted by <a href="/wiki/Beta_decay" title="Beta decay">beta decay</a> had a continuous rather than discrete spectrum. This is in apparent contradiction to the law of conservation of energy, as it appeared that energy was lost in the beta decay process. A second problem is that the spin of the <a href="/wiki/Nitrogen-14" class="mw-redirect" title="Nitrogen-14">nitrogen-14</a> atom was 1, in contradiction to the Rutherford prediction of <style data-mw-deduplicate="TemplateStyles:r1154941027">.mw-parser-output .frac{white-space:nowrap}.mw-parser-output .frac .num,.mw-parser-output .frac .den{font-size:80%;line-height:0;vertical-align:super}.mw-parser-output .frac .den{vertical-align:sub}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="frac"><span class="num">1</span>&#8260;<span class="den">2</span></span>. These anomalies are later explained by the discoveries of the <a href="/wiki/Neutrino" title="Neutrino">neutrino</a> and the <a href="/wiki/Neutron" title="Neutron">neutron</a>.</li> <li><a href="/wiki/%C8%98tefan_Procopiu" title="Ștefan Procopiu">Ștefan Procopiu</a> performs experiments in which he determines the correct value of electron's magnetic dipole moment, <span class="nowrap"><i>μ</i><sub>B</sub> = <span class="nowrap"><span data-sort-value="6979926999999999999♠"></span>9.27<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−21</sup>&#160;erg·Oe<sup>−1</sup></span></span> (in 1913 he is also able to calculate a theoretical value of the <a href="/wiki/Bohr_magneton" title="Bohr magneton">Bohr magneton</a> based on Planck's quantum theory).</li> <li><a href="/wiki/John_William_Nicholson" title="John William Nicholson">John William Nicholson</a> is noted as the first to create an atomic model that quantized angular momentum as <i>h</i>/2<i>π</i>.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Niels_Bohr" title="Niels Bohr">Niels Bohr</a> quoted him in his 1913 paper of the <a href="/wiki/Bohr_model" title="Bohr model">Bohr model</a> of the atom.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li>1912 – <a href="/wiki/Victor_Hess" class="mw-redirect" title="Victor Hess">Victor Hess</a> discovers the existence of <a href="/wiki/Cosmic_radiation" class="mw-redirect" title="Cosmic radiation">cosmic radiation</a>.</li> <li>1912 – <a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a> publishes an influential mathematical argument in support of the essential nature of energy quanta.<sup id="cite_ref-McCormmach_14-0" class="reference"><a href="#cite_note-McCormmach-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Irons_15-0" class="reference"><a href="#cite_note-Irons-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup></li> <li>1913: <ul><li><a href="/wiki/Robert_Andrews_Millikan" title="Robert Andrews Millikan">Robert Andrews Millikan</a> publishes the results of his "oil drop" experiment, in which he precisely determines the <a href="/wiki/Electric_charge" title="Electric charge">electric charge</a> of the electron. Determination of the fundamental unit of electric charge makes it possible to calculate the <a href="/wiki/Avogadro_constant" title="Avogadro constant">Avogadro constant</a> (which is the number of atoms or molecules in one <a href="/wiki/Mole_(unit)" title="Mole (unit)">mole</a> of any substance) and thereby to determine the <a href="/wiki/Atomic_weight" class="mw-redirect" title="Atomic weight">atomic weight</a> of the atoms of each <a href="/wiki/Chemical_element" title="Chemical element">element</a>.</li> <li><a href="/wiki/Niels_Bohr" title="Niels Bohr">Niels Bohr</a> publishes his 1913 paper of the <a href="/wiki/Bohr_model" title="Bohr model">Bohr model</a> of the atom.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/%C8%98tefan_Procopiu" title="Ștefan Procopiu">Ștefan Procopiu</a> publishes a theoretical paper with the correct value of the electron's magnetic dipole moment <i>μ</i><sub>B</sub>.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></li> <li>Niels Bohr obtains theoretically the value of the electron's magnetic dipole moment <i>μ</i><sub>B</sub> as a consequence of his atom model</li> <li><a href="/wiki/Johannes_Stark" title="Johannes Stark">Johannes Stark</a> and <a href="/wiki/Antonino_Lo_Surdo" title="Antonino Lo Surdo">Antonino Lo Surdo</a> independently discover the shifting and splitting of the spectral lines of atoms and molecules due to the presence of the light source in an external static electric field.</li> <li>To explain the <a href="/wiki/Rydberg_formula" title="Rydberg formula">Rydberg formula</a> (1888), which correctly modeled the light emission spectra of atomic hydrogen, Bohr hypothesizes that negatively charged electrons revolve around a positively charged nucleus at certain fixed "quantum" distances and that each of these "spherical orbits" has a specific energy associated with it such that electron movements between orbits requires "quantum" emissions or absorptions of energy.</li></ul></li> <li>1914 – <a href="/wiki/James_Franck" title="James Franck">James Franck</a> and <a href="/wiki/Gustav_Ludwig_Hertz" title="Gustav Ludwig Hertz">Gustav Hertz</a> report their <a href="/wiki/Franck%E2%80%93Hertz_experiment" title="Franck–Hertz experiment">experiment on electron collisions with mercury atoms</a>, which provides a new test of Bohr's quantized model of atomic energy levels.<sup id="cite_ref-Pais2_18-0" class="reference"><a href="#cite_note-Pais2-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup></li> <li>1915 – Einstein first presents to the <a href="/wiki/Prussian_Academy_of_Science" class="mw-redirect" title="Prussian Academy of Science">Prussian Academy of Science</a> what are now known as the <a href="/wiki/Einstein_field_equations" title="Einstein field equations">Einstein field equations</a>. These equations specify how the geometry of space and time is influenced by whatever matter is present, and form the core of Einstein's <a href="/wiki/General_Theory_of_Relativity" class="mw-redirect" title="General Theory of Relativity">General Theory of Relativity</a>. Although this theory is not directly applicable to quantum mechanics, theorists of <a href="/wiki/Quantum_gravity" title="Quantum gravity">quantum gravity</a> seek to reconcile them.</li> <li>1916 – <a href="/wiki/Paul_Sophus_Epstein" title="Paul Sophus Epstein">Paul Epstein</a><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Karl_Schwarzschild" title="Karl Schwarzschild">Karl Schwarzschild</a>,<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> working independently, derive equations for the linear and quadratic <a href="/wiki/Stark_effect" title="Stark effect">Stark effect</a> in hydrogen.</li> <li>1916 – <a href="/wiki/Gilbert_N._Lewis" title="Gilbert N. Lewis">Gilbert N. Lewis</a> conceives the theoretical basis of <a href="/wiki/Lewis_dot_formulas" class="mw-redirect" title="Lewis dot formulas">Lewis dot formulas</a>, diagrams that show the <a href="/wiki/Chemical_bonding" class="mw-redirect" title="Chemical bonding">bonding</a> between <a href="/wiki/Atom" title="Atom">atoms</a> of a <a href="/wiki/Molecule" title="Molecule">molecule</a> and the <a href="/wiki/Lone_pair" title="Lone pair">lone pairs</a> of electrons that may exist in the molecule.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup></li> <li>1916 – To account for the <a href="/wiki/Zeeman_effect" title="Zeeman effect">Zeeman effect</a> (1896), i.e. that atomic absorption or emission spectral lines change when the light source is subjected to a magnetic field, <a href="/wiki/Arnold_Sommerfeld" title="Arnold Sommerfeld">Arnold Sommerfeld</a> suggests there might be "elliptical orbits" in atoms in addition to spherical orbits.</li> <li>1918 – Sir Ernest Rutherford notices that, when <a href="/wiki/Alpha_particle" title="Alpha particle">alpha particles</a> are shot into <a href="/wiki/Nitrogen_gas" class="mw-redirect" title="Nitrogen gas">nitrogen gas</a>, his <a href="/wiki/Scintillation_detectors" class="mw-redirect" title="Scintillation detectors">scintillation detectors</a> shows the signatures of hydrogen nuclei. Rutherford determines that the only place this hydrogen could have come from was the nitrogen, and therefore nitrogen must contain hydrogen nuclei. He thus suggests that the hydrogen nucleus, which is known to have an <a href="/wiki/Atomic_number" title="Atomic number">atomic number</a> of 1, is an <a href="/wiki/Elementary_particle" title="Elementary particle">elementary particle</a>, which he decides must be the <a href="/wiki/Proton" title="Proton">protons</a> hypothesized by <a href="/wiki/Eugen_Goldstein" title="Eugen Goldstein">Eugen Goldstein</a>.</li> <li>1919 – Building on the work of Lewis (1916), <a href="/wiki/Irving_Langmuir" title="Irving Langmuir">Irving Langmuir</a> coins the term "covalence" and postulates that <a href="/wiki/Coordinate_covalent_bond" title="Coordinate covalent bond">coordinate covalent bonds</a> occur when two electrons of a pair of atoms come from both atoms and are equally shared by them, thus explaining the fundamental nature of chemical bonding and molecular chemistry.</li></ul> <div class="mw-heading mw-heading3"><h3 id="1920–1929"><span id="1920.E2.80.931929"></span>1920–1929</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit&amp;section=5" title="Edit section: 1920–1929"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:SternGerlach2.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/SternGerlach2.jpg/220px-SternGerlach2.jpg" decoding="async" width="220" height="171" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/SternGerlach2.jpg/330px-SternGerlach2.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b0/SternGerlach2.jpg/440px-SternGerlach2.jpg 2x" data-file-width="489" data-file-height="380" /></a><figcaption>A plaque at the <a href="/wiki/Goethe_University_Frankfurt" title="Goethe University Frankfurt">University of Frankfurt</a> commemorating the <a href="/wiki/Stern%E2%80%93Gerlach_experiment" title="Stern–Gerlach experiment">Stern–Gerlach experiment</a> </figcaption></figure> <ul><li>1920 – <a href="/wiki/Hendrik_Anthony_Kramers" class="mw-redirect" title="Hendrik Anthony Kramers">Hendrik Kramers</a> uses <a href="/wiki/Bohr%E2%80%93Sommerfeld_quantization" class="mw-redirect" title="Bohr–Sommerfeld quantization">Bohr–Sommerfeld quantization</a> to derive formulas for intensities of spectral transitions of the <a href="/wiki/Stark_effect" title="Stark effect">Stark effect</a>. Kramers also includes the effect of <a href="/wiki/Fine_structure" title="Fine structure">fine structure</a>, including corrections for relativistic kinetic energy and coupling between electron spin and orbit.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></li> <li>1921–1922 – Frederick Soddy receives the Nobel Prize for 1921 in Chemistry one year later, in 1922, "for his contributions to our knowledge of the chemistry of radioactive substances, and his investigations into the origin and nature of <a href="/wiki/Isotope" title="Isotope">isotopes</a>"; he writes in his Nobel Lecture of 1922: "The interpretation of radioactivity which was published in 1903 by Sir Ernest Rutherford and myself ascribed the phenomena to the <a href="/wiki/Nuclear_disintegration" class="mw-redirect" title="Nuclear disintegration">spontaneous disintegration</a> of the atoms of the radio-element, whereby a part of the original atom was violently ejected as a radiant particle, and the remainder formed a totally new kind of atom with a distinct chemical and physical character."</li> <li>1922: <ul><li><a href="/wiki/Arthur_Compton" title="Arthur Compton">Arthur Compton</a> finds that X-ray wavelengths increase due to scattering of the <a href="/wiki/Radiant_energy" title="Radiant energy">radiant energy</a> by <a href="/wiki/Free_particle" title="Free particle">free electrons</a>. The scattered <a href="/wiki/Quantum" title="Quantum">quanta</a> have less energy than the quanta of the original ray. This discovery, known as the <i>Compton effect</i> or <a href="/wiki/Compton_scattering" title="Compton scattering">Compton scattering</a>, demonstrates the <a href="/wiki/Particle_physics" title="Particle physics">particle</a> concept of <a href="/wiki/Electromagnetic_radiation" title="Electromagnetic radiation">electromagnetic radiation</a>.</li> <li><a href="/wiki/Otto_Stern" title="Otto Stern">Otto Stern</a> and <a href="/wiki/Walther_Gerlach" title="Walther Gerlach">Walther Gerlach</a> perform the <a href="/wiki/Stern%E2%80%93Gerlach_experiment" title="Stern–Gerlach experiment">Stern–Gerlach experiment</a>, which detects discrete values of angular momentum for atoms in the ground state passing through an inhomogeneous magnetic field leading to the discovery of the <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a> of the electron.</li> <li>Bohr updates his model of the atom to better explain the properties of the periodic table by assuming that certain numbers of electrons (for example 2, 8 and 18) corresponded to stable "closed shells", presaging orbital theory.</li></ul></li> <li>1923: <ul><li><a href="/wiki/Pierre_Victor_Auger" title="Pierre Victor Auger">Pierre Auger</a> discovers the <a href="/wiki/Auger_effect" title="Auger effect">Auger effect</a>, where filling the inner-shell vacancy of an atom is accompanied by the emission of an electron from the same atom.</li> <li><a href="/wiki/Louis,_7th_duc_de_Broglie" class="mw-redirect" title="Louis, 7th duc de Broglie">Louis de Broglie</a> extends <a href="/wiki/Wave%E2%80%93particle_duality" title="Wave–particle duality">wave–particle duality</a> to particles, postulating that electrons in motion are associated with waves. He predicts that the wavelengths are given by the <a href="/wiki/Planck_constant" title="Planck constant">Planck constant</a> <i>h</i> divided by the <a href="/wiki/Momentum" title="Momentum">momentum</a> of the <i>mv</i> = <i>p</i> of the <a href="/wiki/Electron" title="Electron">electron</a>: <i>λ</i> = <i>h</i> / <i>mv</i> = <i>h</i> / <i>p</i>.<sup id="cite_ref-Peacock_1-5" class="reference"><a href="#cite_note-Peacock-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li> <li>Gilbert N. Lewis creates the theory of <a href="/wiki/Lewis_acids_and_bases" title="Lewis acids and bases">Lewis acids and bases</a> based on the properties of electrons in molecules, defining an <a href="/wiki/Acid" title="Acid">acid</a> as accepting an electron lone pair from a <a href="/wiki/Base_(chemistry)" title="Base (chemistry)">base</a>.</li></ul></li> <li>1924 – <a href="/wiki/Satyendra_Nath_Bose" title="Satyendra Nath Bose">Satyendra Nath Bose</a> explains Planck's law using a new statistical law that governs <a href="/wiki/Boson" title="Boson">bosons</a>, and Einstein generalizes it to predict <a href="/wiki/Bose%E2%80%93Einstein_condensate" title="Bose–Einstein condensate">Bose–Einstein condensate</a>. The theory becomes known as <a href="/wiki/Bose%E2%80%93Einstein_statistics" title="Bose–Einstein statistics">Bose–Einstein statistics</a>.<sup id="cite_ref-Peacock_1-6" class="reference"><a href="#cite_note-Peacock-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li> <li>1924 – <a href="/wiki/Wolfgang_Pauli" title="Wolfgang Pauli">Wolfgang Pauli</a> outlines the "<a href="/wiki/Pauli_exclusion_principle" title="Pauli exclusion principle">Pauli exclusion principle</a>", which states that no two identical <a href="/wiki/Fermion" title="Fermion">fermions</a> may occupy the same quantum state simultaneously, a fact that explains many features of the <a href="/wiki/Periodic_table" title="Periodic table">periodic table</a>.<sup id="cite_ref-Peacock_1-7" class="reference"><a href="#cite_note-Peacock-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li> <li>1925: <ul><li><a href="/wiki/George_Uhlenbeck" title="George Uhlenbeck">George Uhlenbeck</a> and <a href="/wiki/Samuel_Goudsmit" title="Samuel Goudsmit">Samuel Goudsmit</a> postulate the existence of <a href="/wiki/Electron_spin" class="mw-redirect" title="Electron spin">electron spin</a>.<sup id="cite_ref-Peacock_1-8" class="reference"><a href="#cite_note-Peacock-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Friedrich_Hund" title="Friedrich Hund">Friedrich Hund</a> outlines <a href="/wiki/Hund%27s_rule_of_Maximum_Multiplicity" class="mw-redirect" title="Hund&#39;s rule of Maximum Multiplicity">Hund's rule of Maximum Multiplicity</a>, which states that when electrons are added successively to an atom as many levels or orbits are singly occupied as possible before any pairing of electrons with opposite spin occurs and made the distinction that the inner electrons in molecules remained in <a href="/wiki/Atomic_orbital" title="Atomic orbital">atomic orbitals</a> and only the <a href="/wiki/Valence_electron" title="Valence electron">valence electrons</a> needed to be in <a href="/wiki/Molecular_orbital" title="Molecular orbital">molecular orbitals</a> involving both nuclei.</li> <li><a href="/wiki/Werner_Heisenberg" title="Werner Heisenberg">Werner Heisenberg</a> published his <a href="/wiki/Umdeutung_paper" title="Umdeutung paper"><u><i>Umdeutung</i></u> paper</a>, reinterpreting quantum mechanics using non-commutative algebra.</li> <li>Heisenberg, <a href="/wiki/Max_Born" title="Max Born">Max Born</a>, and <a href="/wiki/Pascual_Jordan" title="Pascual Jordan">Pascual Jordan</a> develop the <a href="/wiki/Matrix_mechanics" title="Matrix mechanics">matrix mechanics</a> formulation of quantum Mechanics.<sup id="cite_ref-Peacock_1-9" class="reference"><a href="#cite_note-Peacock-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li>1926: <ul><li>Lewis coins the term <a href="/wiki/Photon" title="Photon">photon</a> in a letter to the scientific journal <a href="/wiki/Nature_(journal)" title="Nature (journal)"><i>Nature</i></a>, which he derives from the Greek word for light, φως (transliterated phôs).<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Oskar_Klein" title="Oskar Klein">Oskar Klein</a> and <a href="/wiki/Walter_Gordon_(physicist)" title="Walter Gordon (physicist)">Walter Gordon</a> state their relativistic quantum wave equation, later called the <a href="/wiki/Klein%E2%80%93Gordon_equation" title="Klein–Gordon equation">Klein–Gordon equation</a>.</li> <li><a href="/wiki/Enrico_Fermi" title="Enrico Fermi">Enrico Fermi</a> discovers the <a href="/wiki/Spin%E2%80%93statistics_theorem" title="Spin–statistics theorem">spin–statistics theorem</a> connection.</li> <li><a href="/wiki/Paul_Dirac" title="Paul Dirac">Paul Dirac</a> introduces <a href="/wiki/Fermi%E2%80%93Dirac_statistics" title="Fermi–Dirac statistics">Fermi–Dirac statistics</a>.</li> <li><a href="/wiki/Erwin_Schr%C3%B6dinger" title="Erwin Schrödinger">Erwin Schrödinger</a> uses De Broglie's electron wave postulate (1924) to develop a "<a href="/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation">wave equation</a>" that represents mathematically the distribution of a charge of an electron distributed through space, being spherically symmetric or prominent in certain directions, i.e. directed <a href="/wiki/Valence_bond_theory" title="Valence bond theory">valence bonds</a>, which gives the correct values for spectral lines of the hydrogen atom; also introduces the <a href="/wiki/Hamiltonian_operator" class="mw-redirect" title="Hamiltonian operator">Hamiltonian operator</a> in quantum mechanics.</li> <li><a href="/wiki/Paul_Sophus_Epstein" title="Paul Sophus Epstein">Paul Epstein</a> reconsiders the linear and quadratic Stark effect from the point of view of the new quantum theory, using the equations of Schrödinger and others. The derived equations for the line intensities are a decided improvement over previous results obtained by <a href="/wiki/Hans_Kramers" title="Hans Kramers">Hans Kramers</a>.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li>1926 to 1932 – <a href="/wiki/John_von_Neumann" title="John von Neumann">John von Neumann</a> published the <i><a href="/wiki/Mathematical_Foundations_of_Quantum_Mechanics" title="Mathematical Foundations of Quantum Mechanics">Mathematical Foundations of Quantum Mechanics</a></i> in terms of Hermitian operators on <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert spaces</a>, subsequently published in 1932 as a basic textbook on the <a href="/wiki/Mathematical_formulation_of_quantum_mechanics" title="Mathematical formulation of quantum mechanics">mathematical formulation of quantum mechanics</a>.<sup id="cite_ref-Peacock_1-10" class="reference"><a href="#cite_note-Peacock-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-VanHove_26-0" class="reference"><a href="#cite_note-VanHove-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup></li> <li>1927: <ul><li><a href="/wiki/Werner_Heisenberg" title="Werner Heisenberg">Werner Heisenberg</a> formulates the quantum <a href="/wiki/Uncertainty_principle" title="Uncertainty principle">uncertainty principle</a>.<sup id="cite_ref-Peacock_1-11" class="reference"><a href="#cite_note-Peacock-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li> <li>Niels Bohr and Werner Heisenberg develop the <a href="/wiki/Copenhagen_interpretation" title="Copenhagen interpretation">Copenhagen interpretation</a> of the probabilistic nature of wavefunctions.</li> <li>Born and <a href="/wiki/J._Robert_Oppenheimer" title="J. Robert Oppenheimer">J. Robert Oppenheimer</a> introduce the <a href="/wiki/Born%E2%80%93Oppenheimer_approximation" title="Born–Oppenheimer approximation">Born–Oppenheimer approximation</a>, which allows the quick approximation of the energy and wavefunctions of smaller molecules.</li> <li><a href="/wiki/Walter_Heitler" title="Walter Heitler">Walter Heitler</a> and <a href="/wiki/Fritz_London" title="Fritz London">Fritz London</a> introduce the concepts of <a href="/wiki/Valence_bond_theory" title="Valence bond theory">valence bond theory</a> and apply it to the hydrogen molecule.</li> <li><a href="/wiki/Llewellyn_Thomas" title="Llewellyn Thomas">Llewellyn Thomas</a> and <a href="/wiki/Enrico_Fermi" title="Enrico Fermi">Fermi</a> develop the <a href="/wiki/Thomas%E2%80%93Fermi_model" title="Thomas–Fermi model">Thomas–Fermi model</a> for a <a href="/wiki/Gas_in_a_box" title="Gas in a box">gas in a box</a>.</li> <li><a href="/wiki/C._V._Raman" title="C. V. Raman">Chandrasekhara Venkata Raman</a> studies optical photon scattering by electrons.</li> <li>Dirac states his relativistic electron quantum wave equation, the <a href="/wiki/Dirac_equation" title="Dirac equation">Dirac equation</a>.</li> <li><a href="/wiki/Charles_Galton_Darwin" title="Charles Galton Darwin">Charles Galton Darwin</a> and <a href="/wiki/Walter_Gordon_(physicist)" title="Walter Gordon (physicist)">Walter Gordon</a> solve the <a href="/wiki/Dirac_equation" title="Dirac equation">Dirac equation</a> for a Coulomb potential.</li> <li><a href="/wiki/Charles_Drummond_Ellis" title="Charles Drummond Ellis">Charles Drummond Ellis</a> (along with <a href="/wiki/James_Chadwick" title="James Chadwick">James Chadwick</a> and colleagues) finally establish clearly that the beta decay spectrum is in fact continuous and not discrete, posing a problem that will later be solved by theorizing (and later discovering) the existence of the <a href="/wiki/Neutrino" title="Neutrino">neutrino</a>.</li> <li><a href="/wiki/Walter_Heitler" title="Walter Heitler">Walter Heitler</a> uses Schrödinger's wave equation to show how two hydrogen atom <a href="/wiki/Wavefunction" class="mw-redirect" title="Wavefunction">wavefunctions</a> join, with plus, minus, and exchange terms, to form a <a href="/wiki/Covalent_bond" title="Covalent bond">covalent bond</a>.</li> <li><a href="/wiki/Robert_Mulliken" class="mw-redirect" title="Robert Mulliken">Robert Mulliken</a> works, in coordination with Hund, to develop a molecular orbital theory where electrons are assigned to states that extend over an entire molecule and, in 1932, introduces many new molecular orbital terminologies, such as <a href="/wiki/%CE%A3_bond" class="mw-redirect" title="Σ bond">σ bond</a>, <a href="/wiki/%CE%A0_bond" class="mw-redirect" title="Π bond">π bond</a>, and <a href="/wiki/%CE%94_bond" class="mw-redirect" title="Δ bond">δ bond</a>.