CINXE.COM
Search results for: alkaline earth
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: alkaline earth</title> <meta name="description" content="Search results for: alkaline earth"> <meta name="keywords" content="alkaline earth"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="alkaline earth" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="alkaline earth"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1524</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: alkaline earth</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1524</span> The Effect of Simultaneous Doping of Silicate Bioglass with Alkaline and Alkaline-Earth Elements on Biological Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tannaz%20Alimardani">Tannaz Alimardani</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Moghanian"> Amirhossein Moghanian</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Elsa"> Morteza Elsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO₂-CaO-P₂O₅ glass with a nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of the opposite effect of Sr and Li of the dissolution of BG in the SBF, but also stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on the dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with the live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S bioactive glass exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline" title="alkaline">alkaline</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20earth" title=" alkaline earth"> alkaline earth</a>, <a href="https://publications.waset.org/abstracts/search?q=bioglass" title=" bioglass"> bioglass</a>, <a href="https://publications.waset.org/abstracts/search?q=co-doping" title=" co-doping"> co-doping</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20release" title=" ion release"> ion release</a> </p> <a href="https://publications.waset.org/abstracts/108131/the-effect-of-simultaneous-doping-of-silicate-bioglass-with-alkaline-and-alkaline-earth-elements-on-biological-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1523</span> Preparation Static Dissipative Nanocomposites of Alkaline Earth Metal Doped Aluminium Oxide and Methyl Vinyl Silicone Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aparna%20M.%20Joshi">Aparna M. Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methyl vinyl silicone polymer (VMQ) - alkaline earth metal doped aluminium oxide composites are prepared by conventional two rolls open mill mixing method. Doped aluminium oxides (DAO) using silvery white coloured alkaline earth metals such as Mg and Ca as dopants in the concentration of 0.4 % are synthesized by microwave combustion method and referred as MA ( Mg doped aluminium oxide) and CA ( Ca doped aluminium oxide). The as-synthesized materials are characterized for the electrical resistance, X–ray diffraction, FE-SEM, TEM and FTIR. The electrical resistances of the DAOs are observed to be ~ 8-20 MΩ. This means that the resistance of aluminium oxide (Corundum) α-Al2O3 which is ~ 1010Ω is reduced by the order of ~ 103 to 104 Ω after doping. XRD studies reveal the doping of Mg and Ca in aluminium oxide. The microstructural study using FE-SEM shows the flaky clusterous structures with the thickness of the flakes between 10 and 20 nm. TEM images depict the rod-shaped morphological geometry of the particles with the diameter of ~50-70 nm. The nanocomposites are synthesized by incorporating the DAOs in the concentration of 75 phr (parts per hundred parts of rubber) into VMQ polymer. The electrical resistance of VMQ polymer, which is ~ 1015Ω, drops by the order of 108Ω. There is a retention of the electrical resistance of ~ 30-50 MΩ for the nanocomposites which is a static dissipative range of electricity. In this work white coloured electrically conductive VMQ polymer-DAO nanocomposites (MAVMQ for Mg doping and CAVMQ for Ca doping) have been synthesized. The physical and mechanical properties of the composites such as specific gravity, hardness, tensile strength and rebound resilience are measured. Hardness and tensile strength are found to increase, with the negligible alteration in the other properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doped%20aluminium%20oxide" title="doped aluminium oxide">doped aluminium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20vinyl%20silicone%20polymer" title=" methyl vinyl silicone polymer"> methyl vinyl silicone polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20synthesis" title=" microwave synthesis"> microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20dissipation" title=" static dissipation"> static dissipation</a> </p> <a href="https://publications.waset.org/abstracts/33200/preparation-static-dissipative-nanocomposites-of-alkaline-earth-metal-doped-aluminium-oxide-and-methyl-vinyl-silicone-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1522</span> Developing Sustainable Rammed Earth Material Using Pulp Mill Fly Ash as Cement Replacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Ajabi">Amin Ajabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinchu%20Cherian"> Chinchu Cherian</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumi%20Siddiqua"> Sumi Siddiqua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rammed earth (RE) is a traditional soil-based building material made by compressing a mixture of natural earth and binder ingredients such as chalk or lime, in temporary formworks. However, the modern RE uses 5 to 10% cement as a binder in order to meet the strength and durability requirements as per the standard specifications and guidelines. RE construction is considered to be an energy-efficient and environmental-friendly approach when compared to conventional concrete systems, which use 20 to 30% cement. The present study aimed to develop RE mix designs by utilizing non-hazardous wood-based fly ash generated by pulp and paper mills as a partial replacement for cement. The pulp mill fly ash (PPFA)-stabilized RE is considered to be a sustainable approach keeping in view of the massive carbon footprints associated with cement production as well as the adverse environmental impacts due to disposal of PPFA in landfills. For the experimental study, as-received PPFA, as well as PPFA-based geopolymer (synthesized by alkaline activation method), were incorporated as cement substitutes in the RE mixtures. Initially, local soil was collected and characterized by index and engineering properties. The PPFA was procured from a pulp manufacturing mill, and its physicochemical, mineralogical and morphological characterization, as well as environmental impact assessment, was conducted. Further, the various mix designs of RE material incorporating local soil and different proportions of cement, PPFA, and alkaline activator (a mixture of sodium silicate and sodium hydroxide solutions) were developed. The compacted RE specimens were cured and tested for 7-day and 28-day unconfined compressive strength (UCS) variations. Based on UCS results, the optimum mix design was identified corresponding to maximum strength improvement. Further, the cured RE specimens were subjected to freeze-thaw cycle testing for evaluating its performance and durability as a sustainable construction technique under extreme climatic conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainability" title="sustainability">sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=rammed%20earth" title=" rammed earth"> rammed earth</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%20mill%20fly%20ash" title=" pulp mill fly ash"> pulp mill fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20activation" title=" alkaline activation"> alkaline activation</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/111200/developing-sustainable-rammed-earth-material-using-pulp-mill-fly-ash-as-cement-replacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1521</span> Candida antarctica Lipase-B Catalyzed Alkaline-Hydrolysis of Some Aryl-Alkyl Acetate in Non-Aqueous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Merabet-Khelassi">M. Merabet-Khelassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Houiene"> Z. Houiene</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Aribi-Zouioueche"> L. Aribi-Zouioueche</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Riant"> O. Riant</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lipases (EC.3.1.1.3) are efficient biotools widely used for their remarkable chemo-, regio- and enantio-selectivity, especially, in kinetic resolution of racemates. They offer access to a large panel of enantiopure building blocks, such as secondary benzylic alcohols, commonly used as synthetic intermediates in pharmaceutical and agrochemical industries. Due to the stability of lipases in both water and organic solvents poor in water, they are able to catalyze both transesterifications of arylalkylcarbinols and hydrolysis of their corresponding acetates. The use of enzymatic hydrolysis in aqueous media still limited. In this presentation, we expose a practical methodology for the preparation of optically enriched acetates using a Candida antarctica lipase B-catalyzed hydrolysis in non-aqueous media in the presence of alkaline carbonate salts. The influence of several parameters which can intervene on the enzymatic efficiency such as the impact of the introduction of the carbonates salts, its amount and the nature of the alkaline earth metal are discussed. The obtained results show that the use of sodium carbonate with CAL-B enhances drastically both reactivity and selectivity of this immobilized lipase. In all cases, the resulting alcohols and remaining acetates are obtained in high ee values (up to > 99 %), and the selectivities reach (E > 500). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline-hydrolysis" title="alkaline-hydrolysis">alkaline-hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20kinetic%20resolution" title=" enzymatic kinetic resolution"> enzymatic kinetic resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=lipases" title=" lipases"> lipases</a>, <a href="https://publications.waset.org/abstracts/search?q=arylalkylcarbinol" title=" arylalkylcarbinol"> arylalkylcarbinol</a>, <a href="https://publications.waset.org/abstracts/search?q=non-aqueous%20media" title=" non-aqueous media"> non-aqueous media</a> </p> <a href="https://publications.waset.org/abstracts/75965/candida-antarctica-lipase-b-catalyzed-alkaline-hydrolysis-of-some-aryl-alkyl-acetate-in-non-aqueous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1520</span> Main Factor That Causes the Instabilities of the Earth’s Rotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Sim">Jin-Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwan-U%20Kim"> Kwan-U Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryong-Jin%20Jang"> Ryong-Jin Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Duk%20Kim"> Sung-Duk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earth rotation is one of astronomical phenomena without which it is impossible to think of human life. That is why the investigation of the Earth's rotation is very important, and it has a long history of study. The invention of quartz clocks in the 1930s, atomic time in the 1950s, and the introduction of modern technology into astronomic observation in recent years resulted in rapid development of the study of Earth’s rotation. The theory of the Earth's rotation, however, has not been up to the high level of astronomic observation due to the limitation of time. As a typical example, we can take the problems that cover the instabilities of the Earth’s rotation, proved completely by the astronomic observations as well as polar motion, the precession and nutation of the Earth's rotation axis, which have not been described in a single equation in a quantificational way from the unique law of Earth rotation. In particular, at present the problem of what is the main factor causing the instabilities of the Earth rotation has not been solved clearly in quantificational ways yet. Therefore, this paper gives quantificational proof that the main factor that causes the instabilities of the Earth's rotation is the moment of external force other than variations in the relative atmospheric angular momentum due to the time limitation and under some assumptions or the moment of inertia of the Earth’s body. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20angular%20momentum" title="atmospheric angular momentum">atmospheric angular momentum</a>, <a href="https://publications.waset.org/abstracts/search?q=instabilities%20of%20the%20earth%E2%80%99s%20rotation" title=" instabilities of the earth’s rotation"> instabilities of the earth’s rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=law%20of%20the%20earth%E2%80%99s%20rotation%20change" title=" law of the earth’s rotation change"> law of the earth’s rotation change</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20of%20inertia%20of%20the%20earth" title=" moment of inertia of the earth"> moment of inertia of the earth</a> </p> <a href="https://publications.waset.org/abstracts/182768/main-factor-that-causes-the-instabilities-of-the-earths-rotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1519</span> Dynamic Mechanical Thermal Properties of Arenga pinnata Fibre Reinforced Epoxy Composite: Effects of Alkaline Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hakim%20Abdullah">Abdul Hakim Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Syafiq%20Abdul%20Khadir"> Mohamad Syafiq Abdul Khadir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In present investigations, thermal behaviours of Arenga pinnata fibres prior and after alkaline treatment were studied. The alkaline treatments were applied on the Arenga pinnata fibres by immersing in the alkaline solution, 6% sodium hydroxide (NaOH). Using hand lay-out technique, composites were fabricated at 20% and 40% by Arenga pinnata fibres weight contents. The thermal behaviours of both untreated and treated composites were determined by employing Dynamic Mechanical Analysis (DMA). The results show that the TAP owned better results of Storage Modulus (E’), Loss Modulus (E”) and Tan Delta temperatures ranges from 0°C to 60°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composites" title="composites">composites</a>, <a href="https://publications.waset.org/abstracts/search?q=Arenga%20pinnata%20fibre" title=" Arenga pinnata fibre"> Arenga pinnata fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20treatment" title=" alkaline treatment"> alkaline treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mechanical%20properties" title=" dynamic mechanical properties"> dynamic mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/5074/dynamic-mechanical-thermal-properties-of-arenga-pinnata-fibre-reinforced-epoxy-composite-effects-of-alkaline-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1518</span> On the Main Factor That Causes the Instabilities of the Earth Rotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Sim">Jin Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwan%20U.%20Kim"> Kwan U. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryong%20Jin%20Jang"> Ryong Jin Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Duk%20Kim"> Sung Duk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earth rotation is one of astronomical phenomena without which it is impossible to think of human life. That is why the investigation of the Earth's rotation is very important, and it has a long history of study. The invention of quartz clocks in the 1930s and atomic time 1950s and the introduction of modern technology into astronomic observation in recent years resulted in rapid development of the study of Earth’s rotation. The theory of the Earth rotation, however, has not been up to the high level of astronomic observation due to limitation of the time such as impossibility of quantitative calculation of moment of external force for Euler’s dynamical equation based on Newtonian mechanics. As a typical example, we can take the problems that cover the instabilities of the Earth’s rotation proved completely by the astronomic observations as well as polar motion, the precession and nutation of the Earth rotation axis which have not been described in a single equation in a quantitative way from the unique law of Earth rotation. In particular, at present the problem of what the main factor causing the instabilities of the Earth rotation is has not been solved clearly in quantitative ways yet. Therefore, this paper addresses quantitative proof that the main factor which causes the instabilities of the Earth rotation is the moment of external force rather than variations in the relative atmospheric angular momentum and in moment of inertia of the Earth’s body due to the time limitation and under some assumptions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20angular%20momentum" title="atmospheric angular momentum">atmospheric angular momentum</a>, <a href="https://publications.waset.org/abstracts/search?q=instabilities%20of%20the%20Earth%E2%80%99s%20rotation" title=" instabilities of the Earth’s rotation"> instabilities of the Earth’s rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=law%20of%20the%20Earth%E2%80%99s%20rotation%20change" title=" law of the Earth’s rotation change"> law of the Earth’s rotation change</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20of%20%20%20%20inertia%20of%20the%20Earth" title=" moment of inertia of the Earth"> moment of inertia of the Earth</a> </p> <a