CINXE.COM

Search results for: thermophilic anaerobic

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: thermophilic anaerobic</title> <meta name="description" content="Search results for: thermophilic anaerobic"> <meta name="keywords" content="thermophilic anaerobic"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thermophilic anaerobic" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thermophilic anaerobic"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 337</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thermophilic anaerobic</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">337</span> Thermophilic Anaerobic Granular Membrane Distillation Bioreactor for Wastewater Reuse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duong%20Cong%20Chinh">Duong Cong Chinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiao-Shing%20Chen"> Shiao-Shing Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Quang%20Huy"> Le Quang Huy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane distillation (MD) is actually claimed to be a cost-effective separation process when waste heat, alternative energy sources, or wastewater are used. To the best of our knowledge, this is the first study that a thermophilic anaerobic granular bioreactor is integrated with membrane distillation (ThAnMDB) was investigated. In this study, the laboratory scale anaerobic bioreactor (1.2 litter) was set-up. The bioreactor was maintained at temperature 55 ± 2°C, hydraulic retention time = 0.5 days, organic loading rates of 7 and 10 kg chemical oxygen demand (COD) m³/day. Side-stream direct contact membrane distillation with the polytetrafluoroethylene membrane area was 150 cm². The temperature of the distillate was kept at 25°C. Results show that distillate flux was 19.6 LMH (Liters per square meter per hour) on the first day and gradually decreased to 6.9 LMH after 10 days, and the membrane was not wet. Notably, by directly using the heat from the thermophilic anaerobic for MD separation process, all distilled water from wastewater was reuse as fresh water (electrical conductivity < 120 µs/cm). The ThAnMDB system showed its high pollutant removal performance: chemical oxygen demand (COD) from 99.6 to 99.9%, NH₄⁺ from 60 to 95%, and PO₄³⁻ complete removal. In addition, methane yield was from 0.28 to 0.34 lit CH₄/gram COD removal (80 – 97% of the theoretical) demonstrated that the ThAnMDB system was quite stable. The achievement of the ThAnMDB is not only in removing pollutants and reusing wastewater but also in absolutely unnecessarily adding alkaline to the anaerobic bioreactor system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20rate%20anaerobic%20digestion" title="high rate anaerobic digestion">high rate anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20distillation" title=" membrane distillation"> membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobic" title=" thermophilic anaerobic"> thermophilic anaerobic</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20reuse" title=" wastewater reuse"> wastewater reuse</a> </p> <a href="https://publications.waset.org/abstracts/110378/thermophilic-anaerobic-granular-membrane-distillation-bioreactor-for-wastewater-reuse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">336</span> Anaerobic Digestion of Spent Wash through Biomass Development for Obtaining Biogas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachin%20B.%20Patil">Sachin B. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Narendra%20M.%20Kanhe"> Narendra M. Kanhe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A typical cane molasses based distillery generates 15 L of waste water per liter of alcohol production. Distillery waste with COD of over 1,00,000 mg/l and BOD of over 30,000 mg/l ranks high amongst the pollutants produced by industries both in magnitude and strength. Treatment and safe disposal of this waste is a challenging task since long. The high strength of waste water renders aerobic treatment very expensive and physico-chemical processes have met with little success. Thermophilic anaerobic treatment of distillery waste may provide high degree of treatment and better recovery of biogas. It may prove more feasible in most part of tropical country like India, where temperature is suitable for thermophilic micro-organisms. Researchers have reviled that, at thermophilic conditions due to increased destruction rate of organic matter and pathogens, higher digestion rate can be achieved. Literature review reveals that the variety of anaerobic reactors including anaerobic lagoon, conventional digester, anaerobic filter, two staged fixed film reactors, sludge bed and granular bed reactors have been studied, but little attempts have been made to evaluate the usefulness of thermophilic anaerobic treatment for treating distillery waste. The present study has been carried out, to study feasibility of thermophilic anaerobic digestion to facilitate the design of full scale reactor. A pilot scale anaerobic fixed film fixed bed reactor (AFFFB) of capacity 25m3 was designed, fabricated, installed and commissioned for thermophilic (55-65°C) anaerobic digestion at a constant pH of 6.5-7.5, because these temperature and pH ranges are considered to be optimum for biogas recovery from distillery wastewater. In these conditions, working of the reactor was studied, for different hydraulic retention times (HRT) (0.25days to 12days) and variable organic loading rates (361.46 to 7.96 Kg COD/m3d). The parameters such as flow rate and temperature, various chemical parameters such as pH, chemical oxygen demands (COD), biogas quantity, and biogas composition were regularly monitored. It was observed that, with the increase in OLR, the biogas production was increased, but the specific biogas yield decreased. Similarly, with the increase in HRT, the biogas production got decrease, but the specific biogas yield was increased. This may also be due to the predominant activity of acid producers to methane producers at the higher substrate loading rates. From the present investigation, it can be concluded that for thermophilic conditions the highest COD removal percentage was obtained at an HRT of 08 days, thereafter it tends to decrease from 8 to 12 days HRT. There is a little difference between COD removal efficiency of 8 days HRT (74.03%) and 5 day HRT (78.06%), therefore it would not be feasible to increase the reactor size by 1.5 times for mere 4 percent more efficiency. Hence, 5 days HRT is considered to be optimum, at which the biogas yield was 98 m3/day and specific biogas yield was 0.385 CH4 m3/Kg CODr. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spent%20wash" title="spent wash">spent wash</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a> </p> <a href="https://publications.waset.org/abstracts/47145/anaerobic-digestion-of-spent-wash-through-biomass-development-for-obtaining-biogas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">335</span> The Feasibility of Anaerobic Digestion at 45⁰C</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuruol%20S.%20Mohd">Nuruol S. Mohd</a>, <a href="https://publications.waset.org/abstracts/search?q=Safia%20Ahmed"> Safia Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Rumana%20Riffat"> Rumana Riffat</a>, <a href="https://publications.waset.org/abstracts/search?q=Baoqiang%20Li"> Baoqiang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anaerobic digestion at mesophilic and thermophilic temperatures have been widely studied and evaluated by numerous researchers. Limited extensive research has been conducted on anaerobic digestion in the intermediate zone of 45°C, mainly due to the notion that limited microbial activity occurs within this zone. The objectives of this research were to evaluate the performance and the capability of anaerobic digestion at 45°C in producing class A biosolids, in comparison to a mesophilic and thermophilic anaerobic digestion system operated at 35°C and 55°C, respectively. In addition to that, the investigation on the possible inhibition factors affecting the performance of the digestion system at this temperature will be conducted as well. The 45°C anaerobic digestion systems were not able to achieve comparable methane yield and high-quality effluent compared to the mesophilic system, even though the systems produced biogas with about 62-67% methane. The 45°C digesters suffered from high acetate accumulation, but sufficient buffering capacity was observed as the pH, alkalinity and volatile fatty acids (VFA)-to-alkalinity ratio were within recommended values. The accumulation of acetate observed in 45°C systems were presumably due to the high temperature which contributed to high hydrolysis rate. Consequently, it produced a large amount of toxic salts that combined with the substrate making them not readily available to be consumed by methanogens. Acetate accumulation, even though contributed to 52 to 71% reduction in acetate degradation process, could not be considered as completely inhibitory. Additionally, at 45°C, no ammonia inhibition was observed and the digesters were able to achieve volatile solids (VS) reduction of 47.94±4.17%. The pathogen counts were less than 1,000 MPN/g total solids, thus, producing Class A biosolids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=45%C2%B0C%20anaerobic%20digestion" title="45°C anaerobic digestion">45°C anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=acetate%20accumulation" title=" acetate accumulation"> acetate accumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=class%20A%20biosolids" title=" class A biosolids"> class A biosolids</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20toxicity" title=" salt toxicity"> salt toxicity</a> </p> <a href="https://publications.waset.org/abstracts/33545/the-feasibility-of-anaerobic-digestion-at-45c" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">334</span> Anaerobic Digestion of Green Wastes at Different Solids Concentrations and Temperatures to Enhance Methane Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bayat">A. Bayat</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bello-Mendoza"> R. Bello-Mendoza</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20G.