</li> <li><a href="/wiki/Eugene_Wigner" title="Eugene Wigner">Eugene Wigner</a> relates <a href="/wiki/Degenerate_energy_levels" title="Degenerate energy levels">degeneracies</a> of quantum states to <a href="/wiki/Irreducible_representation" title="Irreducible representation">irreducible representations</a> of symmetry groups.</li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Hermann Klaus Hugo Weyl</a> proves in collaboration with his student <a href="/wiki/Fritz_Peter" title="Fritz Peter">Fritz Peter</a> a fundamental theorem in harmonic analysis—the <a href="/wiki/Peter%E2%80%93Weyl_theorem" title="Peter–Weyl theorem">Peter–Weyl theorem</a>—relevant to <a href="/wiki/Group_representation" title="Group representation">group representations</a> in quantum theory (including the <a href="/wiki/Semisimple_module" title="Semisimple module">complete reducibility</a> of <a href="/wiki/Unitary_representation" title="Unitary representation">unitary representations</a> of a <a href="/wiki/Compact_space" title="Compact space">compact</a> <a href="/wiki/Topological_group" title="Topological group">topological group</a>);<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> introduces the <a href="/wiki/Weyl_quantization" class="mw-redirect" title="Weyl quantization">Weyl quantization</a>, and earlier, in 1918, introduces the concept of gauge and a <a href="/wiki/Gauge_theory" title="Gauge theory">gauge theory</a>; later in 1935 he introduces and characterizes with Richard Bauer the concept of <a href="/wiki/Spinor" title="Spinor">spinor in <i>n</i> dimensions</a>.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li>1928: <ul><li><a href="/wiki/Linus_Pauling" title="Linus Pauling">Linus Pauling</a> outlines the nature of the <a href="/wiki/Chemical_bond" title="Chemical bond">chemical bond</a>: uses Heitler's quantum mechanical covalent bond model to outline the <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanical</a> basis for all types of molecular structure and bonding and suggests that different types of bonds in molecules can become equalized by rapid shifting of electrons, a process called "<a href="/wiki/Resonance_(chemistry)" title="Resonance (chemistry)">resonance</a>" (1931), such that resonance hybrids contain contributions from the different possible electronic configurations.</li> <li><a href="/wiki/Friedrich_Hund" title="Friedrich Hund">Friedrich Hund</a> and <a href="/wiki/Robert_S._Mulliken" title="Robert S. Mulliken">Robert S. Mulliken</a> introduce the concept of <a href="/wiki/Molecular_orbital" title="Molecular orbital">molecular orbitals</a>.</li> <li>Born and <a href="/wiki/Vladimir_Fock" title="Vladimir Fock">Vladimir Fock</a> formulate and prove the <a href="/wiki/Adiabatic_theorem" title="Adiabatic theorem">adiabatic theorem</a>, which states that a physical system shall remain in its instantaneous <a href="/wiki/Eigenstate" class="mw-redirect" title="Eigenstate">eigenstate</a> if a given <a href="/wiki/Perturbation_theory_(quantum_mechanics)" title="Perturbation theory (quantum mechanics)">perturbation</a> is acting on it slowly enough and if there is a gap between the <a href="/wiki/Eigenvalue" class="mw-redirect" title="Eigenvalue">eigenvalue</a> and the rest of the <a href="/wiki/Hamiltonian_(quantum_mechanics)" title="Hamiltonian (quantum mechanics)">Hamiltonian</a>'s <a href="/wiki/Spectrum_of_an_operator" class="mw-redirect" title="Spectrum of an operator">spectrum</a>.</li></ul></li> <li>1929: <ul><li><a href="/wiki/Oskar_Klein" title="Oskar Klein">Oskar Klein</a> discovers the <a href="/wiki/Klein_paradox" title="Klein paradox">Klein paradox</a></li> <li>Oskar Klein and <a href="/wiki/Yoshio_Nishina" title="Yoshio Nishina">Yoshio Nishina</a> derive the Klein–Nishina cross section for high energy photon scattering by electrons.</li> <li>Sir <a href="/wiki/Nevill_Mott" class="mw-redirect" title="Nevill Mott">Nevill Mott</a> derives the <a href="/wiki/Mott_scattering" title="Mott scattering">Mott cross section</a> for the Coulomb scattering of relativistic electrons.</li> <li><a href="/wiki/John_Lennard-Jones" title="John Lennard-Jones">John Lennard-Jones</a> introduces the <a href="/wiki/Linear_combination_of_atomic_orbitals" title="Linear combination of atomic orbitals">linear combination of atomic orbitals</a> approximation for the calculation of molecular orbitals.</li> <li><a href="/wiki/Fritz_Houtermans" title="Fritz Houtermans">Fritz Houtermans</a> and <a href="/wiki/Robert_d%27Escourt_Atkinson" title="Robert d&#39;Escourt Atkinson">Robert d'Escourt Atkinson</a> propose that stars release energy by nuclear fusion.<sup id="cite_ref-Peacock_1-12" class="reference"><a href="#cite_note-Peacock-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li></ul></li></ul> <div class="mw-heading mw-heading3"><h3 id="1930–1939"><span id="1930.E2.80.931939"></span>1930–1939</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit&amp;section=6" title="Edit section: 1930–1939"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Ernst_Ruska_Electron_Microscope_-_Deutsches_Museum_-_Munich-edit.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Ernst_Ruska_Electron_Microscope_-_Deutsches_Museum_-_Munich-edit.jpg/170px-Ernst_Ruska_Electron_Microscope_-_Deutsches_Museum_-_Munich-edit.jpg" decoding="async" width="170" height="292" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Ernst_Ruska_Electron_Microscope_-_Deutsches_Museum_-_Munich-edit.jpg/255px-Ernst_Ruska_Electron_Microscope_-_Deutsches_Museum_-_Munich-edit.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Ernst_Ruska_Electron_Microscope_-_Deutsches_Museum_-_Munich-edit.jpg/340px-Ernst_Ruska_Electron_Microscope_-_Deutsches_Museum_-_Munich-edit.jpg 2x" data-file-width="1507" data-file-height="2592" /></a><figcaption>Electron microscope constructed by Ernst Ruska in 1933</figcaption></figure> <ul><li>1930 <ul><li>Dirac hypothesizes the existence of the positron.<sup id="cite_ref-Peacock_1-13" class="reference"><a href="#cite_note-Peacock-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li> <li>Dirac's textbook <i><a href="/wiki/The_Principles_of_Quantum_Mechanics" title="The Principles of Quantum Mechanics">The Principles of Quantum Mechanics</a></i> is published, becoming a standard reference book that is still used today.</li> <li><a href="/wiki/Erich_H%C3%BCckel" title="Erich Hückel">Erich Hückel</a> introduces the <a href="/wiki/H%C3%BCckel_molecular_orbital_method" class="mw-redirect" title="Hückel molecular orbital method">Hückel molecular orbital method</a>, which expands on orbital theory to determine the energies of orbitals of <a href="/wiki/Pi_electrons" class="mw-redirect" title="Pi electrons">pi electrons</a> in conjugated hydrocarbon systems.</li> <li><a href="/wiki/Fritz_London" title="Fritz London">Fritz London</a> explains <a href="/wiki/Van_der_Waals_force" title="Van der Waals force">van der Waals forces</a> as due to the interacting fluctuating <a href="/wiki/Bond_dipole_moment" class="mw-redirect" title="Bond dipole moment">dipole moments</a> between molecules</li> <li>Pauli suggests in a famous letter that, in addition to electrons and protons, atoms also contain an extremely light neutral particle that he calls the "neutron". He suggests that this "neutron" is also emitted during beta decay and has simply not yet been observed. Later it is determined that this particle is actually the almost massless neutrino.<sup id="cite_ref-Peacock_1-14" class="reference"><a href="#cite_note-Peacock-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li>1931: <ul><li><a href="/wiki/John_Lennard-Jones" title="John Lennard-Jones">John Lennard-Jones</a> proposes the <a href="/wiki/Lennard-Jones_potential" title="Lennard-Jones potential">Lennard-Jones inter-atomic potential</a>.</li> <li><a href="/wiki/Walther_Bothe" title="Walther Bothe">Walther Bothe</a> and <a href="/wiki/Herbert_Becker_(physicist)" class="mw-redirect" title="Herbert Becker (physicist)">Herbert Becker</a> find that if the very energetic <a href="/wiki/Alpha_particles" class="mw-redirect" title="Alpha particles">alpha particles</a> emitted from <a href="/wiki/Polonium" title="Polonium">polonium</a> fall on certain light elements, specifically <a href="/wiki/Beryllium" title="Beryllium">beryllium</a>, <a href="/wiki/Boron" title="Boron">boron</a>, or <a href="/wiki/Lithium" title="Lithium">lithium</a>, an unusually penetrating radiation is produced. At first this radiation is thought to be <a href="/wiki/Gamma_radiation" class="mw-redirect" title="Gamma radiation">gamma radiation</a>, although it is more penetrating than any gamma rays known, and the details of experimental results are very difficult to interpret on this basis. Some scientists begin to hypothesize the possible existence of another fundamental particle.</li> <li><a href="/wiki/Erich_H%C3%BCckel" title="Erich Hückel">Erich Hückel</a> redefines the property of <a href="/wiki/Aromaticity" title="Aromaticity">aromaticity</a> in a quantum mechanical context by introducing the <a href="/wiki/4n%2B2_rule" class="mw-redirect" title="4n+2 rule">4<i>n</i>+2 rule</a>, or <a href="/wiki/H%C3%BCckel%27s_rule" title="Hückel&#39;s rule">Hückel's rule</a>, which predicts whether an organic <a href="/wiki/Plane_(geometry)" class="mw-redirect" title="Plane (geometry)">planar</a> ring <a href="/wiki/Molecule" title="Molecule">molecule</a> will have aromatic properties.</li> <li><a href="/wiki/Ernst_Ruska" title="Ernst Ruska">Ernst Ruska</a> creates the first <a href="/wiki/Electron_microscope" title="Electron microscope">electron microscope</a>.<sup id="cite_ref-Peacock_1-15" class="reference"><a href="#cite_note-Peacock-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Ernest_Lawrence" title="Ernest Lawrence">Ernest Lawrence</a> creates the first <a href="/wiki/Cyclotron" title="Cyclotron">cyclotron</a> and founds the Radiation Laboratory, later the <a href="/wiki/Lawrence_Berkeley_National_Laboratory" title="Lawrence Berkeley National Laboratory">Lawrence Berkeley National Laboratory</a>; in 1939 he was awarded the Nobel Prize in Physics for his work on the cyclotron.</li></ul></li> <li>1932: <ul><li><a href="/wiki/Ir%C3%A8ne_Joliot-Curie" title="Irène Joliot-Curie">Irène Joliot-Curie</a> and <a href="/wiki/Fr%C3%A9d%C3%A9ric_Joliot" class="mw-redirect" title="Frédéric Joliot">Frédéric Joliot</a> show that if the unknown radiation generated by alpha particles falls on paraffin or any other hydrogen-containing compound, it ejects <a href="/wiki/Proton" title="Proton">protons</a> of very high energy. This is not in itself inconsistent with the proposed <a href="/wiki/Gamma_ray" title="Gamma ray">gamma ray</a> nature of the new radiation, but detailed quantitative analysis of the data become increasingly difficult to reconcile with such a hypothesis.</li> <li><a href="/wiki/James_Chadwick" title="James Chadwick">James Chadwick</a> performs a series of experiments showing that the gamma ray hypothesis for the unknown radiation produced by alpha particles is untenable, and that the new particles must be the <a href="/wiki/Neutron" title="Neutron">neutrons</a> hypothesized by Fermi.<sup id="cite_ref-Peacock_1-16" class="reference"><a href="#cite_note-Peacock-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li> <li>Werner Heisenberg applies <a href="/wiki/Perturbation_theory" title="Perturbation theory">perturbation theory</a> to the two-electron problem to show how <a href="/wiki/Resonance_(chemistry)" title="Resonance (chemistry)">resonance</a> arising from electron exchange can explain <a href="/wiki/Force_carrier" title="Force carrier">Force carriers</a>.</li> <li><a href="/wiki/Mark_Oliphant" title="Mark Oliphant">Mark Oliphant</a>: Building upon the nuclear transmutation experiments of Ernest Rutherford done a few years earlier, observes fusion of light nuclei (hydrogen isotopes). The steps of the main cycle of nuclear fusion in stars are subsequently worked out by Hans Bethe over the next decade.</li> <li><a href="/wiki/Carl_D._Anderson" class="mw-redirect" title="Carl D. Anderson">Carl D. Anderson</a> experimentally proves the existence of the positron.<sup id="cite_ref-Peacock_1-17" class="reference"><a href="#cite_note-Peacock-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li>1933 – Following Chadwick's experiments, Fermi renames Pauli's "neutron" to neutrino to distinguish it from Chadwick's theory of the much more massive neutron.</li> <li>1933 – <a href="/wiki/Le%C3%B3_Szil%C3%A1rd" class="mw-redirect" title="Leó Szilárd">Leó Szilárd</a> first theorizes the concept of a nuclear chain reaction. He files a patent for his idea of a simple nuclear reactor the following year.</li> <li>1934: <ul><li>Fermi publishes a very successful <a href="/wiki/Fermi%27s_interaction" title="Fermi&#39;s interaction">model of beta decay</a> in which neutrinos are produced.</li> <li>Fermi studies the effects of bombarding <a href="/wiki/Uranium" title="Uranium">uranium</a> isotopes with neutrons.</li> <li>N. N. Semyonov develops the total quantitative chain chemical reaction theory, later the basis of various high technologies using the incineration of gas mixtures. The idea is also used for the description of the nuclear reaction.</li> <li><a href="/wiki/Ir%C3%A8ne_Joliot-Curie" title="Irène Joliot-Curie">Irène Joliot-Curie</a> and Frédéric Joliot-Curie discover <a href="/wiki/Artificial_radioactivity" class="mw-redirect" title="Artificial radioactivity">artificial radioactivity</a> and are jointly awarded the 1935 Nobel Prize in Chemistry<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li>1935: <ul><li>Einstein, <a href="/wiki/Boris_Podolsky" title="Boris Podolsky">Boris Podolsky</a>, and <a href="/wiki/Nathan_Rosen" title="Nathan Rosen">Nathan Rosen</a> describe the <a href="/wiki/EPR_paradox" class="mw-redirect" title="EPR paradox">EPR paradox</a>, which challenges the completeness of quantum mechanics as it was theorized up to that time. Assuming that <a href="/wiki/Local_realism" class="mw-redirect" title="Local realism">local realism</a> is valid, they demonstrated that there would need to be <a href="/wiki/Hidden_variable_theory#EPR_paradox" class="mw-redirect" title="Hidden variable theory">hidden parameters</a> to explain how measuring the quantum state of one particle could influence the quantum state of another particle without apparent contact between them.<sup id="cite_ref-Einstein1935_30-0" class="reference"><a href="#cite_note-Einstein1935-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup></li> <li>Schrödinger develops the <a href="/wiki/Schr%C3%B6dinger%27s_cat" title="Schrödinger&#39;s cat">Schrödinger's cat</a> thought experiment. It illustrates what he saw as the problems of the <a href="/wiki/Copenhagen_interpretation" title="Copenhagen interpretation">Copenhagen interpretation</a> of quantum mechanics if subatomic particles can be in two contradictory quantum states at once.</li> <li><a href="/wiki/Hideki_Yukawa" title="Hideki Yukawa">Hideki Yukawa</a> predicts the existence of the <a href="/wiki/Pion" title="Pion">pion</a>, stating that such a potential arises from the exchange of a massive <a href="/wiki/Scalar_field" title="Scalar field">scalar field</a>, as it would be found in the field of the pion. Prior to Yukawa's paper, it was believed that the scalar fields of the <a href="/wiki/Fundamental_force" class="mw-redirect" title="Fundamental force">fundamental forces</a> necessitated massless particles.</li></ul></li> <li>1936 – <a href="/wiki/Alexandru_Proca" title="Alexandru Proca">Alexandru Proca</a> publishes prior to <a href="/wiki/Hideki_Yukawa" title="Hideki Yukawa">Hideki Yukawa</a> his relativistic quantum field equations for a massive <a href="/wiki/Vector_meson" title="Vector meson">vector meson</a> of <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a>-1 as a basis for <a href="/wiki/Nuclear_force" title="Nuclear force">nuclear forces</a>.</li> <li>1936 – <a href="/wiki/Garrett_Birkhoff" title="Garrett Birkhoff">Garrett Birkhoff</a> and <a href="/wiki/John_von_Neumann" title="John von Neumann">John von Neumann</a> introduce <a href="/wiki/Quantum_Logic" class="mw-redirect" title="Quantum Logic">Quantum Logic</a><sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> in an attempt to reconcile the apparent inconsistency of classical, Boolean logic with the Heisenberg <a href="/wiki/Uncertainty_Principle" class="mw-redirect" title="Uncertainty Principle">Uncertainty Principle</a> of quantum mechanics as applied, for example, to the measurement of complementary (<a href="/wiki/Noncommutative" class="mw-redirect" title="Noncommutative">noncommuting</a>) <a href="/wiki/Observable" title="Observable">observables</a> in quantum mechanics, such as <a href="/wiki/Position_(vector)" class="mw-redirect" title="Position (vector)">position</a> and momentum;<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> current approaches to quantum logic involve <a href="/wiki/Noncommutative" class="mw-redirect" title="Noncommutative">noncommutative</a> and <a href="/wiki/Non-associative" class="mw-redirect" title="Non-associative">non-associative</a> <a href="/wiki/Many-valued_logic" title="Many-valued logic">many-valued logic</a>.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup></li> <li>1936 – <a href="/wiki/Carl_D._Anderson" class="mw-redirect" title="Carl D. Anderson">Carl D. Anderson</a> discovers <a href="/wiki/Muon" title="Muon">muons</a> while he is studying cosmic radiation.</li> <li>1937 – <a href="/wiki/Hermann_Arthur_Jahn" title="Hermann Arthur Jahn">Hermann Arthur Jahn</a> and <a href="/wiki/Edward_Teller" title="Edward Teller">Edward Teller</a> prove, using <a href="/wiki/Group_theory" title="Group theory">group theory</a>, that non-linear degenerate molecules are unstable.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> The Jahn–Teller theorem essentially states that any non-linear molecule with a <a href="/wiki/Degenerate_energy_level" class="mw-redirect" title="Degenerate energy level">degenerate</a> electronic ground state will undergo a geometrical distortion that removes that degeneracy, because the distortion lowers the overall energy of the complex. The latter process is called the <a href="/wiki/Jahn%E2%80%93Teller_effect" title="Jahn–Teller effect">Jahn–Teller effect</a>; this effect was recently considered also in relation to the superconductivity mechanism in <a href="/wiki/YBCO" class="mw-redirect" title="YBCO">YBCO</a> and other <a href="/wiki/High_temperature_superconductor" class="mw-redirect" title="High temperature superconductor">high temperature superconductors</a>. The details of the Jahn–Teller effect are presented with several examples and EPR data in the basic textbook by Abragam and Bleaney (1970).</li> <li>1938 – <a href="/wiki/Charles_Coulson" title="Charles Coulson">Charles Coulson</a> makes the first accurate calculation of a molecular orbital <a href="/wiki/Wavefunction" class="mw-redirect" title="Wavefunction">wavefunction</a> with the <a href="/wiki/Hydrogen_molecule" class="mw-redirect" title="Hydrogen molecule">hydrogen molecule</a>.</li> <li>1938 – <a href="/wiki/Otto_Hahn" title="Otto Hahn">Otto Hahn</a> and his assistant <a href="/wiki/Fritz_Strassmann" title="Fritz Strassmann">Fritz Strassmann</a> send a manuscript to Naturwissenschaften reporting they have detected the element barium after bombarding uranium with neutrons. Hahn calls this new phenomenon a 'bursting' of the uranium nucleus. Simultaneously, Hahn communicates these results to <a href="/wiki/Lise_Meitner" title="Lise Meitner">Lise Meitner</a>. Meitner, and her nephew <a href="/wiki/Otto_Robert_Frisch" title="Otto Robert Frisch">Otto Robert Frisch</a>, correctly interpret these results as being a <a href="/wiki/Nuclear_fission" title="Nuclear fission">nuclear fission</a>. Frisch confirms this experimentally on 13 January 1939.</li> <li>1939 – <a href="/wiki/Le%C3%B3_Szil%C3%A1rd" class="mw-redirect" title="Leó Szilárd">Leó Szilárd</a> and Fermi discover neutron multiplication in uranium, proving that a chain reaction is indeed possible.</li></ul> <div class="mw-heading mw-heading3"><h3 id="1940–1949"><span id="1940.E2.80.931949"></span>1940–1949</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit&amp;section=7" title="Edit section: 1940–1949"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Feynmann_Diagram_Gluon_Radiation.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Feynmann_Diagram_Gluon_Radiation.svg/220px-Feynmann_Diagram_Gluon_Radiation.svg.png" decoding="async" width="220" height="138" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Feynmann_Diagram_Gluon_Radiation.svg/330px-Feynmann_Diagram_Gluon_Radiation.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Feynmann_Diagram_Gluon_Radiation.svg/440px-Feynmann_Diagram_Gluon_Radiation.svg.png 2x" data-file-width="400" data-file-height="250" /></a><figcaption>A <a href="/wiki/Feynman_diagram" title="Feynman diagram">Feynman diagram</a> showing the radiation of a gluon when an electron and positron are annihilated</figcaption></figure> <ul><li>1942 – A team led by Enrico Fermi creates the first artificial self-sustaining nuclear chain reaction, called Chicago Pile-1, in a racquets court below the bleachers of Stagg Field at the University of Chicago on December 2, 1942.</li> <li>1942 to 1946 – <a href="/wiki/J._Robert_Oppenheimer" title="J. Robert Oppenheimer">J. Robert Oppenheimer</a> successfully leads the <a href="/wiki/Manhattan_Project" title="Manhattan Project">Manhattan Project</a>, predicts <a href="/wiki/Quantum_tunneling" class="mw-redirect" title="Quantum tunneling">quantum tunneling</a> and proposes the <a href="/wiki/Oppenheimer%E2%80%93Phillips_process" title="Oppenheimer–Phillips process">Oppenheimer–Phillips process</a> in <a href="/wiki/Nuclear_fusion" title="Nuclear fusion">nuclear fusion</a></li> <li>1945 – the <a href="/wiki/Manhattan_Project" title="Manhattan Project">Manhattan Project</a> produces the first nuclear fission explosion on July 16, 1945, in the <a href="/wiki/Trinity_test" class="mw-redirect" title="Trinity test">Trinity test</a> in New Mexico.</li> <li>1945 – <a href="/wiki/John_Archibald_Wheeler" title="John Archibald Wheeler">John Archibald Wheeler</a> and <a href="/wiki/Richard_Feynman" title="Richard Feynman">Richard Feynman</a> originate <a href="/wiki/Wheeler%E2%80%93Feynman_absorber_theory" title="Wheeler–Feynman absorber theory">Wheeler–Feynman absorber theory</a>, an interpretation of electrodynamics that supposes that elementary particles are not self-interacting.</li> <li>1946 – <a href="/wiki/Theodor_V._Ionescu" title="Theodor V. Ionescu">Theodor V. Ionescu</a> and Vasile Mihu report the construction of the first <a href="/wiki/Hydrogen_maser" title="Hydrogen maser">hydrogen maser</a> by <a href="/wiki/Stimulated_emission" title="Stimulated emission">stimulated emission</a> of radiation in molecular hydrogen.</li> <li>1947 – <a href="/wiki/Willis_Lamb" title="Willis Lamb">Willis Lamb</a> and <a href="/wiki/Robert_Retherford" title="Robert Retherford">Robert Retherford</a> measure a small difference in <a href="/wiki/Energy" title="Energy">energy</a> between the <a href="/wiki/Energy_level" title="Energy level">energy levels</a> <sup>2</sup><i>S</i><sub>1/2</sub> and <sup>2</sup><i>P</i><sub>1/2</sub> of the <a href="/wiki/Hydrogen_atom" title="Hydrogen atom">hydrogen atom</a>, known as the <a href="/wiki/Lamb_shift" title="Lamb shift">Lamb shift</a>.</li> <li>1947 – <a href="/wiki/George_Rochester" title="George Rochester">George Rochester</a> and <a href="/wiki/Clifford_Charles_Butler" title="Clifford Charles Butler">Clifford Charles Butler</a> publish two <a href="/wiki/Cloud_chamber" title="Cloud chamber">cloud chamber</a> photographs of cosmic ray-induced events, one showing what appears to be a neutral particle decaying into two charged pions, and one that appears to be a charged particle decaying into a charged pion and something neutral. The estimated mass of the new particles is very rough, about half a proton's mass. More examples of these "V-particles" were slow in coming, and they are soon given the name <a href="/wiki/Kaon" title="Kaon">kaons</a>.