CINXE.COM

Search results for: double ended MR damper

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: double ended MR damper</title> <meta name="description" content="Search results for: double ended MR damper"> <meta name="keywords" content="double ended MR damper"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="double ended MR damper" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="double ended MR damper"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1829</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: double ended MR damper</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1769</span> Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Sharma">S. P. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Som%20Nath%20Saha"> Som Nath Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heater under same operating conditions. However, the corrugated absorber leads to higher pressure drop thereby increasing pumping power. The results revealed that the energy and exergy efficiencies of double flow corrugated absorber solar air heater is much higher than conventional solar air heater with the concept involving of increase in heat transfer surface area and turbulence in air flow. The results indicate that the energy efficiency increases, however, exergy efficiency decreases with increase in mass flow rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20absorber" title="corrugated absorber">corrugated absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20flow" title=" double flow"> double flow</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20efficiency" title=" exergy efficiency"> exergy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20air%20heater" title=" solar air heater"> solar air heater</a> </p> <a href="https://publications.waset.org/abstracts/69781/exergy-based-performance-analysis-of-double-flow-solar-air-heater-with-corrugated-absorber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1768</span> Parametric Non-Linear Analysis of Reinforced Concrete Frames with Supplemental Damping Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniele%20Losanno">Daniele Losanno</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgio%20Serino"> Giorgio Serino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on parametric analysis of reinforced concrete structures equipped with supplemental damping braces. Practitioners still luck sufficient data for current design of damper added structures and often reduce the real model to a pure damper braced structure even if this assumption is neither realistic nor conservative. In the present study, the damping brace is modelled as made by a linear supporting brace connected in series with the viscous/hysteretic damper. Deformation capacity of existing structures is usually not adequate to undergo the design earthquake. In spite of this, additional dampers could be introduced strongly limiting structural damage to acceptable values, or in some cases, reducing frame response to elastic behavior. This work is aimed at providing useful considerations for retrofit of existing buildings by means of supplemental damping braces. The study explicitly takes into consideration variability of (a) relative frame to supporting brace stiffness, (b) dampers&rsquo; coefficient (viscous coefficient or yielding force) and (c) non-linear frame behavior. Non-linear time history analysis has been run to account for both dampers&rsquo; behavior and non-linear plastic hinges modelled by Pivot hysteretic type. Parametric analysis based on previous studies on SDOF or MDOF linear frames provide reference values for nearly optimal damping systems design. With respect to bare frame configuration, seismic response of the damper-added frame is strongly improved, limiting deformations to acceptable values far below ultimate capacity. Results of the analysis also demonstrated the beneficial effect of stiffer supporting braces, thus highlighting inadequacy of simplified pure damper models. At the same time, the effect of variable damping coefficient and yielding force has to be treated as an optimization problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brace%20stiffness" title="brace stiffness">brace stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20braces" title=" dissipative braces"> dissipative braces</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20analysis" title=" non-linear analysis"> non-linear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20hinges" title=" plastic hinges"> plastic hinges</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20frames" title=" reinforced concrete frames"> reinforced concrete frames</a> </p> <a href="https://publications.waset.org/abstracts/60408/parametric-non-linear-analysis-of-reinforced-concrete-frames-with-supplemental-damping-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1767</span> Seismic Protection of Automated Stocker System by Customized Viscous Fluid Dampers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20P.%20Wang">Y. P. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Chen"> J. K. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Lee"> C. H. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20H.%20Huang"> G. H. Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Wang"> M. C. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Chen"> S. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20T.%20Kuan"> Y. T. Kuan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20C.%20Lin"> H. C. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Y.%20Huang"> C. Y. Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20H.