CINXE.COM
Search results for: Abdelazim M. Negm
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Abdelazim M. Negm</title> <meta name="description" content="Search results for: Abdelazim M. Negm"> <meta name="keywords" content="Abdelazim M. Negm"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Abdelazim M. Negm" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Abdelazim M. Negm"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Abdelazim M. Negm</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Life Cycle Assessment as a Decision Making for Window Performance Comparison in Green Building Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Elshafei">Ghada Elshafei</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20Negm"> Abdelazim Negm </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Life cycle assessment is a technique to assess the environmental aspects and potential impacts associated with a product, process, or service, by compiling an inventory of relevant energy and material inputs and environmental releases; evaluating the potential environmental impacts associated with identified inputs and releases; and interpreting the results to help you make a more informed decision. In this paper, the life cycle assessment of aluminum and beech wood as two commonly used materials in Egypt for window frames are heading, highlighting their benefits and weaknesses. Window frames of the two materials have been assessed on the basis of their production, energy consumption and environmental impacts. It has been found that the climate change of the windows made of aluminum and beech wood window, for a reference window (1.2m 脳 1.2m), are 81.7 mPt and - 52.5 mPt impacts respectively. Among the most important results are: fossil fuel consumption, potential contributions to the green building effect and quantities of solid waste tend to be minor for wood products compared to aluminum products; incineration of wood products can cause higher impacts of acidification and eutrophication than aluminum, whereas thermal energy can be recovered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20window" title="aluminum window">aluminum window</a>, <a href="https://publications.waset.org/abstracts/search?q=beech%20wood%20window" title=" beech wood window"> beech wood window</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building" title=" green building"> green building</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20analysis" title=" life cycle analysis"> life cycle analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SimaPro%20software" title=" SimaPro software"> SimaPro software</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20frame" title=" window frame"> window frame</a> </p> <a href="https://publications.waset.org/abstracts/34211/life-cycle-assessment-as-a-decision-making-for-window-performance-comparison-in-green-building-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Variability of Hydrological Modeling of the Blue Nile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeer%20Samy">Abeer Samy</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20C.%20Saavedra%20Valeriano"> Oliver C. Saavedra Valeriano</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20Negm"> Abdelazim Negm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blue%20Nile%20Basin" title="Blue Nile Basin">Blue Nile Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20modeling" title=" hydrological modeling"> hydrological modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a> </p> <a href="https://publications.waset.org/abstracts/25736/variability-of-hydrological-modeling-of-the-blue-nile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Comparison between Experimental Modeling and HYDRUS-2D for Nitrate Transport through a Saturated Soil Column</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Eltarabily">Mohamed Eltarabily</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20Negm"> Abdelazim Negm</a>, <a href="https://publications.waset.org/abstracts/search?q=Chihiro%20Yoshimura"> Chihiro Yoshimura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the pollution of groundwater from the use of nitrogenous fertilizer is at the increase. Also, due to the increase in area under cultivation and regular use of fertilizer in irrigated agriculture, groundwater pollution from agricultural activities is becoming a major concern. Because of the high mobility of Nitrate (NO3-) in soil which is governed by electrostatic processes, particularly anion exclusion, nitrate can be intercepted by shallow subsurface drainage pipe systems and then discharged offsite into streams, rivers, and lakes causing many hazards. In order to solve these environmental problems associated with nitrate, a better understanding of how NO3- moves through the soil profile under flow conditions is required. In the present paper, the results of a comparative study between experimental and numerical modeling of Nitrate transport through a saturated soil column are presented and analyzed. In order to achieve that, three water fluxes densities; 0.008, 0.007, and 0.006 m sec-1 and N concentration rates 10 mol cm-3 were used. The same concentrations were used in the simulation using HYDRUS-2D. The physical and chemical properties of the collected soil samples were calculated. Besides, the soil texture was determined which was silty sand. Results showed that HYDRUS-2D can successfully predict the relative behavior of N transport in the present experiment. Nitrate concentrations will reach deeper depth with the increase in the water flux. Overall, it was overestimated in the final concentration