CINXE.COM
Document Zbl 1222.46002 - zbMATH Open
<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <title>Document Zbl 1222.46002 - zbMATH Open</title> <meta name="viewport" content="width=device-width, minimum-scale=0.1, maximum-scale=5.0"> <meta name="robots" content="noarchive, noindex"> <meta name="referrer" content="origin-when-cross-origin"> <link href="https://static.zbmath.org/contrib/bootstrap/v3.3.7/css/bootstrap.min.css" rel="stylesheet" media="screen,print"> <link href="https://static.zbmath.org/contrib/bootstrap/v3.3.7/css/bootstrap-theme.min.css" rel="stylesheet" media="screen,print"> <link href="https://static.zbmath.org/contrib/bootstrap-lightbox/v0.7.0/bootstrap-lightbox.min.css" rel="stylesheet" media="screen,print"> <link rel="stylesheet" href="https://static.zbmath.org/contrib/bootstrap-select/v1.13.14/css/bootstrap-select.min.css"> <link href="/static/css/smoothness/jquery-ui-1.10.1.custom.min.css" rel="stylesheet" media="screen"> <link href="/static/styles.css?v=20241024" rel="stylesheet" media="screen,print"> <link href="https://static.zbmath.org/zbMathJax/v0.1.38/zbmathjax.css" rel="stylesheet" media="screen,print"> <link rel="shortcut icon" href="/static/zbmath.ico"> <script type="application/ld+json"> { "@context": "http://schema.org", "@type": "Organization", "url": "https://zbmath.org/", "logo": "https://zbmath.org/static/zbMATH.png" } </script> </head> <body> <div id="line"></div> <span id="clear" style="cursor: pointer;">×</span> <div id="page"> <div id="head"> <nav id="menu" class="navbar navbar-default"> <div class="container-fluid"> <div class="navbar-header"> <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#zbnav" aria-expanded="false"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <a class="navbar-brand" href="#"> <img class="logo" src="/static/zbmath.gif" alt="zbMATH Open logo"> </a> </div> <div id="zbnav" class="collapse navbar-collapse"> <ul class="nav navbar-nav pages"> <li class="about"> <a href="/about/">About</a> </li> <li class="frequently-asked-questions"> <a href="/frequently-asked-questions/">FAQ</a> </li> <li class="general-help"> <a href="/general-help/">General Help</a> </li> <li class="reviewer-service"> <a href="https://zbmath.org/reviewer-service/" target="_self" >Reviewer Service</a> </li> <li> <a href="/tools-and-resources/">Tools & Resources</a> </li> <li class="contact"> <a href="/contact/">Contact</a> </li> </ul> <ul class="nav navbar-nav navbar-right prefs"> <li class="preferences dropdown"> <a data-toggle="dropdown" href="#">Preferences <i class="caret"></i></a> <ul class="dropdown-menu preferences"> <li> <form id="preferences" class="navbar-form" method="post" action="/preferences/" onsubmit="return confirm('This website uses cookies for the purposes of storing preference information on your device. Do you agree to this?\n\nPlease refer to our Privacy Policy to learn more about our use of cookies.')" > <input type="hidden" name="path" value="/1222.46002?"> <span class=""> <label class="title">Search Form</label> <div class="form-group"> <input id="search-multi-line" type="radio" name="search" value="multi-line" checked> <label for="search-multi-line" class="radio">Multi-Line Search (default)</label> </div> <div class="form-group"> <input id="search-one-line" type="radio" name="search" value="one-line"> <label for="search-one-line" class="radio">One-Line Search</label> </div> </span> <span class="count"> <label class="title">Hits per Page</label> <div class="form-group"> <input id="count-10" type="radio" name="count" value="10"> <label for="count-10" class="radio">10</label> </div> <div class="form-group"> <input id="count-20" type="radio" name="count" value="20"> <label for="count-20" class="radio">20</label> </div> <div class="form-group"> <input id="count-50" type="radio" name="count" value="50"> <label for="count-50" class="radio">50</label> </div> <div class="form-group"> <input id="count-100" type="radio" name="count" value="100" checked> <label for="count-100" class="radio">100 (default)</label> </div> <div class="form-group"> <input id="count-200" type="radio" name="count" value="200"> <label for="count-200" class="radio">200</label> </div> </span> <span class="format"> <label class="title">Display Format</label> <div class="form-group"> <input id="format-mathjax" type="radio" name="format" value="mathjax" checked> <label for="format-mathjax" class="radio">MathJax (default)</label> </div> <div class="form-group"> <input id="format-amstex" type="radio" name="format" value="latex"> <label for="format-amstex" class="radio">LaTeX</label> </div> </span> <span class="ranking"> <label class="title">Documents Sorting</label> <div class="form-group"> <input id="documents-ranking-default" type="radio" name="documents_ranking" value="date" checked> <label for="documents-ranking-default" class="radio">Newest first (default)</label> </div> <div class="form-group"> <input id="documents-ranking-references" type="radio" name="documents_ranking" value="references"> <label for="documents-ranking-references" class="radio">Citations</label> </div> <div class="form-group"> <input id="documents-ranking-relevance" type="radio" name="documents_ranking" value="relevance"> <label for="documents-ranking-relevance" class="radio">Relevance</label> </div> </span> <span class="ranking"> <label class="title">Authors Sorting</label> <div class="form-group"> <input id="authors-ranking-default" type="radio" name="authors_ranking" value="alpha" checked> <label for="authors-ranking-default" class="radio">Alphabetically (default)</label> </div> <div class="form-group"> <input id="authors-ranking-references" type="radio" name="authors_ranking" value="references"> <label