href="https://publications.waset.org/abstracts/192592/on-the-main-factor-that-causes-the-instabilities-of-the-earth-rotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1517</span> Compressive Strength and Microstructure of Hybrid Alkaline Cements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Abdollahnejad">Z. Abdollahnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Torgal"> P. Torgal</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Barroso%20Aguiar"> J. Barroso Aguiar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Publications on the field of alkali-activated binders, state that this new material is likely to have high potential to become an alternative to Portland cement. Classical alkali-activated cements could be made more eco-efficient if the use of sodium silicate is avoided. Besides, most alkali-activated cements suffer from severe efflorescence originated by the fact that alkaline and/or soluble silicates that are added during processing cannot be totally consumed. This paper presents experimental results on hybrid alkaline cements. Compressive strength results and efflorescence’s observations show that the new mixes already analyzed are promising. SEM results show that no traditional porous ITZ was detected in these binders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20alkaline%20cements" title="hybrid alkaline cements">hybrid alkaline cements</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=efflorescence" title=" efflorescence"> efflorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=ITZ" title=" ITZ"> ITZ</a> </p> <a href="https://publications.waset.org/abstracts/5468/compressive-strength-and-microstructure-of-hybrid-alkaline-cements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1516</span> First Earth Size</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20M.%20Metwally">Ibrahim M. Metwally</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Have you ever thought that earth was not the same earth we live on? Was it bigger or smaller? Was it a great continent surrounded by huge ocean as Alfred Wegener (1912) claimed? Earth is the most amazing planet in our Milky Way galaxy and may be in the universe. It is the only deformed planet that has a variable orbit around the sun and the only planet that has water on its surface. How did earth deformation take place? What does cause earth to deform? What are the results of earth deformation? How does its orbit around the sun change? First earth size computation can be achieved only considering the quantum of iron and nickel rested into earth core. This paper introduces a new theory “Earth expansion Theory”. The principles of “Earth Expansion Theory” are leading to new approaches and concepts to interpret whole earth dynamics and its geological and environmental changes. This theory is not an attempt to unify the two divergent dominant theories of continental drift, plate tectonic theory and earth expansion theory. The new theory is unique since it has a mathematical derivation, explains all the change to and around earth in terms of geological and environmental changes, and answers all unanswered questions in other theories. This paper presents the basic of the introduced theory and discusses the mechanism of earth expansion and how it took place, the forces that made the expansion. The mechanisms of earth size change from its spherical shape with radius about 3447.6 km to an elliptic shape of major radius about 6378.1 km and minor radius of about 6356.8 km and how it took place, are introduced and discussed. This article also introduces, in a more realistic explanation the formation of oceans and seas, the preparation of river formation. It also addresses the role of iron in earth size enlargement process within the continuum mechanics framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earth%20size" title="earth size">earth size</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20expansion" title=" earth expansion"> earth expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20mechanics" title=" continuum mechanics"> continuum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=continental%20and%20ocean%20formation" title=" continental and ocean formation"> continental and ocean formation</a> </p> <a href="https://publications.waset.org/abstracts/26111/first-earth-size" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1515</span> Periodic Change in the Earth’s Rotation Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung%20Duk%20Kim">Sung Duk Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwan%20U.%20Kim"> Kwan U. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Sim"> Jin Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryong%20Jin%20Jang"> Ryong Jin Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phenomenon of seasonal variations in the Earth’s rotation velocity was discovered in the 1930s when a crystal clock was developed and analyzed in a quantitative way for the first time between 1955 and 1968 when observation data of the seasonal variations was analyzed by an atomic clock. According to the previous investigation, atmospheric circulation is supposed to be a factor affecting the seasonal variations in the Earth’s rotation velocity in many cases, but the problem has not been solved yet. In order to solve the problem, it is necessary to apply dynamics to consider the Earth’s spatial motion, rotation, and change of shape of the Earth (movement of materials in and out of the Earth and change of the Earth’s figure) at the same time and in interrelation to the accuracy of post-Newtonian approximation regarding the Earth body as a system of mass points because the stability of the Earth’s rotation angular velocity is in the range of 10⁻⁸~10⁻⁹. For it, the equation was derived, which can consider the 3 kinds of motion above mentioned at the same time by taking the effect of the resultant external force on the Earth’s rotation into account in a relativistic way to the accuracy of post-Newtonian approximation. Therefore, the equation has been solved to obtain the theoretical values of periodic change in the Earth’s rotation velocity, and they have been compared with the astronomical observation data so to reveal the cause for the periodic change in the Earth’s rotation velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Earth%20rotation" title="Earth rotation">Earth rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20function" title=" moment function"> moment function</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20change" title=" periodic change"> periodic change</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20variation" title=" seasonal variation"> seasonal variation</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20change" title=" relativistic change"> relativistic change</a> </p> <a href="https://publications.waset.org/abstracts/182897/periodic-change-in-the-earths-rotation-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1514</span> Two Step Biodiesel Production from High Free Fatty Acid Spent Bleaching Earth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajiv%20Arora">Rajiv Arora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel may be economical if produced from inexpensive feedstock which commonly contains high level of free fatty acids (FFA) as an inhibitor in production of methyl ester. In this study, a two-step process for biodiesel production from high FFA spent bleach earth oil in a batch reactor is developed. Oil sample extracted from spent bleaching earth (SBE) was utilized for biodiesel process. In the first step, FFA of the SBE oil was reduced to 1.91% through sulfuric acid catalyzed esterification. In the second step, the product prepared from the first esterification process was carried out transesterification with an alkaline catalyst. The influence of four variables on conversion efficiency to methyl ester, i.e., methanol/ SBE oil molar ratio, catalyst amount, reaction temperature and reaction time, was studied in the second stage. The optimum process variables in the transesterification were methanol/oil molar ratio 6:1, heterogeneous catalyst conc. 5 wt %, reaction temperature 65 °C and reaction time 60 minutes to produce biodiesel. Major fuel properties of SBE biodiesel were measured to comply with ASTM and EN standards. Therefore, an optimized process for production of biodiesel from a low-cost high FFA source was accomplished. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=esterification" title=" esterification"> esterification</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20fatty%20acids" title=" free fatty acids"> free fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20oil" title=" residual oil"> residual oil</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20bleaching%20earth" title=" spent bleaching earth"> spent bleaching earth</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/85852/two-step-biodiesel-production-from-high-free-fatty-acid-spent-bleaching-earth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1513</span> Origin of the Eocene Volcanic Rocks in Muradlu Village, Azerbaijan Province, Northwest of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Shahriari">A. Shahriari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalatbari%20Jafari"> M. Khalatbari Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Faridi"> M. Faridi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract The Muradlu volcanic area is located in Azerbaijan province, NW Iran. The studied area exposed in a vast region includes lesser Caucasus, Southeastern Turkey, and northwestern Iran, comprising Cenozoic volcanic and plutonic massifs. The geology of this extended region was under the influence of the Alpine-Himalayan orogeny. Cenozoic magmatic activities in this vast region evolved through the northward subduction of the Neotethyan subducted slab and subsequence collision of the Arabian and Eurasian plates. Based on stratigraphy and paleontology data, most of the volcanic activities in the Muradlu area occurred in the Eocene period. The Studied volcanic rocks overly late Cretaceous limestone with disconformity. The volcanic sequence includes thick epiclastic and hyaloclastite breccia at the base, laterally changed to pillow lava and continued by hyaloclastite and lave flows at the top of the series. The lava flows display different textures from megaporphyric-phyric to fluidal and microlithic textures. The studied samples comprise picrobasalt basalt, tephrite basanite, trachybasalt, basaltic trachyandesite, phonotephrite, tephrophonolite, trachyandesite, and trachyte in compositions. Some xenoliths with lherzolitic composition are found in picrobasalt. These xenoliths are made of olivine, cpx (diopside), and opx (enstatite), probably the remain of mantle origin. Some feldspathoid minerals such as sodalite presence in the phonotephrite confirm an alkaline trend. Two types of augite phenocrysts are found in picrobasalt, basalt and trachybasalt. The first types are shapeless, with disharmony zoning and sponge texture with reaction edges probably resulted from sodic magma, which is affected by a potassic magma. The second shows a glomerocryst shape. In discriminative diagrams, the volcanic rocks show alkaline-shoshonitic trends. They contain (0.5-7.7) k2O values and plot in the shoshonitic field. Most of the samples display transitional to potassic alkaline trends, and some samples reveal sodic alkaline trends. The transitional trend probably results from the mixing of the sodic alkaline and potassic magmas. The Rare Earth Elements (REE) patterns and spider diagrams indicate enrichment of Large-Ione Lithophile Element (LILE) and depletion of High Field Strength Elements (HFSE) relative to Heavy Rare Earth Elements (HREE). Enrichment of K, Rb, Sr, Ba, Zr, Th, and U and the enrichment of Light Rare Earth Elements (LREE) relative to Heavy Rare Earth Elements (HREE) indicate the effect of subduction-related fluids over the mantle source, which has been reported in the arc and continental collision zones. The studied samples show low Nb/La ratios. Our studied samples plot in the lithosphere and lithosphere-asthenosphere fields in the Nb/La versus La/Yb ratios diagram. These geochemical characters allow us to conclude that a lithospheric mantle source previously metasomatized by subduction components was the origin of the Muradlu volcanic rocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline" title="alkaline">alkaline</a>, <a href="https://publications.waset.org/abstracts/search?q=asthenosphere" title=" asthenosphere"> asthenosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=lherzolite" title=" lherzolite"> lherzolite</a>, <a href="https://publications.waset.org/abstracts/search?q=lithosphere" title=" lithosphere"> lithosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=Muradlu" title=" Muradlu"> Muradlu</a>, <a href="https://publications.waset.org/abstracts/search?q=potassic" title=" potassic"> potassic</a>, <a href="https://publications.waset.org/abstracts/search?q=shoshonitic" title=" shoshonitic"> shoshonitic</a>, <a href="https://publications.waset.org/abstracts/search?q=sodic" title=" sodic"> sodic</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanism" title=" volcanism"> volcanism</a> </p> <a href="https://publications.waset.org/abstracts/142371/origin-of-the-eocene-volcanic-rocks-in-muradlu-village-azerbaijan-province-northwest-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1512</span> Crater Pattern on the Moon and Origin of the Moon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuguang%20Leng">Xuguang Leng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crater pattern on the Moon indicates the Moon was captured by Earth in the more recent years, disproves the theory that the Moon was born as a satellite to the Earth. The Moon was tidal locked since it became the satellite of the Earth. Moon’s near side is shielded by Earth from asteroid/comet collisions, with the center of the near side most protected. Yet the crater pattern on the Moon is fairly random, with no distinguishable empty spot/strip, no distinguishable difference near side vs. far side. Were the Moon born as Earth’s satellite, there would be a clear crater free spot, or strip should the tial lock shifts over time, on the near side; and far more craters on the far side. The nonexistence of even a vague crater free spot on the near side of the Moon indicates the capture was a more recent event. Given Earth’s much larger mass and sphere size over the Moon, Earth should have collided with asteroids and comets in much higher frequency, resulting in significant mass gain over the lifespan. Earth’s larger mass and magnetic field are better at retaining water and gas from solar wind’s stripping effect, thus accelerating the mass gain. A dwarf planet Moon can be pulled closer and closer to the Earth over time as Earth’s gravity grows stronger, eventually being captured as a satellite. Given enough time, it is possible Earth’s mass would be large enough to cause the Moon to collide with Earth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moon" title="moon">moon</a>, <a href="https://publications.waset.org/abstracts/search?q=origin" title=" origin"> origin</a>, <a href="https://publications.waset.org/abstracts/search?q=crater" title=" crater"> crater</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern" title=" pattern"> pattern</a> </p> <a href="https://publications.waset.org/abstracts/149225/crater-pattern-on-the-moon-and-origin-of-the-moon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1511</span> Hygrothermal Properties of Raw Earth Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ichrak%20Hamrouni">Ichrak Hamrouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Ouahbi"> Tariq Ouahbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalija%20Lhuissier"> Natalija Lhuissier</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%C3%AFd%20Taibi"> Saïd Taibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrez%20Jemai"> Mehrez Jemai</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Crumeyrolle"> Olivier Crumeyrolle</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Zenzri"> Hatem Zenzri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Raw earth is the oldest building technique used for over 11 centuries, thanks to its various benefits. The most known raw earth construction technics are compressed earth blocks, rammed earth, raw earth concrete, and daub. The raw earth can be stabilized with hydraulic binders, mixed by fibers, or hyper-compacted in order to improve its mechanical behaviour. Moreover, raw earth is characterized by a low thermal conductivity what make it a good thermal insulator, and it has a very important capacity to condense and evaporate relative humidity. In this context, many researches have been developed. They have shown that the mechanical characteristics of earth materials increase with the hyper-compaction and adding fibers or hydraulic binders. Besides, other researches have been determined the thermal and hygroscopic properties of raw earth. They have shown that this material able to contribute to moisture and heat control in constructions. Its hygrothermal properties are better than fired earth bricks and concrete. The aim of this study is to evaluate the thermal and hygrometric behavior of raw earth material using experimental tests allows to determine the main Hygrothermal properties such as the water Vapour permeability and thermal conductivity and compare the results with those of other building materials such