of (NO3-) in the soil by numerical simulation than by experimental column test. The column experiment is a useful tool for assessing the nitrate concentrations in the soil profile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate%20leaching" title=" nitrate leaching"> nitrate leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=HYDRUS-2D" title=" HYDRUS-2D"> HYDRUS-2D</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20column" title=" soil column"> soil column</a> </p> <a href="https://publications.waset.org/abstracts/54355/comparison-between-experimental-modeling-and-hydrus-2d-for-nitrate-transport-through-a-saturated-soil-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Degradation of Different Organic Contaminates Using Corona Discharge Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20El-Shazly">A. H. El-Shazly</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20El-Tayeb"> A. El-Tayeb</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Elkady"> M. F. Elkady</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20G.%20E.%20Ibrahim"> Mona G. E. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20M.%20Negm"> Abdelazim M. Negm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, corona discharge plasma reactor was used for degradation of organic pollution in aqueous solutions in batch reactor. This work examines the possibility of increasing the organic pollution removal efficiency from wastewater using non-thermal plasma. Three types of organic pollution phenol, acid blue 25 and methylene blue are presented to investigate experimentally the amount of organic pollution removal efficiency from wastewater. Measurement results for phenol degradation percentage are 71% in 35 min and 96% when its residence time is 60 min. In addition, the degradation behavior of acid blue 25 utilizing dual pin-to-plate corona discharge plasma system displays a removal efficiency of 82% in 11 min. The complete decolorization was accomplished in 35 min for concentration of acid blue 25 up to 100 ppm. Furthermore, the methylene blue degradation touched up to 85% during 35 min treatment in corona discharge plasma a batch reactor system. The decolorization ratio, conductivity, corona current and discharge energy are considered at various concentration molarity for AlCl3, CaCl2, KCl and NaCl under different molar concentration. It was observed that the attendance of salts at the same concentration level considerably diminished the rate and the extent of decolorization. The research presented that the corona system could be positively utilized in a diversity of organically contaminated at diverse concentrations. Energy consumption requirements for decolorization was considered. The consequences will be valuable for designing the plasma treatment systems appropriate for industrial wastewaters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title="wastewater treatment">wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=corona%20discharge" title=" corona discharge"> corona discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=non-thermal%20plasma" title=" non-thermal plasma"> non-thermal plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20pollution" title=" organic pollution"> organic pollution</a> </p> <a href="https://publications.waset.org/abstracts/52495/degradation-of-different-organic-contaminates-using-corona-discharge-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Innovative Approaches to Water Resources Management: Addressing Challenges through Machine Learning and Remote Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Elsehsah">Abdelrahman Elsehsah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20Negm"> Abdelazim Negm</a>, <a href="https://publications.waset.org/abstracts/search?q=Eid%20Ashour"> Eid Ashour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elsahabi"> Mohamed Elsahabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water resources management is a critical field that encompasses the planning, development, conservation, and allocation of water resources to meet societal needs while ensuring environmental sustainability. This paper reviews the key concepts and challenges in water resources management, emphasizing the significance of a holistic approach that integrates social, economic, and environmental factors. Traditional water management practices, characterized by supply-oriented strategies and centralized control, are increasingly inadequate in addressing contemporary challenges such as water scarcity, climate change impacts, and ecosystem degradation. Emerging technologies, particularly machine learning and remote sensing, offer innovative solutions to enhance decision-making processes in water management. Machine learning algorithms facilitate accurate water demand forecasting, quality monitoring, and leak detection, while remote sensing technologies provide vital data for assessing water availability and quality. This review highlights the need for integrated water management strategies that leverage these technologies to promote sustainable practices and foster resilience in water systems. Future research should focus on improving data quality, accessibility, and the integration of diverse datasets to optimize the benefits of these technological advancements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20resources%20management" title="water resources management">water resources management</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20scarcity" title=" water scarcity"> water scarcity</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20governance" title=" water governance"> water