%20Liang"> W. H. Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20C.%20Lin"> W. C. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20C.%20Yu"> H. C. Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hi-tech industries in the Science Park at southern Taiwan were heavily damaged by a strong earthquake early 2016. The financial loss in this event was attributed primarily to the automated stocker system handling fully processed products, and recovery of the automated stocker system from the aftermath proved to contribute major lead time. Therefore, development of effective means for protection of stockers against earthquakes has become the highest priority for risk minimization and business continuity. This study proposes to mitigate the seismic response of the stockers by introducing viscous fluid dampers in between the ceiling and the top of the stockers. The stocker is expected to vibrate less violently with a passive control force on top. Linear damper is considered in this application with an optimal damping coefficient determined from a preliminary parametric study. The damper is small in size in comparison with those adopted for building or bridge applications. Component test of the dampers has been carried out to make sure they meet the design requirement. Shake table tests have been further conducted to verify the proposed scheme under realistic earthquake conditions. Encouraging results have been achieved by effectively reducing the seismic responses of up to 60% and preventing the FOUPs from falling off the shelves that would otherwise be the case if left unprotected. Effectiveness of adopting a viscous fluid damper for seismic control of the stocker on top against the ceiling has been confirmed. This technique has been adopted by Macronix International Co., LTD for seismic retrofit of existing stockers. Demonstrative projects on the application of the proposed technique are planned underway for other companies in the display industry as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hi-tech%20industries" title="hi-tech industries">hi-tech industries</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20protection" title=" seismic protection"> seismic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20stocker%20system" title=" automated stocker system"> automated stocker system</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20fluid%20damper" title=" viscous fluid damper"> viscous fluid damper</a> </p> <a href="https://publications.waset.org/abstracts/75426/seismic-protection-of-automated-stocker-system-by-customized-viscous-fluid-dampers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1766</span> Development and Experimental Evaluation of a Semiactive Friction Damper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20S.%20Mantilla">Juan S. Mantilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Thomson"> Peter Thomson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic events may result in discomfort on occupants of the buildings, structural damage or even buildings collapse. Traditional design aims to reduce dynamic response of structures by increasing stiffness, thus increasing the construction costs and the design forces. Structural control systems arise as an alternative to reduce these dynamic responses. A commonly used control systems in buildings are the passive friction dampers, which adds energy dissipation through damping mechanisms induced by sliding friction between their surfaces. Passive friction dampers are usually implemented on the diagonal of braced buildings, but such devices have the disadvantage that are optimal for a range of sliding force and out of that range its efficiency decreases. The above implies that each passive friction damper is designed, built and commercialized for a specific sliding/clamping force, in which the damper shift from a locked state to a slip state, where dissipates energy through friction. The risk of having a variation in the efficiency of the device according to the sliding force is that the dynamic properties of the building can change as result of many factor, even damage caused by a seismic event. In this case the expected forces in the building can change and thus considerably reduce the efficiency of the damper (that is designed for a specific sliding force). It is also evident than when a seismic event occurs the forces in each floor varies in the time what means that the damper's efficiency is not the best at all times. Semi-Active Friction devices adapt its sliding force trying to maintain its motion in the slipping phase as much as possible, because of this, the effectiveness of the device depends on the control strategy used. This paper deals with the development and performance evaluation of a low cost Semiactive Variable Friction Damper (SAVFD) in reduced scale to reduce vibrations of structures subject to earthquakes. The SAVFD consist in a (1) hydraulic brake adapted to (2) a servomotor which is controlled with an (3) Arduino board and acquires accelerations or displacement from (4) sensors in the immediately upper and lower floors and a (5) power supply that can be a pair of common batteries. A test structure, based on a Benchmark structure for structural control, was design and constructed. The SAVFD and the structure are experimentally characterized. A numerical model of the structure and the SAVFD is developed based on the dynamic characterization. Decentralized control algorithms were modeled and later tested experimentally using shaking table test using earthquake and frequency chirp signals. The controlled structure with the SAVFD