for="authors-ranking-references" class="radio">Citations</label> </div> </span> <span class="ranking"> <label class="title">Serials Sorting</label> <div class="form-group"> <input id="serials-ranking-default" type="radio" name="serials_ranking" value="alpha" checked> <label for="serials-ranking-default" class="radio">Alphabetically (default)</label> </div> <div class="form-group"> <input id="serials-ranking-references" type="radio" name="serials_ranking" value="references"> <label for="serials-ranking-references" class="radio">Citations</label> </div> </span> <span class="ranking"> <label class="title">Software Sorting</label> <div class="form-group"> <input id="software-ranking-default" type="radio" name="software_ranking" value="references" checked> <label for="software-ranking-default" class="radio">Citations (default)</label> </div> <div class="form-group"> <input id="software-ranking-alpha" type="radio" name="software_ranking" value="alpha"> <label for="software-ranking-alpha" class="radio">Alphabetically</label> </div> </span> <button type="submit" class="btn btn-default">OK</button> <div class="clearfix"> </form> </li> </ul> </li> </ul> </div> </div> </nav> <div id="tabs"> <h1 class="logo"> <a class="logo" href="/"> <img class="logo" src="/static/zbmath.gif" alt="zbMATH Open — the first resource for mathematics" > </a> </h1> <nav> <ul class="nav nav-tabs"> <li class="tab-documents active"> <a href="/">Documents</a> </li> <li class="tab-authors"> <a href="/authors/">Authors</a> </li> <li class="tab-serials"> <a href="/serials/">Serials</a> </li> <li class="tab-software"> <a href="/software/">Software</a> </li> <li class="tab-classification"> <a href="/classification/">Classification</a> </li> <li class="tab-formulae"> <a href="/formulae/">Formulæ</a> </li> </ul> </nav> <div class="clearfix"></div> </div> <div class="content-fixed"> <div class="content-formular"> <div style="display: none;"> <div class="row ml-0"id="multi-line-new-line" style="display: none;"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-0-f" aria-label="field"> <option data-type="input" value="any" selected>Anywhere</option> <option data-type="input" value="au">Authors</option> <option data-type="input" value="ti">Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><select class="form-control multi-line-operators multi-line-selectpicker" name="ml-0-op" aria-label="operator"> <option value="and" selected>AND</option> <option value="andnot">AND NOT</option> <option value="or">OR</option> </select></div> </div> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input"> <span class="multi-line-value" id="multi-line-type-range"><span style="padding-left: 5px;">from</span> <input name="ml-0-v1" class="form-control multi-line-input" type="text" value="" aria-label="value"> until <input name="ml-0-v2" class="form-control multi-line-input" type="text" value="" aria-label="value"></span> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-la" placeholder="use name or ISO code"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-rv" placeholder="enter name or zbMATH reviewer number"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-an" placeholder="Zbl, JFM or ERAM number"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-en" placeholder="e.g. DOI, ISBN, arXiv ID"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-sw" placeholder="use * to find all documents using software"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-br" placeholder="find documents about the life or work of a person"> <span class="multi-line-value" id="multi-line-type-multiselect-db"> <select class="multi-line-selectpicker" data-width="100%" multiple> <option value="zbl">Zbl</option> <option value="arxiv">arXiv</option> <option value="jfm">JFM</option> <option value="eram">ERAM</option> </select> <input type="hidden" class="multi-line-input" name="ml-0-v" value=""> </span> </div> <form name="documents" method="GET" action="/" autocomplete="off"> <div class="documents multi-line" style="display: none;"> <div class="forms"> <ul class="nav forms"> <li class="one-line"> <span tabindex="0" class="glyphicon glyphicon-question-sign" title="One-Line Search allows for free logical combinations of search fields" aria-label="One-Line Search allows for free logical combinations of search fields" data-placement="bottom"></span> <a style="display: inline-block;" href="#">One-Line Search <span class="glyphicon glyphicon-search"></span></a> </li> </ul> </div> <div class="clearfix"></div> <div class="container-fluid"> <input type="hidden" id="multi-line-ml" name="ml" value="3"> <div id="multi-line-row-wrapper"> <div class="row ml-1"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-1-f" aria-label="field"> <option data-type="input" value="any" selected>Anywhere</option> <option data-type="input" value="au">Authors</option> <option data-type="input" value="ti">Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-1-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><select class="form-control multi-line-operators multi-line-selectpicker" name="ml-1-op" aria-label="operator"> <option value="and" selected>AND</option> <option value="andnot">AND NOT</option> <option value="or">OR</option> </select></div> </div> <div class="row ml-2"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-2-f" aria-label="field"> <option data-type="input" value="any">Anywhere</option> <option data-type="input" value="au" selected>Authors</option> <option data-type="input" value="ti">Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-2-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><select class="form-control multi-line-operators multi-line-selectpicker" name="ml-2-op" aria-label="operator"> <option value="and" selected>AND</option> <option