governance</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20practices" title=" sustainable practices"> sustainable practices</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20management" title=" ecosystem management"> ecosystem management</a> </p> <a href="https://publications.waset.org/abstracts/194875/innovative-approaches-to-water-resources-management-addressing-challenges-through-machine-learning-and-remote-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Mathematical Modeling to Reach Stability Condition within Rosetta River Mouth, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Masria">Ali Masria </a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20Negm">Abdelazim Negm</a>, <a href="https://publications.waset.org/abstracts/search?q=Moheb%20Iskander"> Moheb Iskander</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20C.%20Saavedra"> Oliver C. Saavedra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estuaries play an important role in exchanging water and providing a navigational pathway for ships. These zones are very sensitive and vulnerable to any interventions in coastal dynamics. Almost major of these inlets experience coastal problems such as severe erosion, and accretion. Rosetta promontory, Egypt is an example of this environment. It suffers from many coastal problems as erosion problem along the coastline and siltation problem inside the inlet. It is due to lack of water and sediment resources as a side effect of constructing the Aswan High dam. The shoaling of the inlet leads to hindering the navigation process of fishing boats, negative impacts to estuarine and salt marsh habitat and decrease the efficiency of the cross section to transfer the flow during emergencies to the sea. This paper aims to reach a new condition of stability of Rosetta Promontory by using coastal measures to control the sediment entering, and causes shoaling inside the inlet. These coastal measures include modifying the inlet cross section by using centered jetties, eliminate the coastal dynamic in the entrance using boundary jetties. This target is achieved by using a hydrodynamic model Coastal Modeling System (CMS). Extensive field data collection (hydrographic surveys, wave data, tide data, and bed morphology) is used to build and calibrate the model. About 20 scenarios were tested to reach a suitable solution that mitigate the coastal problems at the inlet. The results show that 360 m jetty in the eastern bank with system of sand bypass from the leeside of the jetty can stabilize the estuary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosetta%20promontory" title="Rosetta promontory">Rosetta promontory</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title=" sedimentation"> sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=inlet%20stability" title=" inlet stability"> inlet stability</a> </p> <a href="https://publications.waset.org/abstracts/13779/mathematical-modeling-to-reach-stability-condition-within-rosetta-river-mouth-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Using Biopolymer Materials to Enhance Sandy Soil Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ayeldeen">Mohamed Ayeldeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20Negm"> Abdelazim Negm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, strength characteristics of soils have more importance due to increasing building loads. In some projects, geotechnical properties of the soils are be improved using man-made materials varying from cement-based to chemical-based. These materials have proven successful in improving the engineering properties of the soil such as shear strength, compressibility, permeability, bearing capacity etc.. However, the use of these artificial injection formulas often modifies the pH level of soil, contaminates soil and groundwater. This is attributed to their toxic and hazardous characteristics. Recently, an environmentally friendly soil treatment method or Biological Treatment Method (BTM) was to bond particles of loose sandy soils. This research paper presents the preliminary results of using biopolymers for strengthening cohesionless soil. Xanthan gum was identified for further study over a range of concentrations varying from 0.25% to 2.00%. Xanthan gum is a polysaccharide secreted by the bacterium Xanthomonas campestris, used as a food additive and it is a nontoxic material. A series of direct shear, unconfined compressive strength, and permeability tests were carried out to investigate the behavior of sandy soil treated with Xanthan gum with different concentration ratios and at different curing times. Laser microscopy imaging was also conducted to study the microstructure of the treated sand. Experimental results demonstrated the compatibility of Xanthan gum to improve the geotechnical properties of sandy soil. Depending on the biopolymer concentration, it was observed that the biopolymers effectively increased the cohesion intercept and stiffness of the treated sand and reduced the permeability of sand. The microscopy imaging indicates that the cross-links of the biopolymers through and over the soil particles increase with the increase of the biopolymer concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopolymer" title="biopolymer">biopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20shear" title=" direct shear"> direct shear</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=Xanthan%20gum" title=" Xanthan gum"> Xanthan gum</a> </p> <a href="https://publications.waset.org/abstracts/46307/using-biopolymer-materials-to-enhance-sandy-soil-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Mitigation of Offshore Piling Noise Effects on Marine Mammals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waled%20A.