as fired clay bricks and cement concrete is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raw%20earth%20material" title="raw earth material">raw earth material</a>, <a href="https://publications.waset.org/abstracts/search?q=hygro-thermal" title=" hygro-thermal"> hygro-thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20vapour%20permeability" title=" water vapour permeability"> water vapour permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a> </p> <a href="https://publications.waset.org/abstracts/143371/hygrothermal-properties-of-raw-earth-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1510</span> Surprising Behaviour of Kaolinitic Soils under Alkaline Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Hari%20Prasad%20Reddy">P. Hari Prasad Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Shimna%20Paulose"> Shimna Paulose</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sai%20Kumar"> V. Sai Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Rama%20Vara%20Prasad"> C. H. Rama Vara Prasad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil environment gets contaminated due to rapid industrialisation, agricultural-chemical application and improper disposal of waste generated by the society. Unexpected volume changes can occur in soil in the presence of certain contaminants usually after the long duration of interaction. Alkali is one of the major soil contaminant that has a considerable effect on behaviour of soils and capable of inducing swelling potential in soil. Chemical heaving of clayey soils occurs when they are wetted by aqueous solutions of alkalis. Mineralogical composition of the soil is one of the main factors influencing soil- alkali interaction. In the present work, studies are carried out to understand the swell potential of soils due to soil-alkali interaction with different concentrations of NaOH solution. Locally available soil, namely, red earth containing kaolinite which is of non-swelling nature is selected for the study. In addition to this, two commercially available clayey soils, namely ball clay and china clay containing mainly of kaolinite are selected to understand the effect of alkali interaction in various kaolinitic soils. Non-swelling red earth shows maximum swell at lower concentrations of alkali solution (0.1N) and a slightly decreasing trend of swelling with further increase in concentration (1N, 4N, and 8N). Marginal decrease in swell potential with increase in concentration indicates that the increased concentration of alkali solution exists as free solution in case of red earth. China clay and ball clay both falling under kaolinite group of clay minerals, show swelling with alkaline solution. At lower concentrations of alkali solution both the soils shows similar swell behaviour, but at higher concentration of alkali solution ball clay shows high swell potential compared to china clay which may be due to lack of well ordered crystallinity in ball clay compared to china clay. The variations in the results obtained were corroborated by carrying XRD and SEM studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali" title="alkali">alkali</a>, <a href="https://publications.waset.org/abstracts/search?q=kaolinite" title=" kaolinite"> kaolinite</a>, <a href="https://publications.waset.org/abstracts/search?q=swell%20potential" title=" swell potential"> swell potential</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/23569/surprising-behaviour-of-kaolinitic-soils-under-alkaline-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1509</span> Tectonic Movements and Ecosystems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar%20Trivedi">Arvind Kumar Trivedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our Earth is dynamic in nature and its structure behaves like a puzzle because the interior of the Earth is in both gaseous as well as molten (liquid) form and the crust i.e. the outermost surface is in solid form. This Earth was one landmass known as ‘Pangaea’ in the beginning. With time due to complex phenomena of tectonic movements, it was broken into various landmasses along with water bodies. This Pangaea was in direct contact with the atmosphere playing dominant role in creating various ecosystems on the Earth. Ecosystems mean: Eco (environment body) and systems (interdependent complex of all the organisms interacting with each other). This paper provides an in-depth discussion on tectonic movements as well as ecosystems & how these two affect each other and in the end, we will enlist various methods on how to preserve our ‘Mother Earth’. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tectonic%20movements" title="tectonic movements">tectonic movements</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystems" title=" ecosystems"> ecosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20tectonics" title=" plate tectonics"> plate tectonics</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a> </p> <a href="https://publications.waset.org/abstracts/186089/tectonic-movements-and-ecosystems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1508</span> Overtopping Protection Systems for Overflow Earth Dams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omid%20Pourabdollah">Omid Pourabdollah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Misaghian"> Mohsen Misaghian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Overtopping is known as one the most important reasons for the failure of earth dams. In some cases, it has resulted in heavy damages and losses. Therefore, enhancing the safety of earth dams against overtopping has received much attention in the past four decades. In this paper, at first, the overtopping phenomena and its destructive consequences will be introduced. Then, overtopping failure mechanism of embankments will be described. Finally, different types of protection systems for stabilization of earth dams against overtopping will be presented. These include timber cribs, riprap and gabions, reinforced earth, roller compacted concrete, and the precast concrete blocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embankment%20dam" title="embankment dam">embankment dam</a>, <a href="https://publications.waset.org/abstracts/search?q=overtopping" title=" overtopping"> overtopping</a>, <a href="https://publications.waset.org/abstracts/search?q=roller%20compacted%20concrete" title=" roller compacted concrete"> roller compacted concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=wedge%20concrete%20block" title=" wedge concrete block"> wedge concrete block</a> </p> <a href="https://publications.waset.org/abstracts/109537/overtopping-protection-systems-for-overflow-earth-dams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1507</span> Phase Equilibria in the Ln-Sr-Co-O Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anastasiia%20Maklakova">Anastasiia Maklakova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The perovskite type oxides formed in the Ln-Me-Me/-O systems (where Ln – rare-earth, Me – alkaline earth metal, Me/ - 3-d metal) have potential applications as gas sensors, catalysts or cathode materials for IT-SOFCs due to the high values of mixed electronic -ionic conductivity and high oxygen diffusivity. Complex oxides in the Sr-(Pr,Gd)-Co-O systems were prepared via the glycerol-nitrate technique The phase composition was determined using a Shimadzu XRD-7000 diffractometer at room temperature in air. Phase identification was performed using the ICDD database. The structure was refined by the full-profile Rietveld method using Fullprof 2008 software. Gradual substitution of strontium by Pr or Gd leads to the decrease of unit cell parameters and unit cell volume that can be explained by the size factor. An introduction of Pr or Gd into the strontium cobaltite increases the oxygen content in samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phase%20equilibria" title="phase equilibria">phase equilibria</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20structure" title=" crystal structure"> crystal structure</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20nonstoichiometry" title=" oxygen nonstoichiometry"> oxygen nonstoichiometry</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20oxide%20fuel%20cell" title=" solid oxide fuel cell"> solid oxide fuel cell</a> </p> <a href="https://publications.waset.org/abstracts/122949/phase-equilibria-in-the-ln-sr-co-o-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1506</span> Regulating Hydrogen Energy Evaluation During Aluminium Hydrolysis in Alkaline Solutions Containing Different Surfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Deyab">Mohamed A. Deyab</a>, <a href="https://publications.waset.org/abstracts/search?q=Omnia%20A.%20A.