value="andnot">AND NOT</option> <option value="or">OR</option> </select></div> </div> <div class="row ml-3"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-3-f" aria-label="field"> <option data-type="input" value="any">Anywhere</option> <option data-type="input" value="au">Authors</option> <option data-type="input" value="ti" selected>Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-3-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><div id="multi-line-plus"> <a href="#"><span class="glyphicon glyphicon-plus" aria-hidden="true"></span> add line</a> </div></div> </div> </div> <div class="row"> <div class="col-xs-12 form-inline"> <div class="form-group field checkboxes-wrapper" id="checkboxes-wrapper-test" style="visibility: hidden; position: fixed;"> <label>Document Type:</label> <div class="checkboxes"> <div class="slider"> <label title="search for Articles in Journals"> <input type="checkbox" class="form-control" value="j" checked> <span tabindex="0"><small></small></span> Journal Articles </label> </div> <div class="slider"> <label title="search for Articles in Conference Proceedings and Collected Volumes"> <input type="checkbox" class="form-control" value="a" checked> <span tabindex="0"><small></small></span> Collection Articles </label> </div> <div class="slider"> <label title="search for Monographs, Proceedings, Dissertations etc."> <input type="checkbox" class="form-control" value="b" checked> <span tabindex="0"><small></small></span> Books </label> </div> <div class="slider"> <label title="search for arXiv Preprints"> <input type="checkbox" class="form-control" value="p" checked> <span tabindex="0"><small></small></span> arXiv Preprints </label> </div> </div> </div> <div class="form-group field checkboxes-wrapper" id="checkboxes-wrapper-real"> <label>Document Type:</label> <div class="checkboxes"> <div class="slider"> <label for="dt-j" title="search for Articles in Journals"> <input type="checkbox" id="dt-j" name="dt" class="form-control" value="j" checked> <span tabindex="0"><small></small></span> Journal Articles </label> </div> <div class="slider"> <label for="dt-a" title="search for Articles in Conference Proceedings and Collected Volumes"> <input type="checkbox" id="dt-a" name="dt" class="form-control" value="a" checked> <span tabindex="0"><small></small></span> Collection Articles </label> </div> <div class="slider"> <label for="dt-b" title="search for Monographs, Proceedings, Dissertations etc."> <input type="checkbox" id="dt-b" name="dt" class="form-control" value="b" checked> <span tabindex="0"><small></small></span> Books </label> </div> <div class="slider"> <label for="dt-p" title="search for arXiv Preprints"> <input type="checkbox" id="dt-p" name="dt" class="form-control" value="p" checked> <span tabindex="0"><small></small></span> arXiv Preprints </label> </div> </div> </div> </div> </div> <div class="row"> <div class="col-xs-12 buttons"> <a tabindex="0" class="btn btn-default clear-all">Reset all <span class="glyphicon glyphicon-remove"></span></a> <div class="submit"> <button class="btn btn-default search" type="submit">Search <span class="glyphicon glyphicon-search"></span></button> </div> </div> </div> </div> </div> </form> <form class="form-inline" name="documents" method="GET" action="/"> <div class="documents one-line" style="display: block;"> <div class="forms"> <ul class="nav forms"> <li class="multi-line"><a href="#">New Multi-Line Search <span class="glyphicon glyphicon-list"></span></a></li> </ul> </div> <div id="search-row" class="input-group box"> <span> <div id="search-field"> <input class="query form-control" type="text" name="q" value="an:1222.46002" aria-label="Search for documents" placeholder="Search for documents" autocomplete="off"> </div> <div class="search-buttons input-group-btn"> <div class="btn-group"> <button class="btn btn-default search" type="submit"><span class="virtual">Search</span> <span class="glyphicon glyphicon-search" style="top: 2px;"></span></button> </div> </div> </span> <span> <div class="search-buttons input-group-btn"> <div class="btn-group"> <div class="btn-group fields"> <button class="btn btn-default dropdown-toggle" data-toggle="dropdown">Fields <i class="caret"></i></button> <ul id="fields" class="dropdown-menu pull-right"> <li><a href="#"><span class="token item">any:</span><span> </span>anywhere (default)</a></li> <li><a href="#"><span class="token item">ab:</span><span> </span>review text</a></li> <li><a href="#"><span class="token item">an:</span><span> </span>zbmath id</a></li> <li><a href="#"><span class="token item">any:</span><span> </span>anywhere</a></li> <li><a href="#"><span class="token item">au:</span><span> </span>contributor name</a></li> <li><a href="#"><span class="token item">br:</span><span> </span>biographic reference name</a></li> <li><a href="#"><span class="token item">cc:</span><span> </span>msc title</a></li> <li><a href="#"><span class="token item">dt:</span><span> </span>document type</a></li> <li><a href="#"><span class="token item">doi:</span><span> </span>doi</a></li> <li><a href="#"><span class="token item">en:</span><span> </span>external id</a></li> <li><a href="#"><span class="token item">la:</span><span> </span>language</a></li> <li><a href="#"><span class="token item">pu:</span><span> </span>publisher</a></li> <li><a href="#"><span class="token item">py:</span><span> </span>year</a></li> <li><a href="#"><span class="token item">rv:</span><span> </span>reviewer name</a></li> <li><a href="#"><span class="token item">so:</span><span> </span>source</a></li> <li><a href="#"><span class="token item">sw:</span><span> </span>software name</a></li> <li><a href="#"><span class="token item">ti:</span><span> </span>title</a></li> <li><a href="#"><span class="token item">ut:</span><span> </span>keyword</a></li> </ul> </div> <div class="btn-group operators"> <button class="btn btn-default dropdown-toggle" data-toggle="dropdown">Operators <i class="caret"></i></button> <ul id="operators" class="dropdown-menu pull-right"> <li><a href="#"><span class="token">a <span class="item">&</span> b </span><span> </span>logical and (default)</a></li> <li><a href="#"><span class="token">a <span class="item">|</span> b </span><span> </span>logical or</a></li> <li><a href="#"><span class="token"><span class="item">!