CINXE.COM

Key Engineering Materials Vol. 1003 | Scientific.Net

<!DOCTYPE html> <html lang="iv" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="description" content="The articles included in this special edition explore composites, materials for photovoltaic application, waste treatment and environmental remediation, building materials, and manufacturing processes, showcasing a spectrum of solutions that address contemporary challenges while shaping a sustainable future. This edition is a useful resource for researchers, practitioners, and students seeking a comprehensive understanding of the innovative technologies and methodologies shaping the future of engineering and materials science." /> <link rel="canonical" href="https://www.scientific.net/KEM.1003" /> <meta property="og:title" content="Key Engineering Materials Vol. 1003 | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/KEM.1003" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <title>Key Engineering Materials Vol. 1003 | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=cDLnZ3YA6cfiZP7BySDRmdCXis5ooi759DeeBZ1J5CM" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open&#x2B;Sans&#x2B;Condensed:300,700%7COpen&#x2B;Sans:300i,400,400i,600,600i,700&amp;display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FKEM.1003" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FKEM.1003" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/open-access-partners">Open Access</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/open-access-partners">Open Access</a> <a href="/DocuCenter">Downloads</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Volumes <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/KEM.1009" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 1009</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.1008" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 1008</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.1007" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 1007</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.1006" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 1006</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.1005" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 1005</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.1004" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 1004</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.1003" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 1003</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.1002" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 1002</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.1001" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 1001</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.1000" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 1000</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.999" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 999</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.998" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 998</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.997" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 997</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/KEM">Key Engineering Materials</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">Key Engineering Materials Vol. 1003</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">Key Engineering Materials Vol. 1003</h1> </div> <div class="clearfix title-details"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/v-igCkG4">https://doi.org/10.4028/v-igCkG4</a></p> </div> </div> </div> </div> <div id="titleMarcXmlLink" style="display: none" class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/KEM.1003/marc.xml">MARCXML</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>ToC:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/KEM.1003_toc.pdf">Table of Contents</a></p> </div> </div> </div> </div> </div> <div class="volume-tabs"> </div> <div class=""> <div class="volume-papers-page"> <div class="block-search-pagination clearfix"> <div class="block-search-volume"> <input id="paper-search" type="search" placeholder="Search" maxlength="65"> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/KEM.1003/2">2</a></li><li class="PagedList-skipToNext"><a href="/KEM.1003/2" rel="next">></a></li></ul></div> </div> <div class="block-volume-title normal-text-gray"> <p> Paper Title <span>Page</span> </p> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.1003.-1">Preface</a> </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.1003.3">Evaluation of the Mechanical and Tribological Properties of Aluminium - Based Composites Reinforced Silica Beach Sand Particulates</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Victor Ekene Ogbonna, Patricia Abimbola Popoola, Olawale Popoola, Samson Adeosun, Charles Obioha </div> </div> <div id="abstractTextBlock609906" class="volume-info volume-info-text volume-info-description"> Abstract: The use of silica sand tailings without leaching as a reinforcement in the development of composites remains a material class known for outstanding properties. However, owing to the availability, least expensive, and physical properties of silica beach sand, this study investigates the effect of non-leached silica (SiO<sub>2</sub>) beach sand particulates on the mechanical and tribological characteristics of aluminium (Al) alloy matrix composites. In the study, an AA6061 alloy matrix was reinforced with varying content of SiO<sub>2</sub> beach sand (0, 20, 30, and 40 wt%) using the stir casting process. The SEM results revealed uniform dispersion of the beach sand particulates in the resultant composites with minimal agglomerations