CINXE.COM

Search results for: headspace solid phase microextraction (HS-SPME)

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: headspace solid phase microextraction (HS-SPME)</title> <meta name="description" content="Search results for: headspace solid phase microextraction (HS-SPME)"> <meta name="keywords" content="headspace solid phase microextraction (HS-SPME)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="headspace solid phase microextraction (HS-SPME)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="headspace solid phase microextraction (HS-SPME)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6266</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: headspace solid phase microextraction (HS-SPME)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6266</span> Analysis of the Volatile Organic Compounds of Tillandsia Flowers by HS-SPME/GC-MS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20Gonzalez">Alexandre Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Zohra%20Benfodda"> Zohra Benfodda</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20B%C3%A9nim%C3%A9lis"> David Bénimélis</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Xavier%20Fontaine"> Jean-Xavier Fontaine</a>, <a href="https://publications.waset.org/abstracts/search?q=Roland%20Molini%C3%A9"> Roland Molinié</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Meffre"> Patrick Meffre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volatile organic compounds (VOCs) emitted by flowers play an important role in plant ecology. However, the Tillandsia genus has been scarcely studied according to the VOCs emitted by flowers. Tillandsia are epiphytic flowering plants belonging to the Bromeliaceae family. The VOCs composition of twelve unscented and two faint-scented Tillandsia species was studied. The headspace solid phase microextraction coupled with gas chromatography combined with mass spectrometry method was used to explore the chemical diversity of the VOCs. This study allowed the identification of 65 VOCs among the fourteen species, and between six to twenty-five compounds were identified in each of the species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tillandsia" title="tillandsia">tillandsia</a>, <a href="https://publications.waset.org/abstracts/search?q=headspace%20solid%20phase%20microextraction%20%28HS-SPME%29" title=" headspace solid phase microextraction (HS-SPME)"> headspace solid phase microextraction (HS-SPME)</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography-mass%20spectrometry%20%28GC-MS%29" title=" gas chromatography-mass spectrometry (GC-MS)"> gas chromatography-mass spectrometry (GC-MS)</a>, <a href="https://publications.waset.org/abstracts/search?q=scentless%20flowers" title=" scentless flowers"> scentless flowers</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compounds%20%28VOCs%29" title=" volatile organic compounds (VOCs)"> volatile organic compounds (VOCs)</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA%20analysis" title=" PCA analysis"> PCA analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=heatmap" title=" heatmap"> heatmap</a> </p> <a href="https://publications.waset.org/abstracts/152016/analysis-of-the-volatile-organic-compounds-of-tillandsia-flowers-by-hs-spmegc-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6265</span> Evaluation of Oxidative Changes in Soybean Oil During Shelf-Life by Physico-Chemical Methods and Headspace-Liquid Phase Microextraction (HS-LPME) Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Enteshari">Maryam Enteshari</a>, <a href="https://publications.waset.org/abstracts/search?q=Kooshan%20Nayebzadeh"> Kooshan Nayebzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdorreza%20Mohammadi"> Abdorreza Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the oxidative stability of soybean oil under different storage temperatures (4 and 25˚C) and during 6-month shelf-life was investigated by various analytical methods and headspace-liquid phase microextraction (HS-LPME) coupled to gas chromatography-mass spectrometry (GC-MS). Oxidation changes were monitored by analytical parameters consisted of acid value (AV), peroxide value (PV), p-Anisidine value (p-AV), thiobarbituric acid value (TBA), fatty acids profile, iodine value (IV), and oxidative stability index (OSI). In addition, concentrations of hexanal and heptanal as secondary volatile oxidation compounds were determined by HS-LPME/GC-MS technique. Rate of oxidation in soybean oil which stored at 25˚C was so higher. The AV, p-AV, and TBA were gradually increased during 6 months while the amount of unsaturated fatty acids, IV, and OSI decreased. Other parameters included concentrations of both hexanal and heptanal, and PV exhibited increasing trend during primitive months of storage; then, at the end of third and fourth months a sudden decrement was understood for the concentrations of hexanal and heptanal and the amount of PV, simultaneously. The latter parameters increased again until the end of shelf-time. As a result, the temperature and time were effective factors in oxidative stability of soybean oil. Also intensive correlations were found for soybean oil at 4 ˚C between AV and TBA (r2=0.96), PV and p-AV (r2=0.9), IV and TBA (-r2=0.9), and for soybean oil stored at 4˚C between p-AV and TBA (r2=0.99). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=headspace-liquid%20phase%20microextraction" title="headspace-liquid phase microextraction">headspace-liquid phase microextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf-life" title=" shelf-life"> shelf-life</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20oil" title=" soybean oil"> soybean oil</a> </p> <a href="https://publications.waset.org/abstracts/33686/evaluation-of-oxidative-changes-in-soybean-oil-during-shelf-life-by-physico-chemical-methods-and-headspace-liquid-phase-microextraction-hs-lpme-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6264</span> Speciation Analysis by Solid-Phase Microextraction and Application to Atrazine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Benhabib">K. Benhabib</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Pierens"> X. Pierens</a>, <a href="https://publications.waset.org/abstracts/search?q=V-D%20Nguyen"> V-D Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Mimanne"> G. Mimanne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main hypothesis of the dynamics of solid phase microextraction (SPME) is that steady-state mass transfer is respected throughout the SPME extraction process. It considers steady-state diffusion is established in the two phases and fast exchange of the analyte at the solid phase film/water interface. An improved model is proposed in this paper to handle with the situation when the analyte (atrazine) is in contact with colloid suspensions (carboxylate latex in aqueous solution). A mathematical solution is obtained by substituting the diffusion coefficient by the mean of diffusion coefficient between analyte and carboxylate latex, and also thickness layer by the mean thickness in aqueous solution. This solution provides an equation relating the extracted amount of the analyte to the extraction a little more complicated than previous models. It also gives a better description of experimental observations. Moreover, the rate constant of analyte obtained is in satisfactory agreement with that obtained from the initial curve fitting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticide" title="pesticide">pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-phase%20microextraction%20%28SPME%29%20methods" title=" solid-phase microextraction (SPME) methods"> solid-phase microextraction (SPME) methods</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state" title=" steady state"> steady state</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20model" title=" analytical model"> analytical model</a> </p> <a href="https://publications.waset.org/abstracts/84307/speciation-analysis-by-solid-phase-microextraction-and-application-to-atrazine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6263</span> Optimization of Headspace Solid Phase Microextraction (SPME) Technique Coupled with GC MS for Identification of Volatile Organic Compounds Released by Trogoderma Variabile </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thamer%20Alshuwaili">Thamer Alshuwaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Yonglin%20Ren"> Yonglin Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Bob%20Du"> Bob Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Manjree%20Agarwal"> Manjree Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The warehouse beetle, Trogoderma variabile Ballion (Coleoptera: Dermestidae), is a major pest of packaged and processed stored products. Warehouse beetle is the common name which was given by Okumura (1972). This pest has been reported to infest 119 different commodities, and it is distributed throughout the tropical and subtropical parts of the world. Also, it is difficult to control because of the insect's ability to stay without food for long times, and it can survive for years under dry conditions and low-moisture food, and it has also developed resistance to many insecticides. The young larvae of these insects can cause damage to seeds, but older larvae prefer to feed on whole grains. The percentage of damage caused by these insects range between 30-70% in the storage. T. variabile is the species most responsible for causing significant damage in grain stores worldwide. Trogoderma spp. is a huge problem for cereal grains, and there are many countries, such as the USA, Australia, China, Kenya, Uganda and Tanzania who have specific quarantine regulations against possible importation. Also, grain stocks can be almost completely destroyed because of the massive populations the insect may develop. However, the purpose of the current research was to optimize conditions to collect volatile organic compound from Trogoderma variabile at different life stages by using headspace solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) and flame ionization detection (FID). Using SPME technique to extract volatile from insects is an efficient, straightforward and nondestructive method. Result of the study shows that 15 insects were optimal number for larvae and adults. Selection of the number of insects depend on the height of the peak area and the number of peaks. Sixteen hours were optimized as the best extraction time for larvae and 8 hours was the optimal number of adults. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trogoderma%20variabile" title="Trogoderma variabile">Trogoderma variabile</a>, <a href="https://publications.waset.org/abstracts/search?q=warehouse%20beetle" title=" warehouse beetle "> warehouse beetle </a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=Solid%20phase%20microextraction" title=" Solid phase microextraction"> Solid phase microextraction</a> </p> <a href="https://publications.waset.org/abstracts/116648/optimization-of-headspace-solid-phase-microextraction-spme-technique-coupled-with-gc-ms-for-identification-of-volatile-organic-compounds-released-by-trogoderma-variabile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6262</span> Oxidative Stability of an Iranian Ghee (Butter Fat) Versus Soybean Oil During Storage at Different Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kooshan%20Nayebzadeh">Kooshan Nayebzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Enteshari"> Maryam Enteshari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the oxidative stability of soybean oil under different storage temperatures (4 and 25 ˚C) and during 6-month shelf-life was investigated by various analytical methods and headspace-liquid phase microextraction (HS-LPME) coupled to gas chromatography-mass spectrometry (GC-MS). Oxidation changes were monitored by analytical parameters consisted of acid value (AV), peroxide value (PV), p-Anisidine value (p-AV), thiobarbituric acid value (TBA), fatty acids profile, iodine value (IV) and oxidative stability index (OSI). In addition, concentrations of hexanal and heptanal as secondary volatile oxidation compounds were determined by HS-LPME/GC-MS technique. Rate of oxidation in soybean oil which stored at 25 ˚C was so higher. The AV, p-AV, and TBA were gradually increased during 6 months, while the amount of unsaturated fatty acids, IV, and OSI decreased. Other parameters included concentrations of both hexanal and heptanal, and PV exhibited increasing trend during primitive months of storage; then, at the end of third and fourth months a sudden decrement was understood for the concentrations of hexanal and heptanal and the amount of PV, simultaneously. The latter parameters increased again until the end of shelf-time. As a result, the temperature and time were effective factors in oxidative stability of soybean oil. Also intensive correlations were found for soybean oil at 4 ˚C between AV and TBA (r2=0.96), PV and p-AV (r2=0.9), IV and TBA (-r2=0.9), and for soybean oil stored at 4 ˚C between p-AV and TBA (r2=0.99). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=headspace-liquid%20phase%20microextraction" title="headspace-liquid phase microextraction">headspace-liquid phase microextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf-life" title=" shelf-life"> shelf-life</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20oil" title=" soybean oil"> soybean oil</a> </p> <a href="https://publications.waset.org/abstracts/33685/oxidative-stability-of-an-iranian-ghee-butter-fat-versus-soybean-oil-during-storage-at-different-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6261</span> Electromagnetically-Vibrated Solid-Phase Microextraction for Organic Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soo%20Hyung%20Park">Soo Hyung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Beom%20Kim"> Seong Beom Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Wontae%20Lee"> Wontae Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Chul%20Joo"> Jin Chul Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungmin%20Lee"> Jungmin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongsoo%20Choi"> Jongsoo Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A newly-developed electromagnetically vibrated solid-phase microextraction (SPME) device for extracting nonpolar organic compounds from aqueous matrices was evaluated in terms of sorption equilibrium time, precision, and detection level relative to three other more conventional extraction techniques involving SPME, viz., static, magnetic stirring, and fiber insertion/retraction. Electromagnetic vibration at 300~420 cycles/s was found to be the most efficient extraction technique in terms of reducing sorption equilibrium time and enhancing both precision and linearity. The increased efficiency for electromagnetic vibration was attributed to a greater reduction in the thickness of the stagnant-water layer that facilitated more rapid mass transport from the aqueous matrix to the SPME fiber. Electromagnetic vibration less than 500 cycles/s also did not detrimentally impact the sustainability of the extracting performance of the SPME fiber. Therefore, electromagnetically vibrated SPME may be a more powerful tool for rapid sampling and solvent-free sample preparation relative to other more conventional extraction techniques used with SPME. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20vibration" title="electromagnetic vibration">electromagnetic vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20compounds" title=" organic compounds"> organic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=precision" title=" precision"> precision</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-phase%20microextraction%20%28SPME%29" title=" solid-phase microextraction (SPME)"> solid-phase microextraction (SPME)</a>, <a href="https://publications.waset.org/abstracts/search?q=sorption%20equilibrium%20time" title=" sorption equilibrium time"> sorption equilibrium time</a> </p> <a href="https://publications.waset.org/abstracts/74476/electromagnetically-vibrated-solid-phase-microextraction-for-organic-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6260</span> Approach to Honey Volatiles&#039; Profiling by Gas Chromatography and Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igor%20Jerkovic">Igor Jerkovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiversity of flora provides many different nectar sources for the bees. Unifloral honeys possess distinctive flavours, mainly derived from their nectar sources (characteristic volatile organic components (VOCs)). Specific or nonspecific VOCs (chemical markers) could be used for unifloral honey characterisation as addition to the melissopalynologycal analysis. The main honey volatiles belong, in general, to three principal categories: terpenes, norisoprenoids, and benzene derivatives. Some of these substances have been described as characteristics of the floral source, and other compounds, like several alcohols, branched aldehydes, and furan derivatives, may be related to the microbial purity of honey processing and storage conditions. Selection of the extraction method for the honey volatiles profiling should consider that heating of the honey produce different artefacts and therefore conventional methods of VOCs isolation (such as hydrodistillation) cannot be applied for the honey. Two-way approach for the isolation of the honey VOCs was applied using headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE). The extracts were analysed by gas chromatography and mass spectrometry (GC-MS). HS-SPME (with the fibers of different polarity such as polydimethylsiloxane/ divinylbenzene (PDMS/DVB) or divinylbenzene/carboxene/ polydimethylsiloxane (DVB/CAR/PDMS)) enabled isolation of high volatile headspace VOCs of the honey samples. Among them, some characteristic or specific compounds can be found such as 3,4-dihydro-3-oxoedulan (in Centaurea cyanus L. honey) or 1H-indole, methyl anthranilate, and cis-jasmone (in Citrus unshiu Marc. honey). USE with different solvents (mainly dichloromethane or the mixture pentane : diethyl ether 1 : 2 v/v) enabled isolation of less volatile and semi-volatile VOCs of the honey samples. Characteristic compounds from C. unshiu honey extracts were caffeine, 1H-indole, 1,3-dihydro-2H-indol-2-one, methyl anthranilate, and phenylacetonitrile. Sometimes, the selection of solvent sequence was useful for more complete profiling such as sequence I: pentane → diethyl ether or sequence II: pentane → pentane/diethyl ether (1:2, v/v) → dichloromethane). The extracts with diethyl ether contained hydroquinone and 4-hydroxybenzoic acid as the major compounds, while (E)-4-(r-1’,t-2’,c-4’-trihydroxy-2’,6’,6’-trimethylcyclo-hexyl)but-3-en-2-one predominated in dichloromethane extracts of Allium ursinum L. honey. With this two-way approach, it was possible to obtain a more detailed insight into the honey volatile and semi-volatile compounds and to minimize the risks of compound discrimination due to their partial extraction that is of significant importance for the complete honey profiling and identification of the chemical biomarkers that can complement the pollen analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honey%20chemical%20biomarkers" title="honey chemical biomarkers">honey chemical biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=honey%20volatile%20compounds%20profiling" title=" honey volatile compounds profiling"> honey volatile compounds profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=headspace%20solid-phase%20microextraction%20%28HS-SPME%29" title=" headspace solid-phase microextraction (HS-SPME)"> headspace solid-phase microextraction (HS-SPME)</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20solvent%20extraction%20%28USE%29" title=" ultrasonic solvent extraction (USE)"> ultrasonic solvent extraction (USE)</a> </p> <a href="https://publications.waset.org/abstracts/81756/approach-to-honey-volatiles-profiling-by-gas-chromatography-and-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6259</span> Optimization and Validation for Determination of VOCs from Lime Fruit Citrus aurantifolia (Christm.) with and without California Red Scale Aonidiella aurantii (Maskell) Infested by Using HS-SPME-GC-FID/MS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Mohammed">K. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Agarwal"> M. Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Mewman"> J. Mewman</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ren"> Y. Ren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An optimum technic has been developed for extracting volatile organic compounds which contribute to the aroma of lime fruit (<em>Citrus aurantifolia</em>). The volatile organic compounds of healthy and infested lime fruit with California red scale <em>Aonidiella</em> <em>aurantii</em> were characterized using headspace solid phase microextraction (HS-SPME) combined with gas chromatography (GC) coupled flame ionization detection (FID) and gas chromatography with mass spectrometry (GC-MS) as a very simple, efficient and nondestructive extraction method. A three-phase 50/30 &mu;m PDV/DVB/CAR fibre was used for the extraction process. The optimal sealing and fibre exposure time for volatiles reaching equilibrium from whole lime fruit in the headspace of the chamber was 16 and 4 hours respectively. 5 min was selected as desorption time of the three-phase fibre. Herbivorous activity induces indirect plant defenses, as the emission of herbivorous-induced plant volatiles (HIPVs), which could be used by natural enemies for host location. GC-MS analysis showed qualitative differences among volatiles emitted by infested and healthy lime fruit. The GC-MS analysis allowed the initial identification of 18 compounds, with similarities higher than 85%, in accordance with the NIST mass spectral library. One of these were increased by <em>A. aurantii</em> infestation, D-limonene, and three were decreased, Undecane, &alpha;-Farnesene and 7-epi-&alpha;-selinene. From an applied point of view, the application of the above-mentioned VOCs may help boost the efficiency of biocontrol programs and natural enemies&rsquo; production techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lime%20fruit" title="lime fruit">lime fruit</a>, <a href="https://publications.waset.org/abstracts/search?q=Citrus%20aurantifolia" title=" Citrus aurantifolia"> Citrus aurantifolia</a>, <a href="https://publications.waset.org/abstracts/search?q=California%20red%20scale" title=" California red scale"> California red scale</a>, <a href="https://publications.waset.org/abstracts/search?q=Aonidiella%20aurantii" title=" Aonidiella aurantii"> Aonidiella aurantii</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs" title=" VOCs"> VOCs</a>, <a href="https://publications.waset.org/abstracts/search?q=HS-SPME%2FGC-FID-MS" title=" HS-SPME/GC-FID-MS"> HS-SPME/GC-FID-MS</a> </p> <a href="https://publications.waset.org/abstracts/71759/optimization-and-validation-for-determination-of-vocs-from-lime-fruit-citrus-aurantifolia-christm-with-and-without-california-red-scale-aonidiella-aurantii-maskell-infested-by-using-hs-spme-gc-fidms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6258</span> The Relations of Volatile Compounds, Some Parameters and Consumer Preference of Commercial Fermented Milks in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suttipong%20Phosuksirikul">Suttipong Phosuksirikul</a>, <a href="https://publications.waset.org/abstracts/search?q=Rawichar%20Chaipojjana"> Rawichar Chaipojjana</a>, <a href="https://publications.waset.org/abstracts/search?q=Arunsri%20Leejeerajumnean"> Arunsri Leejeerajumnean</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of research was to define the relations between volatile compounds, some parameters (pH, titratable acidity (TA), total soluble solid (TSS), lactic acid bacteria count) and consumer preference of commercial fermented milks. These relations tend to be used for controlling and developing new fermented milk product. Three leading commercial brands of fermented milks in Thailand were evaluated by consumers (n=71) using hedonic scale for four attributes (sweetness, sourness, flavour, and overall liking), volatile compounds using headspace-solid phase microextraction (HS-SPME) GC-MS, pH, TA, TSS and LAB count. Then the relations were analyzed by principal component analysis (PCA). The PCA data showed that all of four attributes liking scores were related to each other. They were also related to TA, TSS and volatile compounds. The related volatile compounds were mainly on fermented produced compounds including acetic acid, furanmethanol, furfural, octanoic acid and the volatiles known as artificial fruit flavour (beta pinene, limonene, vanillin, and ethyl vanillin). These compounds were provided the information about flavour addition in commercial fermented milk in Thailand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermented%20milk" title="fermented milk">fermented milk</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20compounds" title=" volatile compounds"> volatile compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=preference" title=" preference"> preference</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a> </p> <a href="https://publications.waset.org/abstracts/13920/the-relations-of-volatile-compounds-some-parameters-and-consumer-preference-of-commercial-fermented-milks-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6257</span> Preconcentration and Determination of Cyproheptadine in Biological Samples by Hollow Fiber Liquid Phase Microextraction Coupled with High Performance Liquid Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Najari%20Moghadam">Sh. Najari Moghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Qomi"> M. Qomi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Raofie"> F. Raofie</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Khadiv"> J. Khadiv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a liquid phase microextraction by hollow fiber (HF-LPME) combined with high performance liquid chromatography-UV detector was applied to preconcentrate and determine trace levels of Cyproheptadine in human urine and plasma samples. Cyproheptadine was extracted from 10 mL alkaline aqueous solution (pH: 9.81) into an organic solvent (n-octnol) which was immobilized in the wall pores of a hollow fiber. Then, it was back-extracted into an acidified aqueous solution (pH: 2.59) located inside the lumen of the hollow fiber. This method is simple, efficient and cost-effective. It is based on pH gradient and differences between two aqueous phases. In order to optimize the HF-LPME, some affecting parameters including the pH of donor and acceptor phases, the type of organic solvent, ionic strength, stirring rate, extraction time and temperature were studied and optimized. Under optimal conditions enrichment factor, limit of detection (LOD) and relative standard deviation (RSD(%), n=3) were up to 112, 15 μg.L−1 and 2.7, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20samples" title="biological samples">biological samples</a>, <a href="https://publications.waset.org/abstracts/search?q=cyproheptadine" title=" cyproheptadine"> cyproheptadine</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20fiber" title=" hollow fiber"> hollow fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20phase%20microextraction" title=" liquid phase microextraction"> liquid phase microextraction</a> </p> <a href="https://publications.waset.org/abstracts/12240/preconcentration-and-determination-of-cyproheptadine-in-biological-samples-by-hollow-fiber-liquid-phase-microextraction-coupled-with-high-performance-liquid-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6256</span> Gas Chromatography and Mass Spectrometry in Honey Fingerprinting: The Occurrence of 3,4-dihydro-3-oxoedulan and (E)-4-(r-1&#039;,t-2&#039;,c-4&#039;-trihydroxy-3&#039;,6&#039;,6&#039;-trimethylcyclohexyl)-but-3-en-2-one</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igor%20Jerkovic">Igor Jerkovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Owing to the attractive sensory properties and low odour thresholds, norisoprenoids (degraded carotenoid-like structures with 3,5,5-trimethylcyclohex-2-enoic unit) have been identified as aroma contributors in a number of different matrices. C₁₃-Norisoprenoids have been found among volatile organic compounds of various honey types as well as C₉//C₁₀-norisoprenoids or C₁₄/C₁₅-norisoprenoids. Besides degradation of abscisic acid (which produces, e.g., dehydrovomifoliol, vomifoliol, others), the cleavage of the C(9)=C(10) bond of other carotenoid precursors directly generates nonspecific C₁₃-norisoprenoids such as trans-β-damascenone, 3-hydroxy-trans-β-damascone, 3-oxo-α-ionol, 3-oxo-α-ionone, β-ionone found in various honey types. β-Damascenone and β-ionone smelling like honey, exhibit the lowest odour threshold values of all C₁₃-norisoprenoids. The presentation is targeted on two uncommon C₁₃-norisoprenoids in the honey flavor that could be used as specific or nonspecific chemical markers of the botanical origin. Namely, after screening of different honey types, the focus was directed on Centaruea cyanus L. and Allium ursinum L. honey. The samples were extracted by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE) and the extracts were analysed by gas chromatography and mass spectrometry (GC-MS). SPME fiber with divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) coating was applied for the research of C. cyanus honey headspace and predominant identified compound was 3,4-dihydro-3-oxoedulan (2,5,5,8a-tetramethyl-2,3,5,6,8,8a-hexahydro-7H-chromen-7-one also known as 2,3,5,6,8,8a-hexahydro-2,5,5,8a-tetramethyl-7H-1-benzo-pyran-7-one). The oxoedulan structure contains epoxide and it is more volatile in comparison with its hydroxylated precursors. This compound has not been found in other honey types and can be considered specific for C. cyanus honey. The dichloromethane extract of A. ursinum honey contained abundant (E)-4-(r-1',t-2',c-4'-trihydroxy-3',6',6'-trimethylcyclohexyl)-but-3-en-2-one