%20Dawoud">Waled A. Dawoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20M.%20Negm"> Abdelazim M. Negm</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20M.%20Saleh"> Nasser M. Saleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Offshore piling generates underwater sound at level high enough to cause physical damage or hearing impairment to the marine mammals. Several methods can be used to mitigate the effect of underwater noise from offshore pile driving on marine mammals which can be divided into three main approaches. The first approach is to keep the mammal out of the high-risk area by using aversive sound waves produced by acoustic mitigation devices such as playing-back of mammal's natural predator vocalization, alarm or distress sounds, and anthropogenic sound. The second approach is to reduce the amount of underwater noise from pile driving using noise mitigation techniques such as bubble curtains, isolation casing, and hydro-sound dampers. The third approach is to eliminate the overlap of underwater waves by using prolonged construction process. To investigate the effectiveness of different noise mitigation methods; a pile driven with 235 kJ rated energy diesel hammer near Jeddah Coast, Kingdom of Saudi Arabia was used. Using empirical sound exposure model based on Red Sea characteristics and limits of National Oceanic and Atmospheric Administration; it was found that the aversive sound waves should extend to 1.8 km around the pile location. Bubble curtains can reduce the behavioral disturbance area up to 28%; temporary threshold shift up to 36%; permanent threshold shift up to 50%; and physical injury up to 70%. Isolation casing can reduce the behavioral disturbance range up to 12%; temporary threshold shift up to 21%; permanent threshold shift up to 29%; and physical injury up to 46%. Hydro-sound dampers efficiency depends mainly on the used technology and it can reduce the behavioral disturbance range from 10% to 33%; temporary threshold shift from 18% to 25%; permanent threshold shift from 32% to 50%; and physical injury from 46% to 60%. To prolong the construction process, it was found that the single pile construction, use of soft start, and keep time between two successive hammer strikes more than 3 seconds are the most effective techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20pile%20driving" title="offshore pile driving">offshore pile driving</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20propagation%20models" title=" sound propagation models"> sound propagation models</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20effects%20on%20marine%20mammals" title=" noise effects on marine mammals"> noise effects on marine mammals</a>, <a href="https://publications.waset.org/abstracts/search?q=Underwater%20noise%20mitigation" title=" Underwater noise mitigation"> Underwater noise mitigation</a> </p> <a href="https://publications.waset.org/abstracts/23524/mitigation-of-offshore-piling-noise-effects-on-marine-mammals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Weak Mutually Unbiased Bases versus Mutually Unbiased Bases in Terms of T-Designs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Shalaby">Mohamed Shalaby</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Kamal"> Yasser Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Negm%20Shawky"> Negm Shawky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mutually unbiased bases (MUBs) have an important role in the field of quantum computation and information. A complete set of these bases can be constructed when the system dimension is the power of the prime. Constructing such complete set in composite dimensions is still an open problem. Recently, the concept of weak mutually unbiased bases (WMUBs) in composite dimensions was introduced. A complete set of such bases can be constructed by combining the MUBs in each subsystem. In this paper, we present a comparative study between MUBs and WMUBs in the context of complex projective t-design. Explicit proofs are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20projective%20t-design" title="complex projective t-design">complex projective t-design</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20quantum%20systems" title=" finite quantum systems"> finite quantum systems</a>, <a href="https://publications.waset.org/abstracts/search?q=mutually%20unbiased%20bases" title=" mutually unbiased bases"> mutually unbiased bases</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20mutually%20unbiased%20bases" title=" weak mutually unbiased bases "> weak mutually unbiased bases </a> </p> <a href="https://publications.waset.org/abstracts/33996/weak-mutually-unbiased-bases-versus-mutually-unbiased-bases-in-terms-of-t-designs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Development of Interaction Factors Charts for Piled Raft Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20Makki%20Ibrahim">Abdelazim Makki Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Esamaldeen%20Ali"> Esamaldeen Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims at analysing the load settlement behavior and predict the bearing capacity of piled raft foundation a series of finite element models with different foundation configurations and stiffness were established. Numerical modeling is used to study the behavior of the piled raft foundation due to the complexity of piles, raft, and soil interaction and also due to the lack of reliable analytical method that can predict the behavior of the piled raft foundation system. Simple analytical models are developed to predict the average settlement and the load sharing between the piles and the raft in piled raft foundation system. A simple example to demonstrate the applications of these charts is included. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=pile-raft%20foundation" title=" pile-raft foundation"> pile-raft foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=method" title=" method"> method</a>, <a href="https://publications.waset.org/abstracts/search?q=PLAXIS%20software" title=" PLAXIS software"> PLAXIS software</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a> </p> <a href="https://publications.waset.org/abstracts/35331/development-of-interaction-factors-charts-for-piled-raft-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Advanced Digital Manufacturing: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Abdelazim">Abdelrahman Abdelazim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most industries are looking for technologies that are easy to use, efficient and fast to accomplish. To implement these, factories tend to use advanced systems that could alter complicity to simplicity and rudimentary to advancement. Cloud Manufacturing is a new movement that aims to mirror and integrate cloud computing into manufacturing. Amongst cloud manufacturing various advantages are decreasing the human involvements and increasing the dependency on automated machines, which in turns decreases human errors and increases efficiency. A reliable and extraordinary performance processes with minimum errors are highly desired factors of today鈥檚 manufacturers. At the glance it seems to be the best alternative, however, the implementation of a cloud system can be very challenging. This work investigates cloud manufacturing in details, it outlines its advantages and disadvantages by converting a local factory in Kuwait to a cloud-ready system. Initially the flow of the factory鈥檚 manufacturing process has been analyzed identifying the bottlenecks and illustrating how cloud manufacturing can eliminate them. Following this an automation process has been analyzed and implemented. A comparison between the process before and after the adaptation has been carried out showing the effects on the cost, the output and the efficiency of the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20manufacturing" title="cloud manufacturing">cloud manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuwait%20industrial%20sector" title=" Kuwait industrial sector"> Kuwait industrial sector</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20digital%20manufacturing" title=" advanced digital manufacturing"> advanced digital manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/16143/advanced-digital-manufacturing-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">771</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Words of Peace in the Speeches of the Egyptian President, Abdulfattah El-Sisi: A Corpus-Based Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Negm">Mohamed S. Negm</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20S.%20Mandour"> Waleed S. Mandour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aims primarily at investigating words of peace (lexemes of peace) in the formal speeches of the Egyptian president Abdulfattah El-Sisi in a two-year span of time, from 2018 to 2019. This paper attempts to shed light not only on the contextual use of the antonyms, war and peace, but also it underpins quantitative analysis through the current methods of corpus linguistics. As such, the researchers have deployed a corpus-based approach in collecting, encoding, and processing 30 presidential speeches over the stated period (23,411 words and 25,541 tokens in total). Further, semantic fields and collocational networkzs are identified and compared statistically. Results have shown a significant propensity of adopting peace, including its relevant collocation network, textually and therefore, ideationally, at the expense of war concept which in most cases surfaces euphemistically through the noun conflict. The president has not justified the action of war with an honorable cause or a valid reason. Such results, so far, have indicated a positive sociopolitical mindset the Egyptian president possesses and moreover, reveal national and international fair dealing on arising issues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CADS" title="CADS">CADS</a>, <a href="https://publications.waset.org/abstracts/search?q=collocation%20network" title=" collocation network"> collocation network</a>, <a href="https://publications.waset.org/abstracts/search?q=corpus%20linguistics" title=" corpus linguistics"> corpus linguistics</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20discourse%20analysis" title=" critical discourse analysis"> critical discourse analysis</a> </p> <a href="https://publications.waset.org/abstracts/111022/words-of-peace-in-the-speeches-of-the-egyptian-president-abdulfattah-el-sisi-a-corpus-based-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Optimization of Strategies and Models Review for Optimal Technologies-Based on Fuzzy Schemes for Green Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Elshafei">Ghada Elshafei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elazim%20Negm"> A. Elazim Negm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, Green architecture becomes a significant way to a sustainable future. Green building designs involve finding the balance between comfortable homebuilding and sustainable environment. Moreover, the utilization of the new technologies such