CINXE.COM

Search results for: geometric analyses

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: geometric analyses</title> <meta name="description" content="Search results for: geometric analyses"> <meta name="keywords" content="geometric analyses"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="geometric analyses" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="geometric analyses"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4106</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: geometric analyses</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4106</span> Structural Analysis of the Burkh Anticline in Fars Zone, in the Zagros Fold-Thrust Belt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Afroogh">A. Afroogh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ramazani%20Omali"> R. Ramazani Omali</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hafezi%20Moghaddas"> N. Hafezi Moghaddas</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nohegar"> A. Nohegar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Burkh anticline is located in Southeast of Zagros fold-thrust belt in the Fars Province. Geometric analyses of the anticline have been carried out to estimate the closure of the Dehram Group in order to evaluate its potential for gas reservoirs. Geometric analyses of the Burkh anticline indicate that the fold geometry is rather similar to that of the detachment folds. Based on the data from the geometric analysis, seven structural cross section the anticlines are drawn and using the cross sections, a structural contour for Dehram Group is constructed. The calculated values for the anticline closure prohibits this structure as it is not an appropriate host to gas reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burkh%20anticline" title="Burkh anticline">Burkh anticline</a>, <a href="https://publications.waset.org/abstracts/search?q=Zagros%20fold-thrust%20belt" title=" Zagros fold-thrust belt"> Zagros fold-thrust belt</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20analyses" title=" geometric analyses"> geometric analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20and%20horizontal%20closure" title=" vertical and horizontal closure"> vertical and horizontal closure</a>, <a href="https://publications.waset.org/abstracts/search?q=Dehram%20group" title=" Dehram group"> Dehram group</a> </p> <a href="https://publications.waset.org/abstracts/2277/structural-analysis-of-the-burkh-anticline-in-fars-zone-in-the-zagros-fold-thrust-belt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4105</span> Islamic Geometric Design: Infinite Point or Creativity through Compass and Digital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ridzuan%20Hussin">Ridzuan Hussin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Zaihidee%20Arshad"> Mohd Zaihidee Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The creativity of earlier artists and sculptors in designing geometric is extraordinary provided with only a compass. Indeed, geometric in Islamic art and design are unique and have their own aesthetic values. In order to further understand geometric, self-learning with the approach of hands on would be appropriate. For this study, Islamic themed geometric designed and created, concerning only; i. The Square Repetition Unit and √2, ii. The Hexagonal Repetition Unit and √3 and iii. Double Hexagon. The aim of this research is to evaluate the creativity of Islamic geometric pattern artworks, through Fundamental Arts and Gestalt theory. Data was collected using specific tasks, and this research intends to identify the difference of Islamic geometric between 21 untitled selected geometric artworks (conventional design method), and 25 digital untitled geometric pattern artworks method. The evaluation of creativity, colors, layout, pattern and unity is known to be of utmost importance, although there are differences in the conventional or the digital approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Islamic%20geometric%20design" title="Islamic geometric design">Islamic geometric design</a>, <a href="https://publications.waset.org/abstracts/search?q=Gestalt" title=" Gestalt"> Gestalt</a>, <a href="https://publications.waset.org/abstracts/search?q=fundamentals%20of%20art" title=" fundamentals of art"> fundamentals of art</a>, <a href="https://publications.waset.org/abstracts/search?q=patterns" title=" patterns"> patterns</a> </p> <a href="https://publications.waset.org/abstracts/59119/islamic-geometric-design-infinite-point-or-creativity-through-compass-and-digital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4104</span> Discursively Examination of 8th Grade Students’ Geometric Thinking Levels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferda%C4%9F%20%C3%87ulhan">Ferdağ Çulhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Gaye%20%C3%87ontay"> Emine Gaye Çontay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geometric thinking levels created by Van Hiele are used to determine students' progress in geometric thinking. Many studies have been conducted on geometric thinking levels and they have taken their place in teaching curricula over time. It is thought that geometric thinking levels, which have become so important in teaching, can be examined in depth. In order to make an in-depth analysis, it was decided that the most appropriate management was discourse analysis. In this study, the focus is on examining the geometric thinking levels of 8th grade students from a discursive point of view. Sfard (2008)'s "Commognitive" theory will be used to conduct discursive analysis. The "Global Van Hiele Questionnaire" created by Patkin (2014) and translated into Turkish for this research will be used in the research. The "Global Van Hiele Questionnaire" contains questions from the sub-learning domain of triangles and quadrilaterals, circles and geometric objects. It has a wider scope than many "Van Hiele Questionnaires". “Global Van Hiele Questionnaire” will be applied to 8th grade students. Then, the geometric thinking levels of the students will be determined and interviews will be held with two students from each of the 1st, 2nd and 3rd levels. The interviews will be recorded and the students' discourses will be examined. By evaluating the relations between the students' geometric thinking levels and their discourses, it will be examined how much their discourse reflects their level of thinking. In this way, it is thought that students' geometric thinking processes can be better understood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20discourses" title="mathematical discourses">mathematical discourses</a>, <a href="https://publications.waset.org/abstracts/search?q=commognitive%20framework" title=" commognitive framework"> commognitive framework</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20thinking%20levels" title=" geometric thinking levels"> geometric thinking levels</a>, <a href="https://publications.waset.org/abstracts/search?q=van%20hiele" title=" van hiele"> van hiele</a> </p> <a href="https://publications.waset.org/abstracts/148315/discursively-examination-of-8th-grade-students-geometric-thinking-levels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4103</span> Geometric Calibration of Computed Tomography Equipment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Hung%20Liao">Chia-Hung Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Chieh%20Lin"> Shih-Chieh Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> X-ray computed tomography (CT) technology has been used in the electronics industry as one of the non-destructive inspection tools for years. The key advantage of X-ray computed tomography technology superior to traditional optical inspection is the penetrating characteristics of X-rays can be used to detect defects in the interior of objects. The objective of this study is to find a way to estimate the system geometric deviation of X-ray CT equipment. Projection trajectories of the characteristic points of standard parts were tracked, and ways to calculate the deviation of various geometric parameters of the system will be proposed and evaluated. A simulation study will be conducted to first find out the effects of system geometric deviation on projected trajectories. Then ways to estimate geometric deviation with collected trajectories will be proposed and tested through simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometric%20calibration" title="geometric calibration">geometric calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20computed%20tomography" title=" X-ray computed tomography"> X-ray computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20tracing" title=" trajectory