that was previously isolated as dominant substance from the ether extracts of New Zealand thyme honey. Although a wide variety of degraded carotenoid-like substances have been identified from different honey types, this appears to be rare situation where 3,4-dihydro-3-oxoedulan and (E)-4-(r-1',t-2',c-4'-trihydroxy-3',6',6'-trimethylcyclohexyl)-but-3-en-2-one have been found that is of great importance for chemical fingerprinting and identification of the chemical biomarkers that can complement the pollen analysis as the major method for the honey classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3" title="3">3</a>, <a href="https://publications.waset.org/abstracts/search?q=4-dihydro-3-oxoedulan" title="4-dihydro-3-oxoedulan">4-dihydro-3-oxoedulan</a>, <a href="https://publications.waset.org/abstracts/search?q=%28E%29-4-%28r-1%27" title=" (E)-4-(r-1&#039;"> (E)-4-(r-1&#039;</a>, <a href="https://publications.waset.org/abstracts/search?q=t-2%27" title="t-2&#039;">t-2&#039;</a>, <a href="https://publications.waset.org/abstracts/search?q=c-4%27-trihydroxy-3%27" title="c-4&#039;-trihydroxy-3&#039;">c-4&#039;-trihydroxy-3&#039;</a>, <a href="https://publications.waset.org/abstracts/search?q=6%27" title="6&#039;">6&#039;</a>, <a href="https://publications.waset.org/abstracts/search?q=6%27-trimethylcyclohexyl%29-but-3-en-2-one" title="6&#039;-trimethylcyclohexyl)-but-3-en-2-one">6&#039;-trimethylcyclohexyl)-but-3-en-2-one</a>, <a href="https://publications.waset.org/abstracts/search?q=honey%20flavour" title=" honey flavour"> honey flavour</a>, <a href="https://publications.waset.org/abstracts/search?q=C%E2%82%81%E2%82%83-norisoprenoids" title=" C₁₃-norisoprenoids"> C₁₃-norisoprenoids</a> </p> <a href="https://publications.waset.org/abstracts/81526/gas-chromatography-and-mass-spectrometry-in-honey-fingerprinting-the-occurrence-of-34-dihydro-3-oxoedulan-and-e-4-r-1t-2c-4-trihydroxy-366-trimethylcyclohexyl-but-3-en-2-one" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6255</span> Effect of Aging Treatment on Tensile Properties of AZ91D Mg Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju%20Hyun%20Won">Ju Hyun Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min"> Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phase equilibria of AZ91D Mg alloys for nonflammable use, containing Ca and Y, were carried out by using FactSage® and FTLite database, which revealed that solid solution treatment, could be performed at temperatures from 400 to 450 °C. Solid solution treatment of AZ91D Mg alloy without Ca and Y was successfully conducted at 420 °C and supersaturated microstructure with all beta phase resolved into matrix was obtained. In the case of AZ91D Mg alloy with some Ca and Y, however, a little amount of intermetallic particles were observed after solid solution treatment. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200 °C for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200 °C for 10 hrs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mg%20alloy" title="Mg alloy">Mg alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=AZ91D" title=" AZ91D"> AZ91D</a>, <a href="https://publications.waset.org/abstracts/search?q=nonflammable%20alloy" title=" nonflammable alloy"> nonflammable alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20equilibrium" title=" phase equilibrium"> phase equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20aging" title=" peak aging"> peak aging</a> </p> <a href="https://publications.waset.org/abstracts/34978/effect-of-aging-treatment-on-tensile-properties-of-az91d-mg-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6254</span> Solid-State Sodium Conductor for Solid-State Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yumei%20Wang">Yumei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyu%20Xu"> Xiaoyu Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Lu"> Li Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid-state battery adopts solid-state electrolyte such as oxide- and composite-based solid electrolytes. With the adaption of nonflammable or less flammable solid electrolytes, the safety of solid-state batteries can be largely increased. NASICON (Na₃Zr₂Si₂PO₁₂, NZSP) is one of the sodium ion conductors that possess relatively high ionic conductivity, wide electrochemical stable range and good chemical stability. Therefore, it has received increased attention. We report the development of high-density NZSP through liquid phase sintering and its organic-inorganic composite electrolyte. Through reactive liquid phase sintering, the grain boundary conductivity can be largely enhanced while using an organic-inorganic composite electrolyte, interfacial wetting and impedance can be largely reduced hence being possible to fabricate scalable solid-state batteries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid-state%20electrolyte" title="solid-state electrolyte">solid-state electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20electrolyte" title=" composite electrolyte"> composite electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20performance" title=" electrochemical performance"> electrochemical performance</a>, <a href="https://publications.waset.org/abstracts/search?q=conductivity" title=" conductivity"> conductivity</a> </p> <a href="https://publications.waset.org/abstracts/169003/solid-state-sodium-conductor-for-solid-state-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6253</span> A New Seperation / Precocentration and Determination Procedure Based on Solidified Floating Organic Drop Microextraction (SFODME) of Lead by Using Graphite Furnace Atomic Absorption Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyda%20Donmez">Seyda Donmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Oya%20Aydin%20Urucu"> Oya Aydin Urucu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ece%20Kok%20Yetimoglu"> Ece Kok Yetimoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solidified floating organic drop microextraction was used for a preconcentration method of trace amount of lead. The analyte was complexed with 1-(2-pyridylazo)-2-naphtol and 1-undecanol, acetonitrile was added as an extraction and dispersive solvent respectively. The influences of some analytical parameters pH, volumes of extraction and disperser solvent, concentration of chelating agent, and concentration of salt were optimized. Under the optimum conditions the detection limits of Pb (II) was determined. The procedure was validated for the analysis of NCS DC 73347a hair standard reference material with satisfactory result. The developed procedure was successfully applied to food and water samples for detection of Pb (II) ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20methods" title="analytical methods">analytical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite%20furnace%20atomic%20absorption%20spectrometry" title=" graphite furnace atomic absorption spectrometry"> graphite furnace atomic absorption spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=solidified%20floating%20organic%20drop%20microextraction" title=" solidified floating organic drop microextraction"> solidified floating organic drop microextraction</a> </p> <a href="https://publications.waset.org/abstracts/48197/a-new-seperation-precocentration-and-determination-procedure-based-on-solidified-floating-organic-drop-microextraction-sfodme-of-lead-by-using-graphite-furnace-atomic-absorption-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6252</span> Investigation of Deep Eutectic Solvents for Microwave Assisted Extraction and Headspace Gas Chromatographic Determination of Hexanal in Fat-Rich Food</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Birute%20Bugelyte">Birute Bugelyte</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingrida%20Jurkute"> Ingrida Jurkute</a>, <a href="https://publications.waset.org/abstracts/search?q=Vida%20Vickackaite"> Vida Vickackaite</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most complicated step of the determination of volatile compounds in complex matrices is the separation of analytes from the matrix. Traditional analyte separation methods (liquid extraction, Soxhlet extraction) require a lot of time and labour; moreover, there is a risk to lose the volatile analytes. In recent years, headspace gas chromatography has been used to determine volatile compounds. To date, traditional extraction solvents have been used in headspace gas chromatography. As a rule, such solvents are rather volatile; therefore, a large amount of solvent vapour enters into the headspace together with the analyte. Because of that, the determination sensitivity of the analyte is reduced, a huge solvent peak in the chromatogram can overlap with the peaks of the analyts. The sensitivity is also limited by the fact that the sample can’t be heated at a higher temperature than the solvent boiling point. In 2018 it was suggested to replace traditional headspace gas chromatographic solvents with non-volatile, eco-friendly, biodegradable, inexpensive, and easy to prepare deep eutectic solvents (DESs). Generally, deep eutectic solvents have low vapour pressure, a relatively wide liquid range, much lower melting point than that of any of their individual components. Those features make DESs very attractive as matrix media for application in headspace gas chromatography. Also, DESs are polar compounds, so they can be applied for microwave assisted extraction. The aim of this work was to investigate the possibility of applying deep eutectic solvents for microwave assisted extraction and headspace gas chromatographic determination of hexanal in fat-rich food. Hexanal is considered one of the most suitable indicators of lipid oxidation degree as it is the main secondary oxidation product of linoleic acid, which is one of the principal fatty acids of many edible oils. Eight hydrophilic and hydrophobic deep eutectic solvents have been synthesized, and the influence of the temperature and microwaves on their headspace gas chromatographic behaviour has