as artificial intelligence techniques are used to complement current practices in creating greener structures to keep the built environment more sustainable. The most common objectives are green buildings should be designed to minimize the overall impact of the built environment on ecosystems in general and particularly on human health and on the natural environment. This will lead to protecting occupant health, improving employee productivity, reducing pollution and sustaining the environmental. In green building design, multiple parameters which may be interrelated, contradicting, vague and of qualitative/quantitative nature are broaden to use. This paper presents a comprehensive critical state of art review of current practices based on fuzzy and its combination techniques. Also, presented how green architecture/building can be improved using the technologies that been used for analysis to seek optimal green solutions strategies and models to assist in making the best possible decision out of different alternatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20architecture%2Fbuilding" title="green architecture/building">green architecture/building</a>, <a href="https://publications.waset.org/abstracts/search?q=technologies" title=" technologies"> technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=strategies" title=" strategies"> strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20techniques" title=" fuzzy techniques"> fuzzy techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=models" title=" models"> models</a> </p> <a href="https://publications.waset.org/abstracts/26687/optimization-of-strategies-and-models-review-for-optimal-technologies-based-on-fuzzy-schemes-for-green-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> A Four-Year Study of Thyroid Carcinoma in Hail Region: Increased Incidence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laila%20Seada">Laila Seada</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Oreiby"> Hanan Oreiby</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawaz%20Al%20Rashid"> Fawaz Al Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Negm"> Ashraf Negm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Objective: In most areas of the world, the incidence of thyroid cancer has been increasing over the last decade, mostly due to a combination of early detection of the neoplasm resulting from sensitive procedures and increased population exposure to radiation and unrecognized carcinogens. Methods: Cases of thyroid cancer have been retrieved from the cancer registry at King Khalid Hospital during the period from August 2012 to April 2016. Age, gender and histopathologic types have been recorded. Results: Thyroid carcinoma ranked as the second most common malignancy in females (25%) after breast cancer (31%). It constituted 20.8% of all newly diagnosed cancer cases. As for males, it ranked the 4<sup>th</sup> type of malignancy after gastrointestinal cancer, lymphomas and soft tissue sarcomas. Mean age for females and males was 38.7 +/- 13.2 and 60.25 +/- 11.5 years, respectively, and the difference between the two groups was statistically significant (<em>p</em> value = 0.0001). Fifty-five (82%) were papillary carcinomas including 10 follicular variant of papillary (FVPC), and eight papillary micro carcinomas (PMC) and two tall cell/oncocytic variants. Follicular carcinomas constituted two (3.1%), while two (3.1%) were anaplastic, and two (3.1%) were medullary. Conclusion: Thyroid cancer incidence in Hail is ranking as the 2<sup>nd</sup> most common female malignancy similar to other regions in the Kingdom. However, this high incidence contrasts with much lower rates worldwide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thyroid" title="thyroid">thyroid</a>, <a href="https://publications.waset.org/abstracts/search?q=hail" title=" hail"> hail</a>, <a href="https://publications.waset.org/abstracts/search?q=papillary" title=" papillary"> papillary</a>, <a href="https://publications.waset.org/abstracts/search?q=microcarcinoma" title=" microcarcinoma"> microcarcinoma</a> </p> <a href="https://publications.waset.org/abstracts/53170/a-four-year-study-of-thyroid-carcinoma-in-hail-region-increased-incidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Modeling of the Attitude Control Reaction Wheels of a Spacecraft in Software in the Loop Test Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amr%20AbdelAzim%20Ali">Amr AbdelAzim Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Elsheikh"> G. A. Elsheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Moutaz%20M.%20Hegazy"> Moutaz M. Hegazy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reaction wheels (RWs) are generally used as main actuator in the attitude control system (ACS) of spacecraft (SC) for fast orientation and high pointing accuracy. In order to achieve the required accuracy for the RWs model, the main characteristics of the RWs that necessitate analysis during the ACS design phase include: technical features, sequence of operating and RW control logic are included in function (behavior) model. A mathematical model is developed including the various errors source. The errors in control torque including relative, absolute, and error due to time delay. While the errors in angular velocity due to differences between average and real speed, resolution error, loose in installation of angular sensor, and synchronization errors. The friction torque is presented in the model include the different feature of friction phenomena: steady velocity friction, static friction and break-away torque, and frictional lag. The model response is