achieved reductions greater than 80% in relative displacements and accelerations in comparison to the uncontrolled structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20response" title="earthquake response">earthquake response</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20damper" title=" friction damper"> friction damper</a>, <a href="https://publications.waset.org/abstracts/search?q=semiactive%20control" title=" semiactive control"> semiactive control</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table" title=" shaking table"> shaking table</a> </p> <a href="https://publications.waset.org/abstracts/39296/development-and-experimental-evaluation-of-a-semiactive-friction-damper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1765</span> Experimental Performance and Numerical Simulation of Double Glass Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thana%20Ananacha">Thana Ananacha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two configurations were considered namely, the Double Clear Glass Wall (DCGW) and the Double Translucent Glass Wall (DTGW). The coupled governing equations as well as boundary conditions are solved using the finite element method (FEM) via COMSOLTM Multiphysics. Temperature profiles and flow field of the DCGW and DTGW are reported and discussed. Different constant heat fluxes were considered namely 400 and 800 W.m-2 the corresponding initial condition temperatures were to 30.5 and 38.5 ºC respectively. The results show that the simulation results are in agreement with the experimental data. Conclusively, the model considered in this study could reasonable be used simulate the thermal and ventilation performance of the DCGW and DTGW configurations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20simulation" title="thermal simulation">thermal simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Double%20Glass%20Wall" title=" Double Glass Wall"> Double Glass Wall</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20field" title=" velocity field"> velocity field</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method%20%28FEM%29" title=" finite element method (FEM)"> finite element method (FEM)</a> </p> <a href="https://publications.waset.org/abstracts/10639/experimental-performance-and-numerical-simulation-of-double-glass-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1764</span> Retrofitting of Asymmetric Steel Structure Equipped with Tuned Liquid Column Dampers by Nonlinear Finite Element Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Akbarpour">A. Akbarpour</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Adib%20Ramezani"> M. R. Adib Ramezani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zhian"> M. Zhian</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ghorbani%20Amirabad"> N. Ghorbani Amirabad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> One way to improve the performance of structures against of earthquake is passive control which requires no external power source. In this research, tuned liquid column dampers which are among of systems with the capability to transfer energy between various modes of vibration, are used. For the first time, a liquid column damper for vibration control structure is presented. After modeling this structure in design building software and performing the static and dynamic analysis and obtaining the necessary parameters for the design of tuned liquid column damper, the whole structure will be analyzed in finite elements software. The tuned liquid column dampers are installed on the structure and nonlinear time-history analysis is done in two cases of structures; with and without dampers. Finally the seismic behavior of building in the two cases will be examined. In this study the nonlinear time-history analysis on a twelve-story steel structure equipped with damper subject to records of earthquake including Loma Prieta, Northridge, Imperiall Valley, Pertrolia and Landers was performed. The results of comparing between two cases show that these dampers have reduced lateral displacement and acceleration of levels on average of 10%. Roof displacement and acceleration also reduced respectively 5% and 12%. Due to structural asymmetric in the plan, the maximum displacements of surrounding structures as well as twisting were studied. The results show that the dampers lead to a 10% reduction in the maximum response of structure stories surrounding points. At the same time, placing the dampers, caused to reduce twisting on the floor plan of the structure, Base shear of structure in the different earthquakes also has been reduced on the average of 6%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retrofitting" title="retrofitting">retrofitting</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20control" title=" passive control"> passive control</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20liquid%20column%20damper" title=" tuned liquid column damper"> tuned liquid column damper</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/29189/retrofitting-of-asymmetric-steel-structure-equipped-with-tuned-liquid-column-dampers-by-nonlinear-finite-element-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1763</span> Comparison between the Performances of Different Boring Bars in the Internal Turning of Long Overhangs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wallyson%20Thomas">Wallyson Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Zsombor%20Fulop"> Zsombor Fulop</a>, <a href="https://publications.waset.org/abstracts/search?q=Attila%20%20Szilagyi"> Attila Szilagyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Impact