been investigated. Using the most suitable DES, microwave assisted extraction conditions and headspace gas chromatographic conditions have been optimized for the determination of hexanal in potato chips. Under optimized conditions, the quality parameters of the prepared technique have been determined. The suggested technique was applied for the determination of hexanal in potato chips and other fat-rich food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20eutectic%20solvents" title="deep eutectic solvents">deep eutectic solvents</a>, <a href="https://publications.waset.org/abstracts/search?q=headspace%20gas%20chromatography" title=" headspace gas chromatography"> headspace gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=hexanal" title=" hexanal"> hexanal</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20assisted%20extraction" title=" microwave assisted extraction"> microwave assisted extraction</a> </p> <a href="https://publications.waset.org/abstracts/130578/investigation-of-deep-eutectic-solvents-for-microwave-assisted-extraction-and-headspace-gas-chromatographic-determination-of-hexanal-in-fat-rich-food" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6251</span> CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinliang%20Yuan">Jinliang Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Sung%20Yu"> Jong-Sung Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bengt%20Sund%C3%A9n"> Bengt Sundén </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A computational fluid dynamics (CFD) model is developed for rechargeable non-aqueous electrolyte lithium-air batteries with a partial opening for oxygen supply to the cathode. Multi-phase transport phenomena occurred in the battery are considered, including dissolved lithium ions and oxygen gas in the liquid electrolyte, solid-phase electron transfer in the porous functional materials and liquid-phase charge transport in the electrolyte. These transport processes are coupled with the electrochemical reactions at the active surfaces, and effects of discharge reaction-generated solid Li2O2 on the transport properties and the electrochemical reaction rate are evaluated and implemented in the model. The predicted results are discussed and analyzed in terms of the spatial and transient distribution of various parameters, such as local oxygen concentration, reaction rate, variable solid Li2O2 volume fraction and porosity, as well as the effective diffusion coefficients. It is found that the effect of the solid Li2O2 product deposited at the solid active surfaces is significant on the transport phenomena and the overall battery performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Computational%20Fluid%20Dynamics%20%28CFD%29" title="Computational Fluid Dynamics (CFD)">Computational Fluid Dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-phase" title=" multi-phase"> multi-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20phenomena" title=" transport phenomena"> transport phenomena</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-air%20battery" title=" lithium-air battery"> lithium-air battery</a> </p> <a href="https://publications.waset.org/abstracts/17940/cfd-analysis-of-multi-phase-reacting-transport-phenomena-in-discharge-process-of-non-aqueous-lithium-air-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6250</span> Optimum Design for Cathode Microstructure of Solid Oxide Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Riazat">M. Riazat</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Abdolvand"> H. Abdolvand</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Baniassadi"> M. Baniassadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this present work, 3D reconstruction of cathode of SOFC is developed with various volume fractions and porosity. Three Phase Boundary (TPB) of construction of such derived micro structures is calculated. The neural network is used to optimize the porosity and volume fraction of each phase to reach a structure with maximum TPB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20oxide" title=" solid oxide"> solid oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=TPB" title=" TPB"> TPB</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20reconstruction" title=" 3D reconstruction"> 3D reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/20479/optimum-design-for-cathode-microstructure-of-solid-oxide-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6249</span> Anonymous Gel-Fluid Transition of Solid Supported Lipids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Poursoroush">Asma Poursoroush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid-supported lipid bilayers are often used as a simple model for studies of biological membranes. The presence of a solid substrate that interacts attractively with lipid head-groups is expected to affect the phase behavior of the supported bilayer. Molecular dynamics simulations of a coarse-grained model are thus performed to investigate the phase behavior of supported one-component lipid bilayer membranes. Our results show that the attraction of the lipid head groups to the substrate leads to a phase behavior that is different from that of a free standing lipid bilayer. In particular, we found that the phase behaviors of the two leaflets are decoupled in the presence of a substrate. The proximal leaflet undergoes a clear gel-to-fluid phase transition at a temperature lower than that of a free standing bilayer, and that decreases with increasing strength of the substrate-lipid attraction. The distal leaflet, however, undergoes a change from a homogeneous liquid phase at high temperatures to a heterogeneous state consisting of small liquid and gel domains, with the average size of the gel domains that increases with decreasing temperature. While the chain order parameter of the proximal leaflet clearly shows a gel-fluid phase transition, the chain order parameter of the distal leaflet does not exhibit a clear phase transition. The decoupling in the phase behavior of the two leaflets is due to a non-symmteric lipid distribution in the two leaflets resulting from the presence of the substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane" title="membrane">membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate" title=" substrate"> substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/78473/anonymous-gel-fluid-transition-of-solid-supported-lipids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6248</span> Total Synthesis of Natural Cyclic Depsi Peptides by Convergent SPPS and Macrolactonization Strategy for Anti-Tb Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katharigatta%20N.%20Venugopala">Katharigatta N. Venugopala</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Albericio"> Fernando Albericio</a>, <a href="https://publications.waset.org/abstracts/search?q=Bander%20E.%20Al-Dhubiab"> Bander E. Al-Dhubiab</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Govender"> T. Govender </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent years have witnessed a renaissance in the field of peptides that are obtained from various natural sources such as many bacteria, fungi, plants, seaweeds, vertebrates, invertebrates and have been reported for various pharmacological properties such as anti-TB, anticancer, antimalarial, anti-inflammatory, anti-HIV, antibacterial, antifungal, and antidiabetic, activities. In view of the pharmacological significance of natural peptides, serious research efforts of many scientific groups and pharmaceutical companies have consequently focused on them to explore the possibility of developing their potential analogues as therapeutic agents. Solid phase and solution phase peptide synthesis are the two methodologies currently available for the synthesis of natural or synthetic linear or cyclic depsi-peptides. From a synthetic point of view, there is no doubt that the solid-phase methodology gained added advantages over solution phase methodology in terms of simplicity, purity of the compound and the speed with which peptides can be synthesised. In the present study total synthesis, purification and structural elucidation of analogues of natural anti-TB cyclic depsi-peptides such as depsidomycin, massetolides and viscosin has been attempted by solid phase method using standard Fmoc protocols and finally off resin cyclization in solution phase method. In case of depsidomycin, synthesis of linear peptide on solid phase could not be achieved because of two turn inducing amino acids in the peptide sequence, but total synthesis was achieved by convergent solid phase peptide synthesis followed by cyclization in solution phase method. The title compounds obtained were in good yields and characterized by NMR and HRMS. Anti-TB results revealed that the potential title compound exhibited promising activity at 4 µg/mL against H37Rv and 16 µg/mL against MDR strains of tuberculosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=total%20synthesis" title="total synthesis">total synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20depsi-peptides" title=" cyclic depsi-peptides"> cyclic depsi-peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-TB%20activity" title=" anti-TB activity"> anti-TB activity</a>, <a href="https://publications.waset.org/abstracts/search?q=tuberculosis" title=" tuberculosis"> tuberculosis</a> </p> <a href="https://publications.waset.org/abstracts/16893/total-synthesis-of-natural-cyclic-depsi-peptides-by-convergent-spps-and-macrolactonization-strategy-for-anti-tb-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">623</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6247</span> Numerical Investigation of Thermally Triggered Release Kinetics of Double Emulsion for Drug Delivery Using Phase Change Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong%20Ren">Yong Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaping%20Zhang"> Yaping Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical model has been developed to investigate the thermally triggered release