compared with the experimental torque and frequency-response characteristics of tested RWs. Based on the created RW model, some criteria of optimization based control torque allocation problem can be recommended like: avoiding the zero speed crossing, bias angular velocity, or preventing wheel from running on the same angular velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20torque" title="friction torque">friction torque</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20wheels%20modeling" title=" reaction wheels modeling"> reaction wheels modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20in%20the%20loop" title=" software in the loop"> software in the loop</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft%20attitude%20control" title=" spacecraft attitude control"> spacecraft attitude control</a> </p> <a href="https://publications.waset.org/abstracts/86635/modeling-of-the-attitude-control-reaction-wheels-of-a-spacecraft-in-software-in-the-loop-test-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Rock Slope Stabilization and Protection for Roads and Multi-Storey Structures in Jabal Omar, Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Abdel%20Gadir%20Malik">Ibrahim Abdel Gadir Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Dafalla%20Siddig%20Dafalla"> Dafalla Siddig Dafalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20Ibrahim"> Abdelazim Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jabal Omar is located in the western side of Makkah city in Saudi Arabia. The proposed Jabal Omar Development project includes several multi-storey buildings, roads, bridges and below ground structures founded at various depths. In this study, geological mapping and site inspection which covered pre-selected areas were carried out within the easily accessed parts. Geological features; including rock types, structures, degree of weathering, and geotechnical hazards were observed and analyzed with specified software and also were documented in form of photographs. The presence of joints and fractures in the area made the rock blocks small and weak. The site is full of jointing; it was observed that, the northern side consists of 3 to 4 jointing systems with 2 random fractures associated with dykes. The southern part is affected by 2 to 3 jointing systems with minor fault and shear zones. From the field measurements and observations, it was concluded that, the Jabal Omar intruded by andesitic and basaltic dykes of different thickness and orientation. These dykes made the outcrop weak, highly deformed and made the rock masses sensitive to weathering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rock" title="rock">rock</a>, <a href="https://publications.waset.org/abstracts/search?q=slope" title=" slope"> slope</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=protection" title=" protection"> protection</a>, <a href="https://publications.waset.org/abstracts/search?q=Makkah" title=" Makkah"> Makkah</a> </p> <a href="https://publications.waset.org/abstracts/32229/rock-slope-stabilization-and-protection-for-roads-and-multi-storey-structures-in-jabal-omar-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">809</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Deep Reinforcement Learning for Advanced Pressure Management in Water Distribution Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Negm">Ahmed Negm</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Aggidis"> George Aggidis</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiandong%20Ma"> Xiandong Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the diverse nature of urban cities, customer demand patterns, landscape topologies or even seasonal weather trends; managing our water distribution networks (WDNs) has proved a complex task. These unpredictable circumstances manifest as pipe failures, intermittent supply and burst events thus adding to water loss, energy waste and increased carbon emissions. Whilst these events are unavoidable, advanced pressure management has proved an effective tool to control and mitigate them. Henceforth, water utilities have struggled with developing a real-time control method that is resilient when confronting the challenges of water distribution. In this paper we use deep reinforcement learning (DRL) algorithms as a novel pressure control strategy to minimise pressure violations and leakage under both burst and background leakage conditions. Agents based on asynchronous actor critic (A2C) and recurrent proximal policy optimisation (Recurrent PPO) were trained and compared to benchmarked optimisation algorithms (differential evolution, particle swarm optimisation. A2C manages to minimise leakage by 32.48% under burst conditions and 67.17% under background conditions which was the highest performance in the DRL algorithms. A2C and Recurrent PPO performed well in comparison to the benchmarks with higher processing speed and lower computational effort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title="deep reinforcement learning">deep reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20management" title=" pressure management"> pressure management</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20distribution%20networks" title=" water distribution networks"> water distribution networks</a>, <a href="https://publications.waset.org/abstracts/search?q=leakage%20management" title=" leakage management"> leakage management</a> </p> <a href="https://publications.waset.org/abstracts/176527/deep-reinforcement-learning-for-advanced-pressure-management-in-water-distribution-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>