tracing"> trajectory tracing</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction%20optimization" title=" reconstruction optimization"> reconstruction optimization</a> </p> <a href="https://publications.waset.org/abstracts/163099/geometric-calibration-of-computed-tomography-equipment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4102</span> Geometric Continuity in the Form of Iranian Domes, Study of Prominent Safavid and Sasanian Domes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nima%20Valibeig">Nima Valibeig</a>, <a href="https://publications.waset.org/abstracts/search?q=Haniyeh%20Mohammadi"> Haniyeh Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Sadat%20Abdelahi"> Neda Sadat Abdelahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Persian domes follow different forms depending on the materials used to construct and other factors. One of the factors that shape the form of a dome is the geometric proportion used in the drawing and construction of the dome. Some commonly used proportions are revealed by analysing the shapes and geometric ratio of the monuments’ domes. The proportions are achieved by the proficiency of the skilled architects of the buildings. These proportions can be used to reconstruct damaged parts of the historical monuments. Most of the research on domes is about the historical or stability features of domes, and less attention is made to the geometric system in domes. Therefore, in this study, we study the explicit and implicit geometric proportions in Iranian dome structures for the first time. The study is done based on a literature review and field survey. This research reveals that the permanent geometric rules are perfectly used in the design and construction of the prominent domes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometry%20in%20architecture" title="geometry in architecture">geometry in architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=architectural%20proportions" title=" architectural proportions"> architectural proportions</a>, <a href="https://publications.waset.org/abstracts/search?q=prominent%20domes" title=" prominent domes"> prominent domes</a>, <a href="https://publications.waset.org/abstracts/search?q=iranian%20golden%20ratio" title=" iranian golden ratio"> iranian golden ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20proportion" title=" geometric proportion"> geometric proportion</a> </p> <a href="https://publications.waset.org/abstracts/149514/geometric-continuity-in-the-form-of-iranian-domes-study-of-prominent-safavid-and-sasanian-domes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4101</span> Spatial Interpolation Technique for the Optimisation of Geometric Programming Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debjani%20Chakraborty">Debjani Chakraborty</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhijit%20Chatterjee"> Abhijit Chatterjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Aishwaryaprajna"> Aishwaryaprajna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Posynomials, a special type of polynomials, having singularities, pose difficulties while solving geometric programming problems. In this paper, a methodology has been proposed and used to obtain extreme values for geometric programming problems by nth degree polynomial interpolation technique. Here the main idea to optimise the posynomial is to fit a best polynomial which has continuous gradient values throughout the range of the function. The approximating polynomial is smoothened to remove the discontinuities present in the feasible region and the objective function. This spatial interpolation method is capable to optimise univariate and multivariate geometric programming problems. An example is solved to explain the robustness of the methodology by considering a bivariate nonlinear geometric programming problem. This method is also applicable for signomial programming problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometric%20programming%20problem" title="geometric programming problem">geometric programming problem</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20optimisation%20technique" title=" multivariate optimisation technique"> multivariate optimisation technique</a>, <a href="https://publications.waset.org/abstracts/search?q=posynomial" title=" posynomial"> posynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20interpolation" title=" spatial interpolation"> spatial interpolation</a> </p> <a href="https://publications.waset.org/abstracts/70385/spatial-interpolation-technique-for-the-optimisation-of-geometric-programming-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4100</span> Geometric Design to Improve the Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ghodbane">H. Ghodbane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Taleb"> A. A. Taleb</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Kraa"> O. Kraa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents geometric design of induction heating system. The objective of this design is to improve the temperature distribution in the load. The study of such a device requires the use of models or modeling representation, physical, mathematical, and numerical. This modeling is the basis of the understanding, the design, and optimization of these systems. The optimization technique is to find values of variables that maximize or minimize the objective function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20design%20system" title=" geometric design system"> geometric design system</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20increase" title=" temperature increase"> temperature increase</a> </p> <a href="https://publications.waset.org/abstracts/1847/geometric-design-to-improve-the-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4099</span> Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yan%20Lyu">Yan Lyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiqun%20Pan"> Yiqun Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhizhong%20Huang"> Zhizhong Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building, Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that this simplification would only lead to the error that is less than 7% for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which can cover most situations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20model" title="building energy model">building energy model</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20simplification" title=" geometric simplification"> geometric simplification</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/139548/geometric-simplification-method-of-building-energy-model-based-on-building-performance-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4098</span> Solving the Pseudo-Geometric Traveling Salesman Problem with the “Union Husk” Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boris%20Melnikov">Boris Melnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%20Zhang"> Ye Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitrii%20Chaikovskii"> Dmitrii Chaikovskii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the pseudo-geometric version of the extensively researched Traveling Salesman Problem (TSP), proposing a novel generalization of existing algorithms which are traditionally confined to the geometric version. By adapting the "onion husk" method and introducing auxiliary algorithms, this research fills a notable gap in the existing literature. Through computational experiments using randomly generated data, several metrics were analyzed to validate the proposed approach's efficacy. Preliminary results align with expected outcomes, indicating a promising advancement in TSP solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization%20problems" title="optimization problems">optimization problems</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title=" traveling salesman problem"> traveling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithms" title=" heuristic algorithms"> heuristic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%9Conion%20husk%E2%80%9D%20algorithm" title=" “onion husk” algorithm"> “onion husk” algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-geometric%20version" title=" pseudo-geometric version"> pseudo-geometric version</a> </p> <a href="https://publications.waset.org/abstracts/172842/solving-the-pseudo-geometric-traveling-salesman-problem-with-the-union-husk-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4097</span> Bounded Solution Method for Geometric Programming Problem with Varying Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Ali%20H.