kinetics for drug delivery using phase change material as shell of microcapsules. Biocompatible material n-Eicosane is used as demonstration. PCM shell of microcapsule will remain in solid form after the drug is taken, so the drug will be encapsulated by the shell, and will not be released until the target body part of lesion is exposed to external heat source, which will thermally trigger the release kinetics, leading to solid-to-liquid phase change. The findings can lead to better understanding on the key effects influencing the phase change process for drug delivery applications. The facile approach to release drug from core/shell structure of microcapsule can be well integrated with organic solvent free fabrication of microcapsules, using double emulsion as template in microfluidic aqueous two phase system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20material" title="phase change material">phase change material</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20release%20kinetics" title=" drug release kinetics"> drug release kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20emulsion" title=" double emulsion"> double emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a> </p> <a href="https://publications.waset.org/abstracts/22132/numerical-investigation-of-thermally-triggered-release-kinetics-of-double-emulsion-for-drug-delivery-using-phase-change-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6246</span> Determination of Inactivation and Recovery of Saccharomyces cerevisiae Cells after the Gas-Phase Plasma Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Herceg">Z. Herceg</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Stulic"> V. Stulic</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Vukusic"> T. Vukusic</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rezek%20Jambrak"> A. Rezek Jambrak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas phase plasma treatment is a new nonthermal technology used for food and water decontamination. In this study, we have investigated influence of the gas phase plasma treatment on yeast cells of S. cerevisiae. Sample was composed of 10 mL of yeast suspension and 190 mL of 0.01 M NaNO₃ with a medium conductivity of 100 µS/cm. Samples were treated in a glass reactor with a point- to-plate electrode configuration (high voltage electrode-titanium wire in the gas phase and grounded electrode in the liquid phase). Air or argon were injected into the headspace of the reactor at the gas flow of 5 L/min. Frequency of 60, 90 and 120 Hz, time of 5 and 10 min and positive polarity were defined parameters. Inactivation was higher with the applied higher frequency, longer treatment time and injected argon. Inactivation was not complete which resulted in complete recovery. Cellular leakage (260 nm and 280 nm) was higher with a longer treatment time and higher frequency. Leakage at 280 nm which defines a leakage of proteins was higher than leakage at 260 nm which defines a leakage of nucleic acids. The authors would like to acknowledge the support by Croatian Science Foundation and research project 'Application of electrical discharge plasma for preservation of liquid foods'. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title="Saccharomyces cerevisiae">Saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=inactivation" title=" inactivation"> inactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-phase%20plasma%20treatment" title=" gas-phase plasma treatment"> gas-phase plasma treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20leakage" title=" cellular leakage"> cellular leakage</a> </p> <a href="https://publications.waset.org/abstracts/90155/determination-of-inactivation-and-recovery-of-saccharomyces-cerevisiae-cells-after-the-gas-phase-plasma-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6245</span> Effect of Iron Oxide Addition on the Solid-State Synthesis of Ye’Elimite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Z.%20Abir">F. Z. Abir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mesnaoui"> M. Mesnaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Abouliatim"> Y. Abouliatim</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Nibou"> L. Nibou</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20El%20Hafiane"> Y. El Hafiane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Smith"> A. Smith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cement industry has been taking significant steps for years to reduce its carbon footprint by opting for an eco-friendly alternative such as Calcium Sulfoaluminate Cements (CSA). These binders, compared to Ordinary Portland Cements (OPC), have two advantages: reduction of the CO2 emissions and energy-saving because the sintering temperature of CSA cements is between 1250 and 1350 °C, which means 100 to 200 °C less than OPC. The aim of this work is to study the impurities effect, such as iron oxide, on the formation of the ye'elimite phase, which represents the main phase of Calcium Sulfoaluminate Cements and the consequence on its hydration. Several elaborations and characterization techniques were used to study the structure and microstructure of ye'elimite, such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), thermal analysis, specific surface area measurement, and electrical conductivity of diluted solutions. This study details the protocol for the solid-state synthesis of ye'elimite containing increasing amounts of iron (general formula: Ca4Al(6-2x)Fe2xSO16 with x = 0.00 to 1.13). Ye'elimite is formed by solid-state reactions between Al2O3, CaO and CaSO4 and the maximum ye'elimite content is reached at a sintering temperature of 1300 °C. The presence of iron promotes the formation of cubic ye'elimite at the expense of the orthorhombic phase. The total incorporation of iron in ye'elimite structure is possible when x < 0.12. Beyond this content, the ferritic phase (CaO)2(Al2O3,Fe2O3) appears as a minor phase and develops two different morphologies during cooling: dendritic crystals and melt morphology. The formation of the ferrous liquid phase affects the evolution of grain size of the ye’elimite and calcium aluminates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20sulfoaluminate%20cement" title="calcium sulfoaluminate cement">calcium sulfoaluminate cement</a>, <a href="https://publications.waset.org/abstracts/search?q=ferritic%20phase" title=" ferritic phase"> ferritic phase</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-state%20synthesis" title=" solid-state synthesis"> solid-state synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=ye%E2%80%99elimite" title=" ye’elimite"> ye’elimite</a> </p> <a href="https://publications.waset.org/abstracts/138546/effect-of-iron-oxide-addition-on-the-solid-state-synthesis-of-yeelimite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6244</span> Synthesis, Characterization and Electrical Studies of Solid Polymer Electrolyte (1-x) PANI-KAg₄I₅.xAl₂O₃</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafiuddin">Rafiuddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid polymer electrolytes have emerged as an area of interest in the field of solid state chemistry owing to their facile and cost-effective synthesis and number of applications in different areas of chemistry, extending over a wide range of temperatures. In the present work, polymer composite solid electrolyte comprising of Polyaniline (PANI) as polymer and potassium silver iodide (KAg4I5) using alumina (Al2O3) of different compositions having the formula (1-x) PANI- KAg4I5. x Al2O3 with x ranging from 0.0 to 0.5 was prepared by solid state reaction method. The structural elucidation and characterization was done by X- Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric- Differential Thermal Analysis (TG-DTA) and Impedance Spectroscopy. The thermal analysis shows a phase transition at 147°C attributed to β-α phase transition of AgI due to the disproportionation of KAg4I5 to AgI and KAg2I3 at temperatures higher than 36°C. The X Ray diffraction analysis also confirms the presence of both AgI and KAg2I3 in the samples. The conductivities recorded over a temperature range of 40-250° C lie in the range of 10-1 to 10-3 S cm-1. Maximum conductivity was seen in the compositon x = 0.4 i.e. 1.84 × 10-2 Scm-1 at 313 K and 1.38 × 10-1 Scm-1 at 513 K, with a minimum activation energy of 0.14 eV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20solid%20electrolytes" title="polymer solid electrolytes">polymer solid electrolytes</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=DTA" title=" DTA"> DTA</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20spectroscopy" title=" impedance spectroscopy"> impedance spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/69531/synthesis-characterization-and-electrical-studies-of-solid-polymer-electrolyte-1-x-pani-kag4i5xal2o3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6243</span> Wasteless Solid-Phase Method for Conversion of Iron Ores Contaminated with Silicon and Phosphorus Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%D0%90.%20V.%20Panko">А. V. Panko</a>, <a href="https://publications.waset.org/abstracts/search?q=%D0%95.%20V.%20Ablets"> Е. V. Ablets</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20G.%20Kovzun"> I. G. Kovzun</a>, <a href="https://publications.waset.org/abstracts/search?q=%D0%9C.%20%D0%90.