up to 30 wt% loading. Thus, the hardness and elastic modulus of the SiO<sub>2</sub>/AA6061 alloy composites were improved by 326.7% and 90.9%, respectively, at 30 wt% SiO<sub>2</sub> particle addition. In addition, with the introduction of the SiO<sub>2</sub> particles in the alloy matrix, a reduction in the coefficient of friction by 24.5% and wear rate by 40.79% was recorded compared to the pure Al alloy. These findings indicate the substantial potentiality of silica beach sand particulates reinforced Al alloy matrix composite material as a promising candidate for mechanical load bearing, frictional components, and high-performance engineering applications including construction, automotive component, airframe, marine and rail transport. </div> <div> <a data-readmore="{ block: '#abstractTextBlock609906', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 3 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.1003.15">Enhancing Mechanical Properties of Natural Rubber Latex Composites through Alkali-Treated Areca Husk Fibers: Eco-Friendly Reinforcements</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Jutatip Artchomphoo, Diew Saijun, Pasuta Sungsee, Suwat Rattanapan </div> </div> <div id="abstractTextBlock616172" class="volume-info volume-info-text volume-info-description"> Abstract: This study explores the utilization of areca husk fiber (AHF), a naturally derived agricultural waste product, in enhancing the mechanical properties of natural rubber latex (NRL) composites. Areca husk fibers, treated with sodium hydroxide (NaOH) to improve their surface characteristics, were incorporated into NRL matrices. The objective was to investigate the effect of alkali treatment on the interfacial bonding and overall performance of the resulting composites. Mechanical testing revealed significant improvements in tensile strength, flexibility, and water resistance in the treated AHF composites compared to untreated ones. The findings suggest that alkali-treated AHF can significantly enhance the structural integrity and durability of NRL composites, offering a promising approach for developing sustainable, biodegradable materials from agricultural residues. </div> <div> <a data-readmore="{ block: '#abstractTextBlock616172', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 15 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.1003.31">Enhancing the Optoelectronic Properties of Copper Sulphide Nanoparticles for Photovoltaic Applications</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Abuzar Shahid, Nisar Ali, Aboud Ahmed Awadh Bahajjaj, Amir Khesro </div> </div> <div id="abstractTextBlock615522" class="volume-info volume-info-text volume-info-description"> Abstract: In this work, the co-precipitation method is used for the synthesis of copper sulfide (CuS) nanoparticles for use in solar cells. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX), UV-Visible spectroscopy (UV-Vis), photoluminescence spectroscopy (PL), and Fourier transform infrared spectroscopy (FTIR) are used to analyse the synthesized CuS nanoparticles. CuS nanoparticles with hexagonal phases and crystallite sizes ranging from 19 nm to 24 nm are identified by X-ray. The morphology of the SEM images changes from being asymmetrical to spherical. UV-Vis spectroscopy was carried out for the optical analysis of the synthesized powder. The band gap of the samples is determined using a tauc plot, and it is found to be decreasing with an increase in sulfur concentration, going from 2.01 eV to 1.88 eV. Surface imperfections and green emission bands related to electro-hole recombination are visible in PL spectra. Cu-S stretching vibrations are present at 618 cm<sup>-1</sup>, according to FTIR spectra. </div> <div> <a data-readmore="{ block: '#abstractTextBlock615522', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 31 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.1003.43">Optimization Study of Single Junction Structures Utilizing 1.12 eV Cs<sub>2</sub>AuBiCl<sub>6</sub> Double Perovskite: A Lead-Free Inorganic Absorber for Single and Tandem Solar Cell Applications</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Hayat Arbouz </div> </div> <div id="abstractTextBlock618041" class="volume-info volume-info-text volume-info-description"> Abstract: This study investigates the modeling and optimization of a single solar cell structure, utilizing the inorganic double perovskite Cs₂AuBiCl₆. This material features an A₂BB'X₆ composition and possesses a bandgap energy of 1.12 eV. The fundamental structure of the solar cell has been described, and the physical parameters of its primary layers have been outlined. A simulation model was developed to calculate the current-voltage characteristics and photovoltaic parameters, taking into account recombination rates due to defects within the absorber and at the interfaces with the electron transport layer (ETL) and hole transport layer (HTL). The influence of various parameters was analyzed, including bulk and interface density of defects, layer thicknesses, back contact work function and operating temperature. Additionally, the performance of structures with alternative transport materials for the ETL and HTL layers was evaluated. The impact of energy bandgap offsets with the absorbing perovskite layer was considered to identify materials that enhance the collection of photogenerated carriers and ultimately improve efficiency. The simulations revealed an optimized structure that demonstrated enhanced performance compared to the initial design. The optimized solar cell achieved a yield of 18.4 %, representing an increase of 5.4 % over the basic structure, with key performance metrics including, short-circuit current density Jsc = 36.75 