CINXE.COM

Oktonion – Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="nb" dir="ltr"> <head> <meta charset="UTF-8"> <title>Oktonion – Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )nowikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","januar","februar","mars","april","mai","juni","juli","august","september","oktober","november","desember"],"wgRequestId":"25057ba8-1a6c-45d3-bb3e-7efcbf99010e","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Oktonion","wgTitle":"Oktonion","wgCurRevisionId":22061304,"wgRevisionId":22061304,"wgArticleId":1809365,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Sider som bruker magiske ISBN-lenker","Artikler med autoritetsdatalenker fra Wikidata","Tall","Algebra"],"wgPageViewLanguage":"nb","wgPageContentLanguage":"nb","wgPageContentModel":"wikitext","wgRelevantPageName":"Oktonion","wgRelevantArticleId":1809365,"wgTempUserName":null,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true, "wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"nb","pageLanguageDir":"ltr","pageVariantFallbacks":"nb"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q743418","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.InterProjectLinks":"ready", "ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.UkensKonkurranse","ext.gadget.link-missing-label","ext.gadget.new-section","ext.gadget.superinterwiki","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth", "ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=nb&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=nb&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=nb&amp;modules=ext.gadget.InterProjectLinks&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=nb&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/d/d9/Fano_mnemonic3.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1068"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/d/d9/Fano_mnemonic3.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="712"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="570"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Oktonion – Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//no.m.wikipedia.org/wiki/Oktonion"> <link rel="alternate" type="application/x-wiki" title="Rediger" href="/w/index.php?title=Oktonion&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (nb)"> <link rel="EditURI" type="application/rsd+xml" href="//no.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://no.wikipedia.org/wiki/Oktonion"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.no"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom-mating" href="/w/index.php?title=Spesial:Siste_endringer&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Oktonion rootpage-Oktonion skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Hopp til innhold</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Nettsted"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Hovedmeny" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Hovedmeny</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Hovedmeny</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">flytt til sidefeltet</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">skjul</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigasjon </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Forside" title="Gå til hovedsiden [z]" accesskey="z"><span>Forside</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Spesial:Tilfeldig" title="Vis en tilfeldig side [x]" accesskey="x"><span>Tilfeldig side</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Hjelp:Portal" title="Stedet for å få hjelp"><span>Hjelp</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Spesial:Siste_endringer" title="Liste over siste endringer på wikien. [r]" accesskey="r"><span>Siste endringer</span></a></li> </ul> </div> </div> <div id="p-prosjekt" class="vector-menu mw-portlet mw-portlet-prosjekt" > <div class="vector-menu-heading"> Prosjekt </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Prosjektportal" class="mw-list-item"><a href="/wiki/Wikipedia:Portal"><span>Prosjektportal</span></a></li><li id="n-bidra" class="mw-list-item"><a href="/wiki/Wikipedia:Bidra_til_Wikipedia"><span>Hvordan bidra?</span></a></li><li id="n-tinget" class="mw-list-item"><a href="/wiki/Wikipedia:Tinget"><span>Tinget</span></a></li><li id="n-torget" class="mw-list-item"><a href="/wiki/Wikipedia:Torget"><span>Torget</span></a></li><li id="n-konkurranser" class="mw-list-item"><a href="/wiki/Wikipedia:Konkurranser"><span>Konkurranser</span></a></li> </ul> </div> </div> <div id="p-Wikipedia" class="vector-menu mw-portlet mw-portlet-Wikipedia" > <div class="vector-menu-heading"> Wikipedia </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-kontakt" class="mw-list-item"><a href="/wiki/Wikipedia:Kontakt"><span>Kontakt Wikipedia</span></a></li><li id="n-wmno" class="mw-list-item"><a href="https://www.wikimedia.no" rel="nofollow" title="Medlemsorganisasjon for wikipedianere"><span>Wikimedia Norge</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Forside" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-no.svg" width="121" height="14" style="width: 7.5625em; height: 0.875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Spesial:S%C3%B8k" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Søk i Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Søk</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Søk i Wikipedia" aria-label="Søk i Wikipedia" autocapitalize="sentences" title="Søk i Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Spesial:Søk"> </div> <button class="cdx-button cdx-search-input__end-button">Søk</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personlig"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Utseende"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Endre skriftstørrelse, bredde og farge på siden." > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Utseende" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Utseende</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_no.wikipedia.org&amp;uselang=nb" class=""><span>Doner</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Spesial:Opprett_konto&amp;returnto=Oktonion" title="Du oppfordres til å opprette en konto og logge inn, men det er ikke obligatorisk" class=""><span>Opprett konto</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Spesial:Logg_inn&amp;returnto=Oktonion" title="Du oppfordres til å logge inn, men det er ikke obligatorisk [o]" accesskey="o" class=""><span>Logg inn</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out user-links-collapsible-item" title="Flere alternativer" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personlig" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personlig</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Brukermeny" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_no.wikipedia.org&amp;uselang=nb"><span>Doner</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Spesial:Opprett_konto&amp;returnto=Oktonion" title="Du