</span>ab </span><span> </span>logical not</a></li> <li><a href="#"><span class="token">abc<span class="item">*</span> </span><span> </span>right wildcard</a></li> <li><a href="#"><span class="token"><span class="item">"</span>ab c<span class="item">"</span></span><span> </span>phrase</a></li> <li><a href="#"><span class="token"><span class="item">(</span>ab c<span class="item">)</span></span><span> </span>parentheses</a></li> </ul> </div> </div> </div> <div class="special"> <ul class="nav help-button"> <li class="dropdown pull-right"> <a href="#">Help <i class="caret"></i></a> </li> </ul> </div> </span> </div> <div class="help"><h2>Examples</h2> <div id="help-terms" role="table"> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Geometry">Geometry</a></span> <span class="search-explanation" role="cell" role="cell">Search for the term <em>Geometry</em> in <strong>any</strong> field. Queries are <strong>case-independent</strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Funct%2A">Funct*</a></span> <span class="search-explanation" role="cell"><strong>Wildcard</strong> queries are specified by <strong><u>*</u></strong> (e.g. <em>functions</em>, <em>functorial</em>, etc.). Otherwise the search is <strong>exact</strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=%22Topological+group%22">"Topological group"</a></span> <span class="search-explanation" role="cell"><strong>Phrases</strong> (multi-words) should be set in <u>"</u>straight quotation marks<u>"</u>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=au%3A+Bourbaki+%26+ti%3A+Algebra">au: Bourbaki & ti: Algebra</a></span> <span class="search-explanation" role="cell">Search for <strong><u>au</u>thor</strong> and <strong><u>ti</u>tle</strong>. The <strong>and-operator &</strong> is default and can be omitted.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Chebyshev+%7C+Tschebyscheff">Chebyshev | Tschebyscheff</a></span> <span class="search-explanation" role="cell">The <strong>or-operator |</strong> allows to search for <em>Chebyshev</em> or <em>Tschebyscheff</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Quasi%2A+map%2A+py%3A+1989">Quasi* map* py: 1989</a></span> <span class="search-explanation" role="cell">The resulting documents have <strong><u>p</u>ublication <u>y</u>ear</strong> <em>1989</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=so%3A+Eur%2A+J%2A+Mat%2A+Soc%2A+cc%3A+14">so: Eur* J* Mat* Soc* cc: 14</a></span> <span class="search-explanation" role="cell">Search for publications in a particular <strong><u>so</u>urce</strong> with a <strong>Mathematics Subject <u>C</u>lassification <u>c</u>ode (<u>cc</u>)</strong> in <em>14</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=%22Partial+diff%2A+eq%2A%22+%21+elliptic">"Partial diff* eq*" ! elliptic</a></span> <span class="search-explanation" role="cell">The <strong>not</strong>-operator <strong>!</strong> eliminates all results containing the word <em>elliptic</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=dt%3A+b+%26+au%3A+Hilbert">dt: b & au: Hilbert</a></span> <span class="search-explanation" role="cell">The <strong><u>d</u>ocument <u>t</u>ype</strong> is set to books; alternatively: <u>j</u> for <strong>journal articles</strong>, <u>a</u> for <strong>book articles</strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=py%3A+2000-2015+cc%3A+%2894A+%7C+11T%29">py: 2000-2015 cc: (94A | 11T)</a></span> <span class="search-explanation" role="cell">Number <strong>ranges</strong> are accepted. Terms can be grouped within <strong><u>(</u>parentheses<u>)</u></strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=la%3A+chinese">la: chinese</a></span> <span class="search-explanation" role="cell">Find documents in a given <strong><u>la</u>nguage</strong>. <a href="http://en.wikipedia.org/wiki/ISO_639-1">ISO 639-1</a> language codes can also be used.</span> </div> </div> <div id="help-fields"> <h2>Fields</h2> <table> <tr> <td class="nowrap padding" role="rowheader"><strong>any</strong></td> <td class="padding">anywhere</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>an</strong></td> <td class="padding">internal document identifier</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>au</strong></td> <td class="padding">author, editor</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ai</strong></td> <td class="padding">internal author identifier</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ti</strong></td> <td class="padding">title</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>la</strong></td> <td class="padding">language</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>so</strong></td> <td class="padding">source</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ab</strong></td> <td class="padding">review, abstract</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>py</strong></td> <td class="padding">publication year</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>rv</strong></td> <td class="padding">reviewer</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>cc</strong></td> <td class="padding">MSC code</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ut</strong></td> <td class="padding">uncontrolled term</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>dt</strong></td> <td class="padding" colspan="4">document type (<strong>j</strong>: journal article; <strong>b</strong>: book; <strong>a</strong>: book article)</td> </tr> </table> </div> <div id="help-operators"> <h2>Operators</h2> <table> <tr> <td class="nowrap padding" role="rowheader">a <strong>&</strong> b</td> <td class="padding">logic and</td> </tr> <tr> <td class="nowrap padding" role="rowheader">a <strong>|</strong> b</td> <td class="padding">logic or</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>!