CINXE.COM
Search results for: glucose measurement
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: glucose measurement</title> <meta name="description" content="Search results for: glucose measurement"> <meta name="keywords" content="glucose measurement"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="glucose measurement" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="glucose measurement"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3402</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: glucose measurement</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3402</span> Blood Glucose Level Measurement from Breath Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tayyab%20Hassan">Tayyab Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Talha%20Rehman"> Talha Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=Qasim%20Abdul%20Aziz"> Qasim Abdul Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Salman"> Ahmad Salman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20glucose%20level" title="blood glucose level">blood glucose level</a>, <a href="https://publications.waset.org/abstracts/search?q=breath%20acetone%20concentration" title=" breath acetone concentration"> breath acetone concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regression" title=" linear regression"> linear regression</a> </p> <a href="https://publications.waset.org/abstracts/96833/blood-glucose-level-measurement-from-breath-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3401</span> Blood Glucose Measurement and Analysis: Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20Abd%20Rahim">I. M. Abd Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Abdul%20Rahim"> H. Abdul Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ghazali"> R. Ghazali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is numerous non-invasive blood glucose measurement technique developed by researchers, and near infrared (NIR) is the potential technique nowadays. However, there are some disagreements on the optimal wavelength range that is suitable to be used as the reference of the glucose substance in the blood. This paper focuses on the experimental data collection technique and also the analysis method used to analyze the data gained from the experiment. The selection of suitable linear and non-linear model structure is essential in prediction system, as the system developed need to be conceivably accurate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear" title="linear">linear</a>, <a href="https://publications.waset.org/abstracts/search?q=near-infrared%20%28NIR%29" title=" near-infrared (NIR)"> near-infrared (NIR)</a>, <a href="https://publications.waset.org/abstracts/search?q=non-invasive" title=" non-invasive"> non-invasive</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear" title=" non-linear"> non-linear</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20system" title=" prediction system"> prediction system</a> </p> <a href="https://publications.waset.org/abstracts/36593/blood-glucose-measurement-and-analysis-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3400</span> Linear Prediction System in Measuring Glucose Level in Blood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Intan%20Maisarah%20Abd%20Rahim">Intan Maisarah Abd Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Herlina%20Abdul%20Rahim"> Herlina Abdul Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashidah%20Ghazali"> Rashidah Ghazali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20level" title=" glucose level"> glucose level</a>, <a href="https://publications.waset.org/abstracts/search?q=linear" title=" linear"> linear</a>, <a href="https://publications.waset.org/abstracts/search?q=near-infrared" title=" near-infrared"> near-infrared</a>, <a href="https://publications.waset.org/abstracts/search?q=non-invasive" title=" non-invasive"> non-invasive</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20system" title=" prediction system"> prediction system</a> </p> <a href="https://publications.waset.org/abstracts/99535/linear-prediction-system-in-measuring-glucose-level-in-blood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3399</span> Effects of Concomitant Use of Metformin and Powdered Moringa Oleifera Leaves on Glucose Tolerance in Sprague-Dawley Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emielex%20M.%20Aguilar">Emielex M. Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristen%20Angela%20G.%20Cruz"> Kristen Angela G. Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Czarina%20Joie%20L.%20Rivera"> Czarina Joie L. Rivera</a>, <a href="https://publications.waset.org/abstracts/search?q=Francis%20Dave%20C.%20Tan"> Francis Dave C. Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gavino%20Ivan%20N.%20Tanodra"> Gavino Ivan N. Tanodra</a>, <a href="https://publications.waset.org/abstracts/search?q=Dianne%20Katrina%20G.%20Usana"> Dianne Katrina G. Usana</a>, <a href="https://publications.waset.org/abstracts/search?q=Mary%20Grace%20T.%20Valentin"> Mary Grace T. Valentin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nico%20Albert%20S.%20Vasquez"> Nico Albert S. Vasquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Monico%20C.%20Wee"> Edwin Monico C. Wee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The risk of diabetes mellitus is increasing in the Philippines, with Metformin and Insulin as drugs commonly used for its management. The use of herbal medicines has grown increasingly, especially among the elderly population. Moringa oleifera or malunggay is one of the most common plants in the country, and several studies have shown the plant to exhibit a hypoglycemic property with its flavonoid content. This study aims to investigate the possible effects of concomitant use of Metformin and powdered M. oleifera leaves (PMOL) on blood glucose levels. Twenty male Sprague-Dawley rats were equally distributed into four groups. Fasting blood glucose levels of the rats were measured prior to experimentation. The following treatments were administered to the four groups, respectively: glucose only 2 g/kg; glucose 2 g/kg + Metformin 100 mg/kg; glucose 2 g/kg + PMOL 200 mg/kg; and glucose 2 g/kg + PMOL 200 mg/kg and Metformin 100 mg/kg. Blood glucose levels were determined on the 1st, 2nd, 3rd, and 4th hour post-treatment and compared between groups. Statistical analysis showed that the type of intervention did not show significance in the reduction of blood glucose levels when compared with the other groups (p=0.378), while the effect of time exhibited significance (p=0.000). The interaction between the type of intervention and time of blood glucose measurement was shown to be significant (p=0.024). Within each group, the control and PMOL-treated groups showed significant reduction in blood glucose levels over time with p-values of 0.000 and 0.000, respectively, while the Metformin-treated and the combination groups had p-values of 0.062 and 0.093, respectively, which are not significant. The descriptive data also showed that the mean total reduction of blood glucose levels of the Metformin and PMOL combination treatment group was lower than the PMOL-treated group alone, while the mean total reduction of blood glucose levels of the combination group was higher than the Metformin-treated group alone. Based on the results obtained, the combination of Metformin and PMOL did not significantly lower the blood glucose levels of the rats as compared to the other groups. However, the concomitant use of Metformin and PMOL may affect each other’s blood glucose lowering activity. Additionally, prolonged time of exposure and delay in the first blood glucose measurement after treatment could exhibit a significant effect in the blood glucose levels. Further studies are recommended regarding the effects of the concomitant use of the two agents on blood glucose levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20glucose%20levels" title="blood glucose levels">blood glucose levels</a>, <a href="https://publications.waset.org/abstracts/search?q=concomitant%20use" title=" concomitant use"> concomitant use</a>, <a href="https://publications.waset.org/abstracts/search?q=metformin" title=" metformin"> metformin</a>, <a href="https://publications.waset.org/abstracts/search?q=Moringa%20oleifera" title=" Moringa oleifera"> Moringa oleifera</a> </p> <a href="https://publications.waset.org/abstracts/39698/effects-of-concomitant-use-of-metformin-and-powdered-moringa-oleifera-leaves-on-glucose-tolerance-in-sprague-dawley-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3398</span> Hydrothermal Synthesis of Mesoporous Carbon Nanospheres and Their Electrochemical Properties for Glucose Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akbar%20Kazemi%20Asl">Ali Akbar Kazemi Asl</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Rahsepar"> Mansour