%20Ilyashov"> М. А. Ilyashov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based upon generalized analysis of modern know-how in the sphere of processing, concentration and purification of iron-ore raw materials (IORM), in particular, the most widespread ferrioxide-silicate materials (FOSM), containing impurities of phosphorus and other elements compounds, noted special role of nano technological initiatives in improvement of such processes. Considered ideas of role of nano particles in processes of FOSM carbonization with subsequent direct reduction of ferric oxides contained in them to metal phase, as well as in processes of alkali treatment and separation of powered iron from phosphorus compounds. Using the obtained results the wasteless solid-phase processing, concentration and purification of IORM and FOSM from compounds of phosphorus, silicon and other impurities excelling known methods of direct iron reduction from iron ores and metallurgical slimes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iron%20ores" title="iron ores">iron ores</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-phase%20reduction" title=" solid-phase reduction"> solid-phase reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles%20in%20reduction%20and%20purification%20of%20iron%20from%20silicon%20and%20phosphorus" title=" nanoparticles in reduction and purification of iron from silicon and phosphorus"> nanoparticles in reduction and purification of iron from silicon and phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=wasteless%20method%20of%20ores%20processing" title=" wasteless method of ores processing"> wasteless method of ores processing</a> </p> <a href="https://publications.waset.org/abstracts/3194/wasteless-solid-phase-method-for-conversion-of-iron-ores-contaminated-with-silicon-and-phosphorus-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6242</span> A Review on Application of Phase Change Materials in Textiles Finishing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mazyar%20Ahrari">Mazyar Ahrari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Khajavi"> Ramin Khajavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Kamali%20Dolatabadi"> Mehdi Kamali Dolatabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tayebeh%20Toliyat"> Tayebeh Toliyat</a>, <a href="https://publications.waset.org/abstracts/search?q=Abosaeed%20Rashidi"> Abosaeed Rashidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fabric as the first and most common layer that is in permanent contact with human skin is a very good interface to provide coverage, as well as heat and cold insulation. Phase change materials (PCMs) are organic and inorganic compounds which have the capability of absorbing and releasing noticeable amounts of latent heat during phase transitions between solid and liquid phases at a low temperature range. PCMs come across phase changes (liquid-solid and solid-liquid transitions) during absorbing and releasing thermal heat; so, in order to use them for a long time, they should have been encapsulated in polymeric shells, so-called microcapsules. Microencapsulation and nanoencapsulation methods have been developed in order to reduce the reactivity of a PCM with outside environment, promoting the ease of handling, decreasing the diffusion and evaporation rates. Methods of incorporation of PCMs in textiles such as electrospinning and determining thermal properties had been summarized. Paraffin waxes catch a lot of attention due to their high thermal storage density, repeatability of phase change, thermal stability, small volume change during phase transition, chemical stability, non-toxicity, non-flammability, non-corrosive and low cost and they seem to play a key role in confronting with climate change and global warming. In this article, we aimed to review the researches concentrating on the characteristics of PCMs and new materials and methods of microencapsulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoregulation" title="thermoregulation">thermoregulation</a>, <a href="https://publications.waset.org/abstracts/search?q=microencapsulation" title=" microencapsulation"> microencapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20materials" title=" phase change materials"> phase change materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title=" thermal energy storage"> thermal energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoencapsulation" title=" nanoencapsulation"> nanoencapsulation</a> </p> <a href="https://publications.waset.org/abstracts/69626/a-review-on-application-of-phase-change-materials-in-textiles-finishing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6241</span> Key Aroma Compounds as Predictors of Pineapple Sensory Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jenson%20George">Jenson George</a>, <a href="https://publications.waset.org/abstracts/search?q=Thoa%20Nguyen"> Thoa Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Garth%20Sanewski"> Garth Sanewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Craig%20Hardner"> Craig Hardner</a>, <a href="https://publications.waset.org/abstracts/search?q=Heather%20Eunice%20Smyth"> Heather Eunice Smyth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pineapple (Ananas comosus), with its unique sweet flavour, is one of the most popular tropical, non-climacteric fruits consumed worldwide. It is also the third most important tropical fruit in world production. In Australia, 99% of the pineapple production is from the Queensland state due to the favourable subtropical climatic conditions. The flavourful fruit is known to contain around 500 volatile organic compounds (VOC) at varying concentrations and greatly contribute to the flavour quality of pineapple fruit by providing distinct aroma sensory properties that are sweet, fruity, tropical, pineapple-like, caramel-like, coconut-like, etc. The aroma of pineapple is one of the important factors attracting consumers and strengthening the marketplace. To better understand the aroma of Australian-grown pineapples, the matrix-matched Gas chromatography–mass spectrometry (GC-MS), Head Space - Solid-phase microextraction (HS-SPME), Stable-isotope dilution analysis (SIDA) method was developed and validated. The developed method represents a significant improvement over current methods with the incorporation of multiple external reference standards, multiple isotopes labeled internal standards, and a matching model system of pineapple fruit matrix. This method was employed to quantify 28 key aroma compounds in more than 200 genetically diverse pineapple varieties from a breeding program. The Australian pineapple cultivars varied in content and composition of free volatile compounds, which were predominantly comprised of esters, followed by terpenes, alcohols, aldehydes, and ketones. Using selected commercial cultivars grown in Australia, and by employing the sensorial analysis, the appearance (colour), aroma (intensity, sweet, vinegar/tang, tropical fruits, floral, coconut, green, metallic, vegetal, fresh, peppery, fermented, eggy/sulphurous) and texture (crunchiness, fibrousness, and juiciness) were obtained. Relationships between sensory descriptors and volatiles were explored by applying multivariate analysis (PCA) to the sensorial and chemical data. The key aroma compounds of pineapple exhibited a positive correlation with corresponding sensory properties. The sensory and volatile data were also used to explore genetic diversity in the breeding population. GWAS was employed to unravel the genetic control of the pineapple volatilome and its interplay with fruit sensory characteristics. This study enhances our understanding of pineapple aroma (flavour) compounds, their biosynthetic pathways and expands breeding option for pineapple cultivars. This research provides foundational knowledge to support breeding programs, post-harvest and target market studies, and efforts to optimise the flavour of commercial pineapple varieties and their parent lines to produce better tasting fruits for consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ananas%20comosus" title="Ananas comosus">Ananas comosus</a>, <a href="https://publications.waset.org/abstracts/search?q=pineapple" title=" pineapple"> pineapple</a>, <a href="https://publications.waset.org/abstracts/search?q=flavour" title=" flavour"> flavour</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compounds" title=" volatile organic compounds"> volatile organic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=aroma" title=" aroma"> aroma</a>, <a href="https://publications.waset.org/abstracts/search?q=Gas%20chromatography%E2%80%93mass%20spectrometry%20%28GC-MS%29" title=" Gas chromatography–mass spectrometry (GC-MS)"> Gas chromatography–mass spectrometry (GC-MS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Head%20Space%20-%20Solid-phase%20microextraction%20%28HS-SPME%29" title=" Head Space - Solid-phase microextraction (HS-SPME)"> Head Space - Solid-phase microextraction (HS-SPME)</a>, <a href="https://publications.waset.org/abstracts/search?q=Stable-isotope%20dilution%20analysis%20%28SIDA%29." title=" Stable-isotope dilution analysis (SIDA)."> Stable-isotope dilution analysis (SIDA).</a> </p> <a href="https://publications.waset.org/abstracts/184617/key-aroma-compounds-as-predictors-of-pineapple-sensory-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6240</span> Inactivation of Listeria innocua ATCC 33092 by Gas-Phase Plasma Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Herceg">Z. Herceg</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Stulic"> V. Stulic</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Vukusic"> T. Vukusic</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rezek%20Jambrak"> A. Rezek Jambrak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High voltage electrical discharge plasmas are new nonthermal developing techniques used for water decontamination. To the full understanding of cell inactivation mechanisms, this study brings inactivation, recovery and cellular leakage of L. innocua cells before and after the treatment. Bacterial solution (200 mL) of L. innocua was treated in a glass reactor with a point-to-plate electrode configuration (high voltage electrode-titanium wire, was in the gas phase and grounded electrode was in the liquid phase). Argon was injected into the headspace of the reactor at the gas flow of 5 L/min. Frequency of 60, 90 and 120 Hz, time of 5 and 10 min, positive polarity and conductivity of media of 100 µS/cm were chosen to define listed parameters. With a longer treatment time inactivation was higher as well as the increase in cellular leakage. Despite total inactivation recovery of cells occurred probably because of a high leakage