%20Wareham"> D. G. Wareham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two major categories of green waste are fruit and vegetable (FV) waste and garden and yard (GY) waste. Although, anaerobic digestions (AD) is able to manage FV waste; there is less confidence in the conditions for AD to handle GY wastes (grass, leaves, trees and bush trimmings); mainly because GY contains lignin and other recalcitrant organics. GY in the dry state (TS ≥ 15 %) can be digested at mesophilic temperatures; however, little methane data has been reported under thermophilic conditions, where conceivably better methane yields could be achieved. In addition, it is suspected that at lower solids concentrations, the methane yield could be increased. As such, the aim of this research is to find the temperature and solids concentration conditions that produce the most methane; under two different temperature regimes (mesophilic, thermophilic) and three solids states (i.e. 'dry', 'semi-dry' and 'wet'). Twenty liters of GY waste was collected from a public park located in the northern district in Tehran. The clippings consisted of freshly cut grass as well as dry branches and leaves. The GY waste was chopped before being fed into a mechanical blender that reduced it to a paste-like consistency. An initial TS concentration of approximately 38 % was achieved. Four hundred mL of anaerobic inoculum (average total solids (TS) concentration of 2.03 ± 0.131 % of which 73.4% were volatile solid (VS), soluble chemical oxygen demand (sCOD) of 4.59 ± 0.3 g/L) was mixed with the GY waste substrate paste (along with distilled water) to achieve a TS content of approximately 20 %. For comparative purposes, approximately 20 liters of FV waste was ground in the same manner as the GY waste. Since FV waste has a much higher natural water content than GY, it was dewatered to obtain a starting TS concentration in the dry solid-state range (TS ≥ 15 %). Three samples were dewatered to an average starting TS concentration of 32.71 %. The inoculum was added (along with distilled water) to dilute the initial FV TS concentrations down to semi-dry conditions (10-15 %) and wet conditions (below 10 %). Twelve 1-L batch bioreactors were loaded simultaneously with either GY or FV waste at TS solid concentrations ranging from 3.85 ± 1.22 % to 20.11 ± 1.23 %. The reactors were sealed and were operated for 30 days while being immersed in water baths to maintain a constant temperature of 37 ± 0.5 °C (mesophilic) or 55 ± 0.5 °C (thermophilic). A maximum methane yield of 115.42 (L methane/ kg VS added) was obtained for the GY thermophilic-wet AD combination. Methane yield was enhanced by 240 % compared to the GY waste mesophilic-dry condition. The results confirm that high temperature regimes and small solids concentrations are conditions that enhance methane yield from GY waste. A similar trend was observed for the anaerobic digestion of FV waste. Furthermore, a maximum value of VS (53 %) and sCOD (84 %) reduction was achieved during the AD of GY waste under the thermophilic-wet condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic" title=" thermophilic"> thermophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophilic" title=" mesophilic"> mesophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20solids%20concentration" title=" total solids concentration"> total solids concentration</a> </p> <a href="https://publications.waset.org/abstracts/111217/anaerobic-digestion-of-green-wastes-at-different-solids-concentrations-and-temperatures-to-enhance-methane-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">333</span> Fermentation of Pretreated Herbaceous Cellulosic Wastes to Ethanol by Anaerobic Cellulolytic and Saccharolytic Thermophilic Clostridia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lali%20Kutateladze">Lali Kutateladze</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Urushadze"> Tamar Urushadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Dudauri"> Tamar Dudauri</a>, <a href="https://publications.waset.org/abstracts/search?q=Besarion%20Metreveli"> Besarion Metreveli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nino%20Zakariashvili"> Nino Zakariashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Izolda%20Khokhashvili"> Izolda Khokhashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Maya%20Jobava"> Maya Jobava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lignocellulosic waste streams from agriculture, paper and wood industry are renewable, plentiful and low-cost raw materials that can be used for large-scale production of liquid and gaseous biofuels. As opposed to prevailing multi-stage biotechnological processes developed for bioconversion of cellulosic substrates to ethanol where high-cost cellulase preparations are used, Consolidated Bioprocessing (CBP) offers to accomplish cellulose and xylan hydrolysis followed by fermentation of both C6 and C5 sugars to ethanol in a single-stage process. Syntrophic microbial consortium comprising of anaerobic, thermophilic, cellulolytic, and saccharolytic bacteria in the genus Clostridia with improved ethanol productivity and high tolerance to fermentation end-products had been proposed for achieving CBP. 65 new strains of anaerobic thermophilic cellulolytic and saccharolytic Clostridia were isolated from different wetlands and hot springs in Georgia. Using new isolates, fermentation of mechanically pretreated wheat straw and corn stalks was done under oxygen-free nitrogen environment in thermophilic conditions (T=550C) and pH 7.1. Process duration was 120 hours. Liquid and gaseous products of fermentation were analyzed on a daily basis using Perkin-Elmer gas chromatographs with flame ionization and thermal detectors. Residual cellulose, xylan, xylose, and glucose were determined using standard methods. Cellulolytic and saccharolytic bacteria strains degraded mechanically pretreated herbaceous cellulosic wastes and fermented glucose and xylose to ethanol, acetic acid and gaseous products like hydrogen and CO2. Specifically, maximum yield of ethanol was reached at 96 h of fermentation and varied between 2.9 – 3.2 g/ 10 g of substrate. The content of acetic acid didn’t exceed 0.35 g/l. Other volatile fatty acids were detected in trace quantities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20bacteria" title="anaerobic bacteria">anaerobic bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulosic%20wastes" title=" cellulosic wastes"> cellulosic wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=Clostridia%20sp" title=" Clostridia sp"> Clostridia sp</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a> </p> <a href="https://publications.waset.org/abstracts/76441/fermentation-of-pretreated-herbaceous-cellulosic-wastes-to-ethanol-by-anaerobic-cellulolytic-and-saccharolytic-thermophilic-clostridia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">332</span> Anaerobic Co-digestion in Two-Phase TPAD System of Sewage Sludge and Fish Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rocio%20L%C3%B3pez">Rocio López</a>, <a href="https://publications.waset.org/abstracts/search?q=Miriam%20Tena"> Miriam Tena</a>, <a href="https://publications.waset.org/abstracts/search?q=Montserrat%20P%C3%A9rez"> Montserrat Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosario%20Solera"> Rosario Solera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biotransformation of organic waste into biogas is considered an interesting alternative for the production of clean energy from renewable sources by reducing the volume and organic content of waste Anaerobic digestion is considered one of the most efficient technologies to transform waste into fertilizer and biogas in order to obtain electrical energy or biofuel within the concept of the circular economy. Currently, three types of anaerobic processes have been developed on a commercial scale: (1) single-stage process where sludge bioconversion is completed in a single chamber, (2) two-stage process where the acidogenic and methanogenic stages are separated into two chambers and, finally, (3) temperature-phase sequencing (TPAD) process that combines a thermophilic pretreatment unit prior to mesophilic anaerobic digestion. Two-stage processes can provide hydrogen and methane with easier control of the first and second stage conditions producing higher total energy recovery and substrate degradation than single-stage processes. On the other hand, co-digestion is the simultaneous anaerobic digestion of a mixture of two or more substrates. The technology is similar to anaerobic digestion but is a more attractive option as it produces increased methane yields due to the positive synergism of the mixtures in the digestion medium thus increasing the economic viability of biogas plants. The present study focuses on the energy recovery by anaerobic co-digestion of sewage sludge and waste from the aquaculture-fishing sector. The valorization is approached through the application of a temperature sequential phase process or TPAD technology (Temperature - Phased Anaerobic Digestion). Moreover, two-phase of microorganisms is considered. Thus, the selected process allows the development of a thermophilic acidogenic phase followed by a mesophilic methanogenic phase to obtain hydrogen (H₂) in the first stage and methane (CH₄) in the second stage. The combination of these technologies makes it possible to unify all the advantages of these anaerobic digestion processes individually. To achieve these objectives, a sequential study has been carried out in which the biochemical potential of hydrogen (BHP) is tested followed by a BMP test, which will allow checking the feasibility of the two-stage process. The best results