%20Ahmadini">Abdullah Ali H. Ahmadini</a>, <a href="https://publications.waset.org/abstracts/search?q=Firoz%20Ahmad"> Firoz Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Intekhab%20Alam"> Intekhab Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geometric programming problem (GPP) is a well-known non-linear optimization problem having a wide range of applications in many engineering problems. The structure of GPP is quite dynamic and easily fit to the various decision-making processes. The aim of this paper is to highlight the bounded solution method for GPP with special reference to variation among right-hand side parameters. Thus this paper is taken the advantage of two-level mathematical programming problems and determines the solution of the objective function in a specified interval called lower and upper bounds. The beauty of the proposed bounded solution method is that it does not require sensitivity analyses of the obtained optimal solution. The value of the objective function is directly calculated under varying parameters. To show the validity and applicability of the proposed method, a numerical example is presented. The system reliability optimization problem is also illustrated and found that the value of the objective function lies between the range of lower and upper bounds, respectively. At last, conclusions and future research are depicted based on the discussed work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=varying%20parameters" title="varying parameters">varying parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20programming%20problem" title=" geometric programming problem"> geometric programming problem</a>, <a href="https://publications.waset.org/abstracts/search?q=bounded%20solution%20method" title=" bounded solution method"> bounded solution method</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20reliability%20optimization" title=" system reliability optimization"> system reliability optimization</a> </p> <a href="https://publications.waset.org/abstracts/131804/bounded-solution-method-for-geometric-programming-problem-with-varying-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4096</span> Investigation of Airship Motion Sensitivity to Geometric Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Ding">Han Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xiaoliang"> Wang Xiaoliang</a>, <a href="https://publications.waset.org/abstracts/search?q=Duan%20Dengping"> Duan Dengping</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the process of airship design, the layout and the geometric shape of the hull and fins are crucial to the motion characteristics of the airship. In this paper, we obtained the quantification motion sensitivity of the airship to geometric parameters through turning circles and horizontal/vertical zigzag maneuvers by the parameterization of airship shape and building the dynamic model using Lagrangian approach and MATLAB Simulink program. In the dynamics simulation program, the affection of geometric parameters to the mass, center of gravity, moments of inertia, product of inertia, added mass and the aerodynamic forces and moments have been considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airship" title="airship">airship</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrangian%20approach" title=" Lagrangian approach"> Lagrangian approach</a>, <a href="https://publications.waset.org/abstracts/search?q=turning%20circles" title=" turning circles"> turning circles</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%2Fvertical%20zigzag%20maneuvers" title=" horizontal/vertical zigzag maneuvers"> horizontal/vertical zigzag maneuvers</a> </p> <a href="https://publications.waset.org/abstracts/40146/investigation-of-airship-motion-sensitivity-to-geometric-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4095</span> Geometric Imperfections in Lattice Structures: A Simulation Strategy to Predict Strength Variability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xavier%20Lorang">Xavier Lorang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmadali%20Tahmasebimoradi"> Ahmadali Tahmasebimoradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chetra%20Mang"> Chetra Mang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Girard"> Sylvain Girard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The additive manufacturing processes (e.g. selective laser melting) allow us to produce lattice structures which have less weight, higher impact absorption capacity, and better thermal exchange property compared to the classical structures. Unfortunately, geometric imperfections (defects) in the lattice structures are by-products results of the manufacturing process. These imperfections decrease the lifetime and the strength of the lattice structures and alternate their mechanical responses. The objective of the paper is to present a simulation strategy which allows us to take into account the effect of the geometric imperfections on the mechanical response of the lattice structure. In the first part, an identification method of geometric imperfection parameters of the lattice structure based on point clouds is presented. These point clouds are based on tomography measurements. The point clouds are fed into the platform LATANA (LATtice ANAlysis) developed by IRT-SystemX to characterize the geometric imperfections. This is done by projecting the point clouds of each microbeam along the beam axis onto a 2D surface. Then, by fitting an ellipse to the 2D projections of the points, the geometric imperfections are characterized by introducing three parameters of an ellipse; semi-major/minor axes and angle of rotation. With regard to the calculated parameters of the microbeam geometric imperfections, a statistical analysis is carried out to determine a probability density law based on a statistical hypothesis. The microbeam samples are randomly drawn from the density law and are used to generate lattice structures. In the second part, a finite element model for the lattice structure with the simplified geometric imperfections (ellipse parameters) is presented. This numerical model is used to simulate the generated lattice structures. The propagation of the uncertainties of geometric imperfections is shown through the distribution of the computed mechanical responses of the lattice structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title=" finite element model"> finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20imperfections" title=" geometric imperfections"> geometric imperfections</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20structures" title=" lattice structures"> lattice structures</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation%20of%20uncertainty" title=" propagation of uncertainty"> propagation of uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/130259/geometric-imperfections-in-lattice-structures-a-simulation-strategy-to-predict-strength-variability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4094</span> Geometric Nonlinear Dynamic Analysis of Cylindrical Composite Sandwich Shells Subjected to Underwater Blast Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Taskin">Mustafa Taskin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozgur%20Demir"> Ozgur Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mert%20Serveren"> M. Mert Serveren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The precise study of the impact of underwater explosions on structures is of great importance in the design and engineering calculations of floating structures, especially those used for military purposes, as well as power generation facilities such as offshore platforms that can become a target in case of war. Considering that ship and submarine structures are mostly curved surfaces, it is extremely important and interesting to examine the destructive effects of underwater explosions on curvilinear surfaces. In this study, geometric nonlinear dynamic analysis of cylindrical composite sandwich shells subjected to instantaneous pressure load is performed. The instantaneous pressure load is defined as an underwater explosion and the effects of the liquid medium are taken into account. There are equations in the literature for pressure due to underwater explosions, but these equations have been obtained for flat plates. For this reason, the instantaneous pressure load equations are arranged to be suitable for curvilinear structures before proceeding with the analyses. Fluid-solid interaction is defined by using Taylor's Plate Theory. The lower and upper layers of the cylindrical composite sandwich shell are modeled as composite laminate and the middle layer consists of soft core. The geometric nonlinear dynamic equations of the shell