</strong>ab</td> <td class="padding">logic not</td> </tr> <tr> <td class="nowrap padding" role="rowheader">abc<strong>*</strong></td> <td class="padding">right wildcard</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>"</strong>ab c<strong>"</strong></td> <td class="padding">phrase</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>(</strong>ab c<strong>)</strong></td> <td class="padding">parentheses</td> </tr> </table> </div> <p> See also our <a href="/general-help/">General Help</a>. </p></div> </div> </form> <div class="clearfix"></div> </div> <div class="content-shadow"></div> </div> </div> <div id="body"> <div id="main"> <div class="messages"> </div> <div id="documents"> <div class="content-main"> <div class="content-item"><div class="item"> <article> <div class="author"><a href="/authors/diening.lars" title="Author Profile">Diening, Lars</a>; <a href="/authors/harjulehto.petteri" title="Author Profile">Harjulehto, Petteri</a>; <a href="/authors/hasto.peter-a" title="Author Profile">Hästö, Peter</a>; <a href="/authors/ruzicka.michael" title="Author Profile">Růžička, Michael</a></div> <h2 class="title"> <strong>Lebesgue and Sobolev spaces with variable exponents.</strong> <i>(English)</i> <a class="label nowrap" href="/1222.46002">Zbl 1222.46002</a> </h2> <div class="source"> <a href="/serials/4020" title="Series Profile">Lecture Notes in Mathematics</a> 2017. Berlin: Springer (ISBN 978-3-642-18362-1/pbk; 978-3-642-18363-8/ebook). x, 509 p. (2011). </div> <div class="abstract">The book is devoted to Lebesgue and Sobolev spaces with variable exponents. Let \((A,\Sigma,\mu)\) be a \(\sigma\)-finite complete measure space and \(p:A\to[1,\infty]\). For simplicity assume that \(p\) is \(\mu\)-almost everywhere finite. For a \(\mu\)-measurable function \(u:A\to{\mathbb K}\), where \({\mathbb K}\) is the field of real or complex numbers, consider \(\varrho_{L^{p(\cdot)}(A)}(u):=\int_A|u(x)|^{p(x)}dx\). The Lebesgue space with variable exponent \(L^{p(\cdot)}(A,\mu)\) is defined as the collection of all \(\mu\)-measurable functions \(u:A\to{\mathbb K}\) such that \(\varrho_{L^{p(\cdot)}(A,\mu)}(u/\lambda)<\infty\) for some \(\lambda\) depending on \(u\). This is a Banach space when equipped with the so-called Luxemburg norm \[ \|u\|_{L^{p(\cdot)}(A,\mu)}=\inf\left\{\lambda>0: \varrho_{L^{p(\cdot)}(A,\mu)}(u/\lambda)\leq 1\right\}. \] It is clear that \(L^{p(\cdot)}(A,\mu)\) is nothing but the Lebesgue space whenever \(p\in[1,\infty)\) is constant.<br class="zbmathjax-paragraph">Let \(k\in\{0,1,2,\dots\}\). If \(\Omega\subset{\mathbb R}^n\) is an open set equipped with the Lebesgue measure, then the Sobolev space with variable exponent \(W^{k,p(\cdot)}(\Omega)\) is defined as the set of all functions \(u\in L^{p(\cdot)}(\Omega)\) such that all their weak derivatives \(\partial_\alpha u\) with \(|\alpha|\leq k\) exist and belong to \(L^{p(\cdot)}(\Omega)\). This is a Banach space when equipped with the norm <br class="zbmathjax-paragraph">\[ \|u\|_{W^{k,p(\cdot)}(\Omega)}=\inf\left\{\lambda>0:\sum_{0\leq|\alpha|\leq k}\varrho_{L^{p(\cdot)}(\Omega)}(\partial_\alpha u/\lambda)\leq 1\right\}. \]<br class="zbmathjax-paragraph">For the first time Lebesgue spaces with variable exponents were considered by <span class="zbmathjax-textit">W. Orlicz</span> [“Über konjugierte Exponentenfolgen.” Stud. Math. 3, 200–211 (1931; <a href="/0003.25203">Zbl 0003.25203</a>)]. Further, [<span class="zbmathjax-textit">H. Nakano</span>, Modulared semi-ordered linear spaces. Tokyo Math. Book Series, Vol. 1. Tokyo: Maruzen (1950; <a href="/0041.23401">Zbl 0041.23401</a>)] constructed the theory of modular spaces. Lebesgue spaces with variable exponents are mentioned explicitly in that book as an example of modular spaces. Therefore, sometimes Lebesgue spaces with variable exponents are called Nakano spaces. Nakano’s theory was further generalized by <span class="zbmathjax-textit">J. Musielak</span> and <span class="zbmathjax-textit">W. Orlicz</span> [“On modular spaces.” Stud. Math. 18, 49–65 (1959; <a href="/0086.08901">Zbl 0086.08901</a>)], where in particular Musielak-Orlicz spaces (variable Orlicz spaces) were introduced. Later developments in the theory of modular spaces and Musielak-Orlicz spaces were summarized in [<span class="zbmathjax-textit">J. Musielak</span>, Orlicz spaces and modular spaces. Lecture Notes in Mathematics 1034. Berlin etc.: Springer-Verlag. (1983; <a href="/0557.46020">Zbl 0557.46020</a>)]. To the reviewer’s knowledge, Sobolev spaces of functions with weak derivatives in Musielak-Orlicz spaces were studied for the first time by <span class="zbmathjax-textit">H. Hudzik</span> [“A generalization of Sobolev spaces. I.” Funct. Approximatio, Comment. Math. 2, 67–73 (1976; <a href="/0338.46032">Zbl 0338.46032</a>)], [“A generalization of Sobolev space. II.” Funct. Approximatio, Comment. Math. 3, 77–85 (1976; <a href="/0355.46011">Zbl 0355.46011</a>)], [“On generalized Orlicz-Sobolev space.” Funct. Approximatio, Comment. Math. 4, 37–51 (1976; <a href="/0355.46012">Zbl 0355.46012</a>)], [“On problem of density of \(C_0^\infty(\Omega)\) in generalized Orlicz-Sobolev space \(W_M^k (\Omega)\) for every open set \(\Omega\subset {\mathbb R}^n\).” Commentat. Math. 20, 65–78 (1977; <a href="/0385.46016">Zbl 0385.46016</a>)]. The present book consists of the introduction and three parts. The introduction (Chapter 1) contains a short history of spaces with variable exponents, an overview of the main results of the book and preliminaries from functional analysis and measure theory.