oppfordres til å opprette en konto og logge inn, men det er ikke obligatorisk"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Opprett konto</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Spesial:Logg_inn&amp;returnto=Oktonion" title="Du oppfordres til å logge inn, men det er ikke obligatorisk [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Logg inn</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Nettsted"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Innhold" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Innhold</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">flytt til sidefeltet</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">skjul</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Til toppen)</div> </a> </li> <li id="toc-Historie" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Historie"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Historie</span> </div> </a> <ul id="toc-Historie-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definisjon" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definisjon"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definisjon</span> </div> </a> <ul id="toc-Definisjon-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cayley-Dicksons_konstruksjon" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Cayley-Dicksons_konstruksjon"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Cayley-Dicksons konstruksjon</span> </div> </a> <button aria-controls="toc-Cayley-Dicksons_konstruksjon-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Vis/skjul underseksjonen Cayley-Dicksons konstruksjon</span> </button> <ul id="toc-Cayley-Dicksons_konstruksjon-sublist" class="vector-toc-list"> <li id="toc-Fano-planet" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fano-planet"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Fano-planet</span> </div> </a> <ul id="toc-Fano-planet-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Se_også" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Se_også"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Se også</span> </div> </a> <ul id="toc-Se_også-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Referanser" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Referanser"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Referanser</span> </div> </a> <ul id="toc-Referanser-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Eksterne_lenker" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Eksterne_lenker"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Eksterne lenker</span> </div> </a> <ul id="toc-Eksterne_lenker-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Innhold" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Vis/skjul innholdsfortegnelsen" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Vis/skjul innholdsfortegnelsen</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Oktonion</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Gå til en artikkel på et annet språk. Tilgjengelig på 33 språk" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-33" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">33 språk</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Oktonion" title="Oktonion – svensk" lang="sv" hreflang="sv" data-title="Oktonion" data-language-autonym="Svenska" data-language-local-name="svensk" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D8%AB%D9%85%D8%A7%D9%86%D9%8A_%D9%85%D8%B1%D9%83%D8%A8" title="عدد ثماني مركب – arabisk" lang="ar" hreflang="ar" data-title="عدد ثماني مركب" data-language-autonym="العربية" data-language-local-name="arabisk" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Octoni%C3%B3" title="Octonió – katalansk" lang="ca" hreflang="ca" data-title="Octonió" data-language-autonym="Català" data-language-local-name="katalansk" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9A%D1%8D%D0%BB%D0%B8_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B8" title="Кэли алгебри – tsjuvasjisk" lang="cv" hreflang="cv" data-title="Кэли алгебри" data-language-autonym="Чӑвашла" data-language-local-name="tsjuvasjisk" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Oktonion" title="Oktonion – tsjekkisk" lang="cs" hreflang="cs" data-title="Oktonion" data-language-autonym="Čeština" data-language-local-name="tsjekkisk" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Oktave_(Mathematik)" title="Oktave (Mathematik) – tysk" lang="de" hreflang="de" data-title="Oktave (Mathematik)" data-language-autonym="Deutsch" data-language-local-name="tysk" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9F%CE%BA%CF%84%CF%8C%CE%BD%CE%B9%CE%BF" title="Οκτόνιο – gresk" lang="el" hreflang="el" data-title="Οκτόνιο" data-language-autonym="Ελληνικά" data-language-local-name="gresk" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Octonion" title="Octonion – engelsk" lang="en" hreflang="en" data-title="Octonion" data-language-autonym="English" data-language-local-name="engelsk" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Octoni%C3%B3n" title="Octonión – spansk" lang="es" hreflang="es" data-title="Octonión" data-language-autonym="Español" data-language-local-name="spansk" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Oktonioi" title="Oktonioi – baskisk" lang="eu" hreflang="eu" data-title="Oktonioi" data-language-autonym="Euskara" data-language-local-name="baskisk" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%87%D8%B4%D8%AA%DA%AF%D8%A7%D9%86%E2%80%8C%D9%87%D8%A7" title="هشتگان‌ها – persisk" lang="fa" hreflang="fa" data-title="هشتگان‌ها" data-language-autonym="فارسی" data-language-local-name="persisk" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Octonion" title="Octonion – fransk" lang="fr" hreflang="fr" data-title="Octonion" data-language-autonym="Français" data-language-local-name="fransk" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%8C%94%EC%9B%90%EC%88%98" title="팔원수 – koreansk" lang="ko" hreflang="ko" data-title="팔원수" data-language-autonym="한국어" data-language-local-name="koreansk" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Oktonion" title="Oktonion – indonesisk" lang="id" hreflang="id" data-title="Oktonion" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonesisk" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Octonion" title="Octonion – interlingua" lang="ia" hreflang="ia" data-title="Octonion" data-language-autonym="Interlingua" data-language-local-name="interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Ottetto_(matematica)" title="Ottetto (matematica) – italiensk" lang="it" hreflang="it" data-title="Ottetto (matematica)" data-language-autonym="Italiano" data-language-local-name="italiensk" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%90%D7%9C%D7%92%D7%91%D7%A8%D7%AA_%D7%94%D7%90%D7%95%D7%A7%D7%98%D7%95%D7%A0%D7%99%D7%95%D7%A0%D7%99%D7%9D_%D7%A9%D7%9C_%D7%A7%D7%99%D7%99%D7%9C%D7%99" title="אלגברת