</li> <li>1948 – <a href="/wiki/Sin-Itiro_Tomonaga" class="mw-redirect" title="Sin-Itiro Tomonaga">Sin-Itiro Tomonaga</a> and <a href="/wiki/Julian_Schwinger" title="Julian Schwinger">Julian Schwinger</a> independently introduce <a href="/wiki/Renormalization" title="Renormalization">perturbative renormalization</a> as a method of correcting the original <a href="/wiki/Lagrangian_(field_theory)" title="Lagrangian (field theory)">Lagrangian</a> of a quantum field theory so as to eliminate a series of infinite terms that would otherwise result.</li> <li>1948 – <a href="/wiki/Richard_Feynman" title="Richard Feynman">Richard Feynman</a> states the <a href="/wiki/Path_integral_formulation" title="Path integral formulation">path integral formulation</a> of quantum mechanics.</li> <li>1949 – <a href="/wiki/Freeman_Dyson" title="Freeman Dyson">Freeman Dyson</a> determines the equivalence of two formulations of <a href="/wiki/Quantum_electrodynamics" title="Quantum electrodynamics">quantum electrodynamics</a>: Feynman's diagrammatic <a href="/wiki/Path_integral_formulation" title="Path integral formulation">path integral formulation</a> and the operator method developed by <a href="/wiki/Julian_Schwinger" title="Julian Schwinger">Julian Schwinger</a> and Tomonaga. A by-product of that demonstration is the invention of the <a href="/wiki/Dyson_series" title="Dyson series">Dyson series</a>.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="1950–1959"><span id="1950.E2.80.931959"></span>1950–1959</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit&amp;section=8" title="Edit section: 1950–1959"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>1951: <ul><li><a href="/wiki/Clemens_C._J._Roothaan" title="Clemens C. J. Roothaan">Clemens C. J. Roothaan</a> and <a href="/wiki/George_G._Hall" title="George G. Hall">George G. Hall</a> derive the <a href="/wiki/Roothaan_equations" title="Roothaan equations">Roothaan–Hall equations</a>, putting rigorous molecular orbital methods on a firm basis.</li> <li>Edward Teller, physicist and "father of the hydrogen bomb", and <a href="/wiki/Stanislaw_Ulam" class="mw-redirect" title="Stanislaw Ulam">Stanislaw Ulam</a>, mathematician, are reported to have written jointly in March 1951 a classified report on "Hydrodynamic Lenses and Radiation Mirrors" that results in the next step in the Manhattan Project.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li> <li>1951 and 1952 – at the Manhattan Project, the first planned fusion <a href="/wiki/Thermonuclear_reaction" class="mw-redirect" title="Thermonuclear reaction">thermonuclear reaction</a> experiment is carried out successfully in the Spring of 1951 at Eniwetok, based on the work of Edward Teller and Dr. <a href="/wiki/Hans_A._Bethe" class="mw-redirect" title="Hans A. Bethe">Hans A. Bethe</a>.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Los_Alamos_Laboratory" class="mw-redirect" title="Los Alamos Laboratory">Los Alamos Laboratory</a> proposes a date in November 1952 for a <a href="/wiki/Hydrogen_bomb" class="mw-redirect" title="Hydrogen bomb">hydrogen bomb</a>, full-scale test that is apparently carried out.</li> <li><a href="/wiki/Felix_Bloch" title="Felix Bloch">Felix Bloch</a> and <a href="/wiki/Edward_Mills_Purcell" title="Edward Mills Purcell">Edward Mills Purcell</a> receive a shared Nobel Prize in Physics for their first observations of the quantum phenomenon of <a href="/wiki/Nuclear_magnetic_resonance" title="Nuclear magnetic resonance">nuclear magnetic resonance</a> previously reported in 1949.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> Purcell reports his contribution as <i>Research in Nuclear Magnetism</i>, and gives credit to his coworkers such as <a href="/wiki/Herbert_S._Gutowsky" title="Herbert S. Gutowsky">Herbert S. Gutowsky</a> for their NMR contributions,<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> as well as theoretical researchers of <a href="/wiki/Nuclear_magnetic_moment" title="Nuclear magnetic moment">nuclear magnetism</a> such as <a href="/wiki/John_Hasbrouck_Van_Vleck" title="John Hasbrouck Van Vleck">John Hasbrouck Van Vleck</a>.</li></ul></li> <li>1952 – <a href="/wiki/Albert_W._Overhauser" class="mw-redirect" title="Albert W. Overhauser">Albert W. Overhauser</a> formulates a theory of <a href="/wiki/Dynamic_nuclear_polarization" title="Dynamic nuclear polarization">dynamic nuclear polarization</a>, also known as the <a href="/wiki/Dynamic_nuclear_polarization#Overhauser_effect" title="Dynamic nuclear polarization">Overhauser Effect</a>; other contenders are the subsequent theory of Ionel Solomon reported in 1955 that includes the <i><a href="/wiki/Solomon_equations" title="Solomon equations">Solomon equations</a></i> for the dynamics of coupled spins, and that of R. Kaiser in 1963. The general Overhauser effect is first demonstrated experimentally by T. R. Carver and <a href="/wiki/Charles_P._Slichter" class="mw-redirect" title="Charles P. Slichter">Charles P. Slichter</a> in 1953.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup></li> <li>1952 – <a href="/wiki/Donald_A._Glaser" title="Donald A. Glaser">Donald A. Glaser</a> creates the <a href="/wiki/Bubble_chamber" title="Bubble chamber">bubble chamber</a>, which allows detection of electrically charged particles by surrounding them by a bubble. Properties of the particles such as momentum can be determined by studying their helical paths. Glaser receives a Nobel prize in 1960 for his invention.</li> <li>1953 – <a href="/wiki/Charles_H._Townes" title="Charles H. Townes">Charles H. Townes</a>, collaborating with <a href="/wiki/James_P._Gordon" title="James P. Gordon">James P. Gordon</a>, and <a href="/wiki/Herbert_J._Zeiger" class="mw-redirect" title="Herbert J. Zeiger">Herbert J. Zeiger</a>, builds the first ammonia <a href="/wiki/Maser" title="Maser">maser</a>; receives a Nobel prize in 1964 for his experimental success in producing <a href="/wiki/Coherent_radiation" class="mw-redirect" title="Coherent radiation">coherent radiation</a> by atoms and molecules.</li> <li>1954 – <a href="/wiki/Chen_Ning_Yang" class="mw-redirect" title="Chen Ning Yang">Chen Ning Yang</a> and <a href="/wiki/Robert_Mills_(physicist)" title="Robert Mills (physicist)">Robert Mills</a> derive a <a href="/wiki/Gauge_theory" title="Gauge theory">gauge theory</a> for <a href="/wiki/Nonabelian_group" class="mw-redirect" title="Nonabelian group">nonabelian groups</a>, leading to the successful formulation of both <a href="/wiki/Electroweak_interaction" title="Electroweak interaction">electroweak unification</a> and <a href="/wiki/Quantum_chromodynamics" title="Quantum chromodynamics">quantum chromodynamics</a>.</li> <li>1955 – Ionel Solomon develops the first <a href="/wiki/Nuclear_magnetic_resonance" title="Nuclear magnetic resonance">nuclear magnetic resonance</a> theory of <a href="/wiki/Magnetic_dipole" title="Magnetic dipole">magnetic dipole</a> coupled <a href="/wiki/Nuclear_spin" class="mw-redirect" title="Nuclear spin">nuclear spins</a> and of the <a href="/wiki/Nuclear_Overhauser_effect" title="Nuclear Overhauser effect">Nuclear Overhauser effect</a>.</li> <li>1956 – P. Kuroda predicts that self-sustaining nuclear chain reactions should occur in natural uranium deposits.</li> <li>1956 – <a href="/wiki/Chien-Shiung_Wu" title="Chien-Shiung Wu">Chien-Shiung Wu</a> carries out the <a href="/wiki/Wu_Experiment" class="mw-redirect" title="Wu Experiment">Wu Experiment</a>, which observes parity violation in <a href="/wiki/Cobalt-60" title="Cobalt-60">cobalt-60</a> decay, showing that parity violation is present in the <a href="/wiki/Weak_interaction" title="Weak interaction">weak interaction</a>.</li> <li>1956 – <a href="/wiki/Clyde_L._Cowan" class="mw-redirect" title="Clyde L. Cowan">Clyde L. Cowan</a> and <a href="/wiki/Frederick_Reines" title="Frederick Reines">Frederick Reines</a> experimentally prove the existence of the neutrino.</li> <li>1957 – <a href="/wiki/John_Bardeen" title="John Bardeen">John Bardeen</a>, <a href="/wiki/Leon_Cooper" title="Leon Cooper">Leon Cooper</a> and <a href="/wiki/John_Robert_Schrieffer" title="John Robert Schrieffer">John Robert Schrieffer</a> propose their quantum <a href="/wiki/BCS_theory" title="BCS theory">BCS theory</a> of low temperature <a href="/wiki/Superconductivity" title="Superconductivity">superconductivity</a>, for which they receive a Nobel prize in 1972. The theory represents superconductivity as a macroscopic quantum coherence phenomenon involving <a href="/wiki/Phonon" title="Phonon">phonon</a> coupled electron pairs with opposite spin</li> <li>1957 – <a href="/wiki/William_Alfred_Fowler" title="William Alfred Fowler">William Alfred Fowler</a>, <a href="/wiki/Margaret_Burbidge" title="Margaret Burbidge">Margaret Burbidge</a>, <a href="/wiki/Geoffrey_Burbidge" title="Geoffrey Burbidge">Geoffrey Burbidge</a>, and <a href="/wiki/Fred_Hoyle" title="Fred Hoyle">Fred Hoyle</a>, in their 1957 paper <i><a href="/wiki/Synthesis_of_the_Elements_in_Stars" class="mw-redirect" title="Synthesis of the Elements in Stars">Synthesis of the Elements in Stars</a></i>, show that the abundances of essentially all but the lightest chemical elements can be explained by the process of <a href="/wiki/Nucleosynthesis" title="Nucleosynthesis">nucleosynthesis</a> in stars.</li> <li>1957 – <a href="/wiki/Hugh_Everett_III" title="Hugh Everett III">Hugh Everett</a> formulates the <a href="/wiki/Many-worlds_interpretation" title="Many-worlds interpretation">many-worlds interpretation</a> of quantum mechanics, which states that every possible quantum outcome is realized in divergent, non-communicating parallel universes in <a href="/wiki/Quantum_superposition" title="Quantum superposition">quantum superposition</a>.<sup id="cite_ref-everett56_45-0" class="reference"><a href="#cite_note-everett56-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-everett57_46-0" class="reference"><a href="#cite_note-everett57-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup></li> <li>1958–1959 – <a href="/wiki/Magic_angle_spinning" title="Magic angle spinning">magic angle spinning</a> described by Edward Raymond Andrew, A. Bradbury, and R. G. Eades, and independently in 1959 by I.&#160;J. Lowe.<sup id="cite_ref-Hennel2005_47-0" class="reference"><a href="#cite_note-Hennel2005-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="1960–1969"><span id="1960.E2.80.931969"></span>1960–1969</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit&amp;section=9" title="Edit section: 1960–1969"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Baryon_decuplet.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Baryon_decuplet.png/220px-Baryon_decuplet.png" decoding="async" width="220" height="159" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Baryon_decuplet.png/330px-Baryon_decuplet.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Baryon_decuplet.png/440px-Baryon_decuplet.png 2x" data-file-width="733" data-file-height="531" /></a><figcaption>The baryon decuplet of the <a href="/wiki/Eightfold_Way_(physics)" class="mw-redirect" title="Eightfold Way (physics)">Eightfold Way</a> proposed by Murray Gell-Mann in 1962. The <span style="white-space:nowrap;"><a href="/wiki/Omega_baryon" title="Omega baryon"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>&#937;<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">&#8722;</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></a></span> particle at the bottom had not yet been observed at the time, but a particle closely matching these predictions was discovered<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> by a <a href="/wiki/Particle_accelerator" title="Particle accelerator">particle accelerator</a> group at <a href="/wiki/Brookhaven_National_Laboratory" title="Brookhaven National Laboratory">Brookhaven</a>, proving Gell-Mann's theory.</figcaption></figure> <ul><li>1961 – <a href="/wiki/Claus_J%C3%B6nsson" title="Claus Jönsson">Claus Jönsson</a> performs <a href="/wiki/Thomas_Young_(scientist)" title="Thomas Young (scientist)">Young's</a> <a href="/wiki/Double-slit_experiment" title="Double-slit experiment">double-slit experiment</a> (1909) for the first time with particles other than photons by using electrons and with similar results, confirming that massive particles also behaved according to the wave–particle duality that is a fundamental principle of quantum field theory.</li> <li>1961 – <a href="/wiki/Anatole_Abragam" title="Anatole Abragam">Anatole Abragam</a> publishes the fundamental textbook on the quantum theory of <a href="/wiki/Nuclear_Magnetic_Resonance" class="mw-redirect" title="Nuclear Magnetic Resonance">Nuclear Magnetic Resonance</a> entitled <i>The Principles of Nuclear Magnetism</i>;<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup></li> <li>1961 – <a href="/wiki/Sheldon_Glashow" title="Sheldon Glashow">Sheldon Glashow</a> extends the <a href="/wiki/Electroweak_interaction" title="Electroweak interaction">electroweak interaction</a> models developed by Julian Schwinger by including a short range <a href="/wiki/Neutral_current" title="Neutral current">neutral current</a>, the Z<sub>o</sub>. The resulting symmetry structure that Glashow proposes, SU(2)&#160;×&#160;U(1), forms the basis of the accepted theory of the electroweak interactions.</li> <li>1962 – <a href="/wiki/Leon_M._Lederman" title="Leon M. Lederman">Leon M. Lederman</a>, <a href="/wiki/Melvin_Schwartz" title="Melvin Schwartz">Melvin Schwartz</a> and <a href="/wiki/Jack_Steinberger" title="Jack Steinberger">Jack Steinberger</a> show that more than one type of neutrino exists by detecting interactions of the <a href="/wiki/Muon" title="Muon">muon</a> neutrino (already hypothesised with the name "neutretto")</li> <li>1962 – <a href="/wiki/Jeffrey_Goldstone" title="Jeffrey Goldstone">Jeffrey Goldstone</a>, <a href="/wiki/Yoichiro_Nambu" title="Yoichiro Nambu">Yoichiro Nambu</a>, <a href="/wiki/Abdus_Salam" title="Abdus Salam">Abdus Salam</a>, and <a href="/wiki/Steven_Weinberg" title="Steven Weinberg">Steven Weinberg</a> develop what is now known as <a href="/wiki/Goldstone_boson" title="Goldstone boson">Goldstone's Theorem</a>: if there is a continuous symmetry transformation under which the Lagrangian is invariant, then either the vacuum state is also invariant under the transformation, or there must be spinless particles of zero mass, thereafter called <a href="/wiki/Goldstone_boson" title="Goldstone boson">Nambu–Goldstone bosons</a>.</li> <li>1962 to 1973 – <a href="/wiki/Brian_David_Josephson" class="mw-redirect" title="Brian David Josephson">Brian David Josephson</a>, predicts correctly the quantum tunneling effect involving superconducting currents while he is a PhD student under the supervision of Professor Brian Pippard at the Royal Society Mond Laboratory in Cambridge, UK; subsequently, in 1964, he applies his theory to coupled superconductors. The effect is later demonstrated experimentally at Bell Labs in the USA. For his important quantum discovery he is awarded the Nobel Prize in Physics in 1973.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup></li> <li>1963 – <a href="/wiki/Eugene_P._Wigner" class="mw-redirect" title="Eugene P. Wigner">Eugene P. Wigner</a> lays the foundation for the theory of symmetries in quantum mechanics as well as for basic research into the structure of the atomic nucleus; makes important "contributions to the theory of the atomic nucleus and the elementary particles, particularly through the discovery and application of fundamental symmetry principles"; he shares half of his Nobel prize in Physics with <a href="/wiki/Maria_Goeppert-Mayer" class="mw-redirect" title="Maria Goeppert-Mayer">Maria Goeppert-Mayer</a> and <a href="/wiki/J._Hans_D._Jensen" title="J. Hans D. Jensen">J. Hans D. Jensen</a>.</li> <li>1963 – <a href="/wiki/Maria_Goeppert_Mayer" title="Maria Goeppert Mayer">Maria Goeppert Mayer</a> and <a href="/wiki/J._Hans_D._Jensen" title="J. Hans D. Jensen">J. Hans D. Jensen</a> share with <a href="/wiki/Eugene_P._Wigner" class="mw-redirect" title="Eugene P. Wigner">Eugene P. Wigner</a> half of the Nobel Prize in Physics in 1963 "for their discoveries concerning <a href="/wiki/Nuclear_shell" class="mw-redirect" title="Nuclear shell">nuclear shell</a> structure theory".<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup></li> <li>1964 – <a href="/wiki/John_Stewart_Bell" title="John Stewart Bell">John Stewart Bell</a> puts forth <a href="/wiki/Bell%27s_theorem" title="Bell&#39;s theorem">Bell's theorem</a>, which used testable <a href="/wiki/Inequality_(mathematics)" title="Inequality (mathematics)">inequality relations</a> to show the flaws in the earlier <a href="/wiki/Einstein%E2%80%93Podolsky%E2%80%93Rosen_paradox" title="Einstein–Podolsky–Rosen paradox">Einstein–Podolsky–Rosen paradox</a> and prove that no physical theory of <a href="/wiki/Local_hidden-variable_theory" title="Local hidden-variable theory">local hidden variables</a> can ever reproduce all of the predictions of quantum mechanics. This inaugurated the study of <a href="/wiki/Quantum_entanglement" title="Quantum entanglement">quantum entanglement</a>, the phenomenon in which separate particles share the same quantum state despite being at a distance from each other.</li> <li>1964 – <a href="/wiki/Nikolai_G._Basov" class="mw-redirect" title="Nikolai G. Basov">Nikolai G. Basov</a> and <a href="/wiki/Aleksandr_M._Prokhorov" class="mw-redirect" title="Aleksandr M. Prokhorov">Aleksandr M. Prokhorov</a> share the Nobel Prize in Physics in 1964 for, respectively, <a href="/wiki/Semiconductor_laser" class="mw-redirect" title="Semiconductor laser">semiconductor lasers</a> and <a href="/wiki/Quantum_Electronics" class="mw-redirect" title="Quantum Electronics">Quantum Electronics</a>; they also share the prize with <a href="/wiki/Charles_Hard_Townes" class="mw-redirect" title="Charles Hard Townes">Charles Hard Townes</a>, the inventor of the ammonium <a href="/wiki/Maser" title="Maser">maser</a>.</li> <li>1969 to 1977 – Sir <a href="/wiki/Nevill_Mott" class="mw-redirect" title="Nevill Mott">Nevill Mott</a> and <a href="/wiki/Philip_Warren_Anderson" class="mw-redirect" title="Philip Warren Anderson">Philip Warren Anderson</a> publish quantum theories for electrons in non-crystalline solids, such as glasses and amorphous semiconductors; receive in 1977 a Nobel prize in Physics for their investigations into the electronic structure of magnetic and disordered systems, which allow for the development of electronic switching and memory devices in computers. The prize is shared with <a href="/wiki/John_Hasbrouck_Van_Vleck" title="John Hasbrouck Van Vleck">John Hasbrouck Van Vleck</a> for his contributions to the understanding of the behavior of electrons in magnetic solids; he established the fundamentals of the quantum mechanical theory of magnetism and the crystal field theory (chemical bonding in metal complexes) and is regarded as the Father of modern Magnetism.</li> <li>1969 and 1970 – <a href="/wiki/Theodor_V._Ionescu" title="Theodor V. Ionescu">Theodor V. Ionescu</a>, Radu Pârvan and I.C. Baianu observe and report quantum amplified stimulation of electromagnetic radiation in hot deuterium plasmas in a longitudinal magnetic field; publish a quantum theory of the amplified coherent emission of radiowaves and microwaves by focused electron beams coupled to ions in hot plasmas.</li></ul> <div class="mw-heading mw-heading3"><h3 id="1971–1979"><span id="1971.E2.80.931979"></span>1971–1979</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit&amp;section=10" title="Edit section: 1971–1979"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>1971 – <a href="/wiki/Martinus_J._G._Veltman" title="Martinus J. G. Veltman">Martinus J. G. Veltman</a> and <a href="/wiki/Gerardus_%27t_Hooft" class="mw-redirect" title="Gerardus &#39;t Hooft">Gerardus 't&#160;Hooft</a> show that, if the symmetries of <a href="/wiki/Yang%E2%80%93Mills_theory" title="Yang–Mills theory">Yang–Mills theory</a> are broken according to the method suggested by <a href="/wiki/Peter_Higgs" title="Peter Higgs">Peter Higgs</a>, then Yang–Mills theory can be renormalized. The renormalization of Yang–Mills Theory predicts the existence of a massless particle, called the <a href="/wiki/Gluon" title="Gluon">gluon</a>, which could explain the nuclear <a href="/wiki/Strong_force" class="mw-redirect" title="Strong force">strong force</a>. It also explains how the particles of the <a href="/wiki/Weak_interaction" title="Weak interaction">weak interaction</a>, the <a href="/wiki/W_and_Z_bosons" title="W and Z bosons">W and Z bosons</a>, obtain their mass via <a href="/wiki/Spontaneous_symmetry_breaking" title="Spontaneous symmetry breaking">spontaneous symmetry breaking</a> and the <a href="/wiki/Yukawa_interaction" title="Yukawa interaction">Yukawa interaction</a>.</li> <li>1972 – <a href="/wiki/Francis_Perrin_(physicist)" title="Francis Perrin (physicist)">Francis Perrin</a> discovers "natural nuclear fission reactors" in uranium deposits in <a href="/wiki/Oklo" title="Oklo">Oklo</a>, <a href="/wiki/Gabon" title="Gabon">Gabon</a>, where analysis of isotope ratios demonstrate that self-sustaining, nuclear chain reactions have occurred. The conditions under which a natural nuclear reactor could exist were predicted in 1956 by P. Kuroda.</li> <li>1973 – <a href="/wiki/Peter_Mansfield" title="Peter Mansfield">Peter Mansfield</a> formulates the physical theory of <a href="/wiki/Magnetic_resonance_imaging" title="Magnetic resonance imaging">nuclear magnetic resonance imaging</a> (NMRI) aka <a href="/wiki/Magnetic_resonance_imaging" title="Magnetic resonance imaging">magnetic resonance imaging</a> (MRI).<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup></li> <li>1974 – Pier Giorgio Merli performs Young's double-slit experiment (1909) using a single electron with similar results, confirming the existence of <a href="/wiki/Quantum_field" class="mw-redirect" title="Quantum field">quantum fields</a> for massive particles.</li> <li>1977 – <a href="/wiki/Ilya_Prigogine" title="Ilya Prigogine">Ilya Prigogine</a> develops non-equilibrium, <a href="/wiki/Thermodynamics" title="Thermodynamics">irreversible thermodynamics</a> and <a href="/wiki/Operator_(physics)" title="Operator (physics)">quantum operator</a> theory, especially the time <a href="/wiki/Superoperator" title="Superoperator">superoperator</a> theory; he is awarded the Nobel Prize in Chemistry in 1977 "for his contributions to non-equilibrium thermodynamics, particularly the theory of dissipative structures".<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup></li> <li>1978 – <a href="/wiki/Pyotr_Kapitsa" title="Pyotr Kapitsa">Pyotr Kapitsa</a> observes new phenomena in hot deuterium plasmas excited by very high power microwaves in attempts to obtain controlled thermonuclear fusion reactions in such plasmas placed in longitudinal magnetic fields, using a novel and low-cost design of thermonuclear reactor, similar in concept to that reported by Theodor V. Ionescu <i>et al.</i> in 1969. Receives a Nobel prize for early low temperature physics experiments on helium superfluidity carried out in 1937 at the Cavendish Laboratory in Cambridge, UK, and discusses his 1977 thermonuclear reactor results in his Nobel lecture on December 8, 1978.</li> <li>1979 – Kenneth A. Rubinson and coworkers, at the <a href="/wiki/Cavendish_Laboratory" title="Cavendish Laboratory">Cavendish Laboratory</a>, observe ferromagnetic <a href="/wiki/Spin_wave" title="Spin wave">spin wave</a> resonant excite journals (FSWR) in locally anisotropic, FENiPB metallic glasses and interpret the observations in terms of two-<a href="/wiki/Magnon" title="Magnon">magnon</a> dispersion and a <a href="/wiki/Spin-exchange_interaction" class="mw-redirect" title="Spin-exchange interaction">spin exchange</a> <a href="/wiki/Hamiltonian_matrix" title="Hamiltonian matrix">Hamiltonian</a>, similar in form to that of a <a href="/wiki/Heisenberg_ferromagnet" class="mw-redirect" title="Heisenberg ferromagnet">Heisenberg ferromagnet</a>.