obtained were high total and soluble COD yields (59.8% and 82.67%, respectively) as well as H₂ production rates of 12LH₂/kg SVadded and methane of 28.76 L CH₄/kg SVadded for TPAD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20co-digestion" title="anaerobic co-digestion">anaerobic co-digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=TPAD" title=" TPAD"> TPAD</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase" title=" two-phase"> two-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=BHP" title=" BHP"> BHP</a>, <a href="https://publications.waset.org/abstracts/search?q=BMP" title=" BMP"> BMP</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20waste" title=" fish waste"> fish waste</a> </p> <a href="https://publications.waset.org/abstracts/143315/anaerobic-co-digestion-in-two-phase-tpad-system-of-sewage-sludge-and-fish-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">331</span> Insights into the Annotated Genome Sequence of Defluviitoga tunisiensis L3 Isolated from a Thermophilic Rural Biogas Producing Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irena%20Maus">Irena Maus</a>, <a href="https://publications.waset.org/abstracts/search?q=Katharina%20Gabriella%20Cibis"> Katharina Gabriella Cibis</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Bremges"> Andreas Bremges</a>, <a href="https://publications.waset.org/abstracts/search?q=Yvonne%20Stolze"> Yvonne Stolze</a>, <a href="https://publications.waset.org/abstracts/search?q=Geizecler%20Tomazetto"> Geizecler Tomazetto</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Wibberg"> Daniel Wibberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmut%20K%C3%B6nig"> Helmut König</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfred%20P%C3%BChler"> Alfred Pühler</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Schl%C3%BCter"> Andreas Schlüter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Within the agricultural sector, the production of biogas from organic substrates represents an economically attractive technology to generate bioenergy. Complex consortia of microorganisms are responsible for biomass decomposition and biogas production. Recently, species belonging to the phylum Thermotogae were detected in thermophilic biogas-production plants utilizing renewable primary products for biomethanation. To analyze adaptive genome features of representative Thermotogae strains, Defluviitoga tunisiensis L3 was isolated from a rural thermophilic biogas plant (54°C) and completely sequenced on an Illumina MiSeq system. Sequencing and assembly of the D. tunisiensis L3 genome yielded a circular chromosome with a size of 2,053,097 bp and a mean GC content of 31.38%. Functional annotation of the complete genome sequence revealed that the thermophilic strain L3 encodes several genes predicted to facilitate growth of this microorganism on arabinose, galactose, maltose, mannose, fructose, raffinose, ribose, cellobiose, lactose, xylose, xylan, lactate and mannitol. Acetate, hydrogen (H2) and carbon dioxide (CO2) are supposed to be end products of the fermentation process. The latter gene products are metabolites for methanogenic archaea, the key players in the final step of the anaerobic digestion process. To determine the degree of relatedness of dominant biogas community members within selected digester systems to D. tunisiensis L3, metagenome sequences from corresponding communities were mapped on the L3 genome. These fragment recruitments revealed that metagenome reads originating from a thermophilic biogas plant covered 95% of D. tunisiensis L3 genome sequence. In conclusion, availability of the D. tunisiensis L3 genome sequence and insights into its metabolic capabilities provide the basis for biotechnological exploitation of genome features involved in thermophilic fermentation processes utilizing renewable primary products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genome%20sequence" title="genome sequence">genome sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20biogas%20plant" title=" thermophilic biogas plant"> thermophilic biogas plant</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermotogae" title=" Thermotogae"> Thermotogae</a>, <a href="https://publications.waset.org/abstracts/search?q=Defluviitoga%20tunisiensis" title=" Defluviitoga tunisiensis"> Defluviitoga tunisiensis</a> </p> <a href="https://publications.waset.org/abstracts/29463/insights-into-the-annotated-genome-sequence-of-defluviitoga-tunisiensis-l3-isolated-from-a-thermophilic-rural-biogas-producing-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">330</span> Optimization of Sequential Thermophilic Bio-Hydrogen/Methane Production from Mono-Ethylene Glycol via Anaerobic Digestion: Impact of Inoculum to Substrate Ratio and N/P Ratio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elreedy">Ahmed Elreedy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Tawfik"> Ahmed Tawfik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This investigation aims to assess the effect of inoculum to substrate ratio (ISR) and nitrogen to phosphorous balance on simultaneous biohydrogen and methane production from anaerobic decomposition of mono-ethylene glycol (MEG). Different ISRs were applied in the range between 2.65 and 13.23 gVSS/gCOD, whereas the tested N/P ratios were changed from 4.6 to 8.5; both under thermophilic conditions (55°C). The maximum obtained methane and hydrogen yields (MY and HY) of 151.86±10.8 and 22.27±1.1 mL/gCODinitial were recorded at ISRs of 5.29 and 3.78 gVSS/gCOD, respectively. Unlikely, the ammonification process, in terms of net ammonia produced, was found to be ISR and COD/N ratio dependent, reaching its peak value of 515.5±31.05 mgNH4-N/L at ISR and COD/N ratio of 13.23 gVSS/gCOD and 11.56. The optimum HY was enhanced by more than 1.45-fold with declining N/P ratio from 8.5 to 4.6; whereas, the MY was improved (1.6-fold), while increasing N/P ratio from 4.6 to 5.5 with no significant impact at N/P ratio of 8.5. The results obtained revealed that the methane production was strongly influenced by initial ammonia, compared to initial phosphate. Likewise, the generation of ammonia was markedly deteriorated from 535.25±41.5 to 238.33±17.6 mgNH4-N/L with increasing N/P ratio from 4.6 to 8.5. The kinetic study using Modified Gompertz equation was successfully fitted to the experimental outputs (R2 > 0.9761). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mono-ethylene%20glycol" title="mono-ethylene glycol">mono-ethylene glycol</a>, <a href="https://publications.waset.org/abstracts/search?q=biohydrogen%20and%20methane" title=" biohydrogen and methane"> biohydrogen and methane</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum%20to%20substrate%20ratio" title=" inoculum to substrate ratio"> inoculum to substrate ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20to%20phosphorous%20balance" title=" nitrogen to phosphorous balance"> nitrogen to phosphorous balance</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonification" title=" ammonification"> ammonification</a> </p> <a href="https://publications.waset.org/abstracts/54353/optimization-of-sequential-thermophilic-bio-hydrogenmethane-production-from-mono-ethylene-glycol-via-anaerobic-digestion-impact-of-inoculum-to-substrate-ratio-and-np-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">329</span> A Further Insight to Foaming in Anaerobic Digester</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ifeyinwa%20Rita%20Kanu">Ifeyinwa Rita Kanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Aspray"> Thomas Aspray</a>, <a href="https://publications.waset.org/abstracts/search?q=Adebayo%20J.%20Adeloye"> Adebayo J. Adeloye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a result of the ambiguity and complexity surrounding anaerobic digester foaming, efforts have been made by various researchers to understand the process of anaerobic digester foaming so as to proffer a solution that can be universally applied rather than site specific. All attempts ranging from experimental analysis to comparative review of other process has been futile at explaining explicitly the conditions and process of foaming in anaerobic digester. Studying the available knowledge on foam formation and relating it to anaerobic digester process and operating condition, this study presents a succinct and enhanced understanding of foaming in anaerobic digesters as well as introducing a simple and novel method to identify the onset of anaerobic digester foaming based on analysis of historical data from a field scale system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digester" title="anaerobic digester">anaerobic digester</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming" title=" foaming"> foaming</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/31627/a-further-insight-to-foaming-in-anaerobic-digester" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">328</span> Anaerobic Co-Digestion of Sewage Sludge and Bagasse for Biogas Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raouf%20Ahmed%20Mohamed%20Hassan">Raouf Ahmed Mohamed Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Egypt, the excess sewage sludge from wastewater Treatment Plants (WWTPs) is rapidly increasing due to the continuous increase of population, urban planning and industrial developments. Also, cane bagasses constitute an important component of Urban Solid Waste (USW), especially at the south of Egypt, which are difficult to degrade under normal composting conditions. These wastes need to be environmentally managed to reduce the negative impacts of its application or disposal. In term of biogas recovery, the anaerobic digestion of sewage sludge or bagasse separately is inefficient, due to the presence of nutrients and minerals. Also, the Carbone-Nitrogen Ratio (C/N) play an important role, sewage sludge has a ratio varies from 6-16, where cane bagasse has a ratio around 150, whereas the suggested