האוקטוניונים של קיילי – hebraisk" lang="he" hreflang="he" data-title="אלגברת האוקטוניונים של קיילי" data-language-autonym="עברית" data-language-local-name="hebraisk" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Numerus_octonus" title="Numerus octonus – latin" lang="la" hreflang="la" data-title="Numerus octonus" data-language-autonym="Latina" data-language-local-name="latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Okt%C3%B3ni%C3%B3k" title="Októniók – ungarsk" lang="hu" hreflang="hu" data-title="Októniók" data-language-autonym="Magyar" data-language-local-name="ungarsk" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Octonion" title="Octonion – nederlandsk" lang="nl" hreflang="nl" data-title="Octonion" data-language-autonym="Nederlands" data-language-local-name="nederlandsk" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%85%AB%E5%85%83%E6%95%B0" title="八元数 – japansk" lang="ja" hreflang="ja" data-title="八元数" data-language-autonym="日本語" data-language-local-name="japansk" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Oktawy_Cayleya" title="Oktawy Cayleya – polsk" lang="pl" hreflang="pl" data-title="Oktawy Cayleya" data-language-autonym="Polski" data-language-local-name="polsk" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Octoni%C3%A3o" title="Octonião – portugisisk" lang="pt" hreflang="pt" data-title="Octonião" data-language-autonym="Português" data-language-local-name="portugisisk" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Octonion" title="Octonion – rumensk" lang="ro" hreflang="ro" data-title="Octonion" data-language-autonym="Română" data-language-local-name="rumensk" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0_%D0%9A%D1%8D%D0%BB%D0%B8" title="Алгебра Кэли – russisk" lang="ru" hreflang="ru" data-title="Алгебра Кэли" data-language-autonym="Русский" data-language-local-name="russisk" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Octonion" title="Octonion – enkel engelsk" lang="en-simple" hreflang="en-simple" data-title="Octonion" data-language-autonym="Simple English" data-language-local-name="enkel engelsk" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Oktonion" title="Oktonion – slovensk" lang="sl" hreflang="sl" data-title="Oktonion" data-language-autonym="Slovenščina" data-language-local-name="slovensk" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%AD%E0%B8%AD%E0%B8%81%E0%B9%82%E0%B8%97%E0%B9%80%E0%B8%99%E0%B8%B5%E0%B8%A2%E0%B8%99" title="ออกโทเนียน – thai" lang="th" hreflang="th" data-title="ออกโทเนียน" data-language-autonym="ไทย" data-language-local-name="thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9E%D0%BA%D1%82%D0%BE%D0%BD%D1%96%D0%BE%D0%BD" title="Октоніон – ukrainsk" lang="uk" hreflang="uk" data-title="Октоніон" data-language-autonym="Українська" data-language-local-name="ukrainsk" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Octonion" title="Octonion – vietnamesisk" lang="vi" hreflang="vi" data-title="Octonion" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamesisk" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%85%AB%E5%85%83%E6%95%B8" title="八元數 – klassisk kinesisk" lang="lzh" hreflang="lzh" data-title="八元數" data-language-autonym="文言" data-language-local-name="klassisk kinesisk" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%85%AB%E5%85%83%E6%95%B8" title="八元數 – kantonesisk" lang="yue" hreflang="yue" data-title="八元數" data-language-autonym="粵語" data-language-local-name="kantonesisk" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%85%AB%E5%85%83%E6%95%B0" title="八元数 – kinesisk" lang="zh" hreflang="zh" data-title="八元数" data-language-autonym="中文" data-language-local-name="kinesisk" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q743418#sitelinks-wikipedia" title="Rediger lenker til artikkelen på andre språk" class="wbc-editpage">Rediger lenker</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Navnerom"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Oktonion" title="Vis innholdssiden [c]" accesskey="c"><span>Artikkel</span></a></li><li id="ca-talk" class="new vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Diskusjon:Oktonion&amp;action=edit&amp;redlink=1" rel="discussion" class="new" title="Diskusjon om innholdssiden (ikke skrevet ennå) [t]" accesskey="t"><span>Diskusjon</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Bytt språkvariant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">norsk bokmål</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Visninger"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Oktonion"><span>Les</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Oktonion&amp;veaction=edit" title="Rediger siden [v]" accesskey="v"><span>Rediger</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Oktonion&amp;action=edit" title="Rediger kildekoden for denne siden [e]" accesskey="e"><span>Rediger kilde</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Oktonion&amp;action=history" title="Tidligere sideversjoner av denne siden [h]" accesskey="h"><span>Vis historikk</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Sideverktøy"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Verktøy" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Verktøy</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Verktøy</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">flytt til sidefeltet</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">skjul</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Flere alternativer" > <div class="vector-menu-heading"> Handlinger </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Oktonion"><span>Les</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Oktonion&amp;veaction=edit" title="Rediger siden [v]" accesskey="v"><span>Rediger</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Oktonion&amp;action=edit" title="Rediger kildekoden for denne siden [e]" accesskey="e"><span>Rediger kilde</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Oktonion&amp;action=history"><span>Vis historikk</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Generelt </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Spesial:Lenker_hit/Oktonion" title="Liste over alle wikisider som lenker hit [j]" accesskey="j"><span>Lenker hit</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Spesial:Relaterte_endringer/Oktonion" rel="nofollow" title="Siste endringer i sider som blir lenket fra denne siden [k]" accesskey="k"><span>Relaterte endringer</span></a></li><li id="t-upload" class="mw-list-item"><a href="//commons.wikimedia.org/wiki/Special:UploadWizard?uselang=no" title="Last opp filer [u]" accesskey="u"><span>Last opp fil</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Spesial:Spesialsider" title="Liste over alle spesialsider [q]" accesskey="q"><span>Spesialsider</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Oktonion&amp;oldid=22061304" title="Permanent lenke til denne versjonen