<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="1980–1999"><span id="1980.E2.80.931999"></span>1980–1999</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit&amp;section=11" title="Edit section: 1980–1999"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>1980 to 1982 – <a href="/wiki/Alain_Aspect" title="Alain Aspect">Alain Aspect</a> verifies experimentally the <a href="/wiki/Quantum_entanglement" title="Quantum entanglement">quantum entanglement</a> hypothesis; his <a href="/wiki/Bell_test" title="Bell test">Bell test</a> experiments provide strong evidence that a quantum event at one location can affect an event at another location without any obvious mechanism for communication between the two locations.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> This remarkable result confirmed the experimental verification of quantum entanglement by <a href="/wiki/John_F._Clauser" class="mw-redirect" title="John F. Clauser">John F. Clauser</a>. and. <a href="/wiki/Stuart_Freedman" title="Stuart Freedman">Stuart Freedman</a> in 1972.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> Aspect later shared the 2022 <a href="/wiki/Nobel_Prize_in_Physics" title="Nobel Prize in Physics">Nobel Prize in Physics</a> with Clauser and <a href="/wiki/Anton_Zeilinger" title="Anton Zeilinger">Anton Zeilinger</a> "for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science".<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup></li> <li>1982 to 1997 – <a href="/wiki/Tokamak_Fusion_Test_Reactor" title="Tokamak Fusion Test Reactor">Tokamak Fusion Test Reactor</a> (<a href="/wiki/TFTR" class="mw-redirect" title="TFTR">TFTR</a>) at <a href="/wiki/PPPL" class="mw-redirect" title="PPPL">PPPL</a>, Princeton, USA: Operated since 1982, produces 10.7&#160;MW of controlled fusion power for only 0.21&#160;s in 1994 by using T–D nuclear fusion in a tokamak reactor with "a toroidal 6T magnetic field for plasma confinement, a 3&#160;MA plasma current and an electron density of <span class="nowrap"><span data-sort-value="7020100000000000000♠"></span>1.0<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>20</sup>&#160;m<sup>−3</sup></span> of 13.5&#160;keV"<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup></li> <li>1983 – <a href="/wiki/Carlo_Rubbia" title="Carlo Rubbia">Carlo Rubbia</a> and <a href="/wiki/Simon_van_der_Meer" title="Simon van der Meer">Simon van der Meer</a>, at the <a href="/wiki/Super_Proton_Synchrotron" title="Super Proton Synchrotron">Super Proton Synchrotron</a>, see unambiguous signals of <a href="/wiki/W_particles" class="mw-redirect" title="W particles">W particles</a> in January. The actual experiments are called <a href="/wiki/UA1_experiment" title="UA1 experiment">UA1</a> (led by Rubbia) and <a href="/wiki/UA2_experiment" title="UA2 experiment">UA2</a> (led by Peter Jenni), and are the collaborative effort of many people. <a href="/wiki/Simon_van_der_Meer" title="Simon van der Meer">Simon van der Meer</a> is the driving force on the use of the accelerator. UA1 and UA2 find the <a href="/wiki/Z_particle" class="mw-redirect" title="Z particle">Z particle</a> a few months later, in May 1983.</li> <li>1983 to 2011 – The largest and most powerful experimental nuclear fusion tokamak reactor in the world, <a href="/wiki/Joint_European_Torus" title="Joint European Torus">Joint European Torus</a> (JET) begins operation at Culham Facility in UK; operates with T-D plasma pulses and has a reported gain factor <i>Q</i> of 0.7 in 2009, with an input of 40MW for plasma heating, and a 2800-ton iron magnet for confinement;<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> in 1997 in a tritium-deuterium experiment JET produces 16&#160;MW of fusion power, a total of 22&#160;MJ of fusion, energy and a steady fusion power of 4&#160;MW, which is maintained for 4 seconds.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup></li> <li>1985 to 2010 – The <a href="/wiki/JT-60" title="JT-60">JT-60 (Japan Torus)</a> begins operation in 1985 with an experimental D–D nuclear fusion tokamak similar to the JET; in 2010 JT-60 holds the record for the highest value of the <a href="/wiki/Lawson_criterion#The_&quot;triple_product&quot;_neTτE" title="Lawson criterion">fusion triple product</a> achieved: <span class="nowrap"><span data-sort-value="7028177000000000000♠"></span>1.77<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>28</sup>&#160;<a href="/wiki/Kelvin" title="Kelvin">K</a>·<a href="/wiki/Second" title="Second">s</a>·<a href="/wiki/Metre" title="Metre">m</a><sup>−3</sup></span> = <span class="nowrap"><span data-sort-value="7021153000000000000♠"></span>1.53<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>21</sup>&#160;<a href="/wiki/Electronvolt" title="Electronvolt">keV</a>·s·m<sup>−3</sup></span>.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> JT-60 claims it would have an equivalent energy gain factor, <i>Q</i> of 1.25 if it were operated with a T–D plasma instead of the D–D plasma, and on May 9, 2006, attains a fusion hold time of 28.6&#160;s in full operation; moreover, a high-power microwave <a href="/wiki/Gyrotron" title="Gyrotron">gyrotron</a> construction is completed that is capable of 1.5&#160;MW output for 1&#160;s,<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> thus meeting the conditions for the planned <a href="/wiki/ITER" title="ITER">ITER</a>, large-scale nuclear fusion reactor. JT-60 is disassembled in 2010 to be upgraded to a more powerful nuclear fusion reactor—the JT-60SA—by using niobium–titanium superconducting coils for the magnet confining the ultra-hot D–D plasma.</li> <li>1986 – <a href="/wiki/Johannes_Georg_Bednorz" class="mw-redirect" title="Johannes Georg Bednorz">Johannes Georg Bednorz</a> and <a href="/wiki/Karl_Alexander_M%C3%BCller" class="mw-redirect" title="Karl Alexander Müller">Karl Alexander Müller</a> produce unambiguous experimental proof of <a href="/wiki/High_temperature_superconductivity" class="mw-redirect" title="High temperature superconductivity">high temperature superconductivity</a> involving <a href="/wiki/Jahn%E2%80%93Teller" class="mw-redirect" title="Jahn–Teller">Jahn–Teller</a> <a href="/wiki/Polaron" title="Polaron">polarons</a> in orthorhombic La<sub>2</sub>CuO<sub>4</sub>, <a href="/wiki/YBCO" class="mw-redirect" title="YBCO">YBCO</a> and other perovskite-type oxides; promptly receive a Nobel prize in 1987 and deliver their Nobel lecture on December 8, 1987.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup></li> <li>1986 – <a href="/wiki/Vladimir_Gershonovich_Drinfeld" class="mw-redirect" title="Vladimir Gershonovich Drinfeld">Vladimir Gershonovich Drinfeld</a> introduces the concept of <a href="/wiki/Quantum_group" title="Quantum group">quantum groups</a> as <a href="/wiki/Hopf_algebra" title="Hopf algebra">Hopf algebras</a> in his seminal address on quantum theory at the <a href="/wiki/International_Congress_of_Mathematicians" title="International Congress of Mathematicians">International Congress of Mathematicians</a>, and also connects them to the study of the <a href="/wiki/Yang%E2%80%93Baxter_equation" title="Yang–Baxter equation">Yang–Baxter equation</a>, which is a necessary condition for the solvability of <a href="/wiki/Statistical_mechanics" title="Statistical mechanics">statistical mechanics</a> models; he also generalizes Hopf algebras to <a href="/wiki/Quasi-Hopf_algebra" title="Quasi-Hopf algebra">quasi-Hopf algebras</a>, and introduces the study of Drinfeld twists, which can be used to factorize the <a href="/wiki/R-matrix" title="R-matrix">R-matrix</a> corresponding to the solution of the <a href="/wiki/Yang%E2%80%93Baxter_equation" title="Yang–Baxter equation">Yang–Baxter equation</a> associated with a <a href="/wiki/Quasitriangular_Hopf_algebra" title="Quasitriangular Hopf algebra">quasitriangular Hopf algebra</a>.</li> <li>1988 to 1998 – <a href="/wiki/Mihai_Gavril%C4%83" title="Mihai Gavrilă">Mihai Gavrilă</a> discovers in 1988 the new quantum phenomenon of <i>atomic dichotomy</i> in hydrogen and subsequently publishes a book on the atomic structure and decay in high-frequency fields of hydrogen atoms placed in ultra-intense laser fields.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup></li> <li>1991 – <a href="/wiki/Richard_R._Ernst" title="Richard R. Ernst">Richard R. Ernst</a> develops two-dimensional nuclear magnetic resonance spectroscopy (2D-FT NMRS) for small molecules in solution and is awarded the Nobel Prize in Chemistry in 1991 "for his contributions to the development of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy".<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup></li> <li>1995 – <a href="/wiki/Eric_Cornell" class="mw-redirect" title="Eric Cornell">Eric Cornell</a>, <a href="/wiki/Carl_Wieman" title="Carl Wieman">Carl Wieman</a> and <a href="/wiki/Wolfgang_Ketterle" title="Wolfgang Ketterle">Wolfgang Ketterle</a> and co-workers at <a href="/wiki/JILA" title="JILA">JILA</a> create the first "pure" Bose–Einstein condensate. They do this by cooling a dilute vapor consisting of approximately two thousand rubidium-87 atoms to below 170 nK using a combination of laser cooling and magnetic evaporative cooling. About four months later, an independent effort led by Wolfgang Ketterle at <a href="/wiki/MIT" class="mw-redirect" title="MIT">MIT</a> creates a condensate made of sodium-23. Ketterle's condensate has about a hundred times more atoms, allowing him to obtain several important results such as the observation of quantum mechanical interference between two different condensates.</li> <li>1997 – <a href="/wiki/Peter_Shor" title="Peter Shor">Peter Shor</a> publishes <a href="/wiki/Shor%27s_algorithm" title="Shor&#39;s algorithm">Shor's algorithm</a>, a quantum computing algorithm for finding <a href="/wiki/Prime_factors" class="mw-redirect" title="Prime factors">prime factors</a> of integers.<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> The algorithm is one of the few known quantum algorithms with immediate potential applications, which likely leads to a <a href="/wiki/Superpolynomial" class="mw-redirect" title="Superpolynomial">superpolynomial</a> improvement over known non-quantum algorithms.<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup></li> <li>1999 to 2013 – NSTX—The <a href="/wiki/National_Spherical_Torus_Experiment" title="National Spherical Torus Experiment">National Spherical Torus Experiment</a> at PPPL, Princeton, USA launches a nuclear fusion project on February 12, 1999, for "an innovative magnetic fusion device that was constructed by the Princeton Plasma Physics Laboratory (PPPL) in collaboration with the Oak Ridge National Laboratory, Columbia University, and the University of Washington at Seattle"; NSTX is being used to study the physics principles of spherically shaped plasmas.<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="21st_century">21st century</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit&amp;section=12" title="Edit section: 21st century"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Graphen.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Graphen.jpg/220px-Graphen.jpg" decoding="async" width="220" height="176" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Graphen.jpg/330px-Graphen.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Graphen.jpg/440px-Graphen.jpg 2x" data-file-width="1280" data-file-height="1024" /></a><figcaption>Graphene is a planar <a href="/wiki/Chicken_wire_(chemistry)" title="Chicken wire (chemistry)">atomic-scale honeycomb lattice</a> made of carbon atoms, which exhibits unusual and interesting quantum properties.</figcaption></figure><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Update plainlinks metadata ambox ambox-content ambox-Update" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/Ambox_current_red_Americas.svg/42px-Ambox_current_red_Americas.svg.png" decoding="async" width="42" height="34" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/Ambox_current_red_Americas.svg/63px-Ambox_current_red_Americas.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/53/Ambox_current_red_Americas.svg/84px-Ambox_current_red_Americas.svg.png 2x" data-file-width="360" data-file-height="290" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section needs to be <b>updated</b>.<span class="hide-when-compact"> Please help update this article to reflect recent events or newly available information.</span> <span class="date-container"><i>(<span class="date">April 2024</span>)</i></span></div></td></tr></tbody></table> <ul><li>2001 – Researchers at <a href="/wiki/IBM" title="IBM">IBM</a> physically implement <a href="/wiki/Shor%27s_algorithm" title="Shor&#39;s algorithm">Shor's algorithm</a> with an <a href="/wiki/NMR" class="mw-redirect" title="NMR">NMR</a> setup, factoring 15 into 3 times 5 using seven <a href="/wiki/Qubit" title="Qubit">qubits</a>.<sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup></li> <li>2002 – <a href="/wiki/Leonid_I._Vainerman" title="Leonid I. Vainerman">Leonid I. Vainerman</a> organizes a meeting at Strasbourg of theoretical physicists and mathematicians focused on quantum group and quantum groupoid applications in quantum theories; the proceedings of the meeting are published in 2003 in a book edited by the meeting organizer.<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup></li> <li>2007 to 2010 – <a href="/wiki/Alain_Aspect" title="Alain Aspect">Alain Aspect</a>, <a href="/wiki/Anton_Zeilinger" title="Anton Zeilinger">Anton Zeilinger</a> and <a href="/wiki/John_Clauser" title="John Clauser">John Clauser</a> present progress with the resolution of the non-locality aspect of quantum theory and in 2010 are awarded the <a href="/wiki/Wolf_Prize" title="Wolf Prize">Wolf Prize</a> in Physics.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup></li> <li>2009 – <a href="/wiki/Aaron_D._O%27Connell" title="Aaron D. O&#39;Connell">Aaron D. O'Connell</a> invents the first <a href="/wiki/Quantum_machine" title="Quantum machine">quantum machine</a>, applying quantum mechanics to a macroscopic object just large enough to be seen by the naked eye, which is able to vibrate a small amount and large amount simultaneously.<sup id="cite_ref-btoy_82-0" class="reference"><a href="#cite_note-btoy-82"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup></li> <li>2011 – <a href="/wiki/Zachary_Dutton" title="Zachary Dutton">Zachary Dutton</a> demonstrates how photons can co-exist in superconductors. "Direct Observation of Coherent Population Trapping in a Superconducting Artificial Atom",<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup></li> <li>2012 – The existence of <a href="/wiki/Higgs_boson" title="Higgs boson">Higgs boson</a> was confirmed by the <a href="/wiki/ATLAS_experiment" title="ATLAS experiment">ATLAS</a> and <a href="/wiki/Compact_Muon_Solenoid" title="Compact Muon Solenoid">CMS</a> collaborations based on proton-proton collisions in the <a href="/wiki/Large_hadron_collider" class="mw-redirect" title="Large hadron collider">large hadron collider</a> at CERN. <a href="/wiki/Peter_Higgs" title="Peter Higgs">Peter Higgs</a> and <a href="/wiki/Fran%C3%A7ois_Englert" title="François Englert">François Englert</a> were awarded the 2013 Nobel Prize in Physics for their theoretical predictions.<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup></li> <li>2014 &#8211; Scientists transfer data by <a href="/wiki/Quantum_teleportation" title="Quantum teleportation">quantum teleportation</a> over a distance of 10 feet with zero percent error rate, a vital step towards a quantum internet.<sup id="cite_ref-NYT-20140529_85-0" class="reference"><a href="#cite_note-NYT-20140529-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-SCI-20140529_86-0" class="reference"><a href="#cite_note-SCI-20140529-86"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit&amp;section=13" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col"> <ul><li><a href="/wiki/History_of_quantum_mechanics" title="History of quantum mechanics">History of quantum mechanics</a></li> <li><a href="/wiki/Timeline_of_atomic_and_subatomic_physics" title="Timeline of atomic and subatomic physics">Timeline of atomic and subatomic physics</a></li> <li><a href="/wiki/Timeline_of_particle_physics" class="mw-redirect" title="Timeline of particle physics">Timeline of particle physics</a></li> <li><a href="/wiki/Timeline_of_physical_chemistry" title="Timeline of physical chemistry">Timeline of physical chemistry</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit&amp;section=14" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 35em;"> <ol class="references"> <li id="cite_note-Peacock-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Peacock_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Peacock_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Peacock_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Peacock_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Peacock_1-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Peacock_1-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Peacock_1-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Peacock_1-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Peacock_1-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Peacock_1-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-Peacock_1-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-Peacock_1-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-Peacock_1-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-Peacock_1-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-Peacock_1-14"><sup><i><b>o</b></i></sup></a> <a href="#cite_ref-Peacock_1-15"><sup><i><b>p</b></i></sup></a> <a href="#cite_ref-Peacock_1-16"><sup><i><b>q</b></i></sup></a> <a href="#cite_ref-Peacock_1-17"><sup><i><b>r</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFPeacock2008">Peacock 2008</a>, pp.&#160;175–183</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFBecquerel1896" class="citation journal cs1">Becquerel, Henri (1896). "Sur les radiations émises par phosphorescence". <i>Comptes Rendus</i>. <b>122</b>: 420–421.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Comptes+Rendus&amp;rft.atitle=Sur+les+radiations+%C3%A9mises+par+phosphorescence&amp;rft.volume=122&amp;rft.pages=420-421&amp;rft.date=1896&amp;rft.aulast=Becquerel&amp;rft.aufirst=Henri&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-Zeeman-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-Zeeman_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nature.com/milestones/milespin/full/milespin01.html">"Milestone 1&#160;: Nature Milestones in Spin"</a>. <i>www.nature.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2018-09-09</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.nature.com&amp;rft.atitle=Milestone+1+%3A+Nature+Milestones+in+Spin&amp;rft_id=https%3A%2F%2Fwww.nature.com%2Fmilestones%2Fmilespin%2Ffull%2Fmilespin01.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.aip.org/history/curie/resbr1.htm">Marie Curie and the Science of Radioactivity: Research Breakthroughs (1897–1904)</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151117223130/https://www.aip.org/history/curie/resbr1.htm">Archived</a> 2015-11-17 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. Aip.org. Retrieved on 2012-05-17.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">Histories of the Electron: The Birth of Microphysics edited by Jed Z. Buchwald, Andrew Warwick</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarmor,_Joseph1897" class="citation cs2">Larmor, Joseph (1897), <span class="cs1-ws-icon" title="s:Dynamical Theory of the Electric and Luminiferous Medium III"><a class="external text" href="https://en.wikisource.org/wiki/Dynamical_Theory_of_the_Electric_and_Luminiferous_Medium_III">"On a Dynamical Theory of the Electric and Luminiferous Medium, Part 3, Relations with material media"&#160;</a></span>, <i>Philosophical Transactions of the Royal Society</i>, <b>190</b>: 205–300, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1897RSPTA.190..205L">1897RSPTA.190..205L</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frsta.1897.0020">10.1098/rsta.1897.0020</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Transactions+of+the+Royal+Society&amp;rft.atitle=On+a+Dynamical+Theory+of+the+Electric+and+Luminiferous+Medium%2C+Part+3%2C+Relations+with+material+media&amp;rft.volume=190&amp;rft.pages=205-300&amp;rft.date=1897&amp;rft_id=info%3Adoi%2F10.1098%2Frsta.1897.0020&amp;rft_id=info%3Abibcode%2F1897RSPTA.190..205L&amp;rft.au=Larmor%2C+Joseph&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarmor,_Joseph1897" class="citation cs2">Larmor, Joseph (1897), <span class="cs1-ws-icon" title="s:Dynamical Theory of the Electric and Luminiferous Medium III"><a class="external text" href="https://en.wikisource.org/wiki/Dynamical_Theory_of_the_Electric_and_Luminiferous_Medium_III">"On a Dynamical Theory of the Electric and Luminiferous Medium, Part 3, Relations with material media"&#160;</a></span>, <i>Philosophical Transactions of the Royal Society</i>, <b>190</b>: 205–300, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1897RSPTA.190..205L">1897RSPTA.190..205L</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frsta.1897.0020">10.1098/rsta.1897.0020</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Transactions+of+the+Royal+Society&amp;rft.atitle=On+a+Dynamical+Theory+of+the+Electric+and+Luminiferous+Medium%2C+Part+3%2C+Relations+with+material+media&amp;rft.volume=190&amp;rft.pages=205-300&amp;rft.date=1897&amp;rft_id=info%3Adoi%2F10.1098%2Frsta.1897.0020&amp;rft_id=info%3Abibcode%2F1897RSPTA.190..205L&amp;rft.au=Larmor%2C+Joseph&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span> Quotes from one of Larmor's voluminous work include: "while atoms of matter are in whole or in part aggregations of electrons in stable orbital motion. In particular, this scheme provides a consistent foundation for the electrodynamic laws, and agrees with the actual relations between radiation and moving matter." <ul><li>"A formula for optical dispersion was obtained in § 11 of the second part of this memoir, on the simple hypothesis that the electric polarization of the molecules vibrated as a whole in unison with the electric field of the radiation."</li> <li>"... that of the transmission of radiation across a medium permeated by molecules, each consisting of a system of electrons in steady orbital motion, and each capable of free oscillations about the steady state of motion with definite free periods analogous to those of the planetary inequalities of the Solar System"</li> <li>"'A' will be a positive electron in the medium, and 'B' will be the complementary negative one…We shall thus have created two permanent conjugate electrons 'A' and 'B'; each of them can be moved about through the medium, but they will both persist until they are destroyed by an extraneous process the reverse of that by which they are formed."</li></ul> </span></li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSoddy1922" class="citation web cs1">Soddy, Frederick (December 12, 1922). <a rel="nofollow" class="external text" href="http://nobelprize.org/nobel_prizes/chemistry/laureates/1921/soddy-lecture.pdf">"The origins of the conceptions of isotopes"</a> <span class="cs1-format">(PDF)</span>. <i>Nobel Lecture in Chemistry</i><span class="reference-accessdate">. Retrieved <span class="nowrap">25 April</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Nobel+Lecture+in+Chemistry&amp;rft.atitle=The+origins+of+the+conceptions+of+isotopes&amp;rft.date=1922-12-12&amp;rft.aulast=Soddy&amp;rft.aufirst=Frederick&amp;rft_id=http%3A%2F%2Fnobelprize.org%2Fnobel_prizes%2Fchemistry%2Flaureates%2F1921%2Fsoddy-lecture.