optimum C/N ratio for anaerobic digestion is in the range of 20 to 30. The anaerobic co-digestion is presented as a successful methodology that combines several biodegradable organic substrates able to decrease the amount of output wastes by biodegradation, sharing processing facilities, reducing operating costs, while enabling recovery of biogas. This paper presents the study of co-digestion of sewage sludge from wastewater treatment plants as a type of organic wastes and bagasse as agriculture wastes. Laboratory-scale mesophilic and thermophilic digesters were operated with varied hydraulic retention times. Different percentage of sludge and bagasse are investigated based on the total solids (TS). Before digestion, the bagasse was subjected to grinding pretreatment and soaked in distilled water (water pretreatment). The effect of operating parameters (mixing, temperature) is investigated in order to optimize the process in the biogas production. The yield and the composition of biogas from the different experiments were evaluated and the cumulative curves were estimated. The conducted tests did show that there is a good potential to using the co-digestion of wastewater sludge and bagasse for biogas production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-digestion" title="co-digestion">co-digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=bagasse" title=" bagasse"> bagasse</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing" title=" mixing"> mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophilic" title=" mesophilic"> mesophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic" title=" thermophilic"> thermophilic</a> </p> <a href="https://publications.waset.org/abstracts/2234/anaerobic-co-digestion-of-sewage-sludge-and-bagasse-for-biogas-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">327</span> A Study of the Effects of Temperatures and Optimum pH on the Specific Methane Production of Perennial Ryegrass during Anaerobic Digestion Process under a Discontinuous Daily Feeding Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uchenna%20Egwu">Uchenna Egwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Jonathan%20Sallis"> Paul Jonathan Sallis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Perennial ryegrass is an abundant renewable lignocellulosic biofuel feedstock for biomethane production through anaerobic digestion (AD). In this study, six anaerobic continuously stirred tank reactors (CSTRs) were set up in three pairs. Each pair of the CSTRs was then used to study the effects of operating temperatures – psychrophilic, mesophilic, and thermophilic, and optimum pH on the specific methane production (SMP) of the ryegrass during AD under discontinuous daily feeding conditions. The reactors were fed at an organic loading rate (OLR) ranging from 1-1.5 kgVS.L⁻¹d⁻¹ and hydraulic residence time, HRT=20 days for 140 days. The pH of the digesters was maintained at the range of 6.8-7.2 using 1 M NH₄HCO₃ solution, but this was replaced with biomass ash-extracts from day 105-140. The results obtained showed that the mean SMP of ryegrass measured between HRT 3 and 4 were 318.4, 425.4 and 335 N L CH₄ kg⁻¹VS.d⁻¹ for the psychrophilic (25 ± 2°C), mesophilic (40 ± 1°C) and thermophilic (60 ± 1°C) temperatures respectively. It was also observed that the buffering ability of the reactors increased with operating temperature, probably due to an increase in the solubility of ammonium bicarbonate (NH₄HCO₃) with temperature. The reactors also achieved a mean VS destruction of 61.9, 68.5 and 63.5%, respectively, which signifies that the mesophilic reactors achieved the highest specific methane production (SMP), while the psychrophilic reactors achieved the lowest. None of the reactors attained steady-state condition due to the discontinuous daily feeding times, and therefore, such feeding practice may not be the most effective for maximum biogas production over long periods of time. The addition of NH₄HCO₃ as supplement provided a good buffering condition in these AD digesters, but the digesters failed in the long run due to inhibition from the accumulation of free ammonia, which later led to decrease in pH, acidification, and souring of the digesters. However, the addition of biomass ash extracts was shown to potentially revive failed AD reactors by providing an adequate buffering and essential trace nutrient supplements necessary for optimal bacterial growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=discontinuous%20%20feeding" title=" discontinuous feeding"> discontinuous feeding</a>, <a href="https://publications.waset.org/abstracts/search?q=perennial%20ryegrass" title=" perennial ryegrass"> perennial ryegrass</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20methane%20production" title=" specific methane production"> specific methane production</a>, <a href="https://publications.waset.org/abstracts/search?q=supplements" title=" supplements"> supplements</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/98564/a-study-of-the-effects-of-temperatures-and-optimum-ph-on-the-specific-methane-production-of-perennial-ryegrass-during-anaerobic-digestion-process-under-a-discontinuous-daily-feeding-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">326</span> Bioremediation of Arsenic from Industrially Polluted Soil of Vatva, Ahmedabad, Gujarat, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Makwana">C. Makwana</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Dave"> S. R. Dave </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arsenic is toxic to almost all living cells. Its contamination in natural sources affects the growth of microorganisms. The presence of arsenic is associated with various human disorders also. The attempt of this sort of study provides information regarding the performance of our isolated microorganisms in the presence of Arsenic, which have ample scope for bioremediation. Six isolates were selected from the polluted sample of industrial zone Vatva, Ahmedabad, Gujarat, India, out of which two were Thermophilic organisms. The thermophilic exopolysaccharide (EPS) producing Bacillus was used for microbial enhance oil recovery (MEOR) and in the bio beneficiation. Inorganic arsenic primarily exists in the form of arsenate or arsenite. This arsenic resistance isolate was capable of transforming As +3 to As+5. This isolate would be useful for arsenic remediation standpoint from aquatic systems. The study revealed that the thermophilic microorganism was growing at 55 degree centigrade showed considerable remediation property. The results on the growth and enzyme catalysis would be discussed in response to Arsenic remediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20systems" title="aquatic systems">aquatic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic" title=" thermophilic"> thermophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=exopolysacchride" title=" exopolysacchride"> exopolysacchride</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic" title=" arsenic"> arsenic</a> </p> <a href="https://publications.waset.org/abstracts/37578/bioremediation-of-arsenic-from-industrially-polluted-soil-of-vatva-ahmedabad-gujarat-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">325</span> Clostridium thermocellum DBT-IOC-C19, A Potential CBP Isolate for Ethanol Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Singh">Nisha Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Munish%20Puri"> Munish Puri</a>, <a href="https://publications.waset.org/abstracts/search?q=Collin%20Barrow"> Collin Barrow</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Tuli"> Deepak Tuli</a>, <a href="https://publications.waset.org/abstracts/search?q=Anshu%20S.%20Mathur"> Anshu S. Mathur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biological conversion of lignocellulosic biomass to ethanol is a promising strategy to solve the present global crisis of exhausting fossil fuels. The existing bioethanol production technologies have cost constraints due to the involvement of mandate pretreatment and extensive enzyme production steps. A unique process configuration known as consolidated bioprocessing (CBP) is believed to be a potential cost-effective process due to its efficient integration of enzyme production, saccharification, and fermentation into one step. Due to several favorable reasons like single step conversion, no need of adding exogenous enzymes and facilitated product recovery, CBP has gained the attention of researchers worldwide. However, there are several technical and economic barriers which need to be overcome for making consolidated bioprocessing a commercially viable process. Finding a natural candidate CBP organism is critically important and thermophilic anaerobes are preferred microorganisms. The thermophilic anaerobes that can represent CBP mainly belong to genus Clostridium, Caldicellulosiruptor, Thermoanaerobacter, Thermoanaero bacterium, and Geobacillus etc. Amongst them, Clostridium thermocellum has received increased attention as a high utility CBP candidate due to its highest growth rate on crystalline cellulose, the presence of highly efficient cellulosome system and ability to produce ethanol directly from cellulose. Recently with the availability of genetic and molecular tools aiding the metabolic engineering of Clostridium thermocellum have further facilitated the viability of commercial CBP process. With this view, we have specifically screened cellulolytic and xylanolytic thermophilic anaerobic ethanol producing bacteria, from unexplored hot spring/s in India. One of the isolates is a potential CBP organism identified as a new strain of Clostridium thermocellum. This strain has shown superior avicel and xylan degradation under unoptimized conditions compared to reported wild type strains of Clostridium thermocellum and produced more than 50 mM ethanol in 72 hours from 1 % avicel at 60°C. Besides, this strain shows good ethanol tolerance and