av siden"><span>Permanent lenke</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Oktonion&amp;action=info" title="Mer informasjon om denne siden"><span>Sideinformasjon</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Spesial:Siteringshjelp&amp;page=Oktonion&amp;id=22061304&amp;wpFormIdentifier=titleform" title="Informasjon om hvordan denne siden kan siteres"><span>Siter denne siden</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Spesial:UrlShortener&amp;url=https%3A%2F%2Fno.wikipedia.org%2Fwiki%2FOktonion"><span>Hent forkortet URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Spesial:QrCode&amp;url=https%3A%2F%2Fno.wikipedia.org%2Fwiki%2FOktonion"><span>Last ned QR-kode</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Skriv ut / eksporter </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Spesial:DownloadAsPdf&amp;page=Oktonion&amp;action=show-download-screen"><span>Last ned som PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Oktonion&amp;printable=yes" title="Utskriftsvennlig versjon av denne siden [p]" accesskey="p"><span>Utskriftsvennlig versjon</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> På andre prosjekter </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Octonions" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q743418" title="Lenke til koblet dataregisterelement [g]" accesskey="g"><span>Wikidata-element</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Sideverktøy"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Utseende"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Utseende</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">flytt til sidefeltet</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">skjul</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Fra Wikipedia, den frie encyklopedi</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="nb" dir="ltr"><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fil:Fano_mnemonic3.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Fano_mnemonic3.png/250px-Fano_mnemonic3.png" decoding="async" width="250" height="223" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Fano_mnemonic3.png/375px-Fano_mnemonic3.png 1.5x, //upload.wikimedia.org/wikipedia/commons/d/d9/Fano_mnemonic3.png 2x" data-file-width="500" data-file-height="445" /></a><figcaption>De syv punktene i <a href="/wiki/Projektivt_plan#Eksempel:_Syvpunktsplanet" title="Projektivt plan">Fano-planet</a> kan direkte knyttes til oktonionene.</figcaption></figure> <p><b>Oktonion</b> (fra <a href="/wiki/Latin" title="Latin">latin</a> <i>octo</i> - åtte) eller <b>Cayley-tall</b> er et element i en åttedimensjonal utvidelse av de <a href="/wiki/Reelt_tall" title="Reelt tall">reelle tallene</a> på samme måte som <a href="/wiki/Kvaternion" title="Kvaternion">kvaternionene</a> er en firedimensjonal utvidelse. Den tilsvarende <a href="/wiki/Tallmengde" class="mw-redirect" title="Tallmengde">tallmengden</a> betegnes vanligvis med <b>O</b> eller <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {O} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">O</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {O} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1ed2664a4fe515e6fbed25a7193ce663b82920c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \mathbb {O} }"></span>. Tallene <a href="/wiki/Kommutativ_lov" title="Kommutativ lov">kommuterer</a> ikke ved <a href="/wiki/Multiplikasjon" title="Multiplikasjon">multiplikasjon</a> og denne operasjonen er heller ikke <a href="/wiki/Assosiativ_lov" title="Assosiativ lov">assosiativ</a>. I motsetning til kvaternionene kan de derfor ikke representeres ved <a href="/wiki/Matrise" title="Matrise">matriser</a> og har ingen kjente, praktiske anvendelser. Innen ren <a href="/wiki/Matematikk" title="Matematikk">matematikk</a> knyttes de til spesielle <a href="/wiki/Lie-gruppe" title="Lie-gruppe">Lie-grupper</a> og deres egenskaper. </p><p><a href="/wiki/Tallmengde" class="mw-redirect" title="Tallmengde">Tallmengdene</a> <b>R</b> av <a href="/wiki/Reelt_tall" title="Reelt tall">reelle tall</a>, <b>C</b> av <a href="/wiki/Komplekst_tall" title="Komplekst tall">komplekse tall</a>, <b>H</b> av <a href="/wiki/Kvaternion" title="Kvaternion">kvaternioner</a> og <b>O</b> av oktonioner er de eneste <a href="/wiki/Algebra" title="Algebra">divisjonsalgebraene</a> over de reelle tallene som er <a href="/wiki/Norm_(matematikk)" title="Norm (matematikk)">normerte</a>, det vil si at hvert element kan tilordnes en entydig, numerisk verdi. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Historie">Historie</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Oktonion&amp;veaction=edit&amp;section=1" title="Rediger avsnitt: Historie" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Oktonion&amp;action=edit&amp;section=1" title="Rediger kildekoden til seksjonen Historie"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Dagen etter at <a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">William Rowan Hamilton</a> i oktober 1843 oppdaget <a href="/wiki/Kvaternion" title="Kvaternion">kvaternionene</a>, skrev han om disse i et brev til sin venn <a href="/w/index.php?title=John_Thomas_Graves&amp;action=edit&amp;redlink=1" class="new" title="John Thomas Graves (ikke skrevet ennå)">John Thomas Graves</a>. I desember samme år kunne Graves fortelle Hamilton at han hadde kommet frem til en lignende, åttedimensjonal utvidelse som han kalte for «oktaver». Komponentene oppfylte en «åtte-kvadraters identitet» av samme form som <a href="/wiki/Kvaternion#Konjugasjon_og_norm" title="Kvaternion">fire-kvadrats identiteten</a> for komponentene til to kvarterioner. </p><p>På samme tid hadde også den unge <a href="/w/index.php?title=Arthur_Cayley&amp;action=edit&amp;redlink=1" class="new" title="Arthur Cayley (ikke skrevet ennå)">Arthur Cayley</a> fattet interesse for Hamiltons kvaternioner. I et publisert arbeid om <a href="/wiki/Elliptisk_funksjon" title="Elliptisk funksjon">elliptiske funksjoner</a> i 1845 tok han med et appendiks hvor han presenterte egenskapene til dagens oktonioner som han hadde kommet frem til på egen hånd. Selv om Hamilton kunne bekrefte at Graves hadde gjort dette tidligere, ble det likevel arbeidet til Cayley som ble lagt merke til. Disse nye tallene fikk dermed Cayleys navn knyttet til seg.<sup id="cite_ref-Conway_1-0" class="reference"><a href="#cite_note-Conway-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>I tillegg viste det seg at åtte-kvadraters identiteten til Graves var tidligere funnet i en annen sammenheng av <a href="/wiki/Carl_Ferdinand_Degen#Åtte-kvadrats_likhet" title="Carl Ferdinand Degen">Carl F. Degen</a> som hadde hjulpet <a href="/wiki/Niels_Henrik_Abel" title="Niels Henrik Abel">Niels H. Abel</a> da han ennå var student.