%20El-Shamy"> Omnia A. A. El-Shamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to reveal on the systematic evaluation of hydrogen production by aluminum hydrolysis in alkaline solutions containing different surfactants using hydrogen evolution measurements and supplemented by scan electron microscope (SEM) and energy dispersive X-ray analysis (EDX). It has been demonstrated that when alkaline concentration and solution temperature rise, the rate of H2 generation and, consequently, aluminum hydrolysis also rises. The addition of nonionic and cationic surfactants solution retards the rate of H2 production. The work is a promising option for carbon-free hydrogen production from renewable resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis" title=" hydrolysis"> hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a> </p> <a href="https://publications.waset.org/abstracts/161815/regulating-hydrogen-energy-evaluation-during-aluminium-hydrolysis-in-alkaline-solutions-containing-different-surfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1505</span> Lentil Protein Fortification in Cranberry Squash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandhya%20Devi%20A">Sandhya Devi A</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The protein content of the cranberry squash (protein: 0g) may be increased by extracting protein from the lentils (9 g), which is particularly linked to a lower risk of developing heart disease. Using the technique of alkaline extraction from the lentils flour, protein may be extracted. Alkaline extraction of protein from lentil flour was optimized utilizing response surface approach in order to maximize both protein content and yield. Cranberry squash may be taken if a protein fortification syrup is prepared and processed into the squash. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20extraction" title="alkaline extraction">alkaline extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=cranberry%20squash" title=" cranberry squash"> cranberry squash</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20fortification" title=" protein fortification"> protein fortification</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/153178/lentil-protein-fortification-in-cranberry-squash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1504</span> Dilation Effect on 3D Passive Earth Pressure Coefficients for Retaining Wall </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khelifa%20Tarek">Khelifa Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Benmebarek%20Sadok"> Benmebarek Sadok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 2D passive earth pressures acting on rigid retaining walls problem has been widely treated in the literature using different approaches (limit equilibrium, limit analysis, slip line and numerical computation), however, the 3D passive earth pressures problem has received less attention. This paper is concerned with the numerical study of 3D passive earth pressures induced by the translation of a rigid rough retaining wall for associated and non-associated soils. Using the explicit finite difference code FLAC3D, the increase of the passive earth pressures due to the decrease of the wall breadth is investigated. The results given by the present numerical analysis are compared with other investigation. The influence of the angle of dilation on the coefficients is also studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title="numerical modeling">numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=FLAC3D" title=" FLAC3D"> FLAC3D</a>, <a href="https://publications.waset.org/abstracts/search?q=retaining%20wall" title=" retaining wall"> retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20earth%20pressures" title=" passive earth pressures"> passive earth pressures</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20dilation" title=" angle of dilation"> angle of dilation</a> </p> <a href="https://publications.waset.org/abstracts/33167/dilation-effect-on-3d-passive-earth-pressure-coefficients-for-retaining-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1503</span> Super-Exchange Coupling in Oxygen Rich Rare-Earth Based Sm₂MnRuO₆₊δ Double Perovskite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Nqayi">S. Nqayi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Sondezi"> B. Sondezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A rare-earth-based Sm₂MnRuO₆₊δ (SMRO) double perovskite was prepared using a high-temperature solid-state reaction. The structural, morphological, chemical, thermodynamic, and magnetic properties were measured with X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), X-ray photoemission spectroscopy (XPS), and vibrating sample magnetometer (VSM), respectively. The XRD revealed a tetragonal structure belonging to the I4/mmm space group, number 139, with linear Mn−O−Ru bonds. Replacing the well-studied alkaline earth metal with a rare-earth element increased the Mn-O bond length difference between the shorter equatorial (Mn-Oab) and the axial (Mn-Oc) bonds by approximately 6.3%. The elemental composition showed an O-rich double perovskite with a Ru deficit, which encourages the formation of a Ru⁶⁺ (d²) state. XPS spectra of Sm-3d, Ru-3d, and Mn-2p revealed the coexistence of a double oxidation state for each cation; Sm²⁺, Sm³⁺, Ru³⁺, Ru⁶⁺, Mn²⁺ , and Mn³⁺, in varying proportions. Entropy studies showed drastic ordering of spins at low temperatures (up to 12.4 K), whilst increasing temperatures above this point resulted in a drastic increase of disorder of the spins (up to 43.26 K), beyond which a constant slope of entropy is observed. Magnetic measurements revealed two magnetic ground states at TN = 12.4 K and TC = 43.3 K ordering antiferromagnetically (AFM) and ferromagnetically (FM), respectively. Kneller fit further showed that the materials become completely paramagnetic at TB = 88.1 K, (the blocking temperature). The existence of ferromagnetic (FM) super-exchange coupling in this work originating from Mn³⁺ (t³₂𝓰e¹𝓰)−O−Ru³⁺ (t⁵₂𝓰e⁰𝓰) and Mn²⁺ (t³₂𝓰e²𝓰−O−Ru⁶⁺ (t²₂𝓰e⁰𝓰) which plays an important role in suppressing the Mn/Ru−O−Mn/Ru antiferromagnetic (AFM) interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid-state%20reaction" title="solid-state reaction">solid-state reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=super-exchange%20coupling" title=" super-exchange coupling"> super-exchange coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic" title=" ferromagnetic"> ferromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=Kneller%E2%80%99s%20law" title=" Kneller’s law"> Kneller’s law</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a> </p> <a href="https://publications.waset.org/abstracts/191534/super-exchange-coupling-in-oxygen-rich-rare-earth-based-sm2mnruo6d-double-perovskite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1502</span> One-Pot Facile Synthesis of N-Doped Graphene Synthesized from Paraphenylenediamine as Metal-Free Catalysts for the Oxygen Reduction Used for Alkaline Fuel Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Samiee">Leila Samiee</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Yadegari"> Amir Yadegari</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeedeh%20Tasharrofi"> Saeedeh Tasharrofi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the work presented here, nitrogen-doped graphene materials were synthesized and used as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. Paraphenylenediamine was used as N precursor. The N-doped graphene was synthesized under hydrothermal treatment at 200°C. All the materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Moreover, for electrochemical evaluation of samples, Rotating Disk electrode (RDE) and Cyclic Voltammetry techniques (CV) were employed. The resulting material exhibits an outstanding catalytic activity for the oxygen reduction reaction (ORR) as well as excellent resistance towards methanol crossover effects, indicating their promising potential as ORR electrocatalysts for alkaline fuel cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20fuel%20cell" title="alkaline fuel cell">alkaline fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-free%20catalyst" title=" metal-free catalyst"> metal-free catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=paraphenylen%20diamine" title=" paraphenylen diamine"> paraphenylen diamine</a> </p> <a href="https://publications.waset.org/abstracts/36398/one-pot-facile-synthesis-of-n-doped-graphene-synthesized-from-paraphenylenediamine-as-metal-free-catalysts-for-the-oxygen-reduction-used-for-alkaline-fuel-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1501</span> Current Characteristic of Water Electrolysis to Produce Hydrogen, Alkaline, and Acid Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekki%20Kurniawan">Ekki Kurniawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Nur%20Jayanto"> Yusuf Nur Jayanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Erna%20Sugesti"> Erna Sugesti</a>, <a href="https://publications.waset.org/abstracts/search?q=Efri%20Suhartono"> Efri Suhartono</a>, <a href="https://publications.waset.org/abstracts/search?q=Agus%20Ganda%20Permana"> Agus Ganda Permana</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaspar%20Hasudungan"> Jaspar Hasudungan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jangkung%20Raharjo"> Jangkung Raharjo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rintis%20Manfaati"> Rintis Manfaati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research is to study the current characteristic of the electrolysis of mineral water to produce hydrogen, alkaline water, and acid water. Alkaline and hydrogen water are believed to have health benefits. Alkaline water containing hydrogen can be an anti-oxidant that captures free radicals, which will increase the immune system. In Indonesia, there are two existing types of alkaline water producing equipment, but the installation is complicated, and the price is relatively expensive. The electrolysis process is slow (6-8 hours) since they are locally made using 311 VDC full bridge rectifier power supply. This paper intends to discuss how to make hydrogen and alkaline water by a simple portable mineral water ionizer. This is an electrolysis device that is easy to carry and able to separate ions of mineral water into acidic and alkaline water. With an electric field, positive ions will be attracted to the cathode, while negative ions will be attracted to the anode. The circuit equivalent can be depicted as RLC transient ciruit. The diode component ensures that the electrolytic current is direct current. Switch S divides the switching times t1, t2, and t3. In the first stage up to t1, the electrolytic current increases exponentially, as does the inductor charging current (L). The molecules in drinking water experience magnetic properties. The direction of the dipole ions, which are random in origin, will regularly flare with the direction of the electric field. In the second stage up to t2, the electrolytic current decreases exponentially, just like the charging current of a capacitor (C). In the 3rd stage, start t3 until it tends to be constant, as is the case with the current flowing through the resistor (R). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=current%20electrolysis" title="current electrolysis">current electrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20water" title=" mineral water"> mineral water</a>, <a href="https://publications.waset.org/abstracts/search?q=ions" title=" ions"> ions</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20and%20acid%20waters" title=" alkaline and acid waters"> alkaline and acid waters</a>, <a href="https://publications.waset.org/abstracts/search?q=inductor" title=" inductor"> inductor</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitor" title=" capacitor"> capacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=resistor" title=" resistor"> resistor</a> </p> <a href="https://publications.waset.org/abstracts/160529/current-characteristic-of-water-electrolysis-to-produce-hydrogen-alkaline-and-acid-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1500</span> A Comparison between Modelled and Actual Thermal Performance of Load Bearing Rammed Earth Walls in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hafez">H. Hafez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mekkawy"> A. Mekkawy</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rostom"> R. Rostom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Around 10% of the world’s CO₂ emissions could be attributed to the operational energy of buildings; that is why more research is directed towards the use of rammed earth walls which is claimed to have enhanced thermal properties compared to conventional building materials. The objective of this paper is to outline how the thermal performance of rammed earth walls compares to conventional reinforced concrete skeleton and red brick in-fill walls. For this sake, the indoor temperature and relative humidity of a classroom built with rammed earth walls and a vaulted red brick roof in the area of Behbeit, Giza, Egypt were measured hourly over 6 months using smart sensors. These parameters for the rammed earth walls were later also compared against the values obtained using a 'DesignBuilder v5' model to verify the model assumptions. The thermal insulation of rammed earth walls was found to be 30% better than this of the redbrick infill, and the recorded data were found to be almost 90% similar to the modelled values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rammed%20earth" title="rammed earth">rammed earth</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation" title=" thermal insulation"> thermal insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20builder" title=" design builder"> design builder</a> </p> <a href="https://publications.waset.org/abstracts/99687/a-comparison-between-modelled-and-actual-thermal-performance-of-load-bearing-rammed-earth-walls-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1499</span> Comparative Evaluation on in vitro Bioactivity, Proliferation and Antibacterial Efficiency of Sol-Gel Derived Bioactive Glass Substituted by Li and Mg</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Moghanian">Amirhossein Moghanian</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Elsa"> Morteza Elsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrnaz%20Aminitabar"> Mehrnaz Aminitabar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modified bioactive glass has been considered as a promising multifunctional candidate in bone repair and regeneration due to its attractive properties. The present study mainly aims to evaluate how the individual substitution of lithium (L-BG) and magnesium (M-BG) for calcium can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG); and to present one composition in both of the 60SiO2–(36-x)CaO–4P₂O₅–(x)Li₂O and 60SiO₂ –(36-x)CaO–4P₂O₅–(x)MgO quaternary systems (where x= 0, 5, 10 mol.%) with improved biocompatibility, enhanced alkaline phosphatase (ALP) activity, and the most efficient antibacterial activity against methicillin-resistant staphylococcus aureus bacteria. To address these aims, and study the effect of CaO/Li₂O and CaO/MgO substitution up to 10 mol % in 58S-BGs, the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy after immersion in simulated body fluid up to 14 days. Results indicated that substitution of either CaO/ Li₂O and CaO/ MgO had a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium had a more pronounced effect. The 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) assays showed that both substitutions of CaO/ Li₂O and CaO/ MgO up to 5mol % in 58s-BGs led to increased biocompatibility and stimulated proliferation of the pre-osteoblast MC3T3 cells with respect to the control. On the other hand, the substitution of either Li or Mg for Ca in the 58s BG composition resulted in improved bactericidal efficiency against MRSA bacteria. Taken together, sample 58s-BG with 5 mol % CaO/Li₂O substitution (BG-5L) was considered as a multifunctional biomaterial in bone repair/regeneration with improved biocompatibility, enhanced ALP activity as well as significant antibacterial activity against methicillin-resistant staphylococcus aureus (MRSA) bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline" title="alkaline">alkaline</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20earth" title=" alkaline earth"> alkaline earth</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20processes" title=" sol-gel processes"> sol-gel processes</a> </p> <a href="https://publications.waset.org/abstracts/105546/comparative-evaluation-on-in-vitro-bioactivity-proliferation-and-antibacterial-efficiency-of-sol-gel-derived-bioactive-glass-substituted-by-li-and-mg" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1498</span> Sol-Gel Derived 58S Bioglass Substituted by Li and Mg: A Comparative Evaluation on in vitro Bioactivity, MC3T3 Proliferation and Antibacterial Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Khaleghipour">Amir Khaleghipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Moghanian"> Amirhossein Moghanian</a>, <a href="https://publications.waset.org/abstracts/search?q=Elhamalsadat%20Ghaffari"> Elhamalsadat Ghaffari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modified bioactive glass has been considered as a promising multifunctional candidate in bone repair and regeneration due to its attractive properties. The present study mainly aims to evaluate how the individual substitution of lithium (L-BG) and magnesium (M-BG) for calcium can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG); and to present one composition in both of the 60SiO₂–(36-x)CaO–4P₂O₅–(x)Li₂O and 60SiO₂–(36-x)CaO–4P₂O₅–(x)MgO quaternary systems (where x= 0, 5, 10 mol.