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.britannica.com/EBchecked/topic/514229/Ernest-Rutherford-Baron-Rutherford-of-Nelson">Ernest Rutherford, Baron Rutherford of Nelson, of Cambridge</a>. Encyclopædia Britannica on-line. Retrieved on 2012-05-17.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://nobelprize.org/nobel_prizes/chemistry/laureates/1908/">The Nobel Prize in Chemistry 1908: Ernest Rutherford</a>. nobelprize.org</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">J. W. Nicholson, Month. Not. Roy. Astr. Soc. lxxii. pp. 49,130, 677, 693, 729 (1912).</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">The Atomic Theory of John William Nicholson, Russell McCormmach, Archive for History of Exact Sciences, Vol. 3, No. 2 (25.8.1966), pp. 160–184 (25 pages), Springer.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">On the Constitution of Atoms and Molecules Niels Bohr, Philosophical Magazine, Series 6, Volume 26 July 1913, pp. 1–25</span> </li> <li id="cite_note-McCormmach-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-McCormmach_14-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcCormmach1967" class="citation journal cs1">McCormmach, Russell (Spring 1967). "Henri Poincaré and the Quantum Theory". <i>Isis</i>. <b>58</b> (1): 37–55. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F350182">10.1086/350182</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120934561">120934561</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Isis&amp;rft.atitle=Henri+Poincar%C3%A9+and+the+Quantum+Theory&amp;rft.ssn=spring&amp;rft.volume=58&amp;rft.issue=1&amp;rft.pages=37-55&amp;rft.date=1967&amp;rft_id=info%3Adoi%2F10.1086%2F350182&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120934561%23id-name%3DS2CID&amp;rft.aulast=McCormmach&amp;rft.aufirst=Russell&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-Irons-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-Irons_15-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIrons2001" class="citation journal cs1">Irons, F. E. (August 2001). "Poincaré's 1911–12 proof of quantum discontinuity interpreted as applying to atoms". <i>American Journal of Physics</i>. <b>69</b> (8): 879–884. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001AmJPh..69..879I">2001AmJPh..69..879I</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.1356056">10.1119/1.1356056</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Journal+of+Physics&amp;rft.atitle=Poincar%C3%A9%27s+1911%E2%80%9312+proof+of+quantum+discontinuity+interpreted+as+applying+to+atoms&amp;rft.volume=69&amp;rft.issue=8&amp;rft.pages=879-884&amp;rft.date=2001-08&amp;rft_id=info%3Adoi%2F10.1119%2F1.1356056&amp;rft_id=info%3Abibcode%2F2001AmJPh..69..879I&amp;rft.aulast=Irons&amp;rft.aufirst=F.+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text">On the Constitution of Atoms and Molecules, Niels Bohr, Philosophical Magazine, Series 6, Volume 26 July 1913, pp. 1–25</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFProcopiu1913" class="citation journal cs1">Procopiu, Ştefan (1913). "Determining the Molecular Magnetic Moment by M. Planck's Quantum Theory". <i>Bulletin Scientifique de l'Académie Roumaine de Sciences</i>. <b>1</b>: 151.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bulletin+Scientifique+de+l%27Acad%C3%A9mie+Roumaine+de+Sciences&amp;rft.atitle=Determining+the+Molecular+Magnetic+Moment+by+M.+Planck%27s+Quantum+Theory&amp;rft.volume=1&amp;rft.pages=151&amp;rft.date=1913&amp;rft.aulast=Procopiu&amp;rft.aufirst=%C5%9Etefan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-Pais2-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-Pais2_18-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPais1995" class="citation book cs1"><a href="/wiki/Abraham_Pais" title="Abraham Pais">Pais, Abraham</a> (1995). "Introducing Atoms and Their Nuclei". In Brown, Laurie M.; Pais, Abraham; Pippard, Brian (eds.). <i>Twentieth Century Physics</i>. Vol.&#160;1. American Institute of Physics Press. p.&#160;89. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780750303101" title="Special:BookSources/9780750303101"><bdi>9780750303101</bdi></a>. <q>Now the beauty of Franck and Hertz's work lies not only in the measurement of the energy loss <i>E</i><sub>2</sub>-<i>E</i><sub>1</sub> of the impinging electron, but they also observed that, when the energy of that electron exceeds 4.9 eV, mercury begins to emit ultraviolet light of a definite frequency <i>ν</i> as defined in the above formula. Thereby they gave (unwittingly at first) the first direct experimental proof of the Bohr relation!</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Introducing+Atoms+and+Their+Nuclei&amp;rft.btitle=Twentieth+Century+Physics&amp;rft.pages=89&amp;rft.pub=American+Institute+of+Physics+Press&amp;rft.date=1995&amp;rft.isbn=9780750303101&amp;rft.aulast=Pais&amp;rft.aufirst=Abraham&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">P. S. Epstein, <i>Zur Theorie des Starkeffektes</i>, Annalen der Physik, vol. <b>50</b>, pp. 489–520 (1916)</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text">K. Schwarzschild, Sitzungsberichten der Kgl. Preuss. Akad. d. Wiss. April 1916, p. 548</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLewis,_G._N.1916" class="citation cs2">Lewis, G. N. (1916), <a rel="nofollow" class="external text" href="https://zenodo.org/record/1429068">"The Atom and the Molecule"</a>, <i>J. Am. Chem. Soc.</i>, <b>38</b> (4): 762–85, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fja02261a002">10.1021/ja02261a002</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:95865413">95865413</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Am.+Chem.+Soc.&amp;rft.atitle=The+Atom+and+the+Molecule&amp;rft.volume=38&amp;rft.issue=4&amp;rft.pages=762-85&amp;rft.date=1916&amp;rft_id=info%3Adoi%2F10.1021%2Fja02261a002&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A95865413%23id-name%3DS2CID&amp;rft.au=Lewis%2C+G.+N.&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1429068&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">H. A. Kramers, Roy. Danish Academy, <i>Intensities of Spectral Lines. On the Application of the Quantum Theory to the Problem of Relative Intensities of the Components of the Fine Structure and of the Stark Effect of the Lines of the Hydrogen Spectrum</i>, p. 287 (1919);<i>Über den Einfluß eines elektrischen Feldes auf die Feinstruktur der Wasserstofflinien</i> (On the influence of an electric field on the fine structure of hydrogen lines), Zeitschrift für Physik, vol. <b>3</b>, pp. 199–223 (1920)</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLewis,_G.N.1926" class="citation journal cs1">Lewis, G.N. (1926). <a rel="nofollow" class="external text" href="http://www.nobeliefs.com/photon.htm">"The conservation of photons"</a>. <i><a href="/wiki/Nature_(journal)" title="Nature (journal)">Nature</a></i>. <b>118</b> (2981): 874–875. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1926Natur.118..874L">1926Natur.118..874L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F118874a0">10.1038/118874a0</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4110026">4110026</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=The+conservation+of+photons&amp;rft.volume=118&amp;rft.issue=2981&amp;rft.pages=874-875&amp;rft.date=1926&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4110026%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2F118874a0&amp;rft_id=info%3Abibcode%2F1926Natur.118..874L&amp;rft.au=Lewis%2C+G.N.&amp;rft_id=http%3A%2F%2Fwww.nobeliefs.com%2Fphoton.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text">P. S. Epstein, "The Stark Effect from the Point of View of Schroedinger's Quantum Theory", <i>Physical Review</i>, vol <b>28</b>, pp. 695–710 (1926)</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text">John von Neumann. 1932. <i>The Mathematical Foundations of Quantum Mechanics</i>, Princeton University Press: Princeton, New Jersey, reprinted in 1955, 1971 and 1983 editions</span> </li> <li id="cite_note-VanHove-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-VanHove_26-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVan_Hove1958" class="citation journal cs1"><a href="/wiki/L%C3%A9on_Van_Hove" title="Léon Van Hove">Van Hove, Léon</a> (1958). <a rel="nofollow" class="external text" href="http://projecteuclid.org/euclid.bams/1183522374">"Von Neumann's Contributions to Quantum Theory"</a>. <i><a href="/wiki/Bulletin_of_the_American_Mathematical_Society" title="Bulletin of the American Mathematical Society">Bulletin of the American Mathematical Society</a></i>. <b>64</b> (3): 95–100. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fs0002-9904-1958-10206-2">10.1090/s0002-9904-1958-10206-2</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bulletin+of+the+American+Mathematical+Society&amp;rft.atitle=Von+Neumann%27s+Contributions+to+Quantum+Theory&amp;rft.volume=64&amp;rft.issue=3&amp;rft.pages=95-100&amp;rft.date=1958&amp;rft_id=info%3Adoi%2F10.1090%2Fs0002-9904-1958-10206-2&amp;rft.aulast=Van+Hove&amp;rft.aufirst=L%C3%A9on&amp;rft_id=http%3A%2F%2Fprojecteuclid.org%2Feuclid.bams%2F1183522374&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeterWeyl1927" class="citation journal cs1">Peter, F.; Weyl, H. (1927). "Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe". <i>Math. Ann</i>. <b>97</b>: 737–755. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01447892">10.1007/BF01447892</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120013521">120013521</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Math.+Ann.&amp;rft.atitle=Die+Vollst%C3%A4ndigkeit+der+primitiven+Darstellungen+einer+geschlossenen+kontinuierlichen+Gruppe&amp;rft.volume=97&amp;rft.pages=737-755&amp;rft.date=1927&amp;rft_id=info%3Adoi%2F10.1007%2FBF01447892&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120013521%23id-name%3DS2CID&amp;rft.aulast=Peter&amp;rft.aufirst=F.&amp;rft.au=Weyl%2C+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrauerWeyl1935" class="citation journal cs1"><a href="/wiki/Richard_Brauer" title="Richard Brauer">Brauer, Richard</a>; <a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Weyl, Hermann</a> (1935). "Spinors in n dimensions". <i>American Journal of Mathematics</i>. <b>57</b> (2): 425–449. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2371218">10.2307/2371218</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2371218">2371218</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Journal+of+Mathematics&amp;rft.atitle=Spinors+in+n+dimensions&amp;rft.volume=57&amp;rft.issue=2&amp;rft.pages=425-449&amp;rft.date=1935&amp;rft_id=info%3Adoi%2F10.2307%2F2371218&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2371218%23id-name%3DJSTOR&amp;rft.aulast=Brauer&amp;rft.aufirst=Richard&amp;rft.au=Weyl%2C+Hermann&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrédéric_Joliot-Curie1935" class="citation web cs1">Frédéric Joliot-Curie (December 12, 1935). <a rel="nofollow" class="external text" href="http://nobelprize.org/nobel_prizes/chemistry/laureates/1935/joliot-fred-lecture.pdf">"Chemical evidence of the transmutation of elements"</a> <span class="cs1-format">(PDF)</span>. <i>Nobel Lecture</i><span class="reference-accessdate">. Retrieved <span class="nowrap">25 April</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Nobel+Lecture&amp;rft.atitle=Chemical+evidence+of+the+transmutation+of+elements&amp;rft.date=1935-12-12&amp;rft.au=Fr%C3%A9d%C3%A9ric+Joliot-Curie&amp;rft_id=http%3A%2F%2Fnobelprize.org%2Fnobel_prizes%2Fchemistry%2Flaureates%2F1935%2Fjoliot-fred-lecture.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-Einstein1935-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-Einstein1935_30-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEinstein_A,_Podolsky_B,_Rosen_NPodolskyRosen1935" class="citation journal cs1">Einstein A, Podolsky B, Rosen N; Podolsky; Rosen (1935). <a rel="nofollow" class="external text" href="https://cds.cern.ch/record/405662">"Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?"</a>. <i>Phys. Rev</i>. <b>47</b> (10): 777–780. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1935PhRv...47..777E">1935PhRv...47..777E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.47.777">10.1103/PhysRev.47.777</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Phys.+Rev.&amp;rft.atitle=Can+Quantum-Mechanical+Description+of+Physical+Reality+Be+Considered+Complete%3F&amp;rft.volume=47&amp;rft.issue=10&amp;rft.pages=777-780&amp;rft.date=1935&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRev.47.777&amp;rft_id=info%3Abibcode%2F1935PhRv...47..777E&amp;rft.au=Einstein+A%2C+Podolsky+B%2C+Rosen+N&amp;rft.au=Podolsky&amp;rft.au=Rosen&amp;rft_id=https%3A%2F%2Fcds.cern.ch%2Frecord%2F405662&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBirkhoff,_Garrettvon_Neumann,_J.1936" class="citation journal cs1">Birkhoff, Garrett &amp; von Neumann, J. (1936). "The Logic of Quantum Mechanics". <i>Annals of Mathematics</i>. <b>37</b> (4): 823–843. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1968621">10.2307/1968621</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1968621">1968621</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annals+of+Mathematics&amp;rft.atitle=The+Logic+of+Quantum+Mechanics&amp;rft.volume=37&amp;rft.issue=4&amp;rft.pages=823-843&amp;rft.date=1936&amp;rft_id=info%3Adoi%2F10.2307%2F1968621&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1968621%23id-name%3DJSTOR&amp;rft.au=Birkhoff%2C+Garrett&amp;rft.au=von+Neumann%2C+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOmnès1999" class="citation book cs1">Omnès, Roland (8 March 1999). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/understandingqua00omne"><i>Understanding Quantum Mechanics</i></a></span>. Princeton University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-00435-8" title="Special:BookSources/978-0-691-00435-8"><bdi>978-0-691-00435-8</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">17 May</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Understanding+Quantum+Mechanics&amp;rft.pub=Princeton+University+Press&amp;rft.date=1999-03-08&amp;rft.isbn=978-0-691-00435-8&amp;rft.aulast=Omn%C3%A8s&amp;rft.aufirst=Roland&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Funderstandingqua00omne&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDalla_ChiaraGiuntini1994" class="citation journal cs1"><a href="/wiki/Maria_Luisa_Dalla_Chiara" title="Maria Luisa Dalla Chiara">Dalla Chiara, M. L.</a>; Giuntini, R. (1994). "Unsharp quantum logics". <i>Foundations of Physics</i>. <b>24</b> (8): 1161–1177. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1994FoPh...24.1161D">1994FoPh...24.1161D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02057862">10.1007/BF02057862</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122872424">122872424</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Foundations+of+Physics&amp;rft.atitle=Unsharp+quantum+logics&amp;rft.volume=24&amp;rft.issue=8&amp;rft.pages=1161-1177&amp;rft.date=1994&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122872424%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF02057862&amp;rft_id=info%3Abibcode%2F1994FoPh...24.1161D&amp;rft.aulast=Dalla+Chiara&amp;rft.aufirst=M.+L.&amp;rft.au=Giuntini%2C+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeorgescu2006" class="citation journal cs1">Georgescu, G. (2006). "N-valued Logics and Łukasiewicz-Moisil Algebras". <i>Axiomathes</i>. <b>16</b> (1–2): 123–136. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10516-005-4145-6">10.1007/s10516-005-4145-6</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121264473">121264473</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Axiomathes&amp;rft.atitle=N-valued+Logics+and+%C5%81ukasiewicz-Moisil+Algebras&amp;rft.volume=16&amp;rft.issue=1%E2%80%932&amp;rft.pages=123-136&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1007%2Fs10516-005-4145-6&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121264473%23id-name%3DS2CID&amp;rft.aulast=Georgescu&amp;rft.aufirst=G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFH._Jahn_and_E._Teller1937" class="citation journal cs1"><a href="/wiki/Hermann_Arthur_Jahn" title="Hermann Arthur Jahn">H. Jahn</a> and <a href="/wiki/Edward_Teller" title="Edward Teller">E. Teller</a> (1937). <a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1937.0142">"Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy"</a>. <i><a href="/wiki/Proceedings_of_the_Royal_Society_A" class="mw-redirect" title="Proceedings of the Royal Society A">Proceedings of the Royal Society A</a></i>. <b>161</b> (905): 220–235. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1937RSPSA.161..220J">1937RSPSA.161..220J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1937.0142">10.1098/rspa.1937.0142</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Royal+Society+A&amp;rft.atitle=Stability+of+Polyatomic+Molecules+in+Degenerate+Electronic+States.+I.+Orbital+Degeneracy&amp;rft.volume=161&amp;rft.issue=905&amp;rft.pages=220-235&amp;rft.date=1937&amp;rft_id=info%3Adoi%2F10.1098%2Frspa.1937.0142&amp;rft_id=info%3Abibcode%2F1937RSPSA.161..220J&amp;rft.au=H.+Jahn+and+E.+Teller&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1098%252Frspa.1937.0142&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDyson1949" class="citation journal cs1">Dyson, F. (1949). "The S Matrix in Quantum Electrodynamics". <i>Phys. Rev</i>. <b>75</b> (11): 1736–1755. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1949PhRv...75.1736D">1949PhRv...75.1736D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.75.1736">10.1103/PhysRev.75.1736</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Phys.+Rev.&amp;rft.atitle=The+S+Matrix+in+Quantum+Electrodynamics&amp;rft.volume=75&amp;rft.issue=11&amp;rft.pages=1736-1755&amp;rft.date=1949&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRev.75.1736&amp;rft_id=info%3Abibcode%2F1949PhRv...75.1736D&amp;rft.aulast=Dyson&amp;rft.aufirst=F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStix,_Gary1999" class="citation journal cs1">Stix, Gary (October 1999). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20121018190154/http://www.scientificamerican.com/article.cfm?id=infamy-and-honor-at-the-a&amp;page=1">"Infamy and honor at the Atomic Café: Edward Teller has no regrets about his contentious career"</a>. <i>Scientific American</i>: 42–43. Archived from <a rel="nofollow" class="external text" href="http://www.scientificamerican.com/article.cfm?id=infamy-and-honor-at-the-a&amp;page=1">the original</a> on 2012-10-18<span class="reference-accessdate">. Retrieved <span class="nowrap">25 April</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+American&amp;rft.atitle=Infamy+and+honor+at+the+Atomic+Caf%C3%A9%3A+Edward+Teller+has+no+regrets+about+his+contentious+career&amp;rft.pages=42-43&amp;rft.date=1999-10&amp;rft.au=Stix%2C+Gary&amp;rft_id=http%3A%2F%2Fwww.scientificamerican.com%2Farticle.cfm%3Fid%3Dinfamy-and-honor-at-the-a%26page%3D1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHans_A._Bethe1952" class="citation report cs1">Hans A. Bethe (May 28, 1952). <a rel="nofollow" class="external text" href="http://www.fas.org/nuke/guide/usa/nuclear/bethe-52.htm">MEMORANDUM ON THE HISTORY OF THERMONUCLEAR PROGRAM</a> (Report). Reconstructed version from only partially declassified documents, with certain words deliberately deleted.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=report&amp;rft.btitle=MEMORANDUM+ON+THE+HISTORY+OF+THERMONUCLEAR+PROGRAM&amp;rft.date=1952-05-28&amp;rft.au=Hans+A.+Bethe&amp;rft_id=http%3A%2F%2Fwww.fas.org%2Fnuke%2Fguide%2Fusa%2Fnuclear%2Fbethe-52.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlochHansenPackard1946" class="citation journal cs1">Bloch, F.; Hansen, W.; Packard, Martin (1946). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.69.127">"Nuclear Induction"</a>. <i>Physical Review</i>. <b>69</b> (3–4): 127. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1946PhRv...69..127B">1946PhRv...69..127B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.69.127">10.1103/PhysRev.69.127</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review&amp;rft.atitle=Nuclear+Induction&amp;rft.volume=69&amp;rft.issue=3%E2%80%934&amp;rft.pages=127&amp;rft.date=1946&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRev.69.127&amp;rft_id=info%3Abibcode%2F1946PhRv...69..127B&amp;rft.aulast=Bloch&amp;rft.aufirst=F.&amp;rft.au=Hansen%2C+W.&amp;rft.au=Packard%2C+Martin&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRev.69.127&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlochJeffries1950" class="citation journal cs1">Bloch, F.; Jeffries, C. (1950). "A Direct Determination of the Magnetic Moment of the Proton in Nuclear Magnetons". <i>Physical Review</i>. <b>80</b> (2): 305–306. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1950PhRv...80..305B">1950PhRv...80..305B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.80.305">10.1103/PhysRev.80.305</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review&amp;rft.atitle=A+Direct+Determination+of+the+Magnetic+Moment+of+the+Proton+in+Nuclear+Magnetons&amp;rft.volume=80&amp;rft.issue=2&amp;rft.pages=305-306&amp;rft.date=1950&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRev.80.305&amp;rft_id=info%3Abibcode%2F1950PhRv...80..305B&amp;rft.aulast=Bloch&amp;rft.aufirst=F.&amp;rft.au=Jeffries%2C+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBloch1946" class="citation journal cs1">Bloch, F. (1946). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.70.460">"Nuclear Induction"</a>. <i>Physical Review</i>. <b>70</b> (7–8): 460–474. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1946PhRv...70..460B">1946PhRv...70..460B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.70.460">10.1103/PhysRev.70.460</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review&amp;rft.atitle=Nuclear+Induction&amp;rft.volume=70&amp;rft.issue=7%E2%80%938&amp;rft.pages=460-474&amp;rft.date=1946&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRev.70.460&amp;rft_id=info%3Abibcode%2F1946PhRv...70..460B&amp;rft.aulast=Bloch&amp;rft.aufirst=F.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRev.70.460&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGutowskyKistiakowskyPakePurcell1949" class="citation journal cs1">Gutowsky, H. S.; Kistiakowsky, G. B.; Pake, G. E.; Purcell, E. M. (1949). "Structural Investigations by Means of Nuclear Magnetism. I. Rigid Crystal Lattices". <i>The Journal of Chemical Physics</i>. <b>17</b> (10): 972. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1949JChPh..17..972G">1949JChPh..17..972G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1747097">10.1063/1.1747097</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Chemical+Physics&amp;rft.atitle=Structural+Investigations+by+Means+of+Nuclear+Magnetism.+I.+Rigid+Crystal+Lattices&amp;rft.volume=17&amp;rft.issue=10&amp;rft.pages=972&amp;rft.date=1949&amp;rft_id=info%3Adoi%2F10.1063%2F1.1747097&amp;rft_id=info%3Abibcode%2F1949JChPh..17..972G&amp;rft.aulast=Gutowsky&amp;rft.aufirst=H.+S.&amp;rft.au=Kistiakowsky%2C+G.+B.&amp;rft.au=Pake%2C+G.+E.&amp;rft.au=Purcell%2C+E.+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGardnerPurcell1949" class="citation journal cs1">Gardner, J.; Purcell, E. (1949). "A Precise Determination of the Proton Magnetic Moment in Bohr Magnetons". <i>Physical Review</i>. <b>76</b> (8): 1262–1263. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1949PhRv...76.1262G">1949PhRv...76.1262G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.76.1262.2">10.1103/PhysRev.76.1262.2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review&amp;rft.atitle=A+Precise+Determination+of+the+Proton+Magnetic+Moment+in+Bohr+Magnetons&amp;rft.volume=76&amp;rft.issue=8&amp;rft.pages=1262-1263&amp;rft.date=1949&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRev.76.1262.2&amp;rft_id=info%3Abibcode%2F1949PhRv...76.1262G&amp;rft.aulast=Gardner&amp;rft.aufirst=J.