<sup id="cite_ref-Baez_2-0" class="reference"><a href="#cite_note-Baez-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Definisjon">Definisjon</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Oktonion&amp;veaction=edit&amp;section=2" title="Rediger avsnitt: Definisjon" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Oktonion&amp;action=edit&amp;section=2" title="Rediger kildekoden til seksjonen Definisjon"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Oktonioner er element i et åttedimensjonalt <a href="/wiki/Vektorrom" title="Vektorrom">vektorrom</a> med basisvektorer 1, <b>e</b><sub>1</sub>, <b>e</b><sub>2</sub>, <b>e</b><sub>3</sub>, <b>e</b><sub>4</sub>, <b>e</b><sub>5</sub>, <b>e</b><sub>6</sub> og <b>e</b><sub>7</sub> slik at de kan skrives som </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{0}+x_{1}\mathbf {e} _{1}+x_{2}\mathbf {e} _{2}+x_{3}\mathbf {e} _{3}+x_{4}\mathbf {e} _{4}+x_{5}\mathbf {e} _{5}+x_{6}\mathbf {e} _{6}+x_{7}\mathbf {e} _{7}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{0}+x_{1}\mathbf {e} _{1}+x_{2}\mathbf {e} _{2}+x_{3}\mathbf {e} _{3}+x_{4}\mathbf {e} _{4}+x_{5}\mathbf {e} _{5}+x_{6}\mathbf {e} _{6}+x_{7}\mathbf {e} _{7}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c59c23298094b186147fc8b172f461b99253b25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:59.338ex; height:2.343ex;" alt="{\displaystyle x=x_{0}+x_{1}\mathbf {e} _{1}+x_{2}\mathbf {e} _{2}+x_{3}\mathbf {e} _{3}+x_{4}\mathbf {e} _{4}+x_{5}\mathbf {e} _{5}+x_{6}\mathbf {e} _{6}+x_{7}\mathbf {e} _{7}}"></span></dd></dl> <p>hvor de åtte komponentene (<i>x</i><sub>0</sub>,<i>x</i><sub>1</sub>,<i>x</i><sub>2</sub>,<i>x</i><sub>3</sub>,<i>x</i><sub>4</sub>,<i>x</i><sub>5</sub>,<i>x</i><sub>6</sub>,<i>x</i><sub>7</sub>) er <a href="/wiki/Reelt_tall" title="Reelt tall">reelle tall</a>. De første komponenten <i>x</i><sub>0</sub>&#8201; sies å tilhøre den <a href="/wiki/Skalar" title="Skalar">skalare</a> delen av oktonionen, mens de syv andre tilhører den vektorielle eller «imaginære» delen. </p><p>Basiselementene danner en <a href="/wiki/Algebra" title="Algebra">divisjonsalgebra</a> slik at produktet av to element alltid kan uttrykkes som en lineærkombinasjon av dem selv. To oktononioner <i>x</i> og <i>y&#8201;</i> kan derfor multipliseres sammen med resultat <i>xy</i> eller <i>yx</i> som også er oktonioner. I allminnelighet er <i>xy</i> &#8800; <i>yx</i> slik at de i allminnelighet ikke <a href="/wiki/Kommutativ_lov" title="Kommutativ lov">kommuterer</a> med hverandre. </p><p>Hvert element <i>x</i> skal også ha en bestemt <a href="/wiki/Norm_(matematikk)" title="Norm (matematikk)">norm</a> |<i>x</i>&#8201;| slik at |<i>xy</i>&#8201;| = |<i>x</i>&#8201;|&#8201;|<i>y</i>&#8201;|. Den kan beregnes fra den konjugerte <i>x</i>*&#8201; av hver oktonion, definert </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{*}=x_{0}-x_{1}\mathbf {e} _{1}-x_{2}\mathbf {e} _{2}-x_{3}\mathbf {e} _{3}-x_{4}\mathbf {e} _{4}-x_{5}\mathbf {e} _{5}-x_{6}\mathbf {e} _{6}-x_{7}\mathbf {e} _{7}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{*}=x_{0}-x_{1}\mathbf {e} _{1}-x_{2}\mathbf {e} _{2}-x_{3}\mathbf {e} _{3}-x_{4}\mathbf {e} _{4}-x_{5}\mathbf {e} _{5}-x_{6}\mathbf {e} _{6}-x_{7}\mathbf {e} _{7}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd02209514f8abe956a845ff0cac7cf8d84afdbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:60.392ex; height:2.676ex;" alt="{\displaystyle x^{*}=x_{0}-x_{1}\mathbf {e} _{1}-x_{2}\mathbf {e} _{2}-x_{3}\mathbf {e} _{3}-x_{4}\mathbf {e} _{4}-x_{5}\mathbf {e} _{5}-x_{6}\mathbf {e} _{6}-x_{7}\mathbf {e} _{7}}"></span></dd></dl> <p>hvor produktet må være slik at </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{*}x=x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}+x_{7}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>x</mi> <mo>=</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{*}x=x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}+x_{7}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6af0aaad3c74372210a30375952857ec6a1dad8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:45.766ex; height:3.176ex;" alt="{\displaystyle x^{*}x=x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}+x_{7}^{2}}"></span></dd></dl> <p>Da kan den inverse <i>x</i><sup> -1</sup> til oktonion <i>x&#8201;</i> finnes som </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{-1}={x^{*} \over |x|^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{-1}={x^{*} \over |x|^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/576a9966af3963d50bc2b6a353604f0d78fb3e52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:11.275ex; height:6.509ex;" alt="{\displaystyle x^{-1}={x^{*} \over |x|^{2}}}"></span></dd></dl> <p>slik at den oppfyller betingelsen <span class="nowrap"><i>x</i>&#8201;<i>x</i><sup> -1</sup> = <i>x</i><sup> -1</sup><i>x</i></span> = 1. Graves og Cayley viste at produkter mellom de forskjellige basiselementene kan finnes slik at disse egenskapene ved oktonionene er oppfylt.<sup id="cite_ref-Conway_1-1" class="reference"><a href="#cite_note-Conway-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Cayley-Dicksons_konstruksjon">Cayley-Dicksons konstruksjon</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Oktonion&amp;veaction=edit&amp;section=3" title="Rediger avsnitt: Cayley-Dicksons konstruksjon" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Oktonion&amp;action=edit&amp;section=3" title="Rediger kildekoden til seksjonen Cayley-Dicksons konstruksjon"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <table border="" cellspacing="0" cellpadding="5" bgcolor="#DDEEFF" align="right"> <tbody><tr> <td align="center" bgcolor="#FFFFFF"> </td> <td align="center" bgcolor="#EEEEEE">1 </td> <td align="center" bgcolor="#EEEEEE"><b>e</b><sub>1</sub> </td> <td align="center" bgcolor="#EEEEEE"><b>e</b><sub>2</sub> </td> <td align="center" bgcolor="#EEEEEE"><b>e</b><sub>3</sub> </td> <td align="center" bgcolor="#EEEEEE"><b>e</b><sub>4</sub> </td> <td align="center" bgcolor="#EEEEEE"><b>e</b><sub>5</sub> </td> <td align="center" bgcolor="#EEEEEE"><b>e</b><sub>6</sub> </td> <td align="center" bgcolor="#EEEEEE"><b>e</b><sub>7</sub> </td></tr> <tr> <td align="center" bgcolor="#EEEEEE">1 </td> <td align="center">1</td> <td align="center"><b>e</b><sub>1</sub> </td> <td align="center"><b>e</b><sub>2</sub> </td> <td align="center"><b>e</b><sub>3</sub></td> <td align="center"><b>e</b><sub>4</sub> </td> <td align="center"><b>e</b><sub>5</sub> </td> <td align="center"><b>e</b><sub>6</sub></td> <td align="center"><b>e</b><sub>7</sub> </td></tr> <tr> <td align="center" bgcolor="#EEEEEE"><b>e</b><sub>1</sub> </td> <td align="center"><b>e</b><sub>1</sub></td> <td align="center">−1 </td> <td align="center"><b>e</b><sub>3</sub></td> <td align="center">-<b>e</b><sub>2</sub> </td> <td align="center"><b>e</b><sub>5</sub> </td> <td align="center">-<b>e</b><sub>4</sub> </td> <td align="center">-<b>e</b><sub>7</sub> </td> <td align="center"><b>e</b><sub>6</sub> </td></tr> <tr> <td align="center" bgcolor="#EEEEEE"><b>e</b><sub>2</sub> </td> <td