mA/cm², fill factor FF = 76.76 %, open-circuit voltage V<sub>oc</sub> = 0.5879 V. Given its narrow bandgap value, the optimized structure was further examined in a tandem cell configuration, showcasing its potential for high-efficiency devices with a yield reaching 33 %. This work significantly contributes to the development of efficient, stable, and non-toxic perovskite solar cells for photovoltaic applications, paving the way for advancements in sustainable energy technologies. </div> <div> <a data-readmore="{ block: '#abstractTextBlock618041', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 43 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.1003.57">Circular Materials from the Ocean Waste: Prototyping Additive Manufacturing Processes for 3D Printing with Regenerated Plastics</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Lucas Lopes, Harish Daruari, Fernando M. Duarte, Manuela Almeida, Paulo Mendonca </div> </div> <div id="abstractTextBlock617924" class="volume-info volume-info-text volume-info-description"> Abstract: Marine plastic waste, such as High-Density Polyethene (HDPE) and Polyamide, poses a significant threat to marine ecosystems globally due to the incredibly large quantities found around the world. Each year, a minimum of eight million tons of plastic escapes into the oceans, contributing to a staggering 150 million tons of plastic waste currently present in the marine environment . If no substantial measures are taken, it is estimated that by 2050, the weight of plastic in the oceans may surpass that of fish, highlighting the critical need for intervention . Fishing lines and mooring cables are the largest precursors for the discarded materials in the ocean and are produced by fishing and maritime activities. These types of plastics put marine life and the overall ecosystem in danger. This research paper focuses on developing circular materials using regenerated HDPE and polyamide, with a specific focus on customizing them for 3D printing processes. The research paper delves deep into the circular process that these plastics undergo at the end of their life cycle, up to the stage of manufacturing to reinvent these materials back into communities as regenerated materials. This paper outlines the processing of waste, material engineering, rapid prototyping, and digital fabrication. The primary goal is to address the urgent issue of marine plastic pollution by devising sustainable and innovative methods to effectively repurpose these materials. </div> <div> <a data-readmore="{ block: '#abstractTextBlock617924', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 57 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.1003.67">Evaluation of the Quality Properties of Paper Derived from Bacterial Cellulose from Banana Peels and Pineapple Peels: A Multivariate Statistical Analysis</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Juan Valenzuela Cobos, Jorge Fabricio Guevara Viej&#xF3;, Edwuin J. Carrasquero Rodr&#xED;guez, Jaime Coello Viej&#xF3;, Fernando Pacheco Olea </div> </div> <div id="abstractTextBlock618049" class="volume-info volume-info-text volume-info-description"> Abstract: The Ecuadorian paper industry faces the constant challenge of seeking alternative raw materials to replace wood pulp in paper production and its derivatives to reduce production costs. Therefore, this study aims to evaluate the quality properties of paper derived from bacterial cellulose from two of Ecuador's most abundant agricultural residues: banana peels and pineapple peels. The influence of the productivity parameters of the bacterial cellulose produced on the quality properties of the derived paper is established using multivariate statistical methodologies. Fifteen treatments with different carbon sources in the microorganism's culture medium were applied: medium with glucose (T1), media with banana peel extracts at various concentrations (T2-T8), and media with pineapple peel extracts at various concentrations (T9-T15). After obtaining the cellulose, additives and coating solutions were added to produce paper. The results showed that high concentrations of banana peel extracts (T5-T8) were significantly related to the weight and yield of bacterial cellulose, as well as the grammage and water content of the paper. This demonstrates that the quality of bacterial cellulose and the nutritional composition of banana peel extracts are optimal for efficient and sustainable paper production. </div> <div> <a data-readmore="{ block: '#abstractTextBlock618049', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 67 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.1003.73">Development of Eco-Friendly Biomaterials: Recycled Thermoplastics Reinforced with Short Natural Cane and Palm Fibers</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: C&#xE9;sar A. Paltan, Jorge I. Fajardo, Edwuin J. Carrasquero Rodr&#xED;guez, Kevin A. Alvarez </div> </div> <div id="abstractTextBlock618433" class="volume-info volume-info-text volume-info-description"> Abstract: In this study, the behavior of biocomposites reinforced with natural fibers from African palm and sugar cane in a recycled polyethylene matrix is investigated. The aim is to analyze the rheological and mechanical properties of these materials to optimize their processability by injection. Natural fibers treated through a steam explosion process and subsequent drying and grinding were used to obtain a size suitable for extrusion. Biocomposites with different percentages of fiber (30% and 40%) were prepared and evaluated by melt flow index (MFI) and capillary rheometry tests. The results indicated a significant reduction in material fluidity with increasing fiber content, which was