growth on both hexose and pentose sugars. Hence, with further optimization this new strain could be developed as a potential CBP microbe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clostridium%20thermocellum" title="Clostridium thermocellum">Clostridium thermocellum</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidated%20bioprocessing" title=" consolidated bioprocessing"> consolidated bioprocessing</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobes" title=" thermophilic anaerobes"> thermophilic anaerobes</a> </p> <a href="https://publications.waset.org/abstracts/33981/clostridium-thermocellum-dbt-ioc-c19-a-potential-cbp-isolate-for-ethanol-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">324</span> High Efficient Biohydrogen Production from Cassava Starch Processing Wastewater by Two Stage Thermophilic Fermentation and Electrohydrogenesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peerawat%20Khongkliang">Peerawat Khongkliang</a>, <a href="https://publications.waset.org/abstracts/search?q=Prawit%20Kongjan"> Prawit Kongjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsuyoshi%20Imai"> Tsuyoshi Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=Poonsuk%20Prasertsan"> Poonsuk Prasertsan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sompong%20O-Thong"> Sompong O-Thong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A two-stage thermophilic fermentation and electrohydrogenesis process was used to convert cassava starch processing wastewater into hydrogen gas. Maximum hydrogen yield from fermentation stage by Thermoanaerobacterium thermosaccharolyticum PSU-2 was 248 mL H2/g-COD at optimal pH of 6.5. Optimum hydrogen production rate of 820 mL/L/d and yield of 200 mL/g COD was obtained at HRT of 2 days in fermentation stage. Cassava starch processing wastewater fermentation effluent consisted of acetic acid, butyric acid and propionic acid. The effluent from fermentation stage was used as feedstock to generate hydrogen production by microbial electrolysis cell (MECs) at an applied voltage of 0.6 V in second stage with additional 657 mL H2/g-COD was produced. Energy efficiencies based on electricity needed for the MEC were 330 % with COD removals of 95 %. The overall hydrogen yield was 800-900 mL H2/g-COD. Microbial community analysis of electrohydrogenesis by DGGE shows that exoelectrogens belong to Acidiphilium sp., Geobacter sulfurreducens and Thermincola sp. were dominated at anode. These results show two-stage thermophilic fermentation, and electrohydrogenesis process improved hydrogen production performance with high hydrogen yields, high gas production rates and high COD removal efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cassava%20starch%20processing%20wastewater" title="cassava starch processing wastewater">cassava starch processing wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=biohydrogen" title=" biohydrogen"> biohydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20fermentation" title=" thermophilic fermentation"> thermophilic fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20electrolysis%20cell" title=" microbial electrolysis cell"> microbial electrolysis cell</a> </p> <a href="https://publications.waset.org/abstracts/43009/high-efficient-biohydrogen-production-from-cassava-starch-processing-wastewater-by-two-stage-thermophilic-fermentation-and-electrohydrogenesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">323</span> Relationship between the Yo-Yo Intermittent Recovery Test Level 1 and Anaerobic Performance Tests in Youth Soccer Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Turgay%20Ozgur">Turgay Ozgur</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahar%20Ozgur"> Bahar Ozgur</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurcan%20Yazici"> Gurcan Yazici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aims of the study were to investigate the relationship between the Yo-Yo intermittent recovery test level 1 (YYIR1) and relatively easy to conduct anaerobic power tests such as Sergeant (SJ) and Standing Broad Jump (SBJ), the flexibility Sit&Reach test (S&R) and Hexagon Agility (HA) test in twenty youth soccer players, aged 14 years. Players completed YYIR1 and other performance tests [(SJ), (SBJ] in two consecutive days. The mean YYIR1 distances for the players was 1454 ± 420 m. Peak Anaerobic Power (PAPw) was calculated using SJ (cm) scores. The mean PAPw was 2966,83w. Spearman’s correlation test results revealed that there is a statistically significant negative correlation between HA and YYIR1 tests (r = -0.72, p=0.000) and no significant correlation was found between anaerobic power tests and YYIR1. In conclusion, as a test to measure player’s intermittent aerobic capacity YYIR1 test and anaerobic power test results have not shown significant correlation. Although the YYIR1 test has been used in talent identification, anaerobic qualifications of player’s should be assessed using designated performance tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yo-yo%20test" title="yo-yo test">yo-yo test</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20power" title=" anaerobic power"> anaerobic power</a>, <a href="https://publications.waset.org/abstracts/search?q=soccer" title=" soccer"> soccer</a>, <a href="https://publications.waset.org/abstracts/search?q=sergeant%20jump%20test" title=" sergeant jump test"> sergeant jump test</a> </p> <a href="https://publications.waset.org/abstracts/60513/relationship-between-the-yo-yo-intermittent-recovery-test-level-1-and-anaerobic-performance-tests-in-youth-soccer-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">322</span> Performance of an Anaerobic Baffled Reactor (ABR) during Start-Up Period</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20Bassuney">D. M. Bassuney</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20Ibrahim"> W. A. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Medhat%20A.%20E.%20Moustafa"> Medhat A. E. Moustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Appropriate start-up of an anaerobic baffled reactor (ABR) is considered to be the most delicate and important issue in the anaerobic process, and depends on several factors such as wastewater composition, reactor configuration, inoculum and operating conditions. In this work, the start-up performance of an ABR with working volume of 30 liters, fed continuously with synthetic food industrial wastewater along with semi-batch study to measure the methangenic activity by specific methanogenic activity (SMA) test were carried out at various organic loading rates (OLRs) to determine the best OLR used to start up the reactor. The comparison was based on COD removal efficiencies, start-up time, pH stability and methane production. An OLR of 1.8 Kg COD/m3d (5400 gCOD/m3 and 3 days HRT) showed best overall performance with COD removal efficiency of 94.44% after four days from the feeding and methane production of 3802 ml/L with an overall SMA of 0.36 gCH4-COD/gVS.d <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20baffled%20reactor" title="anaerobic baffled reactor">anaerobic baffled reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20reactor%20start-up" title=" anaerobic reactor start-up"> anaerobic reactor start-up</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20industrial%20wastewater" title=" food industrial wastewater"> food industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20methanogenic%20activity" title=" specific methanogenic activity"> specific methanogenic activity</a> </p> <a href="https://publications.waset.org/abstracts/9694/performance-of-an-anaerobic-baffled-reactor-abr-during-start-up-period" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">321</span> Municipal Sewage Sludge as Co-Substrate in Anaerobic Digestion of Vegetable Waste and Biogas Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20V.%20Thanikal">J. V. Thanikal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Torrijos"> M. Torrijos</a>, <a href="https://publications.waset.org/abstracts/search?q=Philipe%20Sousbie"> Philipe Sousbie</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Rizwan"> S. M. Rizwan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Senthil%20Kumar"> R. Senthil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Yezdi"> Hatem Yezdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Co-digestion is one of the advantages of anaerobic digestion process because; several wastes having complimentary characteristics can be treated in a single process. The anaerobic co-digestion process, which can be defined as the simultaneous treatment of two –or more – organic biodegradable waste streams by anaerobic digestion offers great potential for the proper disposal of the organic fraction of solid waste coming from source or separate collection systems. The results of biogas production for sewage sludge, when used as a single substrate, were low (350ml/d), and also the biodegradation rate was slow. Sewage sludge as a co-substrate did not show much effect on biogas yield. The vegetable substrates (Potato, Carrot, Spinach) with a total charge of 27–36 g VS, with a HRT starting from 3 days and ending with 1 day, shown a considerable increase in biogas yield 3.5-5 l/d. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=co-digestion" title=" co-digestion"> co-digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20substrate" title=" vegetable substrate"> vegetable substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/14047/municipal-sewage-sludge-as-co-substrate-in-anaerobic-digestion-of-vegetable-waste-and-biogas-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">571</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">320</span> Investigations of Protein Aggregation Using Sequence and Structure Based Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Michael%20Gromiha">M. Michael Gromiha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mary%20Thangakani"> A. Mary Thangakani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar"> Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Velmurugan"> D. Velmurugan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main cause of several neurodegenerative diseases such as Alzhemier, Parkinson, and spongiform encephalopathies is formation of amyloid fibrils and plaques in proteins. We have analyzed different sets of proteins and peptides to understand the influence of sequence-based features on protein aggregation process. The comparison of 373 pairs of homologous mesophilic and thermophilic proteins showed that aggregation-prone regions (APRs) are present in both. But, the thermophilic protein monomers show greater ability to ‘stow away’ the APRs in their hydrophobic cores and protect them from solvent exposure. The comparison of amyloid forming and amorphous b-aggregating hexapeptides suggested distinct preferences for specific residues at the six positions as well as all possible combinations of nine residue pairs. The compositions of residues at different positions and residue pairs have been converted into energy potentials and utilized for distinguishing between amyloid forming and amorphous b-aggregating peptides. Our method could correctly identify the amyloid forming peptides at an accuracy of 95-100% in different datasets of peptides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregation" title="aggregation">aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloids" title=" amyloids"> amyloids</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20proteins" title=" thermophilic proteins"> thermophilic proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20residues" title=" amino acid residues"> amino acid residues</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20techniques" title=" machine learning techniques"> machine learning techniques</a> </p> <a href="https://publications.waset.org/abstracts/20424/investigations-of-protein-aggregation-using-sequence-and-structure-based-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> Application of Customized Bioaugmentation Inocula to Alleviate Ammonia Toxicity in CSTR Anaerobic Digesters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yixin%20Yan">Yixin Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Miao%20Yan"> Miao Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Irini%20Angelidaki"> Irini Angelidaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Fotidis"> Ioannis Fotidis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ammonia, which derives from the degradation of urea and protein-substrates, is the major toxicant of the commercial anaerobic digestion reactors causing loses of up to 1/3 of their practical biogas production, which reflects directly on the overall revenue of the plants. The current experimental work is aiming to alleviate the ammonia inhibition in anaerobic digestion (AD) process by developing an innovative bioaugmentation method of ammonia tolerant methanogenic consortia. The ammonia tolerant consortia were cultured in batch reactors and immobilized together with biochar in agar (customized inocula). Three continuous stirred-tank reactors (CSTR), fed with the organic fraction of municipal solid waste at a hydraulic retention time of 15 days and operated at thermophilic (55°C) conditions were assessed. After an ammonia shock of 4 g NH4+-N L-1, the customized inocula were bioaugmented into the CSTR reactors to alleviate ammonia toxicity effect on AD process. Recovery rate of methane production and methanogenic activity will be assessed to evaluate the bioaugmentation performance, while 16s rRNA gene sequence will be used to reveal the difference of microbial community changes through bioaugmentation. At the microbial level, the microbial community structures of the four reactors will be analysed to find the mechanism of bioaugmentation. Changes in hydrogen formation potential will be used to predict direct interspecies electron transfer (DIET) between ammonia tolerant methanogens and syntrophic bacteria. This experimental work is expected to create bioaugmentation inocula that will be easy to obtain, transport, handled and bioaugment in AD reactors to efficiently alleviate the ammonia toxicity, without alternating any of the other operational parameters including the ammonia-rich feedstocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artisanal%20fishing%20waste" title="artisanal fishing waste">artisanal fishing waste</a>, <a href="https://publications.waset.org/abstracts/search?q=acidogenesis" title=" acidogenesis"> acidogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20fatty%20acids" title=" volatile fatty acids"> volatile fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum%2Fsubstrate%20ratio" title=" inoculum/substrate ratio"> inoculum/substrate ratio</a> </p> <a href="https://publications.waset.org/abstracts/125008/application-of-customized-bioaugmentation-inocula-to-alleviate-ammonia-toxicity-in-cstr-anaerobic-digesters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> Comparison of an Upflow Anaerobic Sludge Blanket and an Anaerobic Filter for Treating Wheat Straw Washwater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syazwani%20Idrus">Syazwani Idrus</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Charles%20J.%20Banks"> S. Charles J. Banks</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Heaven"> Sonia Heaven</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study compared the performance of upflow anaerobic sludge blanket (UASB) reactors and anaerobic filters (AF) for the treatment of wheat straw washwater (WSW) which has a high concentration of Potassium ions. The trial was conducted at mesophilic temperatures (37 °C). The digesters were started up over a 48-day period using a synthetic wastewater feed and reached an organic loading rate (OLR) of 6 g COD L^-1 day^-1 with a specific methane production (SMP) of 0.333 L CH4 g^-1 COD. When the feed was switched to WSW it was not possible to maintain the same loading rate as the SMP in all reactors fell sharply to less than 0.1 L CH4 g^-1 COD, with the AF affected more than the UASB. On reducing the OLR to 3 g COD L^-1 day^-1 the reactors recovered to produce 0.21 L CH4 g^-1 CODadded and gave 82% COD removal. A discrepancy between the COD consumed and the methane produced could be accounted for through increased maintenance energy requirement of the microbial community for osmo-regulation as K+ was found to accumulate in the sludge and in the UASB reached a concentration of 4.5 mg K g^-1 wet weight of granules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=osmotic%20stress" title=" osmotic stress"> osmotic stress</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand" title=" chemical oxygen demand"> chemical oxygen demand</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20methane%20production" title=" specific methane production"> specific methane production</a> </p> <a href="https://publications.waset.org/abstracts/26374/comparison-of-an-upflow-anaerobic-sludge-blanket-and-an-anaerobic-filter-for-treating-wheat-straw-washwater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">655</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">317</span> An Integrated Approach of Isolated and Combined Aerobic and Anaerobic Interval Training for Improvement of Stride Length and Stride Frequency of Soccer Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ramesh">K. A. Ramesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The study is to find out the effect of isolated and combined aerobic and anaerobic interval training on stride length and stride frequency of Soccer players. Method(s): To achieve this purpose, 45 women Soccer players who participated in the Anna University, Tamilnadu, India. Intercollegiate Tournament was selected as subjects and were randomly divided into three equal groups of fifteen each, such as an anaerobic interval training group (group-I), anaerobic interval training group (group-II) and combined aerobic-anaerobic interval training group (group-III). The training program was conducted three days per weeks for a period of six weeks. Stride length and Stride frequency was selected as dependent variables. All the subjects of the three groups were tested on selected criterion variables at prior to and immediately after the training program. The concepts of dependent test were employed to find out the significant improvement due to the influence of training programs on all the selected criterion variables. The analysis of covariance (ANCOVA) was also used to analyze the significant difference, if, any among the experimental groups. Result(s): The result of the study revealed that combined group was higher than aerobic interval training and anaerobic interval training groups. Conclusion(s): It was concluded that when experimental groups were compared with each other, the combined aerobic – anaerobic interval training program was found to be greater than the aerobic and the anaerobic interval training programs on the development of stride length and stride frequency. High intensity, combined aerobic – anaerobic interval training program can be carried out in a more soccer specific way than plain running. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stride%20length" title="stride length">stride length</a>, <a href="https://publications.waset.org/abstracts/search?q=stride%20frequency" title=" stride frequency"> stride frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20training" title=" interval training"> interval training</a>, <a href="https://publications.waset.org/abstracts/search?q=soccer" title=" soccer"> soccer</a> </p> <a href="https://publications.waset.org/abstracts/40302/an-integrated-approach-of-isolated-and-combined-aerobic-and-anaerobic-interval-training-for-improvement-of-stride-length-and-stride-frequency-of-soccer-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">316</span> High Rate Bio-Methane Generation from Petrochemical Wastewater Using Improved CSTR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Nurul%20Islam%20Siddique">Md. Nurul Islam Siddique</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Zularisam"> A. W. Zularisam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of gradual increase in organic loading rate (OLR) and temperature on biomethanation from petrochemical wastewater treatment was investigated using CSTR. The digester performance was measured at hydraulic retention time (HRT) of 4 to 2d, and start up procedure of the reactor was monitored for 60 days via chemical oxygen demand (COD) removal, biogas and methane production. By enhancing the temperature from 30 to 55 ˚C Thermophilic condition was attained, and pH was adjusted at 7 ± 0.5 during the experiment. Supreme COD removal competence was 98±0.5% (r = 0.84) at an OLR of 7.5 g-COD/Ld and 4d HRT. Biogas and methane yield were logged to an extreme of 0.80 L/g-CODremoved d (r = 0.81), 0.60 L/g-CODremoved d (r = 0.83), and mean methane content of biogas was 65.49%. The full acclimatization was established at 55 ˚C with high COD removal efficiency and biogas production. An OLR of 7.5 g-COD/L d and HRT of 4 days were apposite for petrochemical wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemical%20wastewater" title=" petrochemical wastewater"> petrochemical wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=CSTR" title=" CSTR"> CSTR</a>, <a href="https://publications.waset.org/abstracts/search?q=methane" title=" methane"> methane</a> </p> <a href="https://publications.waset.org/abstracts/42465/high-rate-bio-methane-generation-from-petrochemical-wastewater-using-improved-cstr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">315</span> Modelling the Anaerobic Digestion of Esparto Paper Industry Wastewater Effluent in a Batch Digester Using IWA Anaerobic Digestion Model No. 1 (ADM1)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boubaker%20Fezzani">Boubaker Fezzani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ridha%20Ben%20Cheikh"> Ridha Ben Cheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Rouissi"> Tarek Rouissi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work the original ADM1, implemented in the simulation software package MATLAB/Simulink, was modified and adapted and applied to reproduce the experimental results of the mesophilic anaerobic digestion of Esperto paper industry wastewater in a batch digester. The data set from lab-scale experiment runs were used to calibrate and validate the model. The simulations’ results indicated that the modified ADM1 was able to predict reasonably well the steady state results of gas flows, methane and carbon dioxide contents, pH and total volatile fatty acids (TVFA) observed with all influents concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title=" mathematical modelling"> mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Simulation" title=" Simulation"> Simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=ADM1" title=" ADM1"> ADM1</a>, <a href="https://publications.waset.org/abstracts/search?q=batch%20digester" title=" batch digester"> batch digester</a>, <a href="https://publications.waset.org/abstracts/search?q=esparto%20%20paper%20industry%20effluent" title=" esparto paper industry effluent"> esparto paper industry effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophilic%20temperature" title=" mesophilic temperature"> mesophilic temperature</a> </p> <a href="https://publications.waset.org/abstracts/37483/modelling-the-anaerobic-digestion-of-esparto-paper-industry-wastewater-effluent-in-a-batch-digester-using-iwa-anaerobic-digestion-model-no-1-adm1" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">314</span> Renewable Energy Potential of Diluted Poultry Manure during Ambient Anaerobic Stabilisation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cigdem%20Yangin-Gomec">Cigdem Yangin-Gomec</a>, <a href="https://publications.waset.org/abstracts/search?q=Aigerim%20Jaxybayeva"> Aigerim Jaxybayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Orhan%20Ince"> Orhan Ince</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the anaerobic treatability of chicken manure diluted with tap water (with an influent feed ratio of 1 kg of fresh chicken manure to 6 liter of tap water) was investigated in a lab-scale anaerobic sludge bed (ASB) reactor inoculated with the granular sludge already adapted to chicken manure. The raw waste digested in this study was the manure from laying-hens having average total solids (TS) of about 30% with ca. 60% volatile content. The ASB reactor was fed semi-continuously at ambient operating temperature range (17-23<sup>◦</sup>C) at a HRT of 13 and 26 days for about 6 months, respectively. The respective average total and soluble chemical oxygen demand (COD) removals were ca. 90% and 75%, whereas average biomethane production rate was calculated ca. 180 lt per kg of COD<sub>removed</sub> from the ASB reactor at an average HRT of 13 days. Moreover, total suspended solids (TSS) and volatile suspended solids (VSS) in the influent were reduced more than 97%. Hence, high removals of the organic compounds with respective biogas production made anaerobic stabilization of the diluted chicken manure by ASB reactor at ambient operating temperatures viable. By this way, external heating up to 35<sup>◦</sup>C (i.e. anaerobic processes have been traditionally operated at mesophilic conditions) could be avoided in the scope of this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20anaerobic%20digestion" title="ambient anaerobic digestion">ambient anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas%20recovery" title=" biogas recovery"> biogas recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20manure" title=" poultry manure"> poultry manure</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/40062/renewable-energy-potential-of-diluted-poultry-manure-during-ambient-anaerobic-stabilisation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">313</span> Estimation of Bio-Kinetic Coefficients for Treatment of Brewery Wastewater </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abimbola%20M.%20Enitan">Abimbola M. Enitan</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Adeyemo"> J. Adeyemo </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anaerobic modeling is a useful tool to describe and simulate the condition and behaviour of anaerobic treatment units for better effluent quality and biogas generation. The present investigation deals with the anaerobic treatment of brewery wastewater with varying organic loads. The chemical oxygen demand (COD) and total suspended solids (TSS) of the influent and effluent of the bioreactor were determined at various retention times to generate data for kinetic coefficients. The bio-kinetic coefficients in the modified Stover–Kincannon kinetic and methane generation models were determined to study the performance of anaerobic digestion process. At steady-state, the determination of the kinetic coefficient (K), the endogenous decay coefficient (Kd), the maximum growth rate of microorganisms (µmax), the growth yield coefficient (Y), ultimate methane yield (Bo), maximum utilization rate constant Umax and the saturation constant (KB) in the model were calculated to be 0.046 g/g COD, 0.083 (dˉ¹), 0.117 (d-¹), 0.357 g/g, 0.516 (L CH4/gCODadded), 18.51 (g/L/day) and 13.64 (g/L/day) respectively. The outcome of this study will help in simulation of anaerobic model to predict usable methane and good effluent quality during the treatment of industrial wastewater. Thus, this will protect the environment, conserve natural resources, saves time and reduce cost incur by the industries for the discharge of untreated or partially treated wastewater. It will also contribute to a sustainable long-term clean development mechanism for the optimization of the methane produced from anaerobic degradation of waste in a close system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brewery%20wastewater" title="brewery wastewater">brewery wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20generation%20model" title=" methane generation model"> methane generation model</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20modeling" title=" anaerobic modeling"> anaerobic modeling</a> </p> <a href="https://publications.waset.org/abstracts/5699/estimation-of-bio-kinetic-coefficients-for-treatment-of-brewery-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">312</span> Two-Stage Anaerobic Digester for Biogas Production from Sewage Sludge: A Case Study in One of Kuwait’s Wastewater Treatment Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Almatouq">Abdullah Almatouq</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulla%20Abusam"> Abdulla Abusam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Hussain"> Hussain Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Mishari%20Khajah"> Mishari Khajah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Abdullah"> Hussain Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashed%20Al-Yaseen"> Rashed Al-Yaseen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Al-Jumaa"> Mariam Al-Jumaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20Al-Ajeel"> Farah Al-Ajeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Aljassam"> Mohammad Aljassam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the high demand for energy from unsustainable resources in Kuwait, the Kuwaiti government has focused recently on using sustainable resources for energy, such as solar and wind energy. In addition, sludge which is generated as a by-product of physical, chemical, and biological processes during wastewater treatment, can be used as a substrate to generate energy through anaerobic digestion. Kuwait’s wastewater treatment plants produce more than 1.7 million m3 of sludge per year, and this volume is accumulated in the treatment plants without