&amp;rft.au=Purcell%2C+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarverSlichter1953" class="citation journal cs1">Carver, T. R.; Slichter, C. P. (1953). "Polarization of Nuclear Spins in Metals". <i><a href="/wiki/Physical_Review" title="Physical Review">Physical Review</a></i>. <b>92</b> (1): 212–213. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1953PhRv...92..212C">1953PhRv...92..212C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.92.212.2">10.1103/PhysRev.92.212.2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review&amp;rft.atitle=Polarization+of+Nuclear+Spins+in+Metals&amp;rft.volume=92&amp;rft.issue=1&amp;rft.pages=212-213&amp;rft.date=1953&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRev.92.212.2&amp;rft_id=info%3Abibcode%2F1953PhRv...92..212C&amp;rft.aulast=Carver&amp;rft.aufirst=T.+R.&amp;rft.au=Slichter%2C+C.+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-everett56-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-everett56_45-0">^</a></b></span> <span class="reference-text"><a href="/wiki/Hugh_Everett" class="mw-redirect" title="Hugh Everett">Hugh Everett</a> <a rel="nofollow" class="external text" href="https://www.pbs.org/wgbh/nova/manyworlds/pdf/dissertation.pdf">Theory of the Universal Wavefunction</a>, Thesis, Princeton University, (1956, 1973), pp 1–140</span> </li> <li id="cite_note-everett57-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-everett57_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEverett1957" class="citation journal cs1"><a href="/wiki/Hugh_Everett" class="mw-redirect" title="Hugh Everett">Everett, Hugh</a> (1957). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20111027191052/http://www.univer.omsk.su/omsk/Sci/Everett/paper1957.html">"Relative State Formulation of Quantum Mechanics"</a>. <i>Reviews of Modern Physics</i>. <b>29</b> (3): 454–462. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1957RvMP...29..454E">1957RvMP...29..454E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FRevModPhys.29.454">10.1103/RevModPhys.29.454</a>. Archived from <a rel="nofollow" class="external text" href="http://www.univer.omsk.su/omsk/Sci/Everett/paper1957.html">the original</a> on 2011-10-27.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Reviews+of+Modern+Physics&amp;rft.atitle=Relative+State+Formulation+of+Quantum+Mechanics&amp;rft.volume=29&amp;rft.issue=3&amp;rft.pages=454-462&amp;rft.date=1957&amp;rft_id=info%3Adoi%2F10.1103%2FRevModPhys.29.454&amp;rft_id=info%3Abibcode%2F1957RvMP...29..454E&amp;rft.aulast=Everett&amp;rft.aufirst=Hugh&amp;rft_id=http%3A%2F%2Fwww.univer.omsk.su%2Fomsk%2FSci%2FEverett%2Fpaper1957.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-Hennel2005-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hennel2005_47-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJacek_W._HennelJacek_Klinowski2005" class="citation book cs1">Jacek W. Hennel; Jacek Klinowski (2005). "Magic Angle Spinning: A Historical Perspective". In Jacek Klinowski (ed.). <i>New techniques in solid-state NMR</i>. Topics in Current Chemistry. Vol.&#160;246. Springer. pp.&#160;1–14. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fb98646">10.1007/b98646</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-22168-5" title="Special:BookSources/978-3-540-22168-5"><bdi>978-3-540-22168-5</bdi></a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22160286">22160286</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Magic+Angle+Spinning%3A+A+Historical+Perspective&amp;rft.btitle=New+techniques+in+solid-state+NMR&amp;rft.series=Topics+in+Current+Chemistry&amp;rft.pages=1-14&amp;rft.pub=Springer&amp;rft.date=2005&amp;rft_id=info%3Apmid%2F22160286&amp;rft_id=info%3Adoi%2F10.1007%2Fb98646&amp;rft.isbn=978-3-540-22168-5&amp;rft.au=Jacek+W.+Hennel&amp;rft.au=Jacek+Klinowski&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span> (<i><a rel="nofollow" class="external text" href="https://books.google.com/books?id=h3jzO3gV14sC&amp;pg=PA1">New techniques in solid-state NMR</a></i>, p. 1, at <a href="/wiki/Google_Books" title="Google Books">Google Books</a>)</span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarnesConnollyCrennellCulwick1964" class="citation journal cs1">Barnes, V.E.; Connolly, P.; Crennell, D.; Culwick, B.; Delaney, W.; Fowler, W.; Hagerty, P.; Hart, E.; Horwitz, N.; Hough, P.; Jensen, J.; Kopp, J.; Lai, K.; Leitner, J.; Lloyd, J.; London, G.; Morris, T.; Oren, Y.; Palmer, R.; Prodell, A.; Radojičić, D.; Rahm, D.; Richardson, C.; Samios, N.; Sanford, J.; Shutt, R.; Smith, J.; Stonehill, D.; Strand, R.; et&#160;al. (1964). <a rel="nofollow" class="external text" href="http://teachers.web.cern.ch/teachers/archiv/HST2001/bubblechambers/omegaminus.pdf">"Observation of a Hyperon with Strangeness Number Three"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>12</b> (8): 204–206. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1964PhRvL..12..204B">1964PhRvL..12..204B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.12.204">10.1103/PhysRevLett.12.204</a>. <a href="/wiki/OSTI_(identifier)" class="mw-redirect" title="OSTI (identifier)">OSTI</a>&#160;<a rel="nofollow" class="external text" href="https://www.osti.gov/biblio/12491965">12491965</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Observation+of+a+Hyperon+with+Strangeness+Number+Three&amp;rft.volume=12&amp;rft.issue=8&amp;rft.pages=204-206&amp;rft.date=1964&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.12.204&amp;rft_id=https%3A%2F%2Fwww.osti.gov%2Fbiblio%2F12491965%23id-name%3DOSTI&amp;rft_id=info%3Abibcode%2F1964PhRvL..12..204B&amp;rft.aulast=Barnes&amp;rft.aufirst=V.E.&amp;rft.au=Connolly%2C+P.&amp;rft.au=Crennell%2C+D.&amp;rft.au=Culwick%2C+B.&amp;rft.au=Delaney%2C+W.&amp;rft.au=Fowler%2C+W.&amp;rft.au=Hagerty%2C+P.&amp;rft.au=Hart%2C+E.&amp;rft.au=Horwitz%2C+N.&amp;rft.au=Hough%2C+P.&amp;rft.au=Jensen%2C+J.&amp;rft.au=Kopp%2C+J.&amp;rft.au=Lai%2C+K.&amp;rft.au=Leitner%2C+J.&amp;rft.au=Lloyd%2C+J.&amp;rft.au=London%2C+G.&amp;rft.au=Morris%2C+T.&amp;rft.au=Oren%2C+Y.&amp;rft.au=Palmer%2C+R.&amp;rft.au=Prodell%2C+A.&amp;rft.au=Radoji%C4%8Di%C4%87%2C+D.&amp;rft.au=Rahm%2C+D.&amp;rft.au=Richardson%2C+C.&amp;rft.au=Samios%2C+N.&amp;rft.au=Sanford%2C+J.&amp;rft.au=Shutt%2C+R.&amp;rft.au=Smith%2C+J.&amp;rft.au=Stonehill%2C+D.&amp;rft.au=Strand%2C+R.&amp;rft.au=Thorndike%2C+A.&amp;rft_id=http%3A%2F%2Fteachers.web.cern.ch%2Fteachers%2Farchiv%2FHST2001%2Fbubblechambers%2Fomegaminus.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbragam1961" class="citation book cs1">Abragam, Anatole (1961). <i>The Principles of Nuclear Magnetism</i>. Oxford: Clarendon Press. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/242700">242700</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Principles+of+Nuclear+Magnetism&amp;rft.place=Oxford&amp;rft.pub=Clarendon+Press&amp;rft.date=1961&amp;rft_id=info%3Aoclcnum%2F242700&amp;rft.aulast=Abragam&amp;rft.aufirst=Anatole&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrian_David_Josephson1973" class="citation web cs1">Brian David Josephson (December 12, 1973). <a rel="nofollow" class="external text" href="http://nobelprize.org/nobel_prizes/physics/laureates/1973/josephson-lecture.pdf">"The Discovery of Tunnelling Supercurrents"</a> <span class="cs1-format">(PDF)</span>. <i>Nobel Lecture</i><span class="reference-accessdate">. Retrieved <span class="nowrap">25 April</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Nobel+Lecture&amp;rft.atitle=The+Discovery+of+Tunnelling+Supercurrents&amp;rft.date=1973-12-12&amp;rft.au=Brian+David+Josephson&amp;rft_id=http%3A%2F%2Fnobelprize.org%2Fnobel_prizes%2Fphysics%2Flaureates%2F1973%2Fjosephson-lecture.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaria_Goeppert_Mayer1963" class="citation web cs1">Maria Goeppert Mayer (December 12, 1963). <a rel="nofollow" class="external text" href="http://nobelprize.org/nobel_prizes/physics/laureates/1963/mayer-lecture.pdf">"The shell model"</a> <span class="cs1-format">(PDF)</span>. <i>Nobel Lecture</i><span class="reference-accessdate">. Retrieved <span class="nowrap">25 April</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Nobel+Lecture&amp;rft.atitle=The+shell+model&amp;rft.date=1963-12-12&amp;rft.au=Maria+Goeppert+Mayer&amp;rft_id=http%3A%2F%2Fnobelprize.org%2Fnobel_prizes%2Fphysics%2Flaureates%2F1963%2Fmayer-lecture.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMansfieldGrannell1973" class="citation journal cs1">Mansfield, P; Grannell, P K (1973). "NMR 'diffraction' in solids?". <i>Journal of Physics C: Solid State Physics</i>. <b>6</b> (22): L422. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1973JPhC....6L.422M">1973JPhC....6L.422M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0022-3719%2F6%2F22%2F007">10.1088/0022-3719/6/22/007</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4992859">4992859</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Physics+C%3A+Solid+State+Physics&amp;rft.atitle=NMR+%27diffraction%27+in+solids%3F&amp;rft.volume=6&amp;rft.issue=22&amp;rft.pages=L422&amp;rft.date=1973&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4992859%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F0022-3719%2F6%2F22%2F007&amp;rft_id=info%3Abibcode%2F1973JPhC....6L.422M&amp;rft.aulast=Mansfield&amp;rft.aufirst=P&amp;rft.au=Grannell%2C+P+K&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGarrowayGrannellMansfield1974" class="citation journal cs1">Garroway, A N; Grannell, P K; Mansfield, P (1974). "Image formation in NMR by a selective irradiative process". <i>Journal of Physics C: Solid State Physics</i>. <b>7</b> (24): L457. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1974JPhC....7L.457G">1974JPhC....7L.457G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0022-3719%2F7%2F24%2F006">10.1088/0022-3719/7/24/006</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4981940">4981940</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Physics+C%3A+Solid+State+Physics&amp;rft.atitle=Image+formation+in+NMR+by+a+selective+irradiative+process&amp;rft.volume=7&amp;rft.issue=24&amp;rft.pages=L457&amp;rft.date=1974&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4981940%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F0022-3719%2F7%2F24%2F006&amp;rft_id=info%3Abibcode%2F1974JPhC....7L.457G&amp;rft.aulast=Garroway&amp;rft.aufirst=A+N&amp;rft.au=Grannell%2C+P+K&amp;rft.au=Mansfield%2C+P&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMansfieldMaudsley1977" class="citation journal cs1">Mansfield, P.; Maudsley, A. A. (1977). "Medical imaging by NMR". <i>British Journal of Radiology</i>. <b>50</b> (591): 188–94. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1259%2F0007-1285-50-591-188">10.1259/0007-1285-50-591-188</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/849520">849520</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:26374556">26374556</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=British+Journal+of+Radiology&amp;rft.atitle=Medical+imaging+by+NMR&amp;rft.volume=50&amp;rft.issue=591&amp;rft.pages=188-94&amp;rft.date=1977&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A26374556%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F849520&amp;rft_id=info%3Adoi%2F10.1259%2F0007-1285-50-591-188&amp;rft.aulast=Mansfield&amp;rft.aufirst=P.&amp;rft.au=Maudsley%2C+A.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMansfield1977" class="citation journal cs1">Mansfield, P (1977). "Multi-planar image formation <i>using NMR</i> spin echoes". <i>Journal of Physics C: Solid State Physics</i>. <b>10</b> (3): L55–L58. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1977JPhC...10L..55M">1977JPhC...10L..55M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0022-3719%2F10%2F3%2F004">10.1088/0022-3719/10/3/004</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121696469">121696469</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Physics+C%3A+Solid+State+Physics&amp;rft.atitle=Multi-planar+image+formation+using+NMR+spin+echoes&amp;rft.volume=10&amp;rft.issue=3&amp;rft.pages=L55-L58&amp;rft.date=1977&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121696469%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F0022-3719%2F10%2F3%2F004&amp;rft_id=info%3Abibcode%2F1977JPhC...10L..55M&amp;rft.aulast=Mansfield&amp;rft.aufirst=P&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPrigogine1977" class="citation journal cs1">Prigogine, Ilya (8 December 1977). <a rel="nofollow" class="external text" href="http://nobelprize.org/nobel_prizes/chemistry/laureates/1977/prigogine-lecture.pdf">"Time, Structure and Fluctuations"</a> <span class="cs1-format">(PDF)</span>. <i>Science</i>. <b>201</b> (4358): 777–85. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.201.4358.777">10.1126/science.201.4358.777</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17738519">17738519</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9129799">9129799</a><span class="reference-accessdate">. Retrieved <span class="nowrap">25 April</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Time%2C+Structure+and+Fluctuations&amp;rft.volume=201&amp;rft.issue=4358&amp;rft.pages=777-85&amp;rft.date=1977-12-08&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9129799%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F17738519&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.201.4358.777&amp;rft.aulast=Prigogine&amp;rft.aufirst=Ilya&amp;rft_id=http%3A%2F%2Fnobelprize.org%2Fnobel_prizes%2Fchemistry%2Flaureates%2F1977%2Fprigogine-lecture.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRubinsonRubinsonPatterson1979" class="citation journal cs1">Rubinson, K.A.; Rubinson, Kenneth A.; Patterson, John (1979). "Ferromagnetic resonance and spin wave excite journals in metallic glasses". <i>J. Phys. Chem. Solids</i>. <b>40</b> (12): 941–950. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1979JPCS...40..941B">1979JPCS...40..941B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0022-3697%2879%2990122-7">10.1016/0022-3697(79)90122-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Phys.+Chem.+Solids&amp;rft.atitle=Ferromagnetic+resonance+and+spin+wave+excite+journals+in+metallic+glasses&amp;rft.volume=40&amp;rft.issue=12&amp;rft.pages=941-950&amp;rft.date=1979&amp;rft_id=info%3Adoi%2F10.1016%2F0022-3697%2879%2990122-7&amp;rft_id=info%3Abibcode%2F1979JPCS...40..941B&amp;rft.aulast=Rubinson&amp;rft.aufirst=K.A.&amp;rft.au=Rubinson%2C+Kenneth+A.&amp;rft.au=Patterson%2C+John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAspectGrangierRoger1982" class="citation journal cs1">Aspect, Alain; Grangier, Philippe; Roger, Gérard (1982). <a rel="nofollow" class="external text" href="http://elib.bsu.by/handle/123456789/154541">"Experimental Realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: A New Violation of Bell's Inequalities"</a>. <i>Physical Review Letters</i>. <b>49</b> (2): 91–94. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1982PhRvL..49...91A">1982PhRvL..49...91A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.49.91">10.1103/PhysRevLett.49.91</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Experimental+Realization+of+Einstein%E2%80%93Podolsky%E2%80%93Rosen%E2%80%93Bohm+Gedankenexperiment%3A+A+New+Violation+of+Bell%27s+Inequalities&amp;rft.volume=49&amp;rft.issue=2&amp;rft.pages=91-94&amp;rft.date=1982&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.49.91&amp;rft_id=info%3Abibcode%2F1982PhRvL..49...91A&amp;rft.aulast=Aspect&amp;rft.aufirst=Alain&amp;rft.au=Grangier%2C+Philippe&amp;rft.au=Roger%2C+G%C3%A9rard&amp;rft_id=http%3A%2F%2Felib.bsu.by%2Fhandle%2F123456789%2F154541&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAspectDalibardRoger1982" class="citation journal cs1">Aspect, Alain; Dalibard, Jean; Roger, Gérard (1982). <a rel="nofollow" class="external text" href="http://elib.bsu.by/bitstream/123456789/154542/1/1982-049%20PRL%20Aspect%20et%20al%20-%20Experimental%20test%20of%20Bell%e2%80%99s%20inequalities%20using%20time-varyiang%20analyzers.pdf">"Experimental Test of Bell's Inequalities Using Time- Varying Analyzers"</a> <span class="cs1-format">(PDF)</span>. <i>Physical Review Letters</i>. <b>49</b> (25): 1804–1807. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1982PhRvL..49.1804A">1982PhRvL..49.1804A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.49.1804">10.1103/PhysRevLett.49.1804</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Experimental+Test+of+Bell%27s+Inequalities+Using+Time-+Varying+Analyzers&amp;rft.volume=49&amp;rft.issue=25&amp;rft.pages=1804-1807&amp;rft.date=1982&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.49.1804&amp;rft_id=info%3Abibcode%2F1982PhRvL..49.1804A&amp;rft.aulast=Aspect&amp;rft.aufirst=Alain&amp;rft.au=Dalibard%2C+Jean&amp;rft.au=Roger%2C+G%C3%A9rard&amp;rft_id=http%3A%2F%2Felib.bsu.by%2Fbitstream%2F123456789%2F154542%2F1%2F1982-049%2520PRL%2520Aspect%2520et%2520al%2520-%2520Experimental%2520test%2520of%2520Bell%25e2%2580%2599s%2520inequalities%2520using%2520time-varyiang%2520analyzers.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://journals.aps.org/prl/issues/28/14">"Physical Review Letters – Volume 28 Issue 14"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Physical+Review+Letters+%E2%80%93+Volume+28+Issue+14&amp;rft_id=https%3A%2F%2Fjournals.aps.org%2Fprl%2Fissues%2F28%2F14&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nobelprize.org/prizes/physics/2022/summary/">"The Nobel Prize in Physics 2022"</a>. <i>NobelPrize.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-04-20</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=NobelPrize.org&amp;rft.atitle=The+Nobel+Prize+in+Physics+2022&amp;rft_id=https%3A%2F%2Fwww.nobelprize.org%2Fprizes%2Fphysics%2F2022%2Fsummary%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://w3.pppl.gov/tftr/info/tftrparams.html">TFTR Machine Parameters</a>. W3.pppl.gov (1996-05-10). Retrieved on 2012-05-17.</span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.jet.efda.org/jet/jets-main-features/">JET's Main Features-EFDA JET</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20111120042034/http://www.jet.efda.org/jet/jets-main-features/">Archived</a> 2011-11-20 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. Jet.efda.org. Retrieved on 2012-05-17.</span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.jet.efda.org/wp-content/uploads/jeteuropeansucess.pdf">European JET website</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120320181948/http://www.jet.efda.org/wp-content/uploads/jeteuropeansucess.pdf">Archived</a> 2012-03-20 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. (PDF) . Retrieved on 2012-05-17.</span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www-jt60.naka.jaea.go.jp/english/index-e.html">Japan Atomic Energy Agency. Naka Fusion Institute</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151208095932/http://www-jt60.naka.jaea.go.jp/english/index-e.html">Archived</a> 2015-12-08 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www-jt60.naka.jaea.go.jp/english/index-e.html">Fusion Plasma Research (FPR), JASEA, Naka Fusion Institute</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151208095932/http://www-jt60.naka.jaea.go.jp/english/index-e.html">Archived</a> 2015-12-08 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. Jt60.naka.jaea.go.jp. Retrieved on 2012-05-17.</span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMüllerBednorz1987" class="citation journal cs1">Müller, KA; Bednorz, JG (1987). "The discovery of a class of high-temperature superconductors". <i>Science</i>. <b>237</b> (4819): 1133–9. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1987Sci...237.1133M">1987Sci...237.1133M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.237.4819.1133">10.1126/science.237.4819.1133</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17801637">17801637</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:34578587">34578587</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=The+discovery+of+a+class+of+high-temperature+superconductors&amp;rft.volume=237&amp;rft.issue=4819&amp;rft.pages=1133-9&amp;rft.date=1987&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.237.4819.1133&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A34578587%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F17801637&amp;rft_id=info%3Abibcode%2F1987Sci...237.1133M&amp;rft.aulast=M%C3%BCller&amp;rft.aufirst=KA&amp;rft.au=Bednorz%2C+JG&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPontWaletGavrilaMcCurdy1988" class="citation journal cs1">Pont, M.; Walet, N.R.; Gavrila, M.; McCurdy, C.W. (1988). "Dichotomy of the Hydrogen Atom in Superintense, High-Frequency Laser Fields". <i>Physical Review Letters</i>. <b>61</b> (8): 939–942. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1988PhRvL..61..939P">1988PhRvL..61..939P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.61.939">10.1103/PhysRevLett.61.939</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10039473">10039473</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Dichotomy+of+the+Hydrogen+Atom+in+Superintense%2C+High-Frequency+Laser+Fields&amp;rft.volume=61&amp;rft.issue=8&amp;rft.pages=939-942&amp;rft.date=1988&amp;rft_id=info%3Apmid%2F10039473&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.61.939&amp;rft_id=info%3Abibcode%2F1988PhRvL..61..939P&amp;rft.aulast=Pont&amp;rft.aufirst=M.&amp;rft.au=Walet%2C+N.R.&amp;rft.au=Gavrila%2C+M.&amp;rft.au=McCurdy%2C+C.W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPontWaletGavrila1990" class="citation journal cs1">Pont, M.; Walet, N.; Gavrila, M. (1990). "Radiative distortion of the hydrogen atom in superintense, high-frequency fields of linear polarization". <i>Physical Review A</i>. <b>41</b> (1): 477–494. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1990PhRvA..41..477P">1990PhRvA..41..477P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.41.477">10.1103/PhysRevA.41.477</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9902891">9902891</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Radiative+distortion+of+the+hydrogen+atom+in+superintense%2C+high-frequency+fields+of+linear+polarization&amp;rft.volume=41&amp;rft.issue=1&amp;rft.pages=477-494&amp;rft.date=1990&amp;rft_id=info%3Apmid%2F9902891&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevA.41.477&amp;rft_id=info%3Abibcode%2F1990PhRvA..41..477P&amp;rft.aulast=Pont&amp;rft.aufirst=M.&amp;rft.au=Walet%2C+N.&amp;rft.au=Gavrila%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text">Mihai Gavrila: <i>Atomic Structure and Decay in High-Frequency Fields</i>, in <i>Atoms in Intense Laser Fields</i>, ed. M. Gavrila, Academic Press, San Diego, 1992, pp. 435–510. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-12-003901-X" title="Special:BookSources/0-12-003901-X">0-12-003901-X</a></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMullerGavrila1993" class="citation journal cs1">Muller, H.; Gavrila, M. (1993). "Light-Induced Excited States in H<sup>−</sup>". <i>Physical Review Letters</i>. <b>71</b> (11): 1693–1696. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1993PhRvL..71.1693M">1993PhRvL..71.1693M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.71.1693">10.1103/PhysRevLett.71.1693</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10054474">10054474</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Light-Induced+Excited+States+in+H%3Csup%3E%E2%88%92%3C%2Fsup%3E&amp;rft.volume=71&amp;rft.issue=11&amp;rft.pages=1693-1696&amp;rft.date=1993&amp;rft_id=info%3Apmid%2F10054474&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.71.1693&amp;rft_id=info%3Abibcode%2F1993PhRvL..71.1693M&amp;rft.aulast=Muller&amp;rft.aufirst=H.&amp;rft.au=Gavrila%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWellsSimbotinGavrila1998" class="citation journal cs1">Wells, J.C.; Simbotin, I.; Gavrila, M. (1998). "Physical Reality of Light-Induced Atomic States". <i>Physical Review Letters</i>. <b>80</b> (16): 3479–3482. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998PhRvL..80.3479W">1998PhRvL..80.3479W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.80.3479">10.1103/PhysRevLett.80.3479</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Physical+Reality+of+Light-Induced+Atomic+States&amp;rft.volume=80&amp;rft.issue=16&amp;rft.pages=3479-3482&amp;rft.date=1998&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.80.3479&amp;rft_id=info%3Abibcode%2F1998PhRvL..80.3479W&amp;rft.aulast=Wells&amp;rft.aufirst=J.C.&amp;rft.au=Simbotin%2C+I.&amp;rft.au=Gavrila%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFErnstvan_DuijnMuller1996" class="citation journal cs1">Ernst, E; van Duijn, M. Gavrila; Muller, H.G. (1996). "Multiply Charged Negative Ions of Hydrogen Induced by Superintense Laser Fields". <i>Physical Review Letters</i>. <b>77</b> (18): 3759–3762. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996PhRvL..77.3759V">1996PhRvL..77.3759V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.77.3759">10.1103/PhysRevLett.77.3759</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10062301">10062301</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Multiply+Charged+Negative+Ions+of+Hydrogen+Induced+by+Superintense+Laser+Fields&amp;rft.volume=77&amp;rft.issue=18&amp;rft.pages=3759-3762&amp;rft.date=1996&amp;rft_id=info%3Apmid%2F10062301&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.77.3759&amp;rft_id=info%3Abibcode%2F1996PhRvL..77.3759V&amp;rft.aulast=Ernst&amp;rft.aufirst=E&amp;rft.au=van+Duijn%2C+M.+Gavrila&amp;rft.au=Muller%2C+H.G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShertzerChandlerGavrila1994" class="citation journal cs1"><a href="/wiki/Janine_Shertzer" title="Janine Shertzer">Shertzer, J.</a>; Chandler, A.; Gavrila, M. (1994). "H<sub>2</sub><sup>+</sup> in Superintense Laser Fields: Alignment and Spectral Restructuring". <i>Physical Review Letters</i>. <b>73</b> (15): 2039–2042. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1994PhRvL..73.2039S">1994PhRvL..73.2039S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.73.2039">10.1103/PhysRevLett.73.2039</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10056956">10056956</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=H%3Csub%3E2%3C%2Fsub%3E%3Csup%3E%2B%3C%2Fsup%3E+in+Superintense+Laser+Fields%3A+Alignment+and+Spectral+Restructuring&amp;rft.volume=73&amp;rft.issue=15&amp;rft.pages=2039-2042&amp;rft.date=1994&amp;rft_id=info%3Apmid%2F10056956&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.73.2039&amp;rft_id=info%3Abibcode%2F1994PhRvL..73.2039S&amp;rft.aulast=Shertzer&amp;rft.aufirst=J.&amp;rft.au=Chandler%2C+A.&amp;rft.au=Gavrila%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichard_R._Ernst1992" class="citation web cs1">Richard R. Ernst (December 9, 1992). <a rel="nofollow" class="external text" href="http://nobelprize.org/nobel_prizes/chemistry/laureates/1991/ernst-lecture.pdf">"Nuclear Magnetic Resonance Fourier Transform (2D-FT) Spectroscopy"</a> <span class="cs1-format">(PDF)</span>. <i>Nobel Lecture</i><span class="reference-accessdate">. Retrieved <span class="nowrap">25 April</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Nobel+Lecture&amp;rft.atitle=Nuclear+Magnetic+Resonance+Fourier+Transform+%282D-FT%29+Spectroscopy&amp;rft.date=1992-12-09&amp;rft.au=Richard+R.+Ernst&amp;rft_id=http%3A%2F%2Fnobelprize.org%2Fnobel_prizes%2Fchemistry%2Flaureates%2F1991%2Fernst-lecture.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShor1994" class="citation book cs1">Shor, P.W. (1994). <a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/document/365700">"Algorithms for quantum computation: Discrete logarithms and factoring"</a>. <i>Proceedings 35th Annual Symposium on Foundations of Computer Science</i>. IEEE Comput. Soc. Press. pp.&#160;124–134. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FSFCS.1994.365700">10.1109/SFCS.1994.365700</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8186-6580-6" title="Special:BookSources/978-0-8186-6580-6"><bdi>978-0-8186-6580-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Algorithms+for+quantum+computation%3A+Discrete+logarithms+and+factoring&amp;rft.btitle=Proceedings+35th+Annual+Symposium+on+Foundations+of+Computer+Science&amp;rft.pages=124-134&amp;rft.pub=IEEE+Comput.+Soc.+Press&amp;rft.date=1994&amp;rft_id=info%3Adoi%2F10.1109%2FSFCS.1994.365700&amp;rft.isbn=978-0-8186-6580-6&amp;rft.aulast=Shor&amp;rft.aufirst=P.W.&amp;rft_id=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F365700&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNielsenChuang2010" class="citation book cs1">Nielsen, Michael A.; Chuang, Isaac L. (2010-12-09). <a rel="nofollow" class="external text" href="https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE"><i>Quantum Computation and Quantum Information: 10th Anniversary Edition</i></a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9780511976667">10.1017/CBO9780511976667</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-00217-3" title="Special:BookSources/978-1-107-00217-3"><bdi>978-1-107-00217-3</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-04-20</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Computation+and+Quantum+Information%3A+10th+Anniversary+Edition&amp;rft.date=2010-12-09&amp;rft_id=info%3Adoi%2F10.1017%2FCBO9780511976667&amp;rft.isbn=978-1-107-00217-3&amp;rft.aulast=Nielsen&amp;rft.aufirst=Michael+A.&amp;rft.au=Chuang%2C+Isaac+L.&amp;rft_id=https%3A%2F%2Fwww.cambridge.org%2Fhighereducation%2Fbooks%2Fquantum-computation-and-quantum-information%2F01E10196D0A682A6AEFFEA52D53BE9AE&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: </span><span class="cs1-visible-error citation-comment"><code class="cs1-code">&#124;website=</code> ignored (<a href="/wiki/Help:CS1_errors#periodical_ignored" title="Help:CS1 errors">help</a>)</span></span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.pppl.gov/nationalsphericaltorus.cfm">PPPL, Princeton, USA</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110607223920/http://www.pppl.gov/nationalsphericaltorus.cfm">Archived</a> 2011-06-07 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. Pppl.gov (1999-02-12). Retrieved on 2012-05-17.</span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVandersypenSteffenBreytaYannoni2001" class="citation journal cs1">Vandersypen, Lieven M. K.; Steffen, Matthias; Breyta, Gregory; Yannoni, Costantino S.; Sherwood, Mark H.; Chuang, Isaac L. (December 2001). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/414883a">"Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance"</a>. <i>Nature</i>. <b>414</b> (6866): 883–887. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0112176">quant-ph/0112176</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001Natur.414..883V">2001Natur.414..883V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F414883a">10.1038/414883a</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4687">1476-4687</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11780055">11780055</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Experimental+realization+of+Shor%27s+quantum+factoring+algorithm+using+nuclear+magnetic+resonance&amp;rft.volume=414&amp;rft.issue=6866&amp;rft.pages=883-887&amp;rft.date=2001-12&amp;rft_id=info%3Abibcode%2F2001Natur.414..883V&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0112176&amp;rft_id=info%3Apmid%2F11780055&amp;rft_id=info%3Adoi%2F10.1038%2F414883a&amp;rft.issn=1476-4687&amp;rft.aulast=Vandersypen&amp;rft.aufirst=Lieven+M.+K.&amp;rft.au=Steffen%2C+Matthias&amp;rft.au=Breyta%2C+Gregory&amp;rft.au=Yannoni%2C+Costantino+S.&amp;rft.au=Sherwood%2C+Mark+H.&amp;rft.au=Chuang%2C+Isaac+L.&amp;rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2F414883a&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVainerman2003" class="citation book cs1">Vainerman, Leonid (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0ecjM-nPhGcC&amp;pg=PA247"><i>Locally Compact Quantum Groups and Groupoids: Proceedings of the Meeting of Theoretical Physicists and Mathematicians, Strasbourg, February 21–23, 2002</i></a>. Walter de Gruyter. pp.&#160;247–. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-11-020005-8" title="Special:BookSources/978-3-11-020005-8"><bdi>978-3-11-020005-8</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">17 May</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Locally+Compact+Quantum+Groups+and+Groupoids%3A+Proceedings+of+the+Meeting+of+Theoretical+Physicists+and+Mathematicians%2C+Strasbourg%2C+February+21%E2%80%9323%2C+2002&amp;rft.pages=247-&amp;rft.pub=Walter+de+Gruyter&amp;rft.date=2003&amp;rft.isbn=978-3-11-020005-8&amp;rft.aulast=Vainerman&amp;rft.aufirst=Leonid&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0ecjM-nPhGcC%26pg%3DPA247&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAspect2007" class="citation journal cs1">Aspect, A. (2007). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F446866a">"To be or not to be local"</a>. <i>Nature</i>. <b>446</b> (7138): 866–867. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007Natur.446..866A">2007Natur.446..866A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F446866a">10.1038/446866a</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17443174">17443174</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=To+be+or+not+to+be+local&amp;rft.volume=446&amp;rft.issue=7138&amp;rft.pages=866-867&amp;rft.date=2007&amp;rft_id=info%3Apmid%2F17443174&amp;rft_id=info%3Adoi%2F10.1038%2F446866a&amp;rft_id=info%3Abibcode%2F2007Natur.446..866A&amp;rft.aulast=Aspect&amp;rft.aufirst=A.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252F446866a&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-btoy-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-btoy_82-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCho2010" class="citation journal cs1">Cho, Adrian (2010-12-17). <a rel="nofollow" class="external text" href="https://www.science.org/doi/full/10.1126/science.330.6011.1604">"Breakthrough of the Year: The First Quantum Machine"</a>. <i><a href="/wiki/Science_(journal)" title="Science (journal)">Science</a></i>. <b>330</b> (6011): 1604. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010Sci...330.1604C">2010Sci...330.1604C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.330.6011.1604">10.1126/science.330.6011.1604</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21163978">21163978</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Breakthrough+of+the+Year%3A+The+First+Quantum+Machine&amp;rft.volume=330&amp;rft.issue=6011&amp;rft.pages=1604&amp;rft.date=2010-12-17&amp;rft_id=info%3Apmid%2F21163978&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.330.6011.1604&amp;rft_id=info%3Abibcode%2F2010Sci...330.1604C&amp;rft.aulast=Cho&amp;rft.aufirst=Adrian&amp;rft_id=https%3A%2F%2Fwww.science.org%2Fdoi%2Ffull%2F10.1126%2Fscience.330.6011.1604&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.defenseprocurementnews.com/tags/coherent-population/">"Coherent Population"</a>. Defense Procurement News. 2010-06-22<span class="reference-accessdate">. Retrieved <span class="nowrap">2013-01-30</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Coherent+Population&amp;rft.pub=Defense+Procurement+News&amp;rft.date=2010-06-22&amp;rft_id=http%3A%2F%2Fwww.defenseprocurementnews.com%2Ftags%2Fcoherent-population%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://home.cern/science/physics/higgs-boson">"The Higgs boson | CERN"</a>. <i>home.cern</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=home.cern&amp;rft.atitle=The+Higgs+boson+%7C+CERN&amp;rft_id=https%3A%2F%2Fhome.cern%2Fscience%2Fphysics%2Fhiggs-boson&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-NYT-20140529-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-NYT-20140529_85-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarkoff2014" class="citation news cs1">Markoff, John (29 May 2014). <a rel="nofollow" class="external text" href="https://www.nytimes.com/2014/05/30/science/scientists-report-finding-reliable-way-to-teleport-data.html">"Scientists Report Finding Reliable Way to Teleport Data"</a>. <i><a href="/wiki/New_York_Times" class="mw-redirect" title="New York Times">New York Times</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">29 May</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=New+York+Times&amp;rft.atitle=Scientists+Report+Finding+Reliable+Way+to+Teleport+Data&amp;rft.date=2014-05-29&amp;rft.aulast=Markoff&amp;rft.aufirst=John&amp;rft_id=https%3A%2F%2Fwww.nytimes.com%2F2014%2F05%2F30%2Fscience%2Fscientists-report-finding-reliable-way-to-teleport-data.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> <li id="cite_note-SCI-20140529-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-SCI-20140529_86-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPfaff,_W.2014" class="citation journal cs1">Pfaff, W.; et&#160;al. (29 May 2014). "Unconditional quantum teleportation between distant solid-state quantum bits". <i><a href="/wiki/Science_(journal)" title="Science (journal)">Science</a></i>. <b>345</b> (6196): 532–535. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1404.4369">1404.4369</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014Sci...345..532P">2014Sci...345..532P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.1253512">10.1126/science.1253512</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25082696">25082696</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2190249">2190249</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science&amp;rft.atitle=Unconditional+quantum+teleportation+between+distant+solid-state+quantum+bits&amp;rft.volume=345&amp;rft.issue=6196&amp;rft.pages=532-535&amp;rft.date=2014-05-29&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2190249%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2014Sci...345..532P&amp;rft_id=info%3Aarxiv%2F1404.4369&amp;rft_id=info%3Apmid%2F25082696&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.1253512&amp;rft.au=Pfaff%2C+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Bibliography">Bibliography</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit&amp;section=15" title="Edit section: Bibliography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeacock2008" class="citation book cs1">Peacock, Kent A. (2008). <i><span></span></i>The Quantum Revolution: A Historical Perspective<i><span></span></i>. Westport, Conn.: Greenwood Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780313334481" title="Special:BookSources/9780313334481"><bdi>9780313334481</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Quantum+Revolution%3A+A+Historical+Perspective&amp;rft.place=Westport%2C+Conn.&amp;rft.pub=Greenwood+Press&amp;rft.date=2008&amp;rft.isbn=9780313334481&amp;rft.aulast=Peacock&amp;rft.aufirst=Kent+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBen-Menahem2009" class="citation book cs1">Ben-Menahem, A. (2009). "Historical timeline of quantum mechanics 1925–1989". <i><span></span></i>Historical Encyclopedia of Natural and Mathematical Sciences<i><span></span></i> (1st&#160;ed.). Berlin: Springer. pp.&#160;4342–4349. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9783540688310" title="Special:BookSources/9783540688310"><bdi>9783540688310</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Historical+timeline+of+quantum+mechanics+1925%E2%80%931989&amp;rft.btitle=Historical+Encyclopedia+of+Natural+and+Mathematical+Sciences&amp;rft.place=Berlin&amp;rft.pages=4342-4349&amp;rft.edition=1st&amp;rft.pub=Springer&amp;rft.date=2009&amp;rft.isbn=9783540688310&amp;rft.aulast=Ben-Menahem&amp;rft.aufirst=A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATimeline+of+quantum+mechanics" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Timeline_of_quantum_mechanics&amp;action=edit&amp;section=16" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikiversity_logo_2017.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/16px-Wikiversity_logo_2017.svg.png" decoding="async" width="16" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/24px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/32px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></a></span> Learning materials related to <a href="https://en.wikiversity.org/wiki/Quantum_mechanics/Origin_of_quantum_mechanics" class="extiw" title="v:Quantum mechanics/Origin of quantum mechanics">the history of Quantum Mechanics</a> at Wikiversity</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Quantum_mechanics" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_mechanics_topics" title="Template:Quantum mechanics topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_mechanics_topics" title="Template talk:Quantum mechanics topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_mechanics_topics" title="Special:EditPage/Template:Quantum mechanics topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Quantum_mechanics" style="font-size:114%;margin:0 4em"><a href="/wiki/Quantum_mechanics" title="Quantum mechanics">Quantum mechanics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Background</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Introduction_to_quantum_mechanics" title="Introduction to quantum mechanics">Introduction</a></li> <li><a href="/wiki/History_of_quantum_mechanics" title="History of quantum mechanics">History</a> <ul><li><a class="mw-selflink selflink">Timeline</a></li></ul></li> <li><a href="/wiki/Classical_mechanics" title="Classical mechanics">Classical mechanics</a></li> <li><a href="/wiki/Old_quantum_theory" title="Old quantum theory">Old quantum theory</a></li> <li><a href="/wiki/Glossary_of_elementary_quantum_mechanics" title="Glossary of elementary quantum mechanics">Glossary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fundamentals</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Born_rule" title="Born rule">Born rule</a></li> <li><a href="/wiki/Bra%E2%80%93ket_notation" title="Bra–ket notation">Bra–ket notation</a></li> <li><a href="/wiki/Complementarity_(physics)" title="Complementarity (physics)"> Complementarity</a></li> <li><a href="/wiki/Density_matrix" title="Density matrix">Density matrix</a></li> <li><a href="/wiki/Energy_level" title="Energy level">Energy level</a> <ul><li><a href="/wiki/Ground_state" title="Ground state">Ground state</a></li> <li><a href="/wiki/Excited_state" title="Excited state">Excited state</a></li> <li><a href="/wiki/Degenerate_energy_levels" title="Degenerate energy levels">Degenerate levels</a></li> <li><a href="/wiki/Zero-point_energy" title="Zero-point energy">Zero-point energy</a></li></ul></li> <li><a href="/wiki/Quantum_entanglement" title="Quantum entanglement">Entanglement</a></li> <li><a href="/wiki/Hamiltonian_(quantum_mechanics)" title="Hamiltonian (quantum mechanics)">Hamiltonian</a></li> <li><a href="/wiki/Wave_interference" title="Wave interference">Interference</a></li> <li><a href="/wiki/Quantum_decoherence" title="Quantum decoherence">Decoherence</a></li> <li><a href="/wiki/Measurement_in_quantum_mechanics" title="Measurement in quantum mechanics">Measurement</a></li> <li><a href="/wiki/Quantum_nonlocality" title="Quantum nonlocality">Nonlocality</a></li> <li><a href="/wiki/Quantum_state" title="Quantum state">Quantum state</a></li> <li><a href="/wiki/Quantum_superposition" title="Quantum superposition">Superposition</a></li> <li><a href="/wiki/Quantum_tunnelling" title="Quantum tunnelling">Tunnelling</a></li> <li><a href="/wiki/Scattering_theory" class="mw-redirect" title="Scattering theory">Scattering theory</a></li> <li><a href="/wiki/Symmetry_in_quantum_mechanics" title="Symmetry in quantum mechanics">Symmetry in quantum mechanics</a></li> <li><a href="/wiki/Uncertainty_principle" title="Uncertainty principle">Uncertainty</a></li> <li><a href="/wiki/Wave_function" title="Wave function">Wave function</a> <ul><li><a href="/wiki/Wave_function_collapse" title="Wave function collapse">Collapse</a></li> <li><a href="/wiki/Wave%E2%80%93particle_duality" title="Wave–particle duality">Wave–particle duality</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Formulations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mathematical_formulation_of_quantum_mechanics" title="Mathematical formulation of quantum mechanics">Formulations</a></li> <li><a href="/wiki/Heisenberg_picture" title="Heisenberg picture">Heisenberg</a></li> <li><a href="/wiki/Interaction_picture" title="Interaction picture">Interaction</a></li> <li><a href="/wiki/Matrix_mechanics" title="Matrix mechanics">Matrix mechanics</a></li> <li><a href="/wiki/Schr%C3%B6dinger_picture" title="Schrödinger picture">Schrödinger</a></li> <li><a href="/wiki/Path_integral_formulation" title="Path integral formulation">Path integral formulation</a></li> <li><a href="/wiki/Phase-space_formulation" title="Phase-space formulation">Phase space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Equations</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Klein%E2%80%93Gordon_equation" title="Klein–Gordon equation">Klein–Gordon</a></li> <li><a href="/wiki/Dirac_equation" title="Dirac equation">Dirac</a></li> <li><a href="/wiki/Weyl_equation" title="Weyl equation">Weyl</a></li> <li><a href="/wiki/Majorana_equation" title="Majorana equation">Majorana</a></li> <li><a href="/wiki/Rarita%E2%80%93Schwinger_equation" title="Rarita–Schwinger equation">Rarita–Schwinger</a></li> <li><a href="/wiki/Pauli_equation" title="Pauli equation">Pauli</a></li> <li><a href="/wiki/Rydberg_formula" title="Rydberg formula">Rydberg</a></li> <li><a href="/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation">Schrödinger</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Interpretations_of_quantum_mechanics" title="Interpretations of quantum mechanics">Interpretations</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_Bayesianism" title="Quantum Bayesianism">Bayesian</a></li> <li><a href="/wiki/Consistent_histories" title="Consistent histories">Consistent histories</a></li> <li><a href="/wiki/Copenhagen_interpretation" title="Copenhagen interpretation">Copenhagen</a></li> <li><a href="/wiki/De_Broglie%E2%80%93Bohm_theory" title="De Broglie–Bohm theory">de Broglie–Bohm</a></li> <li><a href="/wiki/Ensemble_interpretation" title="Ensemble interpretation">Ensemble</a></li> <li><a href="/wiki/Hidden-variable_theory" title="Hidden-variable theory">Hidden-variable</a> <ul><li><a href="/wiki/Local_hidden-variable_theory" title="Local hidden-variable theory">Local</a> <ul><li><a href="/wiki/Superdeterminism" title="Superdeterminism">Superdeterminism</a></li></ul></li></ul></li> <li><a href="/wiki/Many-worlds_interpretation" title="Many-worlds interpretation">Many-worlds</a></li> <li><a href="/wiki/Objective-collapse_theory" title="Objective-collapse theory">Objective collapse</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Relational_quantum_mechanics" title="Relational quantum mechanics">Relational</a></li> <li><a href="/wiki/Transactional_interpretation" title="Transactional interpretation">Transactional</a></li> <li><a href="/wiki/Von_Neumann%E2%80%93Wigner_interpretation" title="Von Neumann–Wigner interpretation">Von Neumann–Wigner</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Experiments</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bell_test" title="Bell test">Bell test</a></li> <li><a href="/wiki/Davisson%E2%80%93Germer_experiment" title="Davisson–Germer experiment">Davisson–Germer</a></li> <li><a href="/wiki/Delayed-choice_quantum_eraser" title="Delayed-choice quantum eraser">Delayed-choice quantum eraser</a></li> <li><a href="/wiki/Double-slit_experiment" title="Double-slit experiment">Double-slit</a></li> <li><a href="/wiki/Franck%E2%80%93Hertz_experiment" title="Franck–Hertz experiment">Franck–Hertz</a></li> <li><a href="/wiki/Mach%E2%80%93Zehnder_interferometer" title="Mach–Zehnder interferometer">Mach–Zehnder interferometer</a></li> <li><a href="/wiki/Elitzur%E2%80%93Vaidman_bomb_tester" title="Elitzur–Vaidman bomb tester">Elitzur–Vaidman</a></li> <li><a href="/wiki/Popper%27s_experiment" title="Popper&#39;s experiment">Popper</a></li> <li><a href="/wiki/Quantum_eraser_experiment" title="Quantum eraser experiment">Quantum eraser</a></li> <li><a href="/wiki/Stern%E2%80%93Gerlach_experiment" title="Stern–Gerlach