CINXE.COM

{"title":"Wave Interaction with Defects in Pressurized Composite Structures","authors":"R. K. Apalowo, D. Chronopoulos, V. Thierry","volume":121,"journal":"International Journal of Materials and Metallurgical Engineering","pagesStart":28,"pagesEnd":35,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10006148","abstract":"A wave finite element (WFE) and finite element<br \/>\r\n(FE) based computational method is presented by which the<br \/>\r\ndispersion properties as well as the wave interaction coefficients for<br \/>\r\none-dimensional structural system can be predicted. The structural<br \/>\r\nsystem is discretized as a system comprising a number of waveguides<br \/>\r\nconnected by a coupling joint. Uniform nodes are ensured at the<br \/>\r\ninterfaces of the coupling element with each waveguide. Then,<br \/>\r\nequilibrium and continuity conditions are enforced at the interfaces.<br \/>\r\nWave propagation properties of each waveguide are calculated using<br \/>\r\nthe WFE method and the coupling element is modelled using the<br \/>\r\nFE method. The scattering of waves through the coupling element,<br \/>\r\non which damage is modelled, is determined by coupling the FE and<br \/>\r\nWFE models. Furthermore, the central aim is to evaluate the effect of<br \/>\r\npressurization on the wave dispersion and scattering characteristics<br \/>\r\nof the prestressed structural system compared to that which is not<br \/>\r\nprestressed. Numerical case studies are exhibited for two waveguides<br \/>\r\ncoupled through a coupling joint.","references":"[1] S. Kessler, S. Spearing, and C. Soutis, \u201cDamage detection in composite\r\nmaterials using lamb wave methods,\u201d Smart Materials and Structures,\r\nvol. 11, pp. 269\u2013278, 2002.\r\n[2] O. C. Zienkiewicz and R. L. Taylor, The finite element method: Solid\r\nmechanics. Butterworth-heinemann, 2000, vol. 2.\r\n[3] B. R. Mace, D. Duhamel, M. J. Brennan, and L. Hinke, \u201cFinite element\r\nprediction of wave motion in structural waveguides,\u201d The Journal of the\r\nAcoustical Society of America, vol. 117, no. 5, pp. 2835\u20132843, 2005.\r\n[4] J.-M. Mencik and M. Ichchou, \u201cMulti-mode propagation and\r\ndiffusion in structures through finite elements,\u201d European Journal of\r\nMechanics-A\/Solids, vol. 24, no. 5, pp. 877\u2013898, 2005.\r\n[5] D. Chronopoulos, B. Troclet, O. Bareille, and M. Ichchou, \u201cModeling\r\nthe response of composite panels by a dynamic stiffness approach,\u201d\r\nComposite Structures, vol. 96, pp. 111\u2013120, 2013.\r\n[6] E. Manconi and B. Mace, \u201cModelling wave propagation in\r\ntwo-dimensional structures using a wave\/finite element technique,\u201d ISVR\r\nTechnical Memorandum, 2007.\r\n[7] D. Chronopoulos, B. Troclet, M. Ichchou, and J. Laine, \u201cA unified\r\napproach for the broadband vibroacoustic response of composite shells,\u201d\r\nComposites Part B: Engineering, vol. 43, no. 4, pp. 1837\u20131846, 2012.\r\n[8] D. Chronopoulos, M. Ichchou, B. Troclet, and O. Bareille, \u201cPredicting\r\nthe broadband response of a layered cone-cylinder-cone shell,\u201d\r\nComposite Structures, vol. 107, no. 1, pp. 149\u2013159, 2014.\r\n[9] \u2014\u2014, \u201cComputing the broadband vibroacoustic response of arbitrarily\r\nthick layered panels by a wave finite element approach,\u201d Applied\r\nAcoustics, vol. 77, pp. 89\u201398, 2014.\r\n[10] V. Polenta, S. Garvey, D. Chronopoulos, A. Long, and H. Morvan,\r\n\u201cOptimal internal pressurisation of cylindrical shells for maximising\r\ntheir critical bending load,\u201d Thin-Walled Structures, vol. 87, pp.\r\n133\u2013138, 2015.\r\n[11] T. Ampatzidis and D. Chronopoulos, \u201cAcoustic transmission properties\r\nof pressurised and pre-stressed composite structures,\u201d Composite\r\nStructures, vol. 152, pp. 900\u2013912, 2016.\r\n[12] W. Zhou, M. Ichchou, and J. Mencik, \u201cAnalysis of wave propagation\r\nin cylindrical pipes with local inhomogeneities,\u201d Journal of Sound and\r\nVibration, vol. 319, no. 1, pp. 335\u2013354, 2009.\r\n[13] I. Antoniadis, D. Chronopoulos, V. Spitas, and D. Koulocheris,\r\n\u201cHyper-damping properties of a stiff and stable linear oscillator with\r\na negative stiffness element,\u201d Journal of Sound and Vibration, vol. 346,\r\nno. 1, pp. 37\u201352, 2015.\r\n[14] D. Chronopoulos, M. Collet, and M. Ichchou, \u201cDamping enhancement\r\nof composite panels by inclusion of shunted piezoelectric patches: A\r\nwave-based modelling approach,\u201d Materials, vol. 8, no. 2, pp. 815\u2013828,\r\n2015.\r\n[15] D. Chronopoulos, I. Antoniadis, M. Collet, and M. Ichchou,\r\n\u201cEnhancement of wave damping within metamaterials having embedded\r\nnegative stiffness inclusions,\u201d Wave Motion, vol. 58, pp. 165\u2013179, 2015.\r\n[16] D. Chronopoulos, \u201cDesign optimization of composite structures\r\noperating in acoustic environments,\u201d Journal of Sound and Vibration,\r\nvol. 355, pp. 322\u2013344, 2015.\r\n[17] M. Ben-Souf, D. Chronopoulos, M. Ichchou, O. Bareille, and M. Haddar,\r\n\u201cOn the variability of the sound transmission loss of composite panels\r\nthrough a parametric probabilistic approach,\u201d Journal of Computational\r\nAcoustics, vol. 24, no. 1, 2016.\r\n[18] D. Chronopoulos, \u201cWave steering effects in anisotropic composite\r\nstructures: Direct calculation of the energy skew angle through a finite\r\nelement scheme,\u201d Ultrasonics, vol. 73, pp. 43\u201348, 2017.\r\n[19] J. M. Renno and B. R. Mace, \u201cCalculation of reflection and transmission\r\ncoefficients of joints using a hybrid finite element\/wave and finite\r\nelement approach,\u201d Journal of Sound and Vibration, vol. 332, no. 9,\r\npp. 2149\u20132164, 2013.\r\n[20] W. Zhou and M. Ichchou, \u201cWave propagation in mechanical waveguide\r\nwith curved members using wave finite element solution,\u201d Computer\r\nMethods in Applied Mechanics and Engineering, vol. 199, no. 33, pp.\r\n2099\u20132109, 2010.\r\n[21] T. Huang, M. Ichchou, and O. Bareille, \u201cMulti-mode wave propagation\r\nin damaged stiffened panels,\u201d Structural Control and Health Monitoring,\r\nvol. 19, no. 5, pp. 609\u2013629, 2012.\r\n[22] R. Cook, Concepts and Applications of Finite Element Analysis, 2nd ed.\r\nJohn Wiley and Sons. New York., 1981.\r\n[23] A. Inc., ANSYS 14.0 User\u2019s Help, 2014.\r\n[24] J. Doyle, Wave Propagation in Structures: Spectral Analysis Using Fast\r\nDiscrete Fourier Transforms. Springer, 1997.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 121, 2017"}