are obtained by Hamilton's principle, taken into account the von Kàrmàn theory of large displacements. Then, time dependent geometric nonlinear equations of motion are solved with the help of generalized differential quadrature method (GDQM) and dynamic behavior of cylindrical composite sandwich shells exposed to underwater explosion is investigated. An algorithm that can work parametrically for the solution has been developed within the scope of the study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20composite%20sandwich%20shells" title="cylindrical composite sandwich shells">cylindrical composite sandwich shells</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20differential%20quadrature%20method" title=" generalized differential quadrature method"> generalized differential quadrature method</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20nonlinear%20dynamic%20analysis" title=" geometric nonlinear dynamic analysis"> geometric nonlinear dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=underwater%20explosion" title=" underwater explosion"> underwater explosion</a> </p> <a href="https://publications.waset.org/abstracts/139669/geometric-nonlinear-dynamic-analysis-of-cylindrical-composite-sandwich-shells-subjected-to-underwater-blast-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4093</span> Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Seguini">M. Seguini</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nedjar"> D. Nedjar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20nonlinearity" title=" geometric nonlinearity"> geometric nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20nonlinearity" title=" material nonlinearity"> material nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20variability" title=" spatial variability"> spatial variability</a> </p> <a href="https://publications.waset.org/abstracts/40934/nonlinear-finite-element-modeling-of-deep-beam-resting-on-linear-and-nonlinear-random-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4092</span> Kýklos Dimensional Geometry: Entity Specific Core Measurement System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Steven%20D.%20P%20Moore">Steven D. P Moore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel method referred to asKýklos(Ky) dimensional geometry is proposed as an entity specific core geometric dimensional measurement system. Ky geometric measures can constructscaled multi-dimensionalmodels using regular and irregular sets in IRn. This entity specific-derived geometric measurement system shares similar fractal methods in which a ‘fractal transformation operator’ is applied to a set S to produce a union of N copies. The Kýklos’ inputs use 1D geometry as a core measure. One-dimensional inputs include the radius interval of a circle/sphere or the semiminor/semimajor axes intervals of an ellipse or spheroid. These geometric inputs have finite values that can be measured by SI distance units. The outputs for each interval are divided and subdivided 1D subcomponents with a union equal to the interval geometry/length. Setting a limit of subdivision iterations creates a finite value for each 1Dsubcomponent. The uniqueness of this method is captured by allowing the simplest 1D inputs to define entity specific subclass geometric core measurements that can also be used to derive length measures. Current methodologies for celestial based measurement of time, as defined within SI units, fits within this methodology, thus combining spatial and temporal features into geometric core measures. The novel Ky method discussed here offers geometric measures to construct scaled multi-dimensional structures, even models. Ky classes proposed for consideration include celestial even subatomic. The application of this offers incredible possibilities, for example, geometric architecture that can represent scaled celestial models that incorporates planets (spheroids) and celestial motion (elliptical orbits). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyklos" title="Kyklos">Kyklos</a>, <a href="https://publications.waset.org/abstracts/search?q=geometry" title=" geometry"> geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=celestial" title=" celestial"> celestial</a>, <a href="https://publications.waset.org/abstracts/search?q=dimension" title=" dimension"> dimension</a> </p> <a href="https://publications.waset.org/abstracts/141798/kyklos-dimensional-geometry-entity-specific-core-measurement-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4091</span> Geometric and Algebraic Properties of the Eigenvalues of Monotone Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brando%20Vagenende">Brando Vagenende</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie-Anne%20Guerry"> Marie-Anne Guerry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For stochastic matrices of any order, the geometric description of the convex set of eigenvalues is completely known. The purpose of this study is to investigate the subset of the monotone matrices. This type of matrix appears in contexts such as intergenerational occupational mobility, equal-input modeling, and credit ratings-based systems. Monotone matrices are stochastic matrices in which each row stochastically dominates the previous row. The monotonicity property of a stochastic matrix can be expressed by a nonnegative lower-order matrix with the same eigenvalues as the original monotone matrix (except for the eigenvalue 1). Specifically, the aim of this research is to focus on the properties of eigenvalues of monotone matrices. For those matrices up to order 3, there already exists a complete description of the convex set of eigenvalues. For monotone matrices of order at least 4, this study gives, through simulations, more insight into the geometric description of their eigenvalues. Furthermore, this research treats in a geometric and algebraic way the properties of eigenvalues of monotone matrices of order at least 4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eigenvalues%20of%20matrices" title="eigenvalues of matrices">eigenvalues of matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20Markov%20chains" title=" finite Markov chains"> finite Markov chains</a>, <a href="https://publications.waset.org/abstracts/search?q=monotone%20matrices" title=" monotone matrices"> monotone matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=nonnegative%20matrices" title=" nonnegative matrices"> nonnegative matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20matrices" title=" stochastic matrices"> stochastic matrices</a> </p> <a href="https://publications.waset.org/abstracts/179294/geometric-and-algebraic-properties-of-the-eigenvalues-of-monotone-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4090</span> A New Aggregation Operator for Trapezoidal Fuzzy Numbers Based On the Geometric Means of the Left and Right Line Slopes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manju%20Pandey">Manju Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilay%20Khare"> Nilay Khare</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Shrivastava"> S. C. Shrivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is the final in a series, which has defined two new classes of aggregation operators for triangular and trapezoidal fuzzy numbers based on the geometrical characteristics of their fuzzy membership functions. In the present paper, a new aggregation operator for trapezoidal fuzzy numbers has been defined. The new operator is based on the geometric mean of the membership lines to the left and right of the maximum possibility interval. The operator is defined and the analytical relationships have been derived. Computation of the aggregate is demonstrated with a numerical example. Corresponding arithmetic and geometric aggregates as well as results from the recent work of the authors on TrFN aggregates have also been computed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LR%20fuzzy%20number" title="LR fuzzy number">LR fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20fuzzy%20number" title=" interval fuzzy number"> interval fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=triangular%20fuzzy%20number" title=" triangular fuzzy number"> triangular fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20fuzzy%20number" title=" trapezoidal fuzzy number"> trapezoidal fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=apex%20angle" title=" apex angle"> apex angle</a>, <a href="https://publications.waset.org/abstracts/search?q=left%20apex%20angle" title=" left apex angle"> left apex angle</a>, <a href="https://publications.waset.org/abstracts/search?q=right%20apex%20angle" title=" right apex angle"> right apex