<br class="zbmathjax-paragraph">The first part is about Lebesgue spaces with variable exponents. Chapter 2 describes properties of semi-modular and modular spaces, as well as properties of Musielak-Orlicz spaces such as separability, uniform convexity, duality and reflexivity. This chapter has an overlap with Musielak’s book cited above. <br class="zbmathjax-paragraph">In Chapter 3, completeness, reflexivity, separability, and uniform convexity of Lebesgue spaces with variable exponents are derived from more general results of Chapter 2. The norm dual formula is also established. It is not assumed that \(p\) is bounded, \(p\) can even take the value infinity on a set of positive measure. Let \(p_-:=\text{ess\,inf}_{x\in A}p(x)\) and \(p_+:=\text{ess\,sup}_{x\in A}p(x)\). For instance, it is shown that \(L^{p(\cdot)}(A,\mu)\) is reflexive whenever \(1<p_-\) and \(p_+<\infty\). <br class="zbmathjax-paragraph">Chapter 4 is central in the first part. It deals with the boundedness of the Hardy-Littlewood maximal operator \(M\) on \(L^{p(\cdot)}(\Omega)\) where \(\Omega\subset{\mathbb R}^n\) is an open set equipped with the Lebesgue measure. In contrast to previous investigations, the authors are able to treat the case of unbounded exponents. One says that a function \(\alpha:\Omega\to{\mathbb R}\) is locally log-Hölder continuous if there exists a constant \(c_1>0\) such that \(|\alpha(x)-\alpha(y)|\leq c_1/\log(e+1/|x-y|)\) for all \(x,y\in\Omega\) and that \(\alpha\) satisfies the log-Hölder decay condition if there exists an \(\alpha_\infty\in{\mathbb R}\) and a constant \(c_2>0\) such that \(|\alpha(x)-\alpha_\infty|\leq c_2/\log(e+|x|)\) for all \(x\in\Omega\). If both conditions are satisfied then one says that \(\alpha\) is globally log-Hölder continuous. The main result of Chapter 4 says that if \(1/p\) is globally log-Hölder continuous on \({\mathbb R}^n\) and \(p_->1\) then \(M\) is bounded on \(L^{p(\cdot)}({\mathbb R}^n)\). It is also shown that \(p_->1\) is necessary for the bounededness of \(M\) on \(L^{p(\cdot)}({\mathbb R}^n)\).<br class="zbmathjax-paragraph">Chapter 5 starts with <span class="zbmathjax-textit">A. K. Lerner</span>’s proof [“Some remarks on the Hardy-Littlewood maximal function on variable \(L^p\) spaces.” Math. Z. 251, No. 3, 509–521 (2005; <a href="/1092.42009">Zbl 1092.42009</a>)] of the fact that the global log-Hölder continuity of \(1/p\) is not necessary for the boundedness of \(M\). In particular, it is shown that if \(\alpha\) is small enough, then \(M\) is bounded on \(L^{p(\cdot)}({\mathbb R}^n)\) with \(p(x)=2-\alpha(1+\sin(\log\log(e+|x|+1/|x|)))\). Clearly, this function is discontinuous at zero and at infinity. Chapter 5 contains a more abstract treatment of the boundedness of the maximal operator in terms of the so-called class \({\mathcal A}\). This class consists of those exponents for which a suitable collection of averaging operators is bounded. The main result of Chapter 5 says that if \(1<p_-\) and \(p_+<\infty\) then the following statements are equivalent: (a) \(M\) is bounded on \(L^{p(\cdot)}({\mathbb R}^n)\); (b) \(p\in{\mathcal A}\); (c) \(p':=p/(p-1)\in{\mathcal A}\); (d) \(M\) is bounded on \(L^{sp(\cdot)}({\mathbb R}^n)\) for some \(s\in(1/p_-,1)\); (e) \(M\) is bounded on \(L^{p'(\cdot)}({\mathbb R}^n)\). <br class="zbmathjax-paragraph">Chapter 6 consists of a fairly straightforward application of methods from Chapter 4 to other operators such as the Riesz potential, the Fefferman-Stein sharp maximal operator, the Calderón-Zygmund singular integral operator. One sample result is as follows. Let \(p\in{\mathcal A}\) be such that \(1<p_-\) and \(p_+<\infty\). Then the Calderón-Zygmund singular integral operator is bounded on \(L^{p(\cdot)}({\mathbb R}^n)\).<br class="zbmathjax-paragraph">Chapter 7 collects some techniques which allow one to transfer some results from one setting to another, more general, setting. In Section 7.1, a Riesz-Thorin type interpolation theorem for Lebesgue spaces with variable exponents is proved. Notice that for the more general setting of Musielak-Orlicz spaces such a result is contained in Section 14 of Musielak’s book. Section 7.2 deals with the Rubio de Francia extrapolation in the setting of Lebesgue spaces with variable exponent. This subsection has an overlap with the recent monograph by [<span class="zbmathjax-textit">D. Cruz-Uribe, J. M. Martell</span> and <span class="zbmathjax-textit">C. Pérez</span>, Weights, extrapolation and the theory of Rubio de Francia. Basel: Birkhäuser (2011; <a href="/1234.46003">Zbl 1234.46003</a>)]. Another interesting transfer technique considered in Section 7.4 allows one to generalize many statements for balls to (possible unbounded) John domains.<br class="zbmathjax-paragraph">The second part of the book is about Sobolev spaces with variable exponents. In Chapter 8, the completeness, reflexivity, separability, and uniform convexity of Sobolev spaces with variable exponents are proved under minimal assumptions on \(p\). More sophisticated results like Sobolev embeddings and Poincaré inequalities are proved by recourse to results on maximal and other operators.<br class="zbmathjax-paragraph">Chapter 9 deals with the density of smooth functions in Sobolev spaces with variable exponents. Several sufficient conditions for the density are presented and several counterexamples when the density does not hold are given.