%) with improved biocompatibility, enhanced alkaline phosphatase (ALP) activity, and the most efficient antibacterial activity against methicillin-resistant Staphylococcus aureus bacteria. To address these aims, and study the effect of CaO/Li₂O and CaO/MgO substitution up to 10 mol % in 58S-BGs, the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy after immersion in simulated body fluid up to 14 days. Results indicated that substitution of either CaO/ Li₂O and CaO/ MgO had a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium had a more pronounced effect. The 3-(4, 5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) assays showed that both substitutions of CaO/ Li₂O and CaO/ MgO up to 5mol % in 58s-BGs led to increased biocompatibility and stimulated proliferation of the pre-osteoblast MC3T3 cells with respect to the control. On the other hand, substitution of either Li or Mg for Ca in the 58s BG composition resulted in improved bactericidal efficiency against MRSA bacteria. Taken together, sample 58s-BG with 5 mol % CaO/Li₂O substitution (BG-5L) was considered as a multifunctional biomaterial in bone repair/regeneration with improved biocompatibility, enhanced ALP activity as well enhanced antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) bacteria among all of the synthesized L-BGs and M-BGs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline" title="alkaline">alkaline</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20earth" title=" alkaline earth"> alkaline earth</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20processes" title=" sol-gel processes"> sol-gel processes</a> </p> <a href="https://publications.waset.org/abstracts/104924/sol-gel-derived-58s-bioglass-substituted-by-li-and-mg-a-comparative-evaluation-on-in-vitro-bioactivity-mc3t3-proliferation-and-antibacterial-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1497</span> Utilizing Google Earth for Internet GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Derambakhsh">Alireza Derambakhsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this examination is to explore the capability of utilizing Google Earth for Internet GIS applications. The study particularly analyzes the utilization of vector and characteristic information and the capability of showing and preparing this information in new ways utilizing the Google Earth stage. It has progressively been perceived that future improvements in GIS will fixate on Internet GIS, and in three noteworthy territories: GIS information access, spatial data scattering and GIS displaying/preparing. Google Earth is one of the group of geobrowsers that offer a free and simple to utilize administration that empower information with a spatial part to be overlain on top of a 3-D model of the Earth. This examination makes a methodological structure to accomplish its objective that comprises of three noteworthy parts: A database level, an application level and a customer level. As verification of idea a web model has been produced, which incorporates a differing scope of datasets and lets clients direst inquiries and make perceptions of this custom information. The outcomes uncovered that both vector and property information can be successfully spoken to and imagined utilizing Google Earth. In addition, the usefulness to question custom information and envision results has been added to the Google Earth stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Google%20earth" title="Google earth">Google earth</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20GIS" title=" internet GIS"> internet GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=vector" title=" vector"> vector</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic%20information" title=" characteristic information"> characteristic information</a> </p> <a href="https://publications.waset.org/abstracts/33274/utilizing-google-earth-for-internet-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1496</span> Thermodynamic Properties of Binary Gold-Rare Earth Compounds (Au-RE)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Krarchaa">H. Krarchaa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ferroudj"> A. Ferroudj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the results of thermodynamic properties of intermetallic rare earth-gold compounds at different stoichiometric structures. It mentions the existence of the AuRE AuRE2, Au2RE, Au51RE14, Au6RE, Au3RE and Au4RE phases in the majority of Au-RE phase diagrams. It's observed that equiatomic composition is a common compound for all gold rare earth alloys and it has the highest melting temperature. Enthalpies of the formation of studied compounds are calculated based on a new reformulation of Miedema’s model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20element" title="rare earth element">rare earth element</a>, <a href="https://publications.waset.org/abstracts/search?q=enthalpy%20of%20formation" title=" enthalpy of formation"> enthalpy of formation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20properties" title=" thermodynamic properties"> thermodynamic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=macroscopic%20model" title=" macroscopic model"> macroscopic model</a> </p> <a href="https://publications.waset.org/abstracts/191105/thermodynamic-properties-of-binary-gold-rare-earth-compounds-au-re" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1495</span> Gaia (Earth) Education Philosophy – A Journey Back to the Future</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darius%20Singh">Darius Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study adopts a research, develop, and deploy methodology to create a state-of-the-art forest preschool environment using technology and the Gaia (Earth) Education Philosophy as design support. The new philosophy adopts an ancient Greek terminology, “Gaia,” meaning “Mother Earth”, and it take its principle to model everything with the oldest living and breathing entity that it know – Earth. This includes using nature and biomimicry-based principles in building design, environments, curricula, teaching, learning, values and outcomes for children. The study highlights the potential effectiveness of the Gaia (Earth) Education Philosophy as a means of designing Earth-inspired environments for children’s learning. The discuss the strengths of biomimicry-based design principles and propose a curriculum that emphasizes natural outcomes for early childhood learning. Theoretical implications of the study are that the Gaia (Earth) Education Philosophy could serve as a strong foundation for educating young learners.it present a unique approach that promotes connections with Earth-principles and lessons that can contribute to the development of social and environmental consciousness among children and help educate generations to come into a stable and balanced future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earth%20science" title="earth science">earth science</a>, <a href="https://publications.waset.org/abstracts/search?q=nature%20education" title=" nature education"> nature education</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=gaia" title=" gaia"> gaia</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20school" title=" forest school"> forest school</a>, <a href="https://publications.waset.org/abstracts/search?q=nature" title=" nature"> nature</a>, <a href="https://publications.waset.org/abstracts/search?q=inspirational%20teaching%20and%20learning" title=" inspirational teaching and learning"> inspirational teaching and learning</a> </p> <a href="https://publications.waset.org/abstracts/173514/gaia-earth-education-philosophy-a-journey-back-to-the-future" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20earth&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20earth&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20earth&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20earth&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20earth&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20earth&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20earth&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20earth&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20earth&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20earth&page=50">50</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20earth&page=51">51</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alkaline%20earth&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>