Rahsepar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesoporous carbon nanospheres (MCNs) with uniform particle size distribution having an average of 290 nm and large specific surface area (274.4 m²/g) were synthesized by a one-step hydrothermal method followed by the calcination process and then utilized as an enzyme-free glucose biosensor. Morphology, crystal structure, and porous nature of the synthesized nanospheres were characterized by scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis, respectively. Also, the electrochemical performance of the MCNs@GCE electrode for the measurement of glucose concentration in alkaline media was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and chronoamperometry (CA). MCNs@GCE electrode shows good sensing performance, including a rapid glucose oxidation response within 3.1 s, a wide linear range of 0.026-12 mM, a sensitivity of 212.34 μA.mM⁻¹.cm⁻², and a detection limit of 25.7 μM with excellent selectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20carbon" title=" mesoporous carbon"> mesoporous carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=non-enzymatic" title=" non-enzymatic"> non-enzymatic</a> </p> <a href="https://publications.waset.org/abstracts/142299/hydrothermal-synthesis-of-mesoporous-carbon-nanospheres-and-their-electrochemical-properties-for-glucose-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3397</span> The Effect of Aerobic Exercise on Glycemic Control in Prediabetes and Type 2 Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Chin%20Huang">Chun-Chin Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Individuals with prediabetes increase the risk of developing type 2 diabetes. Exercise is a potent stimulator of skeletal muscle glucose uptake and thus good for maintaining glucose homeostasis. That could be a conducive method to improve blood glucose regulation and prevent type 2 diabetes without medication intake. The aim of this study was to summarize mechanisms of insulin resistance and investigate the beneficial effects of acute and chronic aerobic exercise on glycemic control in prediabetes and type 2 diabetes. Aerobic exercise regulates glucose homeostasis and reduces blood glucose, insulin concentrations. Therefore, the type of aerobic exercise brings positive effects to prediabetes and type 2 diabetes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title="insulin resistance">insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20sensitivity" title=" glucose sensitivity"> glucose sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=impaired%20fasting%20glucose" title=" impaired fasting glucose"> impaired fasting glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=impaired%20glucose%20tolerance" title=" impaired glucose tolerance"> impaired glucose tolerance</a> </p> <a href="https://publications.waset.org/abstracts/135391/the-effect-of-aerobic-exercise-on-glycemic-control-in-prediabetes-and-type-2-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3396</span> Spatio-Temporal Properties of p53 States Raised by Glucose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Jahoor%20Alam">Md. Jahoor Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent studies suggest that Glucose controls several lifesaving pathways. Glucose molecule is reported to be responsible for the production of ROS (reactive oxygen species). In the present work, a p53-MDM2-Glucose model is developed in order to study spatiotemporal properties of the p53 pathway. The systematic model is mathematically described. The model is numerically simulated using high computational facility. It is observed that the variation in glucose concentration level triggers the system at different states, namely, oscillation death (stabilized), sustain and damped oscillations which correspond to various cellular states. The transition of these states induced by glucose is phase transition-like behaviour. Further, the amplitude of p53 dynamics with the variation of glucose concentration level follows power law behaviour, As(k) ~ kϒ, where, ϒ is a constant. Further Stochastic approach is needed for understanding of realistic behaviour of the model. The present model predicts the variation of p53 states under the influence of glucose molecule which is also supported by experimental facts reported by various research articles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oscillation" title="oscillation">oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20behavior" title=" temporal behavior"> temporal behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=p53" title=" p53"> p53</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a> </p> <a href="https://publications.waset.org/abstracts/47042/spatio-temporal-properties-of-p53-states-raised-by-glucose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3395</span> Glucose Measurement in Response to Environmental and Physiological Challenges: Towards a Non-Invasive Approach to Study Stress in Fishes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Makaras">Tomas Makaras</a>, <a href="https://publications.waset.org/abstracts/search?q=Julija%20Razumien%C4%97"> Julija Razumienė</a>, <a href="https://publications.waset.org/abstracts/search?q=Vidut%C4%97%20Gurevi%C4%8Dien%C4%97"> Vidutė Gurevičienė</a>, <a href="https://publications.waset.org/abstracts/search?q=Gintar%C4%97%20Sauliut%C4%97"> Gintarė Sauliutė</a>, <a href="https://publications.waset.org/abstracts/search?q=Milda%20Stankevi%C4%8Di%C5%ABt%C4%97"> Milda Stankevičiūtė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stress responses represent animal’s natural reactions to various challenging conditions and could be used as a welfare indicator. Regardless of the wide use of glucose measurements in stress evaluation, there are some inconsistencies in its acceptance as a stress marker, especially when it comes to comparison with non-invasive cortisol measurements in the fish challenging stress. To meet the challenge and to test the reliability and applicability of glucose measurement in practice, in this study, different environmental/anthropogenic exposure scenarios were simulated to provoke chemical-induced stress in fish (14-days exposure to landfill leachate) followed by a 14-days stress recovery period and under the cumulative effect of leachate fish subsequently exposed to pathogenic oomycetes (Saprolegnia parasitica) to represent a possible infection in fish. It is endemic to all freshwater habitats worldwide and is partly responsible for the decline of natural freshwater fish populations. Brown trout (Salmo trutta fario) and sea trout (Salmo trutta trutta) juveniles were chosen because of a large amount of literature on physiological stress responses in these species was known. Glucose content in fish by applying invasive and non-invasive glucose measurement procedures in different test mediums such as fish blood, gill tissues and fish-holding water were analysed. The results indicated that the quantity of glucose released in the holding water of stressed fish increased considerably (approx. 3.5- to 8-fold) and remained substantially higher (approx. 2- to 4-fold) throughout the stress recovery period than the control level suggesting that fish did not recover from chemical-induced stress. The circulating levels of glucose in blood and gills decreased over time in fish exposed to different stressors. However, the gill glucose level in fish showed a decrease similar to the control levels measured at the same time points, which was found to be insignificant. The data analysis showed that concentrations of β-D glucose measured in gills of fish treated with S. parasitica differed significantly from the control recovery, but did not differ from the leachate recovery group showing that S. parasitica presence in water had no additive effects. In contrast, a positive correlation between blood and gills glucose were determined. Parallel trends in blood and water glucose changes suggest that water glucose measurement has much potency in predicting stress. This study demonstrated that measuring β-D-glucose in fish-holding water is not stressful as it involves no handling and manipulation of an organism and has critical technical advantages concerning current (invasive) methods, mainly using blood samples or specific tissues. The quantification of glucose could be essential for studies examining the stress physiology/aquaculture studies interested in the assessment or long-term monitoring of fish health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brown%20trout" title="brown trout">brown trout</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill%20leachate" title=" landfill leachate"> landfill leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20trout" title=" sea trout"> sea