<br class="zbmathjax-paragraph">In Chapter 10 two kinds of capacities are introduced: the Sobolev capacity and the relative capacity. For a constant exponent these definitions agree with classical ones. Capacities are used to understand the pointwise behavior of Sobolev functions. These capacities are compared with each other and with the variable dimension Hausdorff measure.<br class="zbmathjax-paragraph">Chapter 11 is devoted to the study of fine properties of Sobolev functions which are defined only up to a set of measure zero. The authors pick a good representative from every equivalence class of Sobolev functions and show that this representative, called quasicontinuous, has many good properties. The main tools in this chapter are the capacities introduced in Chapter 10. Each Sobolev function has a quasicontinuous representative under a natural assumption on the variable exponent. Removable sets are studied in terms of capacities. It is proved that if \(p\) is globally log-Hölder continuous, then each point is a Lebesgue point except for a set of Sobolev \(p(\cdot)\)-capacity zero. It is shown by example that for more general exponents this is not the case.<br class="zbmathjax-paragraph">Chapter 12 deals with other spaces of Sobolev type, that is, spaces of functions of some (possible fractional) smoothness. In particular, homogeneous Sobolev, Bessel potential, Besov, and Triebel-Lizorkin spaces with variable exponents are studied.<br class="zbmathjax-paragraph">In the third part of the book, applications of the results of the first two parts to partial differential equations are developed. In Chapter 13, partial differential equations with non-standard growth are considered. The Laplace equation can be generalized to the variable exponent setting as \(\text{div}(p(x)|\nabla u(x)|^{p(x)-2}\nabla u)=0\). In this case the Sobolev space \(W^{1,p(\cdot)}(\Omega)\) is the natural space in which to look for a solution. The approach of this chapter is based on use the of capacities and fine properties of functions from Chapters 10 and 11.<br class="zbmathjax-paragraph">In Chapter 14, the authors use the theory of Calderón-Zygmund operators to prove regularity results for the Poisson problem and the Stokes problem, to show the solvability of the divergence equation and to prove Korn’s inequality. The last section of the chapter is devoted to the existence theory of so-called electrorheological fluids. This section nicely illustrates how all the previously developed theory is used. The reader can find more information on electrorheological fluids in the monograph by [<span class="zbmathjax-textit">M. Ružička</span>, Electrorheological fluids: modeling and mathematical theory. Lecture Notes in Mathematics 1748. Berlin: Springer (2000; <a href="/0962.76001">Zbl 0962.76001</a>)].<br class="zbmathjax-paragraph">The majority of the results presented in the monograph were obtained by the authors and their collaborators. The list of references contains 399 items and, certainly, it is far from being complete. For instance, the pioneering papers by H. Hudzik on properties of Musielak-Orlicz-Sobolev spaces (see above) are not mentioned at all. Nevertheless, the books is a useful source of unified information on Lebesgue and Sobolev spaces with variable exponents.<div class="reviewer"> Reviewer: <a href="/authors/?q=rv%3A10736">Alexei Yu. Karlovich (Lisboa)</a></div> <div class="clearfix"></div></div> <div class="clear"></div> <br> <div class="citations"><div class="clear"><a href="/?q=ci%3A5854634">Cited in <strong>5</strong> Reviews</a></div><div class="clear"><a href="/?q=rf%3A5854634">Cited in <strong>1836</strong> Documents</a></div></div> <div class="classification"> <h3>MSC:</h3> <table><tr> <td> <a class="mono" href="/classification/?q=cc%3A46-02" title="MSC2020">46-02</a> </td> <td class="space"> Research exposition (monographs, survey articles) pertaining to functional analysis </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A46E30" title="MSC2020">46E30</a> </td> <td class="space"> Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A46E35" title="MSC2020">46E35</a> </td> <td class="space"> Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A42-02" title="MSC2020">42-02</a> </td> <td class="space"> Research exposition (monographs, survey articles) pertaining to harmonic analysis on Euclidean spaces </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A42B20" title="MSC2020">42B20</a> </td> <td class="space"> Singular and oscillatory integrals (Calderón-Zygmund, etc.) </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A42B25" title="MSC2020">42B25</a> </td> <td class="space"> Maximal functions, Littlewood-Paley theory </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A35Q35" title="MSC2020">35Q35</a> </td> <td class="space"> PDEs in connection with fluid mechanics </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A76A05" title="MSC2020">76A05</a> </td> <td class="space"> Non-Newtonian fluids </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A76D03" title="MSC2020">76D03</a> </td> <td class="space"> Existence, uniqueness, and regularity theory for incompressible viscous fluids </td> </tr></table> </div><div class="keywords"> <h3>Keywords:</h3><a href="/?q=ut%3ALebesgue+space+with+variable+exponent">Lebesgue space with variable exponent</a>; <a href="/?q=ut%3ASobolev+space+with+variable+exponents">Sobolev space with variable exponents</a>; <a href="/?q=ut%3AMusielak-Orlicz+space">Musielak-Orlicz space</a>; <a href="/?q=ut%3Amodular+space">modular space</a>; <a href="/?q=ut%3AHardy-Littlewood+maximal+function">Hardy-Littlewood