align="center"><b>e</b><sub>2</sub> </td> <td align="center">−<b>e</b><sub>3</sub> </td> <td align="center">−1</td> <td align="center"><b>e</b><sub>1</sub> </td> <td align="center"><b>e</b><sub>6</sub> </td> <td align="center"><b>e</b><sub>7</sub> </td> <td align="center">-<b>e</b><sub>4</sub> </td> <td align="center">-<b>e</b><sub>5</sub> </td></tr> <tr> <td align="center" bgcolor="#EEEEEE"><b>e</b><sub>3</sub> </td> <td align="center"><b>e</b><sub>3</sub> </td> <td align="center"><b>e</b><sub>2</sub> </td> <td align="center">−<b>e</b><sub>1</sub> </td> <td align="center">−1</td> <td align="center"><b>e</b><sub>7</sub> </td> <td align="center">-<b>e</b><sub>6</sub> </td> <td align="center"><b>e</b><sub>5</sub> </td> <td align="center">-<b>e</b><sub>4</sub> </td></tr> <tr> <td align="center" bgcolor="#EEEEEE"><b>e</b><sub>4</sub> </td> <td align="center"><b>e</b><sub>4</sub></td> <td align="center">-<b>e</b><sub>5</sub> </td> <td align="center">−<b>e</b><sub>6</sub> </td> <td align="center">−<b>e</b><sub>7</sub> </td> <td align="center">−1</td> <td align="center"><b>e</b><sub>1</sub> </td> <td align="center"><b>e</b><sub>2</sub> </td> <td align="center"><b>e</b><sub>3</sub> </td></tr> <tr> <td align="center" bgcolor="#EEEEEE"><b>e</b><sub>5</sub> </td> <td align="center"><b>e</b><sub>5</sub> </td> <td align="center"><b>e</b><sub>4</sub> </td> <td align="center">-<b>e</b><sub>7</sub> </td> <td align="center"><b>e</b><sub>6</sub> </td> <td align="center">−<b>e</b><sub>1</sub> </td> <td align="center">−1</td> <td align="center">-<b>e</b><sub>3</sub> </td> <td align="center"><b>e</b><sub>2</sub> </td></tr> <tr> <td align="center" bgcolor="#EEEEEE"><b>e</b><sub>6</sub> </td> <td align="center"><b>e</b><sub>6</sub></td> <td align="center"><b>e</b><sub>7</sub> </td> <td align="center"><b>e</b><sub>4</sub> </td> <td align="center">-<b>e</b><sub>5</sub> </td> <td align="center">−<b>e</b><sub>2</sub> </td> <td align="center"><b>e</b><sub>3</sub> </td> <td align="center">−1</td> <td align="center">-<b>e</b><sub>1</sub> </td></tr> <tr> <td align="center" bgcolor="#EEEEEE"><b>e</b><sub>7</sub> </td> <td align="center"><b>e</b><sub>7</sub></td> <td align="center">-<b>e</b><sub>6</sub> </td> <td align="center"><b>e</b><sub>5</sub> </td> <td align="center"><b>e</b><sub>4</sub> </td> <td align="center">-<b>e</b><sub>3</sub> </td> <td align="center">−<b>e</b><sub>2</sub> </td> <td align="center"><b>e</b><sub>1</sub> </td> <td align="center">−1 </td></tr></tbody></table> <p>Den enkleste og meste brukte fremgangsmåte for å finne multiplikasjonsregler mellom basiselementene som tilfredsstiller disse betingelsene, går tilbake til det første arbeidet til Cayley<sup id="cite_ref-Cayley_3-0" class="reference"><a href="#cite_note-Cayley-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> som senere ble videreført av Dickson.<sup id="cite_ref-Dickson_4-0" class="reference"><a href="#cite_note-Dickson-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>På samme måte som <a href="/wiki/Kvaternion" title="Kvaternion">kvaternioner</a> kan defineres som et par av <a href="/wiki/Komplekst_tall" title="Komplekst tall">komplekse tall</a>, kan man tenke seg oktonioner som bestående av et tallpar (<i>P,Q</i>&#8201;) der <i>P</i> og <i>Q</i>&#8201; er kvaternioner. Det tilsvarer å utvide <a href="/wiki/Vektorrom" title="Vektorrom">vektorrommet</a> for disse som er gitt ved basiselementene 1, <b>i</b>, <b>j</b> og <b>k</b> med et nytt, imaginært basiselement <b>e</b>. En oktonion kan dermed skrives som </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}x&amp;=(P,Q)=P+Q\mathbf {e} \\&amp;=p_{0}+p_{1}\mathbf {i} +p_{2}\mathbf {j} +p_{3}\mathbf {k} +(q_{0}+q_{1}\mathbf {i} +q_{2}\mathbf {j} +q_{3}\mathbf {k} )\mathbf {e} \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo>+</mo> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>+</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>+</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>+</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>+</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}x&amp;=(P,Q)=P+Q\mathbf {e} \\&amp;=p_{0}+p_{1}\mathbf {i} +p_{2}\mathbf {j} +p_{3}\mathbf {k} +(q_{0}+q_{1}\mathbf {i} +q_{2}\mathbf {j} +q_{3}\mathbf {k} )\mathbf {e} \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4011f895e9550da9fab2e045da94b1bb03441137" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:51.295ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}x&amp;=(P,Q)=P+Q\mathbf {e} \\&amp;=p_{0}+p_{1}\mathbf {i} +p_{2}\mathbf {j} +p_{3}\mathbf {k} +(q_{0}+q_{1}\mathbf {i} +q_{2}\mathbf {j} +q_{3}\mathbf {k} )\mathbf {e} \end{aligned}}}"></span></dd></dl> <p>der <b>e</b>&#8201;<b>e</b> = <b>e</b><sup>&#8201;2</sup> = -1. De syv vektorielle basiselementene for oktonionene er dermed <span class="nowrap"><b>e</b><sub>1</sub> = <b>i</b></span>, <span class="nowrap"><b>e</b><sub>2</sub> = <b>j</b></span>, <span class="nowrap"><b>e</b><sub>3</sub> = <b>k</b></span>, <span class="nowrap"><b>e</b><sub>4</sub> = <b>e</b></span>, <span class="nowrap"><b>e</b><sub>5</sub> = <b>i</b>&#8201;<b>e</b></span>, <span class="nowrap"><b>e</b><sub>6</sub> = <b>j</b>&#8201;<b>e</b>&#8201;</span> og <span class="nowrap"><b>e</b><sub>7</sub> = <b>k</b>&#8201;<b>e</b></span>. Disse kan multipliseres sammen basert på en generalisering av produktregelen for kvaternioner. Den gir </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(P_{1},Q_{1})(P_{2},Q_{2})&amp;=(P_{1}+Q_{1}\mathbf {e} )(P_{2}+Q_{2}\mathbf {e} )\\&amp;=P_{1}P_{2}-Q_{2}^{*}Q_{1}+(Q_{2}P_{1}+Q_{1}P_{2}^{*})\mathbf {e} \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msubsup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}(P_{1},Q_{1})(P_{2},Q_{2})&amp;=(P_{1}+Q_{1}\mathbf {e} )(P_{2}+Q_{2}\mathbf {e} )\\&amp;=P_{1}P_{2}-Q_{2}^{*}Q_{1}+(Q_{2}P_{1}+Q_{1}P_{2}^{*})\mathbf {e} \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/794aae7ee1ce79140b39ad0cfbb84a429bb6c99c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.275ex; margin-bottom: -0.23ex; width:54.056ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}(P_{1},Q_{1})(P_{2},Q_{2})&amp;=(P_{1}+Q_{1}\mathbf {e} )(P_{2}+Q_{2}\mathbf {e} )\\&amp;=P_{1}P_{2}-Q_{2}^{*}Q_{1}+(Q_{2}P_{1}+Q_{1}P_{2}^{*})\mathbf {e} \end{aligned}}}"></span></dd></dl> <p>hvor rekkefølgen av faktorene i produktene er viktig da kvaternionene ikke kommuterer med hverandre. Med denne notasjonen er den konjugerte av oktonion <span class="nowrap"><i>x</i> = <i>P</i> + <i>Q</i>&#8201;<b>e</b>&#8201;</span> gitt som </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{*}=P^{*}-Q\mathbf {e} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{*}=P^{*}-Q\mathbf {e} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/777e79956780170626e26ae4633429f278c9bbc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.262ex; height:2.676ex;" alt="{\displaystyle x^{*}=P^{*}-Q\mathbf {e} }"></span></dd></dl> <p>slik at produktregelen gir den ønskede normen <span class="nowrap"><i>x</i>*<i>x</i> = <i>P</i>&#8201;*<i>P</i> + <i>Q</i>&#8201;*<i>Q</i></span>. Samme regel gir også som forventet at <span class="nowrap"><b>e</b><sub>5</sub>&#8201;<b>e</b><sub>5</sub> = (<b>i</b>&#8201;<b>e</b>)(<b>i</b>&#8201;<b>e</b>)</span> = <span class="nowrap">-<b>i</b>*<b>i</b> = <b>i</b><sup>&#8201;2</sup></span> = - 1 og likedan <span class="nowrap"><b>e</b><sub>6</sub>&#8201;<b>e</b><sub>6</sub> = <b>e</b><sub>7</sub>&#8201;<b>e</b><sub>7</sub></span> = -1. Alle produktene kan samles i en kvadratisk tabell hvor elementene er plassert antisymmetrisk om diagonalen med negative enere.