trout</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogenic%20oomycetes" title=" pathogenic oomycetes"> pathogenic oomycetes</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-D-glucose" title=" β-D-glucose"> β-D-glucose</a> </p> <a href="https://publications.waset.org/abstracts/142040/glucose-measurement-in-response-to-environmental-and-physiological-challenges-towards-a-non-invasive-approach-to-study-stress-in-fishes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3394</span> Microfluidic Paper-Based Electrochemical Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Manbohi">Ahmad Manbohi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Hamid%20Ahmadi"> Seyyed Hamid Ahmadi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A low-cost paper-based microfluidic device (PAD) for the multiplex electrochemical determination of glucose, uric acid, and dopamine in biological fluids was developed. Using wax printing, PAD containing a central zone, six channels, and six detection zones was fabricated, and the electrodes were printed on detection zones using pre-made electrodes template. For each analyte, two detection zones were used. The carbon working electrode was coated with chitosan-BSA (and enzymes for glucose and uric acid). To detect glucose and uric acid, enzymatic reactions were employed. These reactions involve enzyme-catalyzed redox reactions of the analytes and produce free electrons for electrochemical measurement. Calibration curves were linear (R<sup>²</sup> > 0.980) in the range of 0-80 mM for glucose, 0.09–0.9 mM for dopamine, and 0–50 mM for uric acid, respectively. Blood samples were successfully analyzed by the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20fluids" title="biological fluids">biological fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20paper-based%20electrochemical%20biosensors" title="microfluidic paper-based electrochemical biosensors">microfluidic paper-based electrochemical biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=Multiplex" title=" Multiplex"> Multiplex</a> </p> <a href="https://publications.waset.org/abstracts/77212/microfluidic-paper-based-electrochemical-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3393</span> An Increase in Glucose Uptake per se is Insufficient to Induce Oxidative Stress and Vascular Endothelial Cell Dysfunction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heba%20Khader">Heba Khader</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Solodushko"> Victor Solodushko</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20Fouty"> Brian Fouty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hyperglycemia is a hallmark of uncontrolled diabetes and causes vascular endothelial dysfunction. An increase in glucose uptake and metabolism by vascular endothelial cells is the presumed trigger for this hyperglycemia-induced dysfunction. Glucose uptake into vascular endothelial cells is mediated largely by Glut-1. Glut-1 is an equilibrative glucose transporter with a Km value of 2 mM. At physiologic glucose concentrations, Glut-1 is almost saturated and, therefore, increasing glucose concentration does not increase glucose uptake unless Glut-1 is upregulated. However, hyperglycemia downregulates Glut-1 and decreases rather than increases glucose uptake in vascular endothelial cells. This apparent discrepancy necessitates further study on the effect of increasing glucose uptake on the oxidative state and function of vascular endothelial cells. To test this, a Tet-on system was generated to conditionally regulate Glut-1 expression in endothelial cells by the addition and removal of doxycycline. Glut-1 overexpression was confirmed by Western blot and radiolabeled glucose uptake measurements. Upregulation of Glut-1 resulted in a 4-fold increase in glucose uptake into endothelial cells as determined by 3H deoxy-D-glucose uptake. Increased glucose uptake through Glut-1 did not induce an oxidative stress nor did it cause endothelial dysfunction in rat pulmonary microvascular endothelial cells determined by monolayer resistance, cell proliferation or advanced glycation end product formation. Increased glucose uptake through Glut-1did not lead to an increase in glucose metabolism, due in part to inhibition of hexokinase in Glut-1 overexpressing cells. In summary, this study demonstrates that increasing glucose uptake and intracellular glucose by overexpression of Glut-1 does not alter the oxidative state of rat pulmonary microvascular endothelial cells or cause endothelial cell dysfunction. These results conflict with the current paradigm that hyperglycemia leads to oxidative stress and endothelial dysfunction in vascular endothelial cells through an increase in glucose uptake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endothelial%20cells" title="endothelial cells">endothelial cells</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20uptake" title=" glucose uptake"> glucose uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=Glut1" title=" Glut1"> Glut1</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperglycemia" title=" hyperglycemia"> hyperglycemia</a> </p> <a href="https://publications.waset.org/abstracts/40571/an-increase-in-glucose-uptake-per-se-is-insufficient-to-induce-oxidative-stress-and-vascular-endothelial-cell-dysfunction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3392</span> Rapid Plasmonic Colorimetric Glucose Biosensor via Biocatalytic Enlargement of Gold Nanostars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masauso%20Moses%20Phiri">Masauso Moses Phiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequent glucose monitoring is essential to the management of diabetes. Plasmonic enzyme-based glucose biosensors have the advantages of greater specificity, simplicity and rapidity. The aim of this study was to develop a rapid plasmonic colorimetric glucose biosensor based on biocatalytic enlargement of AuNS guided by GOx. Gold nanoparticles of 18 nm in diameter were synthesized using the citrate method. Using these as seeds, a modified seeded method for the synthesis of monodispersed gold nanostars was followed. Both the spherical and star-shaped nanoparticles were characterized using ultra-violet visible spectroscopy, agarose gel electrophoresis, dynamic light scattering, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy. The feasibility of a plasmonic colorimetric assay through growth of AuNS by silver coating in the presence of hydrogen peroxide was investigated by several control and optimization experiments. Conditions for excellent sensing such as the concentration of the detection solution in the presence of 20 µL AuNS, 10 mM of 2-(N-morpholino) ethanesulfonic acid (MES), ammonia and hydrogen peroxide were optimized. Using the optimized conditions, the glucose assay was developed by adding 5mM of GOx to the solution and varying concentrations of glucose to it. Kinetic readings, as well as color changes, were observed. The results showed that the absorbance values of the AuNS were blue shifting and increasing as the concentration of glucose was elevated. Control experiments indicated no growth of AuNS in the absence of GOx, glucose or molecular O₂. Increased glucose concentration led to an enhanced growth of AuNS. The detection of glucose was also done by naked-eye. The color development was near complete in ± 10 minutes. The kinetic readings which were monitored at 450 and 560 nm showed that the assay could discriminate between different concentrations of glucose by ± 50 seconds and near complete at ± 120 seconds. A calibration curve for the qualitative measurement of glucose was derived. The magnitude of wavelength shifts and absorbance values increased concomitantly with glucose concentrations until 90 µg/mL. Beyond that, it leveled off. The lowest amount of glucose that could produce a blue shift in the localized surface plasmon resonance (LSPR) absorption maxima was found to be 10 – 90 µg/mL. The limit of detection was 0.12 µg/mL. This enabled the construction of a direct sensitivity plasmonic colorimetric detection of glucose using AuNS that was rapid, sensitive and cost-effective with naked-eye detection. It has great potential for transfer of technology for point-of-care devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colorimetric" title="colorimetric">colorimetric</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanostars" title=" gold nanostars"> gold nanostars</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20oxidase" title=" glucose oxidase"> glucose oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmonic" title=" plasmonic"> plasmonic</a> </p> <a href="https://publications.waset.org/abstracts/92927/rapid-plasmonic-colorimetric-glucose-biosensor-via-biocatalytic-enlargement-of-gold-nanostars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3391</span> Mathematical Modelling of the Effect of Glucose on Pancreatic Alpha-Cell Activity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karen%20K.