maximal function</a>; <a href="/?q=ut%3Asharp+maximal+function">sharp maximal function</a>; <a href="/?q=ut%3ACalder%C3%B3n-Zygmund+singular+integral+operator">Calderón-Zygmund singular integral operator</a>; <a href="/?q=ut%3ARiesz+potential">Riesz potential</a>; <a href="/?q=ut%3ASobolev+capacity">Sobolev capacity</a>; <a href="/?q=ut%3AHausdorff+measure">Hausdorff measure</a>; <a href="/?q=ut%3ABesov+space">Besov space</a>; <a href="/?q=ut%3ATriebel-Lizorkin+space">Triebel-Lizorkin space</a>; <a href="/?q=ut%3AJohn+domain">John domain</a>; <a href="/?q=ut%3ADirichlet+energy+functional">Dirichlet energy functional</a>; <a href="/?q=ut%3Aelectrorheological+fluids">electrorheological fluids</a></div><div class="keywords"> <h3>Citations:</h3><a href="/0003.25203">Zbl 0003.25203</a>; <a href="/0041.23401">Zbl 0041.23401</a>; <a href="/0086.08901">Zbl 0086.08901</a>; <a href="/0557.46020">Zbl 0557.46020</a>; <a href="/0338.46032">Zbl 0338.46032</a>; <a href="/0355.46011">Zbl 0355.46011</a>; <a href="/0355.46012">Zbl 0355.46012</a>; <a href="/0385.46016">Zbl 0385.46016</a>; <a href="/1092.42009">Zbl 1092.42009</a>; <a href="/0962.76001">Zbl 0962.76001</a>; <a href="/1234.46003">Zbl 1234.46003</a></div> <!-- Modal used to show zbmath metadata in different output formats--> <div class="modal fade" id="metadataModal" tabindex="-1" role="dialog" aria-labelledby="myModalLabel"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> <h4 class="modal-title" id="myModalLabel">Cite</h4> </div> <div class="modal-body"> <div class="form-group"> <label for="select-output" class="control-label">Format</label> <select id="select-output" class="form-control" aria-label="Select Metadata format"></select> </div> <div class="form-group"> <label for="metadataText" class="control-label">Result</label> <textarea class="form-control" id="metadataText" rows="10" style="min-width: 100%;max-width: 100%"></textarea> </div> <div id="metadata-alert" class="alert alert-danger" role="alert" style="display: none;"> <!-- alert for connection errors etc --> </div> </div> <div class="modal-footer"> <button type="button" class="btn btn-primary" onclick="copyMetadata()">Copy to clipboard</button> <button type="button" class="btn btn-default" data-dismiss="modal">Close</button> </div> </div> </div> </div> <div class="functions clearfix"> <div class="function"> <!-- Button trigger metadata modal --> <a type="button" class="btn btn-default btn-xs pdf" data-toggle="modal" data-target="#metadataModal" data-itemtype="Zbl" data-itemname="Zbl 1222.46002" data-ciurl="/ci/05854634" data-biburl="/bibtex/05854634.bib" data-amsurl="/amsrefs/05854634.bib" data-xmlurl="/xml/05854634.xml" > Cite </a> <a class="btn btn-default btn-xs pdf" data-container="body" type="button" href="/pdf/05854634.pdf" title="Zbl 1222.46002 as PDF">Review PDF</a> </div> <div class="fulltexts"> <span class="fulltext">Full Text:</span> <a class="btn btn-default btn-xs" type="button" href="https://doi.org/10.1007/978-3-642-18363-8" aria-label="DOI for “Lebesgue and Sobolev spaces with variable exponents”" title="10.1007/978-3-642-18363-8">DOI</a> </div> <div class="sfx" style="float: right;"> </div> </div> </article> </div></div> </div> </div> <div class="clearfix"></div> </div> </div> <div id="foot"><div class="copyright"> © 2025 <a target="fiz" href="https://www.fiz-karlsruhe.de/en">FIZ Karlsruhe GmbH</a> <a href="/privacy-policy/">Privacy Policy</a> <a href="/legal-notices/">Legal Notices</a> <a href="/terms-conditions/">Terms & Conditions</a> <div class="info"> <ul class="nav"> <li class="mastodon"> <a href="https://mathstodon.xyz/@zbMATH" target="_blank" class="no-new-tab-icon"> <img src="/static/mastodon.png" title="zbMATH at Mathstodon (opens in new tab)" alt="Mastodon logo"> </a> </li> </ul> </div> </div> <div class="clearfix" style="height: 0px;"></div> </div> </div> <script src="https://static.zbmath.org/contrib/jquery/1.9.1/jquery.min.js"></script> <script src="https://static.zbmath.org/contrib/jquery-caret/1.5.2/jquery.caret.min.js"></script> <script src="/static/js/jquery-ui-1.10.1.custom.min.js"></script> <script src="https://static.zbmath.org/contrib/bootstrap/v3.3.7zb1/js/bootstrap.min.js"></script> <script src="https://static.zbmath.org/contrib/bootstrap-lightbox/v0.7.0/bootstrap-lightbox.min.js"></script> <script src="https://static.zbmath.org/contrib/retina/unknown/retina.js"></script> <script src="https://static.zbmath.org/contrib/bootstrap-select/v1.13.14/js/bootstrap-select.min.js"></script> <script> var SCRIPT_ROOT = ""; </script> <script src="/static/scripts.js?v=20240926"> </script> <script src="https://static.zbmath.org/contrib/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { preferredFont: "TeX", availableFonts: [ "STIX", "TeX" ], linebreaks: { automatic: true }, EqnChunk: (MathJax.Hub.Browser.isMobile ? 10 : 50) }, tex2jax: { processEscapes: true, ignoreClass: "tex2jax_ignore|dno" }, TeX: { Macros: { Aut: "\\operatorname{Aut}", Hom: "\\operatorname{Hom}" }, noUndefined: { attributes: { mathcolor: "#039", //"red", mathbackground: "white", //"#FFEEEE", mathsize: "90%" } } }, messageStyle: "none" }); </script> <script type="text/javascript"> $(document).ready(function() { $("#MathInput").stop(true, true).keyup(function() { $.ajax({ url: "/mwsq/", type: "POST", data: { query : $("#MathInput").val() }, dataType: "text" }) .done(function(xml) { $("#MathPreview").html(xml); $(window).resize(); }); }); var press = jQuery.Event("keyup"); press.ctrlKey = false; press.which = 40; $("#MathInput").trigger(press); }); </script> <div id="new_tab_icon" style="display: none"> <span class="glyphicon glyphicon-new-window" aria-hidden="true"></span><span class="sr-only">(opens in new tab)</span></div> </body> </html>