angle</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation%20operator" title=" aggregation operator"> aggregation operator</a>, <a href="https://publications.waset.org/abstracts/search?q=arithmetic%20and%20geometric%20mean" title=" arithmetic and geometric mean"> arithmetic and geometric mean</a> </p> <a href="https://publications.waset.org/abstracts/18890/a-new-aggregation-operator-for-trapezoidal-fuzzy-numbers-based-on-the-geometric-means-of-the-left-and-right-line-slopes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4089</span> Examining Geometric Thinking Behaviours of Undergraduates in Online Geometry Course</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Akayuure">Peter Akayuure</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geometry is considered an important strand in mathematics due to its wide-ranging utilitarian value and because it serves as a building block for understanding other aspects of undergraduate mathematics, including algebra and calculus. Matters regarding students’ geometric thinking have therefore long been pursued by mathematics researchers and educators globally via different theoretical lenses, curriculum reform efforts, and innovative instructional practices. However, so far, studies remain inconclusive about the instructional platforms that effectively promote geometric thinking. At the University of Education, Winneba, an undergraduate geometry course was designed and delivered on UEW Learning Management System (LMS) using Moodle platform. This study utilizes van Hiele’s theoretical lens to examine the entry and exit’s geometric thinking behaviours of prospective teachers who took the undergraduate geometry course in the LMS platform. The study was a descriptive survey that involved an intact class of 280 first-year students enrolled to pursue a bachelor's in mathematics education at the university. The van Hiele’s Geometric thinking test was used to assess participants’ entry and exit behaviours, while semi-structured interviews were used to obtain data for triangulation. Data were analysed descriptively and displayed in tables and charts. An Independent t-test was used to test for significant differences in geometric thinking behaviours between those who entered the university with a diploma certificate and with senior high certificate. The results show that on entry, more than 70% of the prospective teachers operated within the visualization level of van Hiele’s geometric thinking. Less than 20% reached analysis and abstraction levels, and no participant reached deduction and rigor levels. On exit, participants’ geometric thinking levels increased markedly across levels, but the difference from entry was not significant and might have occurred by chance. The geometric thinking behaviours of those enrolled with diploma certificates did not differ significant from those enrolled directly from senior high school. The study recommends that the design principles and delivery of undergraduate geometry course via LMS should be structured and tackled using van Hiele’s geometric thinking levels to serve as means of bridging the existing learning gaps of undergraduate students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometric%20thinking" title="geometric thinking">geometric thinking</a>, <a href="https://publications.waset.org/abstracts/search?q=van%20Hiele%E2%80%99s" title=" van Hiele’s"> van Hiele’s</a>, <a href="https://publications.waset.org/abstracts/search?q=UEW%20learning%20management%20system" title=" UEW learning management system"> UEW learning management system</a>, <a href="https://publications.waset.org/abstracts/search?q=undergraduate%20geometry" title=" undergraduate geometry"> undergraduate geometry</a> </p> <a href="https://publications.waset.org/abstracts/133894/examining-geometric-thinking-behaviours-of-undergraduates-in-online-geometry-course" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4088</span> Determination of Unsaturated Soil Permeability Based on Geometric Factor Development of Constant Discharge Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Rifa%E2%80%99i">A. Rifa’i</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Takeshita"> Y. Takeshita</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Komatsu"> M. Komatsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After Yogyakarta earthquake in 2006, the main problem that occurred in the first yard of Prambanan Temple is ponding area that occurred after rainfall. Soil characterization needs to be determined by conducting several processes, especially permeability coefficient (<em>k</em>) in both saturated and unsaturated conditions to solve this problem. More accurate and efficient field testing procedure is required to obtain permeability data that present the field condition. One of the field permeability test equipment is Constant Discharge procedure to determine the permeability coefficient. Necessary adjustments of the Constant Discharge procedure are needed to be determined especially the value of geometric factor (<em>F</em>) to improve the corresponding value of permeability coefficient. The value of <em>k</em> will be correlated with the value of volumetric water content (<em>&theta;</em>) of an unsaturated condition until saturated condition. The principle procedure of Constant Discharge model provides a constant flow in permeameter tube that flows into the ground until the water level in the tube becomes constant. Constant water level in the tube is highly dependent on the tube dimension. Every tube dimension has a shape factor called the geometric factor that affects the result of the test. Geometric factor value is defined as the characteristic of shape and radius of the tube. This research has modified the geometric factor parameters by using empty material tube method so that the geometric factor will change. Saturation level is monitored by using soil moisture sensor. The field test results were compared with the results of laboratory tests to validate the results of the test. Field and laboratory test results of empty tube material method have an average difference of 3.33 x 10<sup>-4</sup> cm/sec. The test results showed that modified geometric factor provides more accurate data. The improved methods of constant discharge procedure provide more relevant results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constant%20discharge" title="constant discharge">constant discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20factor" title=" geometric factor"> geometric factor</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability%20coefficient" title=" permeability coefficient"> permeability coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soils" title=" unsaturated soils"> unsaturated soils</a> </p> <a href="https://publications.waset.org/abstracts/53617/determination-of-unsaturated-soil-permeability-based-on-geometric-factor-development-of-constant-discharge-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4087</span> Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maatoug%20Hassine">Maatoug Hassine</a>, <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Hrizi"> Mourad Hrizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometric%20inverse%20source%20problem" title="geometric inverse source problem">geometric inverse source problem</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20equation" title=" heat equation"> heat equation</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20optimization" title=" topological optimization"> topological optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20sensitivity" title=" topological sensitivity"> topological sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohn-Vogelius%20formulation" title=" Kohn-Vogelius formulation"> Kohn-Vogelius formulation</a> </p> <a href="https://publications.waset.org/abstracts/58295/topological-sensitivity-analysis-for-reconstruction-of-the-inverse-source-problem-from-boundary-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4086</span> Triangular Geometric Feature for Offline Signature Verification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zuraidasahana%20Zulkarnain">Zuraidasahana Zulkarnain</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Shafry%20Mohd%20Rahim"> Mohd Shafry Mohd Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Anita%20Fairos%20Ismail"> Nor Anita Fairos Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Azhar%20M.