<sup id="cite_ref-Baez_2-1" class="reference"><a href="#cite_note-Baez-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>En konsekvens av disse regnereglene er at multiplikasjon ikke er <a href="/wiki/Assosiativ_lov" title="Assosiativ lov">assosiativ</a>. For eksempel kan man fra tabellen se at <span class="nowrap"><b>e</b><sub>4</sub>(<b>e</b><sub>5</sub>&#8201;<b>e</b><sub>6</sub>) = <b>e</b><sub>7</sub>,</span> mens <span class="nowrap">(<b>e</b><sub>4</sub>&#8201;<b>e</b><sub>5</sub>)<b>e</b><sub>6</sub> = -<b>e</b><sub>7</sub>.</span> For tre vilkårlige oktonioner <i>x</i>, <i>y</i> og <i>z</i> gjelder derfor ikke lenger at <i>x</i>(<i>y</i>&#8201;<i>z</i>) kan settes lik med (<i>x</i>&#8201;<i>y</i>)<i>z</i>. Derimot har man generelt de mer spesielle egenskapene </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(xy)=(xx)y,\;\;\;x(yy)=(xy)y,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mi>y</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mi>x</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mi>y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(xy)=(xx)y,\;\;\;x(yy)=(xy)y,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4775671fc1d55590ea24dbcc3d5683cb9a9b7917" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.961ex; height:2.843ex;" alt="{\displaystyle x(xy)=(xx)y,\;\;\;x(yy)=(xy)y,}"></span></dd></dl> <p>som uttrykker en form for «alternativitet».<sup id="cite_ref-Baez_2-2" class="reference"><a href="#cite_note-Baez-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Fano-planet">Fano-planet</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Oktonion&amp;veaction=edit&amp;section=4" title="Rediger avsnitt: Fano-planet" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Oktonion&amp;action=edit&amp;section=4" title="Rediger kildekoden til seksjonen Fano-planet"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fil:FanoMnemonic.PNG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/FanoMnemonic.PNG/250px-FanoMnemonic.PNG" decoding="async" width="250" height="247" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/FanoMnemonic.PNG/375px-FanoMnemonic.PNG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9d/FanoMnemonic.PNG/500px-FanoMnemonic.PNG 2x" data-file-width="565" data-file-height="559" /></a><figcaption>De vektorielle basiselementene utgjør de syv punktene i <a href="/wiki/Projektivt_plan#Eksempel:_Syvpunktsplanet" title="Projektivt plan">Fano-planet</a>. Multiplikasjon av oktonioner følger fra de tre punktene på hver av de syv linjene i planet.</figcaption></figure> <p>Produktene av de vektorielle basiselementene som følger fra konstruksjonen til Cayley og Dickson, kan også elegant gjengis i <a href="/wiki/Projektivt_plan#Eksempel:_Syvpunktsplanet" title="Projektivt plan">Fano-planet</a>. Det består av syv punkter knyttet sammen ved syv linjer bestående av tre punkt <i>abc</i>. Hvis punktene angis som vist i figuren, er de tilsvarende linjene 123, 145, 176, 246, 257, 347, 365. Hver linje har en syklisk retning slik at produktet av to basisvektorer </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{a}\mathbf {e} _{b}=\mathbf {e} _{c}=-\mathbf {e} _{b}\mathbf {e} _{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {e} _{a}\mathbf {e} _{b}=\mathbf {e} _{c}=-\mathbf {e} _{b}\mathbf {e} _{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05917feacd5022b7eefa7cdc96f4bfb369da329d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.154ex; height:2.343ex;" alt="{\displaystyle \mathbf {e} _{a}\mathbf {e} _{b}=\mathbf {e} _{c}=-\mathbf {e} _{b}\mathbf {e} _{a}}"></span></dd></dl> <p>når indeksene <i>abc</i> følger denne retningen. For eksempel inkluderer dette den fundamentale sammenhengen <span class="nowrap"><b>e</b><sub>1</sub>&#8201;<b>e</b><sub>2</sub> = <b>e</b><sub>3</sub>,</span> men også <span class="nowrap"><b>e</b><sub>2</sub>&#8201;<b>e</b><sub>4</sub> = <b>e</b><sub>6</sub></span> og <span class="nowrap"><b>e</b><sub>3</sub>&#8201;<b>e</b><sub>4</sub> = <b>e</b><sub>7</sub>.</span> </p><p>Det er forbindelsen til Fano-planet som i stor grad forbinder oktonionene med egenskaper til noen av de mest spesielle <a href="/wiki/Lie-gruppe" title="Lie-gruppe">Lie-gruppene</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Se_også"><span id="Se_ogs.C3.A5"></span>Se også</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Oktonion&amp;veaction=edit&amp;section=5" title="Rediger avsnitt: Se også" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Oktonion&amp;action=edit&amp;section=5" title="Rediger kildekoden til seksjonen Se også"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Komplekst_tall" title="Komplekst tall">Komplekse tall</a></li> <li><a href="/wiki/Kvaternion" title="Kvaternion">Kvaternioner</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Referanser">Referanser</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Oktonion&amp;veaction=edit&amp;section=6" title="Rediger avsnitt: Referanser" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Oktonion&amp;action=edit&amp;section=6" title="Rediger kildekoden til seksjonen Referanser"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-Conway-1"><b>^</b> <a href="#cite_ref-Conway_1-0"><sup>a</sup></a> <a href="#cite_ref-Conway_1-1"><sup>b</sup></a> <span class="reference-text"> J.H. Conway and D.A. Smith, <i>On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry</i>, CRC Press, Boca Raton (2003). <a href="/wiki/Spesial:Bokkilder/9781568811345" class="internal mw-magiclink-isbn">ISBN 978-1-56881-134-5</a>.</span> </li> <li id="cite_note-Baez-2"><b>^</b> <a href="#cite_ref-Baez_2-0"><sup>a</sup></a> <a href="#cite_ref-Baez_2-1"><sup>b</sup></a> <a href="#cite_ref-Baez_2-2"><sup>c</sup></a> <span class="reference-text"> J.C. Baez, <a rel="nofollow" class="external text" href="https://arxiv.org/pdf/math/0105155.pdf"><i>The Octonions</i></a>, Bull. Amer. Math. Soc. <b>39</b>, 145-205 (2002). <a rel="nofollow" class="external text" href="https://arxiv.org/pdf/math/0105155.pdf">arXiv:math/0105155</a></span> </li> <li id="cite_note-Cayley-3"><b><a href="#cite_ref-Cayley_3-0">^</a></b> <span class="reference-text"> A. Cayley, <a rel="nofollow" class="external text" href="https://zs.thulb.uni-jena.de/receive/jportal_jparticle_00207172"><i>On certain Results relating to Quaternions</i></a>, Philosophical Magazine <b>26</b>(3), 141-145 (1845). </span> </li> <li id="cite_note-Dickson-4"><b><a href="#cite_ref-Dickson_4-0">^</a></b> <span class="reference-text"> L.E. Dickson, <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/pdf/1967865.pdf?refreqid=excelsior%3A1704d6c90b6d007e1160caaa8354163d"><i>On Quaternions and Their Generalization and the History of the Eight Square Theorem</i></a>, Annals of Mathematics, <b>20</b>(3), 155–171 (1919).