mitigated by the addition of a lubricant additive, stearic acid. Simulation of the injection process made it possible to determine crucial parameters such as injection pressure and filling time. Subsequently, injection tests were carried out varying the temperature and fiber concentration, followed by tensile tests to evaluate the mechanical resistance of the injected specimens. The results showed that the addition of the additive significantly improved the fluidity of the material, facilitating its injection without damaging the machinery and maintaining good mechanical properties. This study provides a solid foundation for the development of biocomposites eco-friendly with potential applications in the plastics industry. </div> <div> <a data-readmore="{ block: '#abstractTextBlock618433', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 73 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.1003.81">Evaluation of Thermal Insulation and Air Permeability of Needle-Punched Nonwovens Recycled from Waste Pantyhose</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Hande Sezgin, Ipek Yal&#xE7;&#x131;n Eni&#x15F;, H&#x131;d&#x131;r Maral </div> </div> <div id="abstractTextBlock617981" class="volume-info volume-info-text volume-info-description"> Abstract: Waste amount in the textile industry is rising in tandem with rising production and consumption levels. Reusing waste is always the best option, but for some textile products, this isn't the case. A ruptured pair of pantyhose is among the one of the best examples. Due to their delicate structure, these products are easily punctured, so they are disposed of in solid waste sites after 2-3 times use. In this study, it is aimed to recycle these pantyhose waste (polyamide/elastane), and use it in the production of thermal panels, and to statistically examine the effects of varying thickness and elastane content on the thermal insulation and air permeability of this material. In order to create nonwoven structures with varying thicknesses and elastane ratios, the pantyhose wastes converted into fiber form and then into carded web by using a carding machine. Then, a needle punching technology is used for the web formation process. The Minitab software program is used to analyze changes in air permeability and thermal conductivity coefficient between the samples using a full factorial experimental design. The findings indicate that while both factors affected air permeability, only the changing thickness had a statistically significant impact on the thermal conductivity coefficient. </div> <div> <a data-readmore="{ block: '#abstractTextBlock617981', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 81 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.1003.87">The Role of Gamma Irradiation in the Remediation of Hexachlorobenzene: A Study in 2-Propanol</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Samir Karimov, Elshad Abdullayev, Muslum Gurbanov, Lala Gasimzada </div> </div> <div id="abstractTextBlock616326" class="volume-info volume-info-text volume-info-description"> Abstract: This study demonstrates the effective dechlorination of hexachlorobenzene (HCB) in 2-propanol using γ-irradiation from a <sup>60</sup>Co source, showcasing the potential of radiolysis for persistent organic pollutants (POPs) remediation. Utilizing Gas Chromatography-Mass Spectrometry (GC-MS), we achieved nearly 100% degradation of HCB, quantifying and identifying the breakdown products throughout the process. The kinetic analysis revealed that HCB consumption follows pseudo-first-order kinetics, with an effective rate constant of 4 x 10⁻⁵ L mol⁻¹ s⁻¹. Our findings indicate a systematic reduction in HCB to less chlorinated benzenes (CBs), including penta-(PCB), tetra-(TeCB), and trichlorobenzene (TCB), as confirmed by the mass spectra. The full pathway of HCB degradation involves sequential dechlorination steps: starting from HCB, it is first reduced to PCB, followed by TeCB, and then TCB. Although dichlorobenzenes (DCB), monochlorobenzene (MCB), and benzene formation are theoretically predicted, they were not detected in our experiments. The detailed examination of the radiation chemical yield (G value), the degree of consumption, and the concentration change as a function of absorbed dose highlights the robust capability of γ-radiolysis in the targeted decomposition of chlorinated compounds. These results underscore γ-radiolysis as a highly efficient method for the remediation of POPs. </div> <div> <a data-readmore="{ block: '#abstractTextBlock616326', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 87 </div> </div> <div class="block-bottom-pagination"> <div class="pager-info"> <p>Showing 1 to 10 of 16 Paper Titles</p> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/KEM.1003/2">2</a></li><li class="PagedList-skipToNext"><a href="/KEM.1003/2" rel="next">></a></li></ul></div> </div> </div> </div> </div> </div> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy &amp; Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/open-access-partners">Open Access Partners</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> &#169; 2025 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=RxM_FbfHCcsoT4U-BoPCKYjCQ67x2cooj7su0mYkWQ4"></script> <script> $(function () { $("#paper-search").autocomplete({ minLength: 1, source: '/Title/Search?kurzel=KEM&volumeBegin=1003&volumeEnd=1003', delay: 200, select: function (event, ui) { window.location.href = ui.item.url; } }); }); </script> <script asp-render-component-scripts> $(function () { $.get("/Title/ShowMarcXmlLink") .done(function (showMarcXmlLink) { if (showMarcXmlLink) { $("#titleMarcXmlLink").show(); } }); }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10