%20Arsad"> Mohd Azhar M. Arsad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Handwritten signature is accepted widely as a biometric characteristic for personal authentication. The use of appropriate features plays an important role in determining accuracy of signature verification; therefore, this paper presents a feature based on the geometrical concept. To achieve the aim, triangle attributes are exploited to design a new feature since the triangle possesses orientation, angle and transformation that would improve accuracy. The proposed feature uses triangulation geometric set comprising of sides, angles and perimeter of a triangle which is derived from the center of gravity of a signature image. For classification purpose, Euclidean classifier along with Voting-based classifier is used to verify the tendency of forgery signature. This classification process is experimented using triangular geometric feature and selected global features. Based on an experiment that was validated using Grupo de Senales 960 (GPDS-960) signature database, the proposed triangular geometric feature achieves a lower Average Error Rates (AER) value with a percentage of 34% as compared to 43% of the selected global feature. As a conclusion, the proposed triangular geometric feature proves to be a more reliable feature for accurate signature verification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biometrics" title="biometrics">biometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=euclidean%20classifier" title=" euclidean classifier"> euclidean classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=features%20extraction" title=" features extraction"> features extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=offline%20signature%20verification" title=" offline signature verification"> offline signature verification</a>, <a href="https://publications.waset.org/abstracts/search?q=voting-based%20classifier" title=" voting-based classifier"> voting-based classifier</a> </p> <a href="https://publications.waset.org/abstracts/45300/triangular-geometric-feature-for-offline-signature-verification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4085</span> Vehicle Type Classification with Geometric and Appearance Attributes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20S.%20Moussa">Ghada S. Moussa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increase in population along with economic prosperity, an enormous increase in the number and types of vehicles on the roads occurred. This fact brings a growing need for efficiently yet effectively classifying vehicles into their corresponding categories, which play a crucial role in many areas of infrastructure planning and traffic management. This paper presents two vehicle-type classification approaches; 1) geometric-based and 2) appearance-based. The two classification approaches are used for two tasks: multi-class and intra-class vehicle classifications. For the evaluation purpose of the proposed classification approaches’ performance and the identification of the most effective yet efficient one, 10-fold cross-validation technique is used with a large dataset. The proposed approaches are distinguishable from previous research on vehicle classification in which: i) they consider both geometric and appearance attributes of vehicles, and ii) they perform remarkably well in both multi-class and intra-class vehicle classification. Experimental results exhibit promising potentials implementations of the proposed vehicle classification approaches into real-world applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=appearance%20attributes" title="appearance attributes">appearance attributes</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20attributes" title=" geometric attributes"> geometric attributes</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20classification" title=" vehicle classification"> vehicle classification</a> </p> <a href="https://publications.waset.org/abstracts/2688/vehicle-type-classification-with-geometric-and-appearance-attributes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4084</span> Optimized Weight Selection of Control Data Based on Quotient Space of Multi-Geometric Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Wang">Bo Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The geometric processing of multi-source remote sensing data using control data of different scale and different accuracy is an important research direction of multi-platform system for earth observation. In the existing block bundle adjustment methods, as the controlling information in the adjustment system, the approach using single observation scale and precision is unable to screen out the control information and to give reasonable and effective corresponding weights, which reduces the convergence and adjustment reliability of the results. Referring to the relevant theory and technology of quotient space, in this project, several subjects are researched. Multi-layer quotient space of multi-geometric features is constructed to describe and filter control data. Normalized granularity merging mechanism of multi-layer control information is studied and based on the normalized scale factor, the strategy to optimize the weight selection of control data which is less relevant to the adjustment system can be realized. At the same time, geometric positioning experiment is conducted using multi-source remote sensing data, aerial images, and multiclass control data to verify the theoretical research results. This research is expected to break through the cliché of the single scale and single accuracy control data in the adjustment process and expand the theory and technology of photogrammetry. Thus the problem to process multi-source remote sensing data will be solved both theoretically and practically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-source%20image%20geometric%20process" title="multi-source image geometric process">multi-source image geometric process</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20precision%20geometric%20positioning" title=" high precision geometric positioning"> high precision geometric positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=quotient%20space%20of%20multi-geometric%20features" title=" quotient space of multi-geometric features"> quotient space of multi-geometric features</a>, <a href="https://publications.waset.org/abstracts/search?q=optimized%20weight%20selection" title=" optimized weight selection"> optimized weight selection</a> </p> <a href="https://publications.waset.org/abstracts/76115/optimized-weight-selection-of-control-data-based-on-quotient-space-of-multi-geometric-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4083</span> Influence of Slenderness Ratio on the Ductility of Reinforced Concrete Portal Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kahil%20Amar">Kahil Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nekmouche%20Aghiles"> Nekmouche Aghiles</a>, <a href="https://publications.waset.org/abstracts/search?q=Titouche%20Billal"> Titouche Billal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamizi%20Mohand"> Hamizi Mohand</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannachi%20Naceur%20Eddine"> Hannachi Naceur Eddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ductility is an important parameter in the nonlinear behavior of portal structures reinforced concrete. It may be explained by the ability of the structure to deform in the plastic range, or the geometric characteristics in the map may influence the overall ductility. Our study is based on the influence of geometric slenderness (Lx / Ly) on the overall ductility of these structures, a study is made on a structure has 05 floors with varying the column section of 900 cm², 1600 cm² and 1225 cm². A slight variation in global ductility is noticed as (Lx/Ly) varies; however, column sections can control satisfactorily the plastic behavior of buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductility" title="ductility">ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20behavior" title=" nonlinear behavior"> nonlinear behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20slenderness" title=" geometric slenderness"> geometric slenderness</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20behavior" title=" structural behavior"> structural behavior</a> </p> <a href="https://publications.waset.org/abstracts/39694/influence-of-slenderness-ratio-on-the-ductility-of-reinforced-concrete-portal-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4082</span> Finite Element Analysis of Piezolaminated Structures with Both Geometric and Electroelastic Material Nonlinearities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shun-Qi%20Zhang">Shun-Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Yang%20Zhang"> Shu-Yang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Chen"> Min Chen</a>, <a