experiment">Stern–Gerlach</a></li> <li><a href="/wiki/Wheeler%27s_delayed-choice_experiment" title="Wheeler&#39;s delayed-choice experiment">Wheeler's delayed choice</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_nanoscience" class="mw-redirect" title="Quantum nanoscience">Science</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_biology" title="Quantum biology">Quantum biology</a></li> <li><a href="/wiki/Quantum_chemistry" title="Quantum chemistry">Quantum chemistry</a></li> <li><a href="/wiki/Quantum_chaos" title="Quantum chaos">Quantum chaos</a></li> <li><a href="/wiki/Quantum_cosmology" title="Quantum cosmology">Quantum cosmology</a></li> <li><a href="/wiki/Quantum_differential_calculus" title="Quantum differential calculus">Quantum differential calculus</a></li> <li><a href="/wiki/Quantum_dynamics" title="Quantum dynamics">Quantum dynamics</a></li> <li><a href="/wiki/Quantum_geometry" title="Quantum geometry">Quantum geometry</a></li> <li><a href="/wiki/Measurement_problem" title="Measurement problem">Quantum measurement problem</a></li> <li><a href="/wiki/Quantum_mind" title="Quantum mind">Quantum mind</a></li> <li><a href="/wiki/Quantum_stochastic_calculus" title="Quantum stochastic calculus">Quantum stochastic calculus</a></li> <li><a href="/wiki/Quantum_spacetime" title="Quantum spacetime">Quantum spacetime</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_technology" class="mw-redirect" title="Quantum technology">Technology</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_algorithm" title="Quantum algorithm">Quantum algorithms</a></li> <li><a href="/wiki/Quantum_amplifier" title="Quantum amplifier">Quantum amplifier</a></li> <li><a href="/wiki/Quantum_bus" title="Quantum bus">Quantum bus</a></li> <li><a href="/wiki/Quantum_cellular_automaton" title="Quantum cellular automaton">Quantum cellular automata</a> <ul><li><a href="/wiki/Quantum_finite_automaton" title="Quantum finite automaton">Quantum finite automata</a></li></ul></li> <li><a href="/wiki/Quantum_channel" title="Quantum channel">Quantum channel</a></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">Quantum circuit</a></li> <li><a href="/wiki/Quantum_complexity_theory" title="Quantum complexity theory">Quantum complexity theory</a></li> <li><a href="/wiki/Quantum_computing" title="Quantum computing">Quantum computing</a> <ul><li><a href="/wiki/Timeline_of_quantum_computing_and_communication" title="Timeline of quantum computing and communication">Timeline</a></li></ul></li> <li><a href="/wiki/Quantum_cryptography" title="Quantum cryptography">Quantum cryptography</a></li> <li><a href="/wiki/Quantum_electronics" class="mw-redirect" title="Quantum electronics">Quantum electronics</a></li> <li><a href="/wiki/Quantum_error_correction" title="Quantum error correction">Quantum error correction</a></li> <li><a href="/wiki/Quantum_imaging" title="Quantum imaging">Quantum imaging</a></li> <li><a href="/wiki/Quantum_image_processing" title="Quantum image processing">Quantum image processing</a></li> <li><a href="/wiki/Quantum_information" title="Quantum information">Quantum information</a></li> <li><a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">Quantum key distribution</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Quantum_logic_gate" title="Quantum logic gate">Quantum logic gates</a></li> <li><a href="/wiki/Quantum_machine" title="Quantum machine">Quantum machine</a></li> <li><a href="/wiki/Quantum_machine_learning" title="Quantum machine learning">Quantum machine learning</a></li> <li><a href="/wiki/Quantum_metamaterial" title="Quantum metamaterial">Quantum metamaterial</a></li> <li><a href="/wiki/Quantum_metrology" title="Quantum metrology">Quantum metrology</a></li> <li><a href="/wiki/Quantum_network" title="Quantum network">Quantum network</a></li> <li><a href="/wiki/Quantum_neural_network" title="Quantum neural network">Quantum neural network</a></li> <li><a href="/wiki/Quantum_optics" title="Quantum optics">Quantum optics</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">Quantum programming</a></li> <li><a href="/wiki/Quantum_sensor" title="Quantum sensor">Quantum sensing</a></li> <li><a href="/wiki/Quantum_simulator" title="Quantum simulator">Quantum simulator</a></li> <li><a href="/wiki/Quantum_teleportation" title="Quantum teleportation">Quantum teleportation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Extensions</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_fluctuation" title="Quantum fluctuation">Quantum fluctuation</a></li> <li><a href="/wiki/Casimir_effect" title="Casimir effect">Casimir effect</a></li> <li><a href="/wiki/Quantum_statistical_mechanics" title="Quantum statistical mechanics">Quantum statistical mechanics</a></li> <li><a href="/wiki/Quantum_field_theory" title="Quantum field theory">Quantum field theory</a> <ul><li><a href="/wiki/History_of_quantum_field_theory" title="History of quantum field theory">History</a></li></ul></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></li> <li><a href="/wiki/Relativistic_quantum_mechanics" title="Relativistic quantum mechanics">Relativistic quantum mechanics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Schr%C3%B6dinger%27s_cat" title="Schrödinger&#39;s cat">Schrödinger's cat</a> <ul><li><a href="/wiki/Schr%C3%B6dinger%27s_cat_in_popular_culture" title="Schrödinger&#39;s cat in popular culture">in popular culture</a></li></ul></li> <li><a href="/wiki/Wigner%27s_friend" title="Wigner&#39;s friend">Wigner's friend</a></li> <li><a href="/wiki/Einstein%E2%80%93Podolsky%E2%80%93Rosen_paradox" title="Einstein–Podolsky–Rosen paradox">EPR paradox</a></li> <li><a href="/wiki/Quantum_mysticism" title="Quantum mysticism">Quantum mysticism</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Quantum_mechanics" title="Category:Quantum mechanics">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="History_of_physics_(timeline)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:History_of_physics" title="Template:History of physics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:History_of_physics" title="Template talk:History of physics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:History_of_physics" title="Special:EditPage/Template:History of physics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="History_of_physics_(timeline)" style="font-size:114%;margin:0 4em"><a href="/wiki/History_of_physics" title="History of physics">History of physics</a> (<a href="/wiki/Timeline_of_fundamental_physics_discoveries" title="Timeline of fundamental physics discoveries">timeline</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Classical_physics" title="Classical physics">Classical physics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_astronomy" title="History of astronomy">Astronomy</a> <ul><li><a href="/wiki/Timeline_of_astronomy" title="Timeline of astronomy">timeline</a></li></ul></li> <li><a href="/wiki/History_of_electromagnetic_theory" title="History of electromagnetic theory">Electromagnetism</a> <ul><li><a href="/wiki/Timeline_of_electromagnetism_and_classical_optics" title="Timeline of electromagnetism and classical optics">timeline</a></li> <li><a href="/wiki/History_of_electrical_engineering" title="History of electrical engineering">Electrical engineering</a></li> <li><a href="/wiki/History_of_Maxwell%27s_equations" title="History of Maxwell&#39;s equations">Maxwell's equations</a></li></ul></li> <li><a href="/wiki/History_of_fluid_mechanics" title="History of fluid mechanics">Fluid mechanics</a> <ul><li><a href="/wiki/Timeline_of_fluid_and_continuum_mechanics" title="Timeline of fluid and continuum mechanics">timeline</a></li> <li><a href="/wiki/History_of_aerodynamics" title="History of aerodynamics">Aerodynamics</a></li></ul></li> <li><a href="/wiki/History_of_classical_field_theory" title="History of classical field theory">Field theory</a></li> <li><a href="/wiki/History_of_gravitational_theory" title="History of gravitational theory">Gravitational theory</a> <ul><li><a href="/wiki/Timeline_of_gravitational_physics_and_relativity" title="Timeline of gravitational physics and relativity">timeline</a></li></ul></li> <li><a href="/wiki/History_of_materials_science" title="History of materials science">Material science</a> <ul><li><a href="/wiki/Timeline_of_materials_technology" title="Timeline of materials technology">timeline</a></li> <li><a href="/wiki/History_of_metamaterials" title="History of metamaterials">Metamaterials</a></li></ul></li> <li><a href="/wiki/History_of_classical_mechanics" title="History of classical mechanics">Mechanics</a> <ul><li><a href="/wiki/Timeline_of_classical_mechanics" title="Timeline of classical mechanics">timeline</a></li> <li><a href="/wiki/History_of_variational_principles_in_physics" title="History of variational principles in physics">Variational principles</a></li></ul></li> <li><a href="/wiki/History_of_optics" title="History of optics">Optics</a> <ul><li><a href="/wiki/History_of_spectroscopy" title="History of spectroscopy">Spectroscopy</a></li></ul></li> <li><a href="/wiki/History_of_thermodynamics" title="History of thermodynamics">Thermodynamics</a> <ul><li><a href="/wiki/Timeline_of_thermodynamics" title="Timeline of thermodynamics">timeline</a></li> <li><a href="/wiki/History_of_energy" title="History of energy">Energy</a></li> <li><a href="/wiki/History_of_entropy" title="History of entropy">Entropy</a></li> <li><a href="/wiki/History_of_perpetual_motion_machines" title="History of perpetual motion machines">Perpetual motion</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Modern_physics" title="Modern physics">Modern physics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Computational physics <ul><li><a href="/wiki/Timeline_of_computational_physics" title="Timeline of computational physics">timeline</a></li></ul></li> <li>Condensed matter <ul><li><a href="/wiki/Timeline_of_condensed_matter_physics" title="Timeline of condensed matter physics">timeline</a></li> <li><a href="/wiki/History_of_superconductivity" title="History of superconductivity">Superconductivity</a></li></ul></li> <li>Cosmology <ul><li><a href="/wiki/Timeline_of_cosmological_theories" title="Timeline of cosmological theories">timeline</a></li> <li><a href="/wiki/History_of_the_Big_Bang_theory" title="History of the Big Bang theory">Big Bang theory</a></li></ul></li> <li><a href="/wiki/History_of_general_relativity" title="History of general relativity">General relativity</a> <ul><li><a href="/wiki/Tests_of_general_relativity" title="Tests of general relativity">tests</a></li></ul></li> <li><a href="/wiki/History_of_geophysics" title="History of geophysics">Geophysics</a></li> <li>Nuclear physics <ul><li><a href="/wiki/Discovery_of_nuclear_fission" title="Discovery of nuclear fission">Fission</a></li> <li><a href="/wiki/History_of_nuclear_fusion" title="History of nuclear fusion">Fusion</a></li> <li><a href="/wiki/History_of_nuclear_power" title="History of nuclear power">Power</a></li> <li><a href="/wiki/History_of_nuclear_weapons" title="History of nuclear weapons">Weapons</a></li></ul></li> <li><a href="/wiki/History_of_quantum_mechanics" title="History of quantum mechanics">Quantum mechanics</a> <ul><li><a class="mw-selflink selflink">timeline</a></li> <li><a href="/wiki/History_of_atomic_theory" title="History of atomic theory">Atoms</a></li> <li><a href="/wiki/History_of_molecular_theory" title="History of molecular theory">Molecules</a></li> <li><a href="/wiki/History_of_quantum_field_theory" title="History of quantum field theory">Quantum field theory</a></li></ul></li> <li><a href="/wiki/History_of_subatomic_physics" title="History of subatomic physics">Subatomic physics</a> <ul><li><a href="/wiki/Timeline_of_atomic_and_subatomic_physics" title="Timeline of atomic and subatomic physics">timeline</a></li></ul></li> <li><a href="/wiki/History_of_special_relativity" title="History of special relativity">Special relativity</a> <ul><li><a href="/wiki/Timeline_of_special_relativity_and_the_speed_of_light" title="Timeline of special relativity and the speed of light">timeline</a></li> <li><a href="/wiki/History_of_Lorentz_transformations" title="History of Lorentz transformations">Lorentz transformations</a></li> <li><a href="/wiki/Tests_of_special_relativity" title="Tests of special relativity">tests</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Recent developments</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Quantum information <ul><li><a href="/wiki/Timeline_of_quantum_computing_and_communication" title="Timeline of quantum computing and communication">timeline</a></li></ul></li> <li><a href="/wiki/History_of_loop_quantum_gravity" title="History of loop quantum gravity">Loop quantum gravity</a></li> <li><a href="/wiki/History_of_nanotechnology" title="History of nanotechnology">Nanotechnology</a></li> <li><a href="/wiki/History_of_string_theory" title="History of string theory">String theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">On specific discoveries</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Discovery_of_cosmic_microwave_background_radiation" title="Discovery of cosmic microwave background radiation">Cosmic microwave background</a></li> <li><a href="/wiki/Discovery_of_graphene" title="Discovery of graphene">Graphene</a></li> <li><a href="/wiki/First_observation_of_gravitational_waves" title="First observation of gravitational waves">Gravitational waves</a></li> <li>Subatomic particles <ul><li><a href="/wiki/Timeline_of_particle_discoveries" title="Timeline of particle discoveries">timeline</a></li> <li><a href="/wiki/Search_for_the_Higgs_boson" title="Search for the Higgs boson">Higgs boson</a></li> <li><a href="/wiki/Discovery_of_the_neutron" title="Discovery of the neutron">Neutron</a></li></ul></li> <li><a href="/wiki/R%C3%B8mer%27s_determination_of_the_speed_of_light" title="Rømer&#39;s determination of the speed of light">Speed of light</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By periods</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Copernican_Revolution" title="Copernican Revolution">Copernican Revolution</a></li> <li><a href="/wiki/Golden_age_of_physics" title="Golden age of physics">Golden age of physics</a></li> <li><a href="/wiki/Golden_age_of_cosmology" title="Golden age of cosmology">Golden age of cosmology</a></li> <li><a href="/wiki/Physics_in_the_medieval_Islamic_world" title="Physics in the medieval Islamic world">Medieval Islamic world</a> <ul><li><a href="/wiki/Astronomy_in_the_medieval_Islamic_world" title="Astronomy in the medieval Islamic world">Astronomy</a></li></ul></li> <li><a href="/wiki/Noisy_intermediate-scale_quantum_era" title="Noisy intermediate-scale quantum era">Noisy intermediate-scale quantum era</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By groups</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Harvard_Computers" title="Harvard Computers">Harvard Computers</a></li> <li><a href="/wiki/The_Martians_(scientists)" title="The Martians (scientists)">The Martians</a></li> <li><a href="/wiki/Oxford_Calculators" title="Oxford Calculators">Oxford Calculators</a></li> <li><a href="/wiki/Via_Panisperna_boys" title="Via Panisperna boys">Via Panisperna boys</a></li> <li><a href="/wiki/Women_in_physics" title="Women in physics">Women in physics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Scientific disputes</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bohr%E2%80%93Einstein_debates" title="Bohr–Einstein debates">Bohr–Einstein</a></li> <li><a href="/wiki/Chandrasekhar%E2%80%93Eddington_dispute" title="Chandrasekhar–Eddington dispute">Chandrasekhar–Eddington</a></li> <li><a href="/wiki/Galileo_affair" title="Galileo affair">Galileo affair</a></li> <li><a href="/wiki/Leibniz%E2%80%93Newton_calculus_controversy" title="Leibniz–Newton calculus controversy">Leibniz–Newton</a></li> <li><a href="/wiki/Mechanical_equivalent_of_heat" title="Mechanical equivalent of heat">Joule–von Mayer</a></li> <li><a href="/wiki/Great_Debate_(astronomy)" title="Great Debate (astronomy)">Shapley–Curtis</a></li> <li>Relativity priority <ul><li><a href="/wiki/Relativity_priority_dispute" title="Relativity priority dispute">Special relativity</a></li> <li><a href="/wiki/General_relativity_priority_dispute" title="General relativity priority dispute">General relativity</a></li></ul></li> <li><a href="/wiki/Transfermium_Wars" title="Transfermium Wars">Transfermium Wars</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:History_of_physics" title="Category:History of physics">Category</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐bl2bm Cached time: 20241122144938 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.007 seconds Real time usage: 1.225 seconds Preprocessor visited node count: 5674/1000000 Post‐expand include size: 206301/2097152 bytes Template argument size: 1875/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 5/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 283966/5000000 bytes Lua time usage: 0.588/10.000 seconds Lua memory usage: 10770067/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 972.501 1 -total 58.93% 573.051 1 Template:Reflist 32.43% 315.355 42 Template:Cite_journal 9.55% 92.838 2 Template:Navbox 9.36% 91.012 1 Template:Quantum_mechanics_topics 7.58% 73.685 1 Template:Short_description 6.72% 65.352 1 Template:Harvnb 5.29% 51.445 2 Template:Ambox 5.00% 48.633 1 Template:Original_research 4.06% 39.499 2 Template:Pagetype --> <!-- Saved in parser cache with key enwiki:pcache:idhash:24084197-0!canonical and timestamp 20241122144938 and revision id 1238544102. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Timeline_of_quantum_mechanics&amp;oldid=1238544102">https://en.wikipedia.org/w/index.php?title=Timeline_of_quantum_mechanics&amp;oldid=1238544102</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:History_of_physics" title="Category:History of physics">History of physics</a></li><li><a href="/wiki/Category:Physics_timelines" title="Category:Physics timelines">Physics timelines</a></li><li><a href="/wiki/Category:Quantum_mechanics" title="Category:Quantum mechanics">Quantum mechanics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">CS1 maint: multiple names: authors list</a></li><li><a href="/wiki/Category:CS1_errors:_periodical_ignored" title="Category:CS1 errors: periodical ignored">CS1 errors: periodical ignored</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_that_may_contain_original_research_from_April_2012" title="Category:Articles that may contain original research from April 2012">Articles that may contain original research from April 2012</a></li><li><a href="/wiki/Category:All_articles_that_may_contain_original_research" title="Category:All articles that may contain original research">All articles that may contain original research</a></li><li><a href="/wiki/Category:Wikipedia_articles_in_need_of_updating_from_April_2024" title="Category:Wikipedia articles in need of updating from April 2024">Wikipedia articles in need of updating from April 2024</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_in_need_of_updating" title="Category:All Wikipedia articles in need of updating">All Wikipedia articles in need of updating</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 4 August 2024, at 12:56<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Timeline_of_quantum_mechanics&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-7zwfr","wgBackendResponseTime":157,"wgPageParseReport":{"limitreport":{"cputime":"1.007","walltime":"1.225","ppvisitednodes":{"value":5674,"limit":1000000},"postexpandincludesize":{"value":206301,"limit":2097152},"templateargumentsize":{"value":1875,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":5,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":283966,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 972.501 1 -total"," 58.93% 573.051 1 Template:Reflist"," 32.43% 315.355 42 Template:Cite_journal"," 9.55% 92.838 2 Template:Navbox"," 9.36% 91.012 1 Template:Quantum_mechanics_topics"," 7.58% 73.685 1 Template:Short_description"," 6.72% 65.352 1 Template:Harvnb"," 5.29% 51.445 2 Template:Ambox"," 5.00% 48.633 1 Template:Original_research"," 4.06% 39.499 2 Template:Pagetype"]},"scribunto":{"limitreport-timeusage":{"value":"0.588","limit":"10.000"},"limitreport-memusage":{"value":10770067,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAbragam1961\"] = 1,\n [\"CITEREFAspect2007\"] = 1,\n [\"CITEREFAspectDalibardRoger1982\"] = 1,\n [\"CITEREFAspectGrangierRoger1982\"] = 1,\n [\"CITEREFBarnesConnollyCrennellCulwick1964\"] = 1,\n [\"CITEREFBecquerel1896\"] = 1,\n [\"CITEREFBen-Menahem2009\"] = 1,\n [\"CITEREFBirkhoff,_Garrettvon_Neumann,_J.1936\"] = 1,\n [\"CITEREFBloch1946\"] = 1,\n [\"CITEREFBlochHansenPackard1946\"] = 1,\n [\"CITEREFBlochJeffries1950\"] = 1,\n [\"CITEREFBrauerWeyl1935\"] = 1,\n [\"CITEREFBrian_David_Josephson1973\"] = 1,\n [\"CITEREFCarverSlichter1953\"] = 1,\n [\"CITEREFCho2010\"] = 1,\n [\"CITEREFDalla_ChiaraGiuntini1994\"] = 1,\n [\"CITEREFDyson1949\"] = 1,\n [\"CITEREFEinstein_A,_Podolsky_B,_Rosen_NPodolskyRosen1935\"] = 1,\n [\"CITEREFErnstvan_DuijnMuller1996\"] = 1,\n [\"CITEREFEverett1957\"] = 1,\n [\"CITEREFFrédéric_Joliot-Curie1935\"] = 1,\n [\"CITEREFGardnerPurcell1949\"] = 1,\n [\"CITEREFGarrowayGrannellMansfield1974\"] = 1,\n [\"CITEREFGeorgescu2006\"] = 1,\n [\"CITEREFGutowskyKistiakowskyPakePurcell1949\"] = 1,\n [\"CITEREFH._Jahn_and_E._Teller1937\"] = 1,\n [\"CITEREFHans_A._Bethe1952\"] = 1,\n [\"CITEREFIrons2001\"] = 1,\n [\"CITEREFJacek_W._HennelJacek_Klinowski2005\"] = 1,\n [\"CITEREFLarmor,_Joseph1897\"] = 2,\n [\"CITEREFLewis,_G.N.1926\"] = 1,\n [\"CITEREFLewis,_G._N.1916\"] = 1,\n [\"CITEREFMansfield1977\"] = 1,\n [\"CITEREFMansfieldGrannell1973\"] = 1,\n [\"CITEREFMansfieldMaudsley1977\"] = 1,\n [\"CITEREFMaria_Goeppert_Mayer1963\"] = 1,\n [\"CITEREFMarkoff2014\"] = 1,\n [\"CITEREFMcCormmach1967\"] = 1,\n [\"CITEREFMullerGavrila1993\"] = 1,\n [\"CITEREFMüllerBednorz1987\"] = 1,\n [\"CITEREFNielsenChuang2010\"] = 1,\n [\"CITEREFOmnès1999\"] = 1,\n [\"CITEREFPais1995\"] = 1,\n [\"CITEREFPeacock2008\"] = 1,\n [\"CITEREFPeterWeyl1927\"] = 1,\n [\"CITEREFPfaff,_W.2014\"] = 1,\n [\"CITEREFPontWaletGavrila1990\"] = 1,\n [\"CITEREFPontWaletGavrilaMcCurdy1988\"] = 1,\n [\"CITEREFPrigogine1977\"] = 1,\n [\"CITEREFProcopiu1913\"] = 1,\n [\"CITEREFRichard_R._Ernst1992\"] = 1,\n [\"CITEREFRubinsonRubinsonPatterson1979\"] = 1,\n [\"CITEREFShertzerChandlerGavrila1994\"] = 1,\n [\"CITEREFShor1994\"] = 1,\n [\"CITEREFSoddy1922\"] = 1,\n [\"CITEREFStix,_Gary1999\"] = 1,\n [\"CITEREFVainerman2003\"] = 1,\n [\"CITEREFVan_Hove1958\"] = 1,\n [\"CITEREFVandersypenSteffenBreytaYannoni2001\"] = 1,\n [\"CITEREFWellsSimbotinGavrila1998\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 1,\n [\"=\"] = 1,\n [\"Citation\"] = 3,\n [\"Cite book\"] = 9,\n [\"Cite journal\"] = 42,\n [\"Cite news\"] = 1,\n [\"Cite report\"] = 1,\n [\"Cite web\"] = 10,\n [\"Div col\"] = 1,\n [\"Div col end\"] = 1,\n [\"Frac\"] = 1,\n [\"Google books\"] = 1,\n [\"Harvnb\"] = 1,\n [\"History of physics\"] = 1,\n [\"ISBN\"] = 1,\n [\"Nowrap\"] = 1,\n [\"Nuclide\"] = 1,\n [\"Original research\"] = 1,\n [\"Quantum mechanics topics\"] = 1,\n [\"Reflist\"] = 1,\n [\"See also\"] = 1,\n [\"Short description\"] = 1,\n [\"SubatomicParticle\"] = 1,\n [\"Update\"] = 1,\n [\"Val\"] = 4,\n [\"Webarchive\"] = 6,\n [\"Wikiversity inline\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-bl2bm","timestamp":"20241122144938","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Timeline of quantum mechanics","url":"https:\/\/en.wikipedia.org\/wiki\/Timeline_of_quantum_mechanics","sameAs":"http:\/\/www.wikidata.org\/entity\/Q7806180","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q7806180","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2009-08-23T10:27:22Z","dateModified":"2024-08-04T12:56:23Z","headline":"development of quantum mechanics, quantum field theories and quantum chemistry"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10