%20Perez-Ramirez">Karen K. Perez-Ramirez</a>, <a href="https://publications.waset.org/abstracts/search?q=Genevieve%20Dupont"> Genevieve Dupont</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginia%20Gonzalez-Velez"> Virginia Gonzalez-Velez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pancreatic alpha-cells participate on glucose regulation together with beta cells. They release glucagon hormone when glucose level is low to stimulate gluconeogenesis from the liver. As other excitable cells, alpha cells generate Ca2+ and metabolic oscillations when they are stimulated. It is known that the glucose level can trigger or silence this activity although it is not clear how this occurs in normal and diabetic people. In this work, we propose an electric-metabolic mathematical model implemented in Matlab to study the effect of different glucose levels on the electrical response and Ca2+ oscillations of an alpha cell. Our results show that Ca2+ oscillations appear in opposite phase with metabolic oscillations in a window of glucose values. The model also predicts a direct relationship between the level of glucose and the intracellular adenine nucleotides showing a self-regulating pathway for the alpha cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ca2%2B%20oscillations" title="Ca2+ oscillations">Ca2+ oscillations</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20oscillations" title=" metabolic oscillations"> metabolic oscillations</a>, <a href="https://publications.waset.org/abstracts/search?q=pancreatic%20alpha%20cell" title=" pancreatic alpha cell"> pancreatic alpha cell</a> </p> <a href="https://publications.waset.org/abstracts/96002/mathematical-modelling-of-the-effect-of-glucose-on-pancreatic-alpha-cell-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3390</span> Cloning and Characterization of UDP-Glucose Pyrophosphorylases from Lactobacillus kefiranofaciens and Rhodococcus wratislaviensis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mesfin%20Angaw%20Tesfay">Mesfin Angaw Tesfay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uridine-5’-diphosphate (UDP)-glucose is one of the most versatile building blocks within the metabolism of prokaryotes and eukaryotes, serving as an activated sugar donor during the glycosylation of natural products. It is formed by the enzyme UDP-glucose pyrophosphorylase (UGPase) using uridine-5′-triphosphate (UTP) and α-d-glucose 1-phosphate as a substrate. Herein, two UGPase genes from Lactobacillus kefiranofaciens ZW3 (LkUGPase) and Rhodococcus wratislaviensis IFP 2016 (RwUGPase) were identified through genome mining approaches. The LkUGPase and RwUGPase have 299 and 306 amino acids, respectively. Both UGPase has the conserved UTP binding site (G-X-G-T-R-X-L-P) and the glucose -1-phosphate binding site (V-E-K-P). The LkUGPase and RwUGPase were cloned in E. coli, and SDS-PAGE analysis showed the expression of both enzymes forming about 36 KDa of protein band after induction. LkUGPase and RwUGPase have an activity of 1549.95 and 671.53 U/mg, respectively. Currently, their kinetic properties are under investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UGPase" title="UGPase">UGPase</a>, <a href="https://publications.waset.org/abstracts/search?q=LkUGPase" title=" LkUGPase"> LkUGPase</a>, <a href="https://publications.waset.org/abstracts/search?q=RwUGPase" title=" RwUGPase"> RwUGPase</a>, <a href="https://publications.waset.org/abstracts/search?q=UDP-glucose" title=" UDP-glucose"> UDP-glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=glycosylation" title=" glycosylation"> glycosylation</a> </p> <a href="https://publications.waset.org/abstracts/192250/cloning-and-characterization-of-udp-glucose-pyrophosphorylases-from-lactobacillus-kefiranofaciens-and-rhodococcus-wratislaviensis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3389</span> The Effect of Acute Aerobic Exercise after Consumption of Four Different Diets on Serum Levels Irisin, Insulin and Glucose in Overweight Men</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Mardaniyan%20Ghahfarokhi">Majid Mardaniyan Ghahfarokhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdolhamid%20Habibi"> Abdolhamid Habibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Mohammad%20Shahi"> Majid Mohammad Shahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The combination of exercise and diet as the most important strategy to reduce weight and control obesity-related factors, including Irisin, Insulin, and Glucose was raised. The aim of this study was to investigate the effect of aerobic exercise combined with four different diets on serum levels of Irisin, Insulin, and Glucose in overweight men. Methods: In this quasi-experimental study, 8 overweight men (BMI 29.23±0.47) with average age of (23±1.6) voluntarily participated in 4 sessions by one-week interval. The study was done in exercise physiology lab. In each session, subjects performed a 30 minutes treadmill test with 60-70% of maximum heart rate, after consuming a high carbohydrate, high-fat, high-protein and normal diet. For biochemical measurement, three blood samples were taken in fasting state, two hours after meals and after exercise Results: Statistical analysis of data showed that the serum levels of Irisin after consumption all four diets had been reduced which this reduce as a result of high-fat diet that were significantly (p ≤ 0/038). Serum concentration of Insulin and Glucose increased after consuming four diets. However, increase in serum Insulin and Glucose was significant only after consuming high-carbohydrate diet (Respectively p ≤ 0/001, p ≤ 0/042). In addition, during exercise after consuming all four regular diet, high carbohydrate, high-protein and high-fat, Irisin significant increased significantly (Respectively p ≤ 0/021, p ≤ 0/049, p ≤ 0/001, P ≤ 0/003), Insulin decreased significantly (Respectively p ≤ 0/002, p ≤ 0/001, p ≤ 0/001, p ≤ 0/002) and Glucose were significantly reduced (Respectively p ≤ 0/001, p ≤ 0/001, P ≤ 0/001, p ≤ 0/002). After aerobic activity following the consumption of a high protein diet the highest increase in irisin levels, and after aerobic exercise following consumption of high carbohydrate diet the greatest decrease in insulin and glucose levels were observed. Conclusion: It seems that diet alone and exercises following different consumption diets can have a significant effect on Irisin, Insulin, and Glucose serum levels in overweight young men. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20aerobic%20exercise" title="acute aerobic exercise">acute aerobic exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=diet" title=" diet"> diet</a>, <a href="https://publications.waset.org/abstracts/search?q=irisin" title=" irisin"> irisin</a>, <a href="https://publications.waset.org/abstracts/search?q=overweight" title=" overweight"> overweight</a> </p> <a href="https://publications.waset.org/abstracts/74071/the-effect-of-acute-aerobic-exercise-after-consumption-of-four-different-diets-on-serum-levels-irisin-insulin-and-glucose-in-overweight-men" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3388</span> Glucose Monitoring System Using Machine Learning Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangeeta%20Palekar">Sangeeta Palekar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Rangwani"> Neeraj Rangwani</a>, <a href="https://publications.waset.org/abstracts/search?q=Akash%20Poddar"> Akash Poddar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayu%20Kalambe"> Jayu Kalambe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence%20glucose%20detection" title="artificial intelligence glucose detection">artificial intelligence glucose detection</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20oxidase" title=" glucose oxidase"> glucose oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxidase" title=" peroxidase"> peroxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/141022/glucose-monitoring-system-using-machine-learning-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3387</span> Causal Modeling of the Glucose-Insulin System in Type-I Diabetic Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Fernandez">J. Fernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Aguilar"> N. Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Fernandez%20de%20Canete"> R. Fernandez de Canete</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Ramos-Diaz"> J. C. Ramos-Diaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a simulation model of the glucose-insulin system for a patient undergoing diabetes Type 1 is developed by using a causal modeling approach under system dynamics. The OpenModelica simulation environment has been employed to build the so called causal model, while the glucose-insulin model parameters were adjusted to fit recorded mean data of a diabetic patient database. Model results under different conditions of a three-meal glucose and exogenous insulin ingestion patterns have been obtained. This simulation model can be useful to evaluate glucose-insulin performance in several circumstances, including insulin infusion algorithms in open-loop and decision support systems in closed-loop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causal%20modeling" title="causal modeling">causal modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose-insulin%20system" title=" glucose-insulin system"> glucose-insulin system</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=causal%20modeling" title=" causal modeling"> causal modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenModelica%20software" title=" OpenModelica software"> OpenModelica software</a> </p> <a href="https://publications.waset.org/abstracts/72880/causal-modeling-of-the-glucose-insulin-system-in-type-i-diabetic-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3386</span> Cloning and Characterization of Uridine-5’-Diphosphate -Glucose Pyrophosphorylases from Lactobacillus Kefiranofaciens and Rhodococcus Wratislaviensis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mesfin%20Angaw%20Tesfay">Mesfin Angaw Tesfay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uridine-5’-diphosphate (UDP)-glucose is one of the most versatile building blocks within the metabolism of prokaryotes and eukaryotes serving as an activated sugar donor during the glycosylation of natural products. It is formed by the enzyme UDP-glucose pyrophosphorylase (UGPase) using uridine-5′-triphosphate (UTP) and α-d-glucose 1-phosphate as a substrate. Herein two UGPase genes from Lactobacillus kefiranofaciens ZW3 (LkUGPase) and Rhodococcus wratislaviensis IFP 2016 (RwUGPase) were identified through genome mining approaches. The LkUGPase and RwUGPase have 299 and 306 amino acids, respectively. Both UGPase has the conserved UTP binding site (G-X-G-T-R-X-L-P) and the glucose -1-phosphate binding site (V-E-K-P). The LkUGPase and RwUGPase were cloned in E. coli and SDS-PAGE analysis showed the expression of both enzymes forming about 36 KDa of protein band after induction. LkUGPase and RwUGPase have an activity of 1549.95 and 671.53 U/mg respectively. Currently, their kinetic properties are under investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UGPase" title="UGPase">UGPase</a>, <a href="https://publications.waset.org/abstracts/search?q=LkUGPase" title=" LkUGPase"> LkUGPase</a>, <a href="https://publications.waset.org/abstracts/search?q=RwUGPase" title=" RwUGPase"> RwUGPase</a>, <a href="https://publications.waset.org/abstracts/search?q=UDP-glucose" title=" UDP-glucose"> UDP-glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=Glycosylation" title=" Glycosylation"> Glycosylation</a> </p> <a href="https://publications.waset.org/abstracts/192286/cloning-and-characterization-of-uridine-5-diphosphate-glucose-pyrophosphorylases-from-lactobacillus-kefiranofaciens-and-rhodococcus-wratislaviensis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3385</span> Bienzymatic Nanocomposites Biosensors Complexed with Gold Nanoparticles, Polyaniline, Recombinant MN Peroxidase from Corn, and Glucose Oxidase to Measure Glucose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anahita%20Izadyar">Anahita Izadyar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using a recombinant enzyme derived from corn and a simple modification, we are fabricating a facile, fast, and cost-beneficial novel biosensor to measure glucose. We are applying Plant Produced Mn Peroxidase (PPMP), glucose oxidase (GOx), polyaniline (PANI) as conductive polymer and gold nanoparticles (AuNPs) on Au electrode using electrochemical response to detect glucose. We applied the entrapment method of enzyme composition, which is generally used to immobilize conductive polymer and facilitate electron transfer from the enzyme oxidation-reduction center to the sample solution. In this work, the oxidation of glucose on the modified gold electrode was quantified with Linear Sweep Voltammetry(LSV). We expect that the modified biosensor has the potential for monitoring various biofluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant-produced%20manganese%20peroxidase" title="plant-produced manganese peroxidase">plant-produced manganese peroxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme-based%20biosensors" title=" enzyme-based biosensors"> enzyme-based biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20gold%20nanoparticles%20electrode" title=" modified gold nanoparticles electrode"> modified gold nanoparticles electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title=" polyaniline"> polyaniline</a> </p> <a href="https://publications.waset.org/abstracts/141685/bienzymatic-nanocomposites-biosensors-complexed-with-gold-nanoparticles-polyaniline-recombinant-mn-peroxidase-from-corn-and-glucose-oxidase-to-measure-glucose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3384</span> Compensatory Increased Activities of Mitochondrial Respiratory Chain Complexes from Eyes of Glucose-Immersed Zebrafish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jisun%20Jun">Jisun Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun%20Ko"> Eun Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Sooim%20Shin"> Sooim Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kitae%20Kim"> Kitae Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Moonsung%20Choi"> Moonsung Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes is a metabolic disease characterized by hyperglycemia, insulin resistant, mitochondrial dysfunction. Diabetes is associated with the development of diabetic retinopathy resulting in worsening vision and eventual blindness. In this study, eyes were enucleated from glucose-immersed zebrafish which is a good animal model to generate diabetes, and then mitochondria were isolated to evaluate activities of mitochondrial electron transfer complexes. Surprisingly, the amount of isolated mitochondria was increased in eyes from glucose-immersed zebrafish compared to those from non-glucose-immerged zebrafish. Spectrophotometric analysis for measuring activities of mitochondrial complex I, II, III, and IV revealed that mitochondria functions was even enhanced in eyes from glucose-immersed zebrafish. These results indicated that 3 days or 7 days glucose-immersion on zebrafish to induce diabetes might contribute metabolic compensatory mechanism to restore their mitochondrial homeostasis on the early stage of diabetes in eyes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20immersion" title=" glucose immersion"> glucose immersion</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20complexes" title=" mitochondrial complexes"> mitochondrial complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title=" zebrafish"> zebrafish</a> </p> <a href="https://publications.waset.org/abstracts/77334/compensatory-increased-activities-of-mitochondrial-respiratory-chain-complexes-from-eyes-of-glucose-immersed-zebrafish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3383</span> Evaluation of the Relation between Serum and Saliva Levels of Sodium and Glucose in Healthy Referred Patients to Tabriz Faculty of Dentistry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Nazemi">Samaneh Nazemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayla%20Bahramian"> Ayla Bahramian</a>, <a href="https://publications.waset.org/abstracts/search?q=Marzieh%20Aghazadeh"> Marzieh Aghazadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Saliva is a clear liquid composed of water, electrolytes, glucose, amylase, glycoproteins, and antimicrobial enzymes. The presence of a wide range of molecules and proteins in saliva has made this fluid valuable in screening for some diseases as well as epidemiological studies. Saliva is easier than serum to collect in large populations. Due to the importance of sodium and glucose levels in many biological processes, this study investigates the relationship between sodium and glucose levels in salivary and serum samples of healthy individuals referring to Tabriz Dental School. This descriptive-analytical study was performed on 40 healthy individuals referred to the Oral Diseases Department of Tabriz Dental School. Serum and saliva samples were taken from these patients according to standard protocols. Data were presented as mean (standard deviation) and frequency (percentage) for quantitative and qualitative variables. Pearson test, paired-samples T-test and SPSS 24 software were used to determine the correlation between serum and salivary levels of these biomarkers. In this study, P less than 0.05% is considered significant. Out of 40 participants in this study, 14 (35%) were male, and 26 (65%) were female. According to the results of this study, the mean salivary sodium (127.53 ml/dl) was lower than the mean serum sodium (141.2725 ml/dl). In contrast, the mean salivary glucose (4.55 ml/dl) was lower than the mean serum glucose (89.7575 ml/dl). The result of paired samples T-test (p-value<0.05) showed that there is a statistically significant difference between the mean of serum sodium and salivary sodium, as well as between the serum glucose and salivary glucose. Pearson correlation test results showed that there is no significant correlation between serum sodium and salivary sodium (p-value >0.05), but here is a positive correlation between serum glucose and salivary glucose (p-value<0.001). Both serum sodium and glucose were higher than salivary sodium and glucose.In conclusion, this study found that there was not a statistical relationship between salivary glucose and serum glucose and also salivary sodium and serum sodium of healthy individuals. Perhaps salivary samples can’t be used to measure glucose and sodium in these individuals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glucose" title="glucose">glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=saliva" title=" saliva"> saliva</a>, <a href="https://publications.waset.org/abstracts/search?q=serum" title=" serum"> serum</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium" title=" sodium"> sodium</a> </p> <a href="https://publications.waset.org/abstracts/139414/evaluation-of-the-relation-between-serum-and-saliva-levels-of-sodium-and-glucose-in-healthy-referred-patients-to-tabriz-faculty-of-dentistry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3382</span> Photocatalytic Glucose Electrooxidation Applications of Titanium Dioxide Supported CD and CdTe Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilal%20%20Kivrak">Hilal Kivrak</a>, <a href="https://publications.waset.org/abstracts/search?q=Aykut%20%C3%87a%C4%9FLar"> Aykut ÇağLar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahit%20Akta%C5%9F"> Nahit Aktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Osman%20Solak"> Ali Osman Solak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, Cd/TiO₂ and CdTe/TiO₂ catalysts are prepared via sodium borohydride (NaBH4) reduction method. These catalysts are characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). These Cd/TiO₂ and CdTe/TiO₂ are employed as catalysts for the photocatalytic oxidation of glucose. Cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) measurements are used to investigate their glucose electrooxidation activities of catalysts at long and under UV illumination (ʎ=354 nm). CdTe/TiO₂ catalyst is showed the best photocatalytic glucose electrooxidation activity compared to Cd/TiO₂ catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium" title="cadmium">cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=NaBH4%20reduction%20method" title=" NaBH4 reduction method"> NaBH4 reduction method</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20glucose%20electrooxidation" title=" photocatalytic glucose electrooxidation"> photocatalytic glucose electrooxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=Tellerium" title=" Tellerium"> Tellerium</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a> </p> <a href="https://publications.waset.org/abstracts/124317/photocatalytic-glucose-electrooxidation-applications-of-titanium-dioxide-supported-cd-and-cdte-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3381</span> Antidiabetic Evaluation of Pig (Sus scrofa) Bile on Alloxan-Induced BALB/c Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Lyndon%20C.%20Lunnay">John Lyndon C. Lunnay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study discerns to evaluate the antidiabetic efficacy of pig bile on alloxan-induced BALB/c mice. The experimental animals were divided and selected using RCBD into 5 groups (n= 4): T1 (negative control), T2 (1ml/kg), T3 (2ml/kg), T4 (3ml/kg) and T5 (Glibenclamide). Hyperglycemia was induced by injecting 1% alloxan monohydrate intraperitoneally. A glucose tolerance test was performed using a 2g/kg glucose solution, and blood glucose levels were measured at different time intervals. 14 days of monitoring was also done to ensure effectivity and efficacy of the different treatments. Bodyweight was also determined. Results show that administration of treatments on test animals significantly reverted the blood glucose levels of mice in 60 minutes and 120 minutes using an oral glucose tolerance test. After 14 days of monitoring, normal blood glucose levels were seen significantly on T2 (1ml/kg), T3 (2ml/kg), T4 (3ml/kg), and T5 (Glibenclamide), which only suggests the efficacy of pig bile on lowering glucose levels on alloxan-induced diabetic mice. Bodyweight analysis shows no significant difference. Duncan’s multiple range test (DMRT) shows comparable efficacy and effectivity between T4 (3ml/kg) and T5 (Glibenclamide) on lowering BGL at different day and time intervals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pig%20bile" title="pig bile">pig bile</a>, <a href="https://publications.waset.org/abstracts/search?q=BALB%2Fc%20mice" title=" BALB/c mice"> BALB/c mice</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20glucose" title=" blood glucose"> blood glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=Gllibenclamide" title=" Gllibenclamide"> Gllibenclamide</a> </p> <a href="https://publications.waset.org/abstracts/129960/antidiabetic-evaluation-of-pig-sus-scrofa-bile-on-alloxan-induced-balbc-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3380</span> Effect of Nitrogen and Carbon Sources on Growth and Lipid Production from Mixotrophic Growth of Chlorella sp. KKU-S2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratanaporn%20Leesing">Ratanaporn Leesing</a>, <a href="https://publications.waset.org/abstracts/search?q=Thidarat%20Papone"> Thidarat Papone</a>, <a href="https://publications.waset.org/abstracts/search?q=Mutiyaporn%20Puangbut"> Mutiyaporn Puangbut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mixotrophic cultivation of the isolated freshwater microalgae Chlorella sp. KKU-S2 in batch shake flask for biomass and lipid productions, different concentration of glucose as carbon substrate, different nitrogen source and concentrations were investigated. Using 1.0g/L of NaNO3 as nitrogen source, the maximum biomass yield of 10.04g/L with biomass productivity of 1.673g/L d was obtained using 40g/L glucose, while a biomass of 7.09, 8.55 and 9.45g/L with biomass productivity of 1.182, 1.425 and 1.575g/L d were found at 20, 30 and 50g/L glucose, respectively. The maximum lipid yield of 3.99g/L with lipid productivity of 0.665g/L d was obtained when 40g/L glucose was used. Lipid yield of 1.50, 3.34 and 3.66g/L with lipid productivity of 0.250, 0.557 and 0.610g/L d were found when using the initial concentration of glucose at 20, 30 and 50g/L, respectively. Process product yield (YP/S) of 0.078, 0.119, 0.158 and 0.094 were observed when glucose concentration was 20, 30, 40 and 50 g/L, respectively. The results obtained from the study shows that mixotrophic culture of Chlorella sp. KKU-S2 is a desirable cultivation process for microbial lipid and biomass production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixotrophic%20cultivation" title="mixotrophic cultivation">mixotrophic cultivation</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgal%20lipid" title=" microalgal lipid"> microalgal lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlorella%20sp.