</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Eksterne_lenker">Eksterne lenker</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Oktonion&amp;veaction=edit&amp;section=7" title="Rediger avsnitt: Eksterne lenker" class="mw-editsection-visualeditor"><span>rediger</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Oktonion&amp;action=edit&amp;section=7" title="Rediger kildekoden til seksjonen Eksterne lenker"><span>rediger kilde</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>J.C. Baez, <a rel="nofollow" class="external text" href="http://math.ucr.edu/home/baez/octonions/octonions.html"><i>Octonions</i></a>, informative websider</li> <li>Quanta Magazine, <a rel="nofollow" class="external text" href="https://www.quantamagazine.org/the-octonion-math-that-could-underpin-physics-20180720/"><i>Octonions in particle physics</i>?</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r23230704">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r24561737">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}</style></div><div role="navigation" class="navbox" aria-labelledby="Oppslagsverk/autoritetsdata" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th id="Oppslagsverk/autoritetsdata" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Hjelp:Autoritetsdata" title="Hjelp:Autoritetsdata">Oppslagsverk/autoritetsdata</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0em 0.25em"><a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Octonion.html">MathWorld</a> <b>·</b> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/CayleyNumber.html">MathWorld</a> <b>·</b> <a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4745179-8">GND</a> <b>·</b> <a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh2002008702">LCCN</a> <b>·</b> <a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb15608111r">BNF</a> <b>·</b> <a rel="nofollow" class="external text" href="http://data.bnf.fr/ark:/12148/cb15608111r">BNF (data)</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.idref.fr/122706331">SUDOC</a></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐6b6c9bdc8b‐kn8xp Cached time: 20241103044517 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.220 seconds Real time usage: 0.592 seconds Preprocessor visited node count: 1056/1000000 Post‐expand include size: 7894/2097152 bytes Template argument size: 1577/2097152 bytes Highest expansion depth: 8/100 Expensive parser function count: 5/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 7800/5000000 bytes Lua time usage: 0.135/10.000 seconds Lua memory usage: 4167987/52428800 bytes Number of Wikibase entities loaded: 6/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 210.233 1 -total 95.42% 200.608 1 Mal:Autoritetsdata 44.41% 93.357 1 Mal:Navboks 42.81% 90.008 1 Mal:Navbox 1.21% 2.548 18 Mal:Nowrap --> <!-- Saved in parser cache with key nowiki:pcache:idhash:1809365-0!canonical and timestamp 20241103044517 and revision id 22061304. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Hentet fra «<a dir="ltr" href="https://no.wikipedia.org/w/index.php?title=Oktonion&amp;oldid=22061304">https://no.wikipedia.org/w/index.php?title=Oktonion&amp;oldid=22061304</a>»</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Kategori:Kategorier" title="Kategori:Kategorier">Kategorier</a>: <ul><li><a href="/wiki/Kategori:Tall" title="Kategori:Tall">Tall</a></li><li><a href="/wiki/Kategori:Algebra" title="Kategori:Algebra">Algebra</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Skjulte kategorier: <ul><li><a href="/wiki/Kategori:Sider_som_bruker_magiske_ISBN-lenker" title="Kategori:Sider som bruker magiske ISBN-lenker">Sider som bruker magiske ISBN-lenker</a></li><li><a href="/wiki/Kategori:Artikler_med_autoritetsdatalenker_fra_Wikidata" title="Kategori:Artikler med autoritetsdatalenker fra Wikidata">Artikler med autoritetsdatalenker fra Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Denne siden ble sist redigert 1. des. 2021 kl. 15:08.</li> <li id="footer-info-copyright">Innholdet er tilgjengelig under <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.no">Creative Commons-lisensen Navngivelse-DelPåSammeVilkår</a>, men ytterligere betingelser kan gjelde. Se <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">bruksvilkårene</a> for detaljer.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Personvern</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Om">Om Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Generelle_forbehold">Forbehold</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Atferdsnorm</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Utviklere</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/no.wikipedia.org">Statistikk</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Erklæring om informasjonskapsler</a></li> <li id="footer-places-mobileview"><a href="//no.m.wikipedia.org/w/index.php?title=Oktonion&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobilvisning</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-cnx88","wgBackendResponseTime":168,"wgPageParseReport":{"limitreport":{"cputime":"0.220","walltime":"0.592","ppvisitednodes":{"value":1056,"limit":1000000},"postexpandincludesize":{"value":7894,"limit":2097152},"templateargumentsize":{"value":1577,"limit":2097152},"expansiondepth":{"value":8,"limit":100},"expensivefunctioncount":{"value":5,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":7800,"limit":5000000},"entityaccesscount":{"value":6,"limit":400},"timingprofile":["100.00% 210.233 1 -total"," 95.42% 200.608 1 Mal:Autoritetsdata"," 44.41% 93.357 1 Mal:Navboks"," 42.81% 90.008 1 Mal:Navbox"," 1.21% 2.548 18 Mal:Nowrap"]},"scribunto":{"limitreport-timeusage":{"value":"0.135","limit":"10.000"},"limitreport-memusage":{"value":4167987,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-6b6c9bdc8b-kn8xp","timestamp":"20241103044517","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Oktonion","url":"https:\/\/no.wikipedia.org\/wiki\/Oktonion","sameAs":"http:\/\/www.wikidata.org\/entity\/Q743418","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q743418","author":{"@type":"Organization","name":"Bidragsytere til Wikimedia-prosjektene"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2020-08-19T11:08:06Z","dateModified":"2021-12-01T14:08:13Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/d\/d9\/Fano_mnemonic3.png"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10