href="https://publications.waset.org/abstracts/search?q="></a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Bai">Jing Bai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piezoelectric laminated smart structures can be subjected to the strong driving electric field, which may result in large displacements and rotations. In one hand, piezoelectric materials usually behave very significant material nonlinear effects under strong electric fields. On the other hand, thin-walled structures undergoing large displacements and rotations exist nonnegligible geometric nonlinearity. In order to give a precise prediction of piezo laminated smart structures under the large electric field, this paper develops a finite element (FE) model accounting for material nonlinearity (piezoelectric part) and geometric nonlinearity based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is first validated by both experimental and numerical examples from the literature. Afterwards, it is applied to simulate for plate and shell structures with multiple piezoelectric patches under the strong applied electric field. From the simulation results, it shows that large discrepancies occur between linear and nonlinear predictions for piezoelectric laminated structures driving at the strong electric field. Therefore, both material and geometric nonlinearities should be taken into account for piezoelectric structures under strong electric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures" title="piezoelectric smart structures">piezoelectric smart structures</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20nonlinearity" title=" geometric nonlinearity"> geometric nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=electroelastic%20material%20nonlinearities" title=" electroelastic material nonlinearities"> electroelastic material nonlinearities</a> </p> <a href="https://publications.waset.org/abstracts/72720/finite-element-analysis-of-piezolaminated-structures-with-both-geometric-and-electroelastic-material-nonlinearities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4081</span> Design and Development of Chassis Made of Composite Material </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Ravinder%20Reddy">P. Ravinder Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaitanya%20Vishal%20Nalli"> Chaitanya Vishal Nalli</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Tulja%20Lal"> B. Tulja Lal</a>, <a href="https://publications.waset.org/abstracts/search?q=Anusha%20Kankanala"> Anusha Kankanala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The chassis frame of an automobile with different sections have been considered for different loads. The orthotropic materials are selected to get the stability by varying fiber angle, fiber thickness, laminates, fiber properties, matrix properties and elastic ratios. The geometric model of chassis frame is carried out with parametric modelling approach. The analysis of chassis frame is carried out with ANSYS FEA software. The static and dynamic analysis of chassis frame is carried out by varying geometric parameters, orthotropic properties, materials and various sections. The static and dynamic response is discussed in detail in different sections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chassis%20frame" title="chassis frame">chassis frame</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title=" dynamic response"> dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20model" title=" geometric model"> geometric model</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials" title=" orthotropic materials"> orthotropic materials</a> </p> <a href="https://publications.waset.org/abstracts/56298/design-and-development-of-chassis-made-of-composite-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4080</span> Stability Design by Geometrical Nonlinear Analysis Using Equivalent Geometric Imperfections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Fominow">S. Fominow</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Dobert"> C. Dobert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present article describes the research that deals with the development of equivalent geometric imperfections for the stability design of steel members considering lateral-torsional buckling. The application of these equivalent imperfections takes into account the stiffness-reducing effects due to inelasticity and residual stresses, which lead to a reduction of the load carrying capacity of slender members and structures. This allows the application of a simplified design method, that is performed in three steps. Application of equivalent geometric imperfections, determination of internal forces using geometrical non-linear analysis (GNIA) and verification of the cross-section resistance at the most unfavourable location. All three verification steps are closely related and influence the results. The derivation of the equivalent imperfections was carried out in several steps. First, reference lateral-torsional buckling resistances for various rolled I-sections, slenderness grades, load shapes and steel grades were determined. This was done either with geometric and material non-linear analysis with geometrical imperfections and residual stresses (GMNIA) or for standard cases based on the equivalent member method. With the aim of obtaining identical lateral-torsional buckling resistances as the reference resistances from the application of the design method, the required sizes for equivalent imperfections were derived. For this purpose, a program based on the FEM method has been developed. Based on these results, several proposals for the specification of equivalent geometric imperfections have been developed. These differ in the shape of the applied equivalent geometric imperfection, the model of the cross-sectional resistance and the steel grade. The proposed design methods allow a wide range of applications and a reliable calculation of the lateral-torsional buckling resistances, as comparisons between the calculated resistances and the reference resistances have shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalent%20geometric%20imperfections" title="equivalent geometric imperfections">equivalent geometric imperfections</a>, <a href="https://publications.waset.org/abstracts/search?q=GMNIA" title=" GMNIA"> GMNIA</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20buckling" title=" lateral-torsional buckling"> lateral-torsional buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20finite%20element%20analysis" title=" non-linear finite element analysis"> non-linear finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/95750/stability-design-by-geometrical-nonlinear-analysis-using-equivalent-geometric-imperfections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4079</span> An Engineering Application of the H-P Version of the Finite Element Method on Vibration Behavior of Rotors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadjoui%20Abdelhamid">Hadjoui Abdelhamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Saimi%20Ahmed"> Saimi Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hybrid h-p finite element method for the dynamic behavior of nonlinear rotors is described in this paper. The standard h-version method of discretizing the problem is retained, but modified to allow the use of polynomially-enriched beam elements. A hierarchically enriching element will thus not affect the nodal displacement and rotation, but will influence the values of the nodal bending moment and shear force is used. The deterministic movements of rotation and translation of the support which are coupled to the excitations due to unbalance are also taken into account. We study also the geometric dissymmetry of the shaft and the disc, thus the equations of motion of the rotor contain variable parametric coefficients over time that can lead to a lateral dynamic instability. The effects of movements combined support for bearings are analyzed and discussed through Campbell diagrams and spectral analyses. A program is made in Matlab. After validation of the program, several examples are studied. The influence of physical and geometric parameters on the natural frequencies of the shaft is determined through the study of these examples. Among these parameters, we include the variation in the diameter and the thickness of the rotor, the position of the disc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Campbell%20diagram" title="Campbell diagram">Campbell diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20speeds" title=" critical speeds"> critical speeds</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20rotor" title=" nonlinear rotor"> nonlinear rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=version%20h-p%20of%20FEM" title=" version h-p of FEM"> version h-p of FEM</a> </p> <a href="https://publications.waset.org/abstracts/47838/an-engineering-application-of-the-h-p-version-of-the-finite-element-method-on-vibration-behavior-of-rotors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4078</span> A Design for Customer Preferences Model by Cluster Analysis of Geometric Features and Customer Preferences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Jye%20Tseng">Yuan-Jye Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Yen%20Chen"> Ching-Yen Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the design cycle, a main design task is to determine the external shape of the product. The external shape of a product is one of the key factors that can affect the customers&rsquo; preferences linking to the motivation to buy the product, especially in the case of a consumer electronic product such as a mobile phone. The relationship between the external shape and the customer preferences needs to be studied to enhance the customer&rsquo;s purchase desire and action. In this research, a design for customer preferences model is developed for investigating the relationships between the external shape and the customer preferences of a product. In the first stage, the names of the geometric features are collected and evaluated from the data of the specified internet web pages using the developed text miner. The key geometric features can be determined if the number of occurrence on the web pages is relatively high. For each key geometric feature, the numerical values are explored using the text miner to collect the internet data from the web pages. In the second stage, a cluster analysis model is developed to evaluate the numerical values of the key geometric features to divide the external shapes into several groups. Several design suggestion cases can be proposed, for example, large model, mid-size model, and mini model, for designing a mobile phone. A customer preference index is developed by evaluating the numerical data of each of the key geometric features of the design suggestion cases. The design suggestion case with the top ranking of the customer preference index can be selected as the final design of the product. In this paper, an example product of a notebook computer is illustrated. It shows that the external shape of a product can be used to drive customer preferences. The presented design for customer preferences model is useful for determining a suitable external shape of the product to increase customer preferences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title="cluster analysis">cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=customer%20preferences" title=" customer preferences"> customer preferences</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20evaluation" title=" design evaluation"> design evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20for%20customer%20preferences" title=" design for customer preferences"> design for customer preferences</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20design" title=" product design"> product design</a> </p> <a href="https://publications.waset.org/abstracts/96024/a-design-for-customer-preferences-model-by-cluster-analysis-of-geometric-features-and-customer-preferences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4077</span> Analysis of Correlation Between Manufacturing Parameters and Mechanical Strength Followed by Uncertainty Propagation of Geometric Defects in Lattice Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chetra%20Mang">Chetra Mang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmadali%20Tahmasebimoradi"> Ahmadali Tahmasebimoradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Xavier%20Lorang"> Xavier Lorang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lattice structures are widely used in various applications, especially in aeronautic, aerospace, and medical applications because of their high performance properties. Thanks to advancement of the additive manufacturing technology, the lattice structures can be manufactured by different methods such as laser beam melting technology. However, the presence of geometric defects in the lattice structures is inevitable due to the manufacturing process. The geometric defects may have high impact on the mechanical strength of the structures. This work analyzes the correlation between the manufacturing parameters and the mechanical strengths of the lattice structures. To do that, two types of the lattice structures; body-centered cubic with z-struts (BCCZ) structures made of Inconel718, and body-centered cubic (BCC) structures made of Scalmalloy, are manufactured by laser melting beam machine using Taguchi design of experiment. Each structure is placed on the substrate with a specific position and orientation regarding the roller direction of deposed metal powder. The position and orientation are considered as the manufacturing parameters. The geometric defects of each beam in the lattice are characterized and used to build the geometric model in order to perform simulations. Then, the mechanical strengths are defined by the homogeneous response as Young's modulus and yield strength. The distribution of mechanical strengths is observed as a function of manufacturing parameters. The mechanical response of the BCCZ structure is stretch-dominated, i.e., the mechanical strengths are directly dependent on the strengths of the vertical beams. As the geometric defects of vertical beams are slightly changed based on their position/orientation on the manufacturing substrate, the mechanical strengths are less dispersed. The manufacturing parameters are less influenced on the mechanical strengths of the structure BCCZ. The mechanical response of the BCC structure is bending-dominated. The geometric defects of inclined beam are highly dispersed within a structure and also based on their position/orientation on the manufacturing substrate. For different position/orientation on the substrate, the mechanical responses are highly dispersed as well. This shows that the mechanical strengths are directly impacted by manufacturing parameters. In addition, this work is carried out to study the uncertainty propagation of the geometric defects on the mechanical strength of the BCC lattice structure made of Scalmalloy. To do that, we observe the distribution of mechanical strengths of the lattice according to the distribution of the geometric defects. A probability density law is determined based on a statistical hypothesis corresponding to the geometric defects of the inclined beams. The samples of inclined beams are then randomly drawn from the density law to build the lattice structure samples. The lattice samples are then used for simulation to characterize the mechanical strengths. The results reveal that the distribution of mechanical strengths of the structures with the same manufacturing parameters is less dispersed than one of the structures with different manufacturing parameters. Nevertheless, the dispersion of mechanical strengths due to the structures with the same manufacturing parameters are unneglectable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometric%20defects" title="geometric defects">geometric defects</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20structure" title=" lattice structure"> lattice structure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength" title=" mechanical strength"> mechanical strength</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20propagation" title=" uncertainty propagation"> uncertainty propagation</a> </p> <a href="https://publications.waset.org/abstracts/130786/analysis-of-correlation-between-manufacturing-parameters-and-mechanical-strength-followed-by-uncertainty-propagation-of-geometric-defects-in-lattice-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20analyses&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20analyses&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20analyses&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20analyses&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20analyses&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20analyses&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20analyses&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20analyses&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20analyses&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20analyses&amp;page=136">136</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20analyses&amp;page=137">137</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=geometric%20analyses&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10