any treatment. Therefore, a pilot-scale (3 m3) two-stage anaerobic digester was constructed in one of the largest treatment plants in Kuwait. The reactor was operated in batch mode, and the hydraulic retention time varied between 14 – 27 days. The main of this study is to evaluate the technical feasibility of a two-stage anaerobic digester for sludge treatability and energy generation in Kuwait. The anaerobic digester achieved a total biogas production of 37 m3, and the highest value of daily biogas production was 0.4 m3/day. The methane content ranged between 50 % and 66 %, and the other gases were as follows: CO2 20 %, H2S 13 %, and 1 % O2. The generated biogas was used on-site for cooking and lighting. In some batches, low C/N was noticed, and that lead to maintaining the concentration of CH4 between 50%-55%. In conclusion, an anaerobic digester is an environmentally friendly technology that can be applied in Kuwait, and the obtained results support the scale-up of the process in all the treatment plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=metahne" title=" metahne"> metahne</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas%20production%20potential" title=" biogas production potential"> biogas production potential</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a> </p> <a href="https://publications.waset.org/abstracts/162875/two-stage-anaerobic-digester-for-biogas-production-from-sewage-sludge-a-case-study-in-one-of-kuwaits-wastewater-treatment-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">311</span> Anaerobic Co-Digestion of Duckweed (Lemna gibba) and Waste Activated Sludge in Batch Mode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rubia%20Gaur">Rubia Gaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Surindra%20Suthar"> Surindra Suthar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigates the anaerobic co-digestion of duckweed (Lemna gibba) and waste activated sludge (WAS) of different proportions with acclimatized anaerobic granular sludge (AAGS) as inoculum in mesophilic conditions. Batch experiments were performed in 500 mL capacity reagent bottles at 300C temperature. Varied combinations of pre-treated duckweed biomass with constant volume of anaerobic inoculum (AAGS - 100 mL) and waste activated sludge (WAS - 22.5 mL) were devised into five batch tests. The highest methane generation was observed with batch study, T4. The Gompertz model fits well on the experimental data of the batch study, T4. The values of correlation coefficient were achieved relatively higher (R2 ≥ 0.99). The co-digestion without pre-treatment of both duckweed and WAS shows poor generation of methane gas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20weed" title="aquatic weed">aquatic weed</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=Gompertz%20equation" title=" Gompertz equation"> Gompertz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20activated%20sludge" title=" waste activated sludge"> waste activated sludge</a> </p> <a href="https://publications.waset.org/abstracts/57321/anaerobic-co-digestion-of-duckweed-lemna-gibba-and-waste-activated-sludge-in-batch-mode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">310</span> Up-Flow Sponge Submerged Biofilm Reactor for Municipal Sewage Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saber%20A.%20El-Shafai">Saber A. El-Shafai</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20M.%20Zahid"> Waleed M. Zahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An up-flow submerged biofilm reactor packed with sponge was investigated for sewage treatment. The reactor was operated two cycles as single aerobic (1-1 at 3.5 L/L.d HLR and 1-2 at 3.8 L/L.day HLR) and four cycles as single anaerobic/aerobic reactor; 2-1 and 2-2 at low HLR (3.7 and 3.5 L/L.day) and 2-3 and 2-4 at high HLR (5.1 and 5.4 L/L.day). During the aerobic cycles, 50% effluent recycling significantly reduces the system performance except for phosphorous. In case of the anaerobic/aerobic reactor, the effluent recycling, significantly improves system performance at low HLR while at high HLR only phosphorous removal was improved. Excess sludge production was limited to 0.133 g TSS/g COD with better sludge volume index (SVI) in case of anaerobic/aerobic cycles; (54.7 versus 58.5 ml/g). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic" title="aerobic">aerobic</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%2Faerobic" title=" anaerobic/aerobic"> anaerobic/aerobic</a>, <a href="https://publications.waset.org/abstracts/search?q=up-flow" title=" up-flow"> up-flow</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20biofilm" title=" submerged biofilm"> submerged biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=sponge" title=" sponge"> sponge</a> </p> <a href="https://publications.waset.org/abstracts/62018/up-flow-sponge-submerged-biofilm-reactor-for-municipal-sewage-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">309</span> H2 Production and Treatment of Cake Wastewater Industry via Up-Flow Anaerobic Staged Reactor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manal%20A.%20Mohsen">Manal A. Mohsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Tawfik"> Ahmed Tawfik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen production from cake wastewater by anaerobic dark fermentation via upflow anaerobic staged reactor (UASR) was investigated in this study. The reactor was continuously operated for four months at constant hydraulic retention time (HRT) of 21.57 hr, PH value of 6 &plusmn; 0.6, temperature of 21.1&deg;C, and organic loading rate of 2.43 gCOD/l.d. The hydrogen production was 5.7 l H<sub>2</sub>/d and the hydrogen yield was 134.8 ml H<sub>2</sub> /g COD<sub>removed</sub>. The system showed an overall removal efficiency of TCOD, TBOD, TSS, TKN, and Carbohydrates of 40 &plusmn; 13%, 59 &plusmn; 18%, 84 &plusmn; 17%, 28 &plusmn; 27%, and 85 &plusmn; 15% respectively during the long term operation period. Based on the available results, the system is not sufficient for the effective treatment of cake wastewater, and the effluent quality of UASR is not complying for discharge into sewerage network, therefore a post treatment is needed (not covered in this study). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cake%20wastewater%20industry" title="cake wastewater industry">cake wastewater industry</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand%20%28COD%29" title=" chemical oxygen demand (COD)"> chemical oxygen demand (COD)</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title=" hydrogen production"> hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=up-flow%20anaerobic%20staged%20reactor%20%28UASR%29" title=" up-flow anaerobic staged reactor (UASR)"> up-flow anaerobic staged reactor (UASR)</a> </p> <a href="https://publications.waset.org/abstracts/40013/h2-production-and-treatment-of-cake-wastewater-industry-via-up-flow-anaerobic-staged-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">308</span> Anti Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus Action of Thermophilic Fungi Acrophialophora levis IBSD19 and Determination of Its Mode of Action Using Electron Microscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivankar%20Agrawal">Shivankar Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Indira%20Sarangthem"> Indira Sarangthem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA) remains one of the major causes of healthcare-associated and community-onset infections worldwide. Hence the search for non-toxic natural compounds having antibacterial activity has intensified for future drug development. The exploration of less studied niches of Earth can highly increase the possibility to discover novel bioactive compounds. Therefore, in this study, the cultivable fraction of fungi from the sediments of natural hot springs has been studied to mine potential fungal candidates with antibacterial activity against the human pathogen Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. We isolated diverse strains of thermophilic fungi from a collection of samples from sediment. Following a standard method, we isolated a promising thermophilic fungus strain IBSD19, identified as Acrophialophora levis, possessing the potential to produce an anti-Staphylococcus aureus agent. The growth conditions were optimized and scaled to fermentation, and its produced extract was subjected to chemical extraction. The ethyl acetate fraction was found to display significant activity against Staphylococcus aureus and MRSA with a minimum inhibitory concentration (MIC) of 0.5 mg/ml and 4 mg/ml, respectively. The cell membrane integrity assay and SEM suggested that the fungal metabolites cause bacteria clustering and further lysis of the cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=MRSA" title=" MRSA"> MRSA</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophiles" title=" thermophiles"> thermophiles</a> </p> <a href="https://publications.waset.org/abstracts/129275/anti-staphylococcus-aureus-and-methicillin-resistant-staphylococcus-aureus-action-of-thermophilic-fungi-acrophialophora-levis-ibsd19-and-determination-of-its-mode-of-action-using-electron-microscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobic&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobic&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobic&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobic&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobic&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobic&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobic&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobic&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobic&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobic&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobic&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermophilic%20anaerobic&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10