%20KKU-S2" title=" Chlorella sp. KKU-S2"> Chlorella sp. KKU-S2</a> </p> <a href="https://publications.waset.org/abstracts/5171/effect-of-nitrogen-and-carbon-sources-on-growth-and-lipid-production-from-mixotrophic-growth-of-chlorella-sp-kku-s2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3379</span> Kinetics Analysis of Lignocellulose Hydrolysis and Glucose Consumption Using Aspergillus niger in Solid State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akida%20Mulyaningtyas">Akida Mulyaningtyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Wahyudi%20Budi%20Sediawan"> Wahyudi Budi Sediawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One decisive stage in bioethanol production from plant biomass is the hydrolysis of lignocellulosic materials into simple sugars such as glucose. The produced glucose is then fermented into ethanol. This stage is popularly done in biological method by using cellulase that is produced by certain fungi. As it is known, glucose is the main source of nutrition for most microorganisms. Therefore, cutting cellulose into glucose is actually an attempt of microorganism to provide nutrition for itself. So far, this phenomenon has received less attention while it is necessary to identify the quantity of sugar consumed by the microorganism. In this study, we examined the phenomenon of sugar consumption by microorganism on lignocellulosic hydrolysis. We used oil palm empty fruit bunch (OPEFB) as the source of lignocellulose and Aspergillus niger as cellulase-producing fungus. In Indonesia, OPEFB is plantation waste that is difficult to decompose in nature and causes environmental problems. First, OPEFB was pretreated with 1% of NaOH at 170 oC to destroy lignin that hindered A.niger from accessing cellulose. The hydrolysis was performed by growing A.niger on pretreated OPEFB in solid state to minimize the possibility of contamination. The produced glucose was measured every 24 hours for 9 days. We analyzed the kinetics of both reactions, i.e., hydrolysis and glucose consumption, simultaneously. The constants for both reactions were assumed to follow the Monod equation. The results showed that the reaction constant of glucose consumption (μC) was higher than of cellulose hydrolysis (μH), i.e., 11.8 g/L and 0.62 g/L for glucose consumption and hydrolysis respectively. However, in general, the reaction rate of hydrolysis is greater than of glucose consumption since the cellulose concentration as substrate in hydrolysis is much higher than glucose as substrate in the consumption reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20niger" title="Aspergillus niger">Aspergillus niger</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis" title=" hydrolysis"> hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a> </p> <a href="https://publications.waset.org/abstracts/93377/kinetics-analysis-of-lignocellulose-hydrolysis-and-glucose-consumption-using-aspergillus-niger-in-solid-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3378</span> Antihyperglycemic Effect of Aqueous Extract of Foeniculum vulgare Miller in Diabetic Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Singh%20Baljinder">Singh Baljinder</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharma%20Navneet"> Sharma Navneet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Foeniculum vulgare Miller is a biennial medicinal and aromatic plant belonging to the family Apiaceae (Umbelliferaceae). It is a hardy, perennial–umbelliferous herb with yellow flowers and feathery leaves. The aim is to study the control of blood glucose in alloxan induced diabetic mice.Method used for extraction was continuous hot percolation method in which Soxhlet apparatus was used.95%ethanol was used as solvent. Male albino mice weighing about 20-25 g obtained from Guru Angad Dev University of Veterinary Science, Ludhiana were used for the study. Diabetes was induced by a single i.p. injection of 125 mg/kg of alloxan monohydrate in sterile saline (11). After 48 h, animals with serum glucose level above 200 mg/dl (diabetic) were selected for the study. Blood samples from mice were collected by retro-orbital puncture (ROP) technique. Serum glucose levels were determined by glucose oxidase and peroxidase method. Single administration (single dose) of aqueous extract of fennel (25, 50, and 100 mg/kg, p.o.) in diabetic Swiss albino mice, showed reduction in serum glucose level after 45 min. Maximum reduction in serum glucose level was seen at doses of 100 mg/kg. Aqueous extract of fennel in all doses except 25 mg/kg did not cause any significant decrease in blood glucose. It may be said that the aqueous extract of fennel decreased the serum glucose level and improved glucose tolerance owing to the presence of aldehyde moiety. The aqueous extract of fennel has antihyperglycemic activity as it lowers serum glucose level in diabetic mice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Foeniculum%20vulgare%20Miller" title="Foeniculum vulgare Miller">Foeniculum vulgare Miller</a>, <a href="https://publications.waset.org/abstracts/search?q=antihyperglycemic" title=" antihyperglycemic"> antihyperglycemic</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetic%20mice" title=" diabetic mice"> diabetic mice</a>, <a href="https://publications.waset.org/abstracts/search?q=Umbelliferaceae" title=" Umbelliferaceae "> Umbelliferaceae </a> </p> <a href="https://publications.waset.org/abstracts/9969/antihyperglycemic-effect-of-aqueous-extract-of-foeniculum-vulgare-miller-in-diabetic-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3377</span> An Algorithm of Regulation of Glucose-Insulin Concentration in the Blood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Selma">B. Selma</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chouraqui"> S. Chouraqui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pancreas is an elongated organ that extends across the abdomen, below the stomach. In addition, it secretes certain enzymes that aid in food digestion. The pancreas also manufactures hormones responsible for regulating blood glucose levels. In the present paper, we propose a mathematical model to study the homeostasis of glucose and insulin in healthy human, and a simulation of this model, which depicts the physiological events after a meal, will be represented in ordinary humans. The aim of this paper is to design an algorithm which regulates the level of glucose in the blood. The algorithm applied the concept of expert system for performing an algorithm control in the form of an "active" used to prescribe the rate of insulin infusion. By decomposing the system into subsystems, we have developed parametric models of each subsystem by using a forcing function strategy. The results showed a performance of the control system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=regulation" title=" regulation"> regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose-insulin" title=" glucose-insulin"> glucose-insulin</a>, <a href="https://publications.waset.org/abstracts/search?q=blood" title=" blood"> blood</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a> </p> <a href="https://publications.waset.org/abstracts/76765/an-algorithm-of-regulation-of-glucose-insulin-concentration-in-the-blood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3376</span> A Refrigerated Condition for the Storage of Glucose Test Strips at Health Promoting Hospitals: An Implication for Hospitals with Limited Air Conditioners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanutchaya%20Duanginta">Wanutchaya Duanginta</a>, <a href="https://publications.waset.org/abstracts/search?q=Napaporn%20Apiratmateekul"> Napaporn Apiratmateekul</a>, <a href="https://publications.waset.org/abstracts/search?q=Tippawan%20Sangkaew"> Tippawan Sangkaew</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunaree%20Wekinhirun"> Sunaree Wekinhirun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunchit%20Kongros"> Kunchit Kongros</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanvisa%20Treebuphachatsakul"> Wanvisa Treebuphachatsakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thailand has a tropical climate with an average outdoor ambient air temperature of over 30°C, which can exceed manufacturer recommendations for the storage of glucose test strips. This study monitored temperature and humidity at actual sites of five sub-district health promoting hospitals (HPH) in Phitsanulok Province for the storage of glucose test strips in refrigerated conditions. Five calibrated data loggers were placed at the actual sites for glucose test strip storage at five HPHs for 8 weeks between April and June. For the stress test, two lot numbers of glucose test strips, each with two glucose meters, were kept in a plastic box with desiccants and placed in a refrigerator with the temperature calibrated to 4°C and at room temperature (RT). Temperature and humidity in the refrigerator and at RT were measured every hour for 30 days. The mean temperature for storing test strips at the five HPHs ranged from 29°C to 33°C, and three of the five HPHs (60%) had a mean temperature above 30°C. The refrigerator temperatures were 3.8 ± 2.0°C (2.0°C to 6.5°C), and relative humidity was 51 ± 2% (42 to 54%). The maximum of blood glucose testing by glucose meters when the test strips were stored in a refrigerator were not significantly different (p > 0.05) from unstressed test strips for both glucose meters using amperometry-GDH-PQQ and amperometry-GDH-FAD principles. Opening the test strip vial daily resulted in higher variation than when refrigerated after a single-use. However, the variations were still within an acceptable range. This study concludes that glucose tested strips can be stored in plastic boxes in a refrigerator if it is well-controlled for temperature and humidity. Storage of glucose-tested strips in the refrigerator during hot and humid weather may be useful for HPHs with limited air conditioners. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20stressed%20test" title="environmental stressed test">environmental stressed test</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stressed%20test" title=" thermal stressed test"> thermal stressed test</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=point-of-care%20testing" title=" point-of-care testing"> point-of-care testing</a> </p> <a href="https://publications.waset.org/abstracts/137562/a-refrigerated-condition-for-the-storage-of-glucose-test-strips-at-health-promoting-hospitals-an-implication-for-hospitals-with-limited-air-conditioners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3375</span> Graphen-Based Nanocomposites for Glucose and Ethanol Enzymatic Biosensor Fabrication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tesfaye%20Alamirew">Tesfaye Alamirew</a>, <a href="https://publications.waset.org/abstracts/search?q=Delele%20Worku"> Delele Worku</a>, <a href="https://publications.waset.org/abstracts/search?q=Solomon%20W.%20Fanta"> Solomon W. Fanta</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigus%20Gabbiye"> Nigus Gabbiye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently graphen based nanocomposites are become an emerging research areas for fabrication of enzymatic biosensors due to their property of large surface area, conductivity and biocompatibility. This review summarizes recent research reports of graphen based nanocomposites for the fabrication of glucose and ethanol enzymatic biosensors. The newly fabricated enzyme free microwave treated nitrogen doped graphen (MN-d-GR) had provided highest sensitivity towards glucose and GCE/rGO/AuNPs/ADH composite had provided far highest sensitivity towards ethanol compared to other reported graphen based nanocomposites. The MWCNT/GO/GOx and GCE/ErGO/PTH/ADH nanocomposites had also enhanced wide linear range for glucose and ethanol detection respectively. Generally, graphen based nanocomposite enzymatic biosensors had fast direct electron transfer rate, highest sensitivity and wide linear detection ranges during glucose and ethanol sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glucose" title="glucose">glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20biosensor" title=" enzymatic biosensor"> enzymatic biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=graphen" title=" graphen"> graphen</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/154291/graphen-based-nanocomposites-for-glucose-and-ethanol-enzymatic-biosensor-fabrication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3374</span> Amperometric Biosensor for Glucose Determination Based on a Recombinant Mn Peroxidase from Corn Cross-linked to a Gold Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anahita%20Izadyar">Anahita Izadyar</a>, <a href="https://publications.waset.org/abstracts/search?q=My%20Ni%20Van"> My Ni Van</a>, <a href="https://publications.waset.org/abstracts/search?q=Kayleigh%20Amber%20Rodriguez"> Kayleigh Amber Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilwoo%20Seok"> Ilwoo Seok</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20E.%20Hood"> Elizabeth E. Hood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using a recombinant enzyme derived from corn and a simple modification, we fabricated a facile, fast, and cost-beneficial biosensor to measure glucose. The Nafion/ Plant Produced Mn Peroxidase (PPMP)– glucose oxidase (GOx)- Bovine serum albumin (BSA) /Au electrode showed an excellent amperometric response to detect glucose. This biosensor is capable of responding to a wide range of glucose—20.0 µM−15.0 mM and has a lower detection limit (LOD) of 2.90µM. The reproducibility response using six electrodes is also very substantial and indicates the high capability of this biosensor to detect a wide range of 3.10±0.19µM to 13.2±1.8 mM glucose concentration. Selectivity of this electrode was investigated in an optimized experimental solution contains 10% diet green tea with citrus containing ascorbic acid (AA), and citric acid (CA) in a wide concentration of glucose at 0.02 to 14.0mM with an LOD of 3.10µM. Reproducibility was also investigated using 4 electrodes in this sample and shows notable results in the wide concentration range of 3.35±0.45µM to of 13.0 ± 0.81 mM. We also used other voltammetry methods to evaluate this biosensor. We applied linear sweep voltammetry (LSV) and this technique shows a wide range of 0.10−15.0 mM to detect glucose with a lower detection limit of 19.5µM. The performance and strength of this enzyme biosensor were the simplicity, wide linear ranges, sensitivities, selectivity, and low limits of detection. We expect that the modified biosensor has the potential for monitoring various biofluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant-produced%20manganese%20peroxidase" title="plant-produced manganese peroxidase">plant-produced manganese peroxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme-based%20biosensors" title=" enzyme-based biosensors"> enzyme-based biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20gold%20electrode" title=" modified gold electrode"> modified gold electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20oxidase" title=" glucose oxidase"> glucose oxidase</a> </p> <a href="https://publications.waset.org/abstracts/133907/amperometric-biosensor-for-glucose-determination-based-on-a-recombinant-mn-peroxidase-from-corn-cross-linked-to-a-gold-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3373</span> Noninvasive Continuous Glucose Monitoring Device Using a Photon-Assisted Tunneling Photodetector Based on a Quantum Metal-Oxide-Semiconductor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wannakorn%20Sangthongngam">Wannakorn Sangthongngam</a>, <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Huerta"> Melissa Huerta</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaewoo%20Kim"> Jaewoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Doyeon%20Kim"> Doyeon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Continuous glucose monitoring systems are essential for diabetics to avoid health complications but come at a costly price, especially when insurance does not fully cover the diabetic testing kits needed. This paper proposes a noninvasive continuous glucose monitoring system to provide an accessible, low-cost, and painless alternative method of accurate glucose measurements to help improve quality of life. Using a light source with a wavelength of 850nm illuminates the fingertip for the photodetector to detect the transmitted light. Utilizing SeeDevice’s photon-assisted tunneling photodetector (PAT-PD)-based QMOS™ sensor, fluctuations of voltage based on photon absorption in blood cells are comparable to traditional glucose measurements. The performance of the proposed method was validated using 4 test participants’ transmitted voltage readings compared with measurements obtained from the Accu-Chek glucometer. The proposed method was able to successfully measure concentrations from linear regression calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20glucose%20monitoring" title="continuous glucose monitoring">continuous glucose monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=non-invasive%20continuous%20glucose%20monitoring" title=" non-invasive continuous glucose monitoring"> non-invasive continuous glucose monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=NIR" title=" NIR"> NIR</a>, <a href="https://publications.waset.org/abstracts/search?q=photon-assisted%20tunneling%20photodetector" title=" photon-assisted tunneling photodetector"> photon-assisted tunneling photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=QMOS%E2%84%A2" title=" QMOS™"> QMOS™</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20device" title=" wearable device"> wearable device</a> </p> <a href="https://publications.waset.org/abstracts/174019/noninvasive-continuous-glucose-monitoring-device-using-a-photon-assisted-tunneling-photodetector-based-on-a-quantum-metal-oxide-semiconductor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glucose%20measurement&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glucose%20measurement&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glucose%20measurement&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glucose%20measurement&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glucose%20measurement&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glucose%20measurement&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glucose%20measurement&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glucose%20measurement&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glucose%20measurement&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glucose%20measurement&page=113">113</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glucose%20measurement&page=114">114</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glucose%20measurement&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>