of proteins, compared to lower leakage of nucleic acids (DNA and RNA). In order to define mechanisms of inactivation further research is needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Listeria%20innocua%20ATCC%2033092" title="Listeria innocua ATCC 33092">Listeria innocua ATCC 33092</a>, <a href="https://publications.waset.org/abstracts/search?q=inactivation" title=" inactivation"> inactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20phase%20plasma" title=" gas phase plasma"> gas phase plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20leakage" title=" cellular leakage"> cellular leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20of%20cells" title=" recovery of cells"> recovery of cells</a> </p> <a href="https://publications.waset.org/abstracts/90157/inactivation-of-listeria-innocua-atcc-33092-by-gas-phase-plasma-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6239</span> Ligandless Extraction and Determination of Trace Amounts of Lead in Pomegranate, Zucchini and Lettuce Samples after Dispersive Liquid-Liquid Microextraction with Ultrasonic Bath and Optimization of Extraction Condition with RSM Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariba%20Tadayon">Fariba Tadayon</a>, <a href="https://publications.waset.org/abstracts/search?q=Elmira%20Hassanlou"> Elmira Hassanlou</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Bagheri"> Hasan Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Jafarian"> Mostafa Jafarian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals are released into water, plants, soil, and food by natural and human activities. Lead has toxic roles in the human body and may cause serious problems even in low concentrations, since it may have several adverse effects on human. Therefore, determination of lead in different samples is an important procedure in the studies of environmental pollution. In this work, an ultrasonic assisted-ionic liquid based-liquid-liquid microextraction (UA-IL-DLLME) procedure for the determination of lead in zucchini, pomegranate, and lettuce has been established and developed by using flame atomic absorption spectrometer (FAAS). For UA-IL-DLLME procedure, 10 mL of the sample solution containing Pb2+ was adjusted to pH=5 in a glass test tube with a conical bottom; then, 120 μL of 1-Hexyl-3-methylimidazolium hexafluoro phosphate (CMIM)(PF6) was rapidly injected into the sample solution with a microsyringe. After that, the resulting cloudy mixture was treated by ultrasonic for 5 min, then the separation of two phases was obtained by centrifugation for 5 min at 3000 rpm and IL-phase diluted with 1 cc ethanol, and the analytes were determined by FAAS. The effect of different experimental parameters in the extraction step including: ionic liquid volume, sonication time and pH was studied and optimized simultaneously by using Response Surface Methodology (RSM) employing a central composite design (CCD). The optimal conditions were determined to be an ionic liquid volume of 120 μL, sonication time of 5 min, and pH=5. The linear ranges of the calibration curve for the determination by FAAS of lead were 0.1-4 ppm with R2=0.992. Under optimized conditions, the limit of detection (LOD) for lead was 0.062 μg.mL-1, the enrichment factor (EF) was 93, and the relative standard deviation (RSD) for lead was calculated as 2.29%. The levels of lead for pomegranate, zucchini, and lettuce were calculated as 2.88 μg.g-1, 1.54 μg.g-1, 2.18 μg.g-1, respectively. Therefore, this method has been successfully applied for the analysis of the content of lead in different food samples by FAAS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dispersive%20liquid-liquid%20microextraction" title="Dispersive liquid-liquid microextraction">Dispersive liquid-liquid microextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Central%20composite%20design" title=" Central composite design"> Central composite design</a>, <a href="https://publications.waset.org/abstracts/search?q=Food%20samples" title=" Food samples"> Food samples</a>, <a href="https://publications.waset.org/abstracts/search?q=Flame%20atomic%20absorption%20spectrometry." title=" Flame atomic absorption spectrometry."> Flame atomic absorption spectrometry.</a> </p> <a href="https://publications.waset.org/abstracts/43911/ligandless-extraction-and-determination-of-trace-amounts-of-lead-in-pomegranate-zucchini-and-lettuce-samples-after-dispersive-liquid-liquid-microextraction-with-ultrasonic-bath-and-optimization-of-extraction-condition-with-rsm-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6238</span> Numerical Investigation of Pressure Drop and Erosion Wear by Computational Fluid Dynamics Simulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar">Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitin%20Kumar"> Nitin Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hemant%20Kumar"> Hemant Kumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modernization of computer technology and commercial computational fluid dynamic (CFD) simulation has given better detailed results as compared to experimental investigation techniques. CFD techniques are widely used in different field due to its flexibility and performance. Evaluation of pipeline erosion is complex phenomenon to solve by numerical arithmetic technique, whereas CFD simulation is an easy tool to resolve that type of problem. Erosion wear behaviour due to solid&ndash;liquid mixture in the slurry pipeline has been investigated using commercial CFD code in FLUENT. Multi-phase Euler-Lagrange model was adopted to predict the solid particle erosion wear in 22.5&deg; pipe bend for the flow of bottom ash-water suspension. The present study addresses erosion prediction in three dimensional 22.5&deg; pipe bend for two-phase (solid and liquid) flow using finite volume method with standard <em>k-&epsilon;</em> turbulence, discrete phase model and evaluation of erosion wear rate with varying velocity 2-4 m/s. The result shows that velocity of solid-liquid mixture found to be highly dominating parameter as compared to solid concentration, density, and particle size. At low velocity, settling takes place in the pipe bend due to low inertia and gravitational effect on solid particulate which leads to high erosion at bottom side of pipeline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title="computational fluid dynamics (CFD)">computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=slurry%20transportation" title=" slurry transportation"> slurry transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=k-%CE%B5%20Model" title=" k-ε Model"> k-ε Model</a> </p> <a href="https://publications.waset.org/abstracts/57647/numerical-investigation-of-pressure-drop-and-erosion-wear-by-computational-fluid-dynamics-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6237</span> Synthesis, Structure and Functional Characteristics of Solid Electrolytes Based on Lanthanum Niobates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20V.%20Morozova">Maria V. Morozova</a>, <a href="https://publications.waset.org/abstracts/search?q=Yulia%20V.%20Emelyanova"> Yulia V. Emelyanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasia%20A.%20Levina"> Anastasia A. Levina</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20S.%20Buyanova"> Elena S. Buyanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoya%20A.%20Mikhaylovskaya"> Zoya A. Mikhaylovskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20A.%20Petrova"> Sofia A. Petrova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The solid solutions of lanthanum niobates substituted by yttrium, bismuth and tungsten were synthesized. The structure of the solid solutions is either LaNbO4-based monoclinic or BiNbO4-based triclinic. The series where niobium is substituted by tungsten on B site reveals phase-modulated structure. The values of cell parameters decrease with increasing the dopant concentration for all samples except the tungsten series although the latter show higher total conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impedance%20spectroscopy" title="impedance spectroscopy">impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=LaNbO4" title=" LaNbO4"> LaNbO4</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanum%20ortho-niobates" title=" lanthanum ortho-niobates"> lanthanum ortho-niobates</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20electrolyte" title=" solid electrolyte"> solid electrolyte</a> </p> <a href="https://publications.waset.org/abstracts/38426/synthesis-structure-and-functional-characteristics-of-solid-electrolytes-based-on-lanthanum-niobates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=headspace%20solid%20phase%20microextraction%20%28HS-SPME%29&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=headspace%20solid%20phase%20microextraction%20%28HS-SPME%29&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=headspace%20solid%20phase%20microextraction%20%28HS-SPME%29&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=headspace%20solid%20phase%20microextraction%20%28HS-SPME%29&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=headspace%20solid%20phase%20microextraction%20%28HS-SPME%29&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=headspace%20solid%20phase%20microextraction%20%28HS-SPME%29&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=headspace%20solid%20phase%20microextraction%20%28HS-SPME%29&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=headspace%20solid%20phase%20microextraction%20%28HS-SPME%29&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=headspace%20solid%20phase%20microextraction%20%28HS-SPME%29&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=headspace%20solid%20phase%20microextraction%20%28HS-SPME%29&amp;page=208">208</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=headspace%20solid%20phase%20microextraction%20%28HS-SPME%29&amp;page=209">209</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=headspace%20solid%20phase%20microextraction%20%28HS-SPME%29&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10