dampers are mainly used in the metal-mechanical industry in operations that generate too much vibration in the machining system. Internal turning processes become unstable during the machining of deep holes, in which the tool holder is used with long overhangs (high length-to-diameter ratios). The devices coupled with active dampers, are expensive and require the use of advanced electronics. On the other hand, passive impact dampers (PID – Particle Impact Dampers) are cheaper alternatives that are easier to adapt to the machine’s fixation system, once that, in this last case, a cavity filled with particles is simply added to the structure of the tool holder. The cavity dimensions and the diameter of the spheres are pre-determined. Thus, when passive dampers are employed during the machining process, the vibration is transferred from the tip of the tool to the structure of the boring bar, where it is absorbed by the fixation system. This work proposes to compare the behaviors of a conventional solid boring bar and a boring bar with a passive impact damper in turning while using the highest possible L/D (length-to-diameter ratio) of the tool and an Easy Fix fixation system (also called: Split Bushing Holding System). It is also intended to optimize the impact absorption parameters, as the filling percentage of the cavity and the diameter of the spheres. The test specimens were made of hardened material and machined in a Computer Numerical Control (CNC) lathe. The laboratory tests showed that when the cavity of the boring bar is totally filled with minimally spaced spheres of the largest diameter, the gain in absorption allowed of obtaining, with an L/D equal to 6, the same surface roughness obtained when using the solid boring bar with an L/D equal to 3.4. The use of the passive particle impact damper resulted in, therefore, increased static stiffness and reduced deflexion of the tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20damper" title="active damper">active damper</a>, <a href="https://publications.waset.org/abstracts/search?q=fixation%20system" title=" fixation system"> fixation system</a>, <a href="https://publications.waset.org/abstracts/search?q=hardened%20material" title=" hardened material"> hardened material</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20damper" title=" passive damper "> passive damper </a> </p> <a href="https://publications.waset.org/abstracts/124361/comparison-between-the-performances-of-different-boring-bars-in-the-internal-turning-of-long-overhangs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1762</span> A Double Acceptance Sampling Plan for Truncated Life Test Having Exponentiated Transmuted Weibull Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Abdellatif">A. D. Abdellatif</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Ahmed"> A. N. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Abdelaziz"> M. E. Abdelaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this paper is to design a double acceptance sampling plan under the time truncated life test when the product lifetime follows an exponentiated transmuted Weibull distribution. Here, the motive is to meet both the consumer’s risk and producer’s risk simultaneously at the specified quality levels, while the termination time is specified. A comparison between the results of the double and single acceptance sampling plans is conducted. We demonstrate the applicability of our results to real data sets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20sampling%20plan" title="double sampling plan">double sampling plan</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20sampling%20plan" title=" single sampling plan"> single sampling plan</a>, <a href="https://publications.waset.org/abstracts/search?q=producer%E2%80%99s%20risk" title=" producer’s risk"> producer’s risk</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%E2%80%99s%20risk" title=" consumer’s risk"> consumer’s risk</a>, <a href="https://publications.waset.org/abstracts/search?q=exponentiated%20transmuted%20weibull%20distribution" title=" exponentiated transmuted weibull distribution"> exponentiated transmuted weibull distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20truncated%20experiment" title=" time truncated experiment"> time truncated experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=single" title=" single"> single</a>, <a href="https://publications.waset.org/abstracts/search?q=double" title=" double"> double</a>, <a href="https://publications.waset.org/abstracts/search?q=Marshal-Olkin" title=" Marshal-Olkin"> Marshal-Olkin</a> </p> <a href="https://publications.waset.org/abstracts/31946/a-double-acceptance-sampling-plan-for-truncated-life-test-having-exponentiated-transmuted-weibull-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1761</span> Estimating The Population Mean by Using Stratified Double Extreme Ranked Set Sample</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20I.%20Syam">Mahmoud I. Syam</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamarulzaman%20Ibrahim"> Kamarulzaman Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Amer%20I.%20Al-Omari"> Amer I. Al-Omari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stratified double extreme ranked set sampling (SDERSS) method is introduced and considered for estimating the population mean. The SDERSS is compared with the simple random sampling (SRS), stratified ranked set sampling (SRSS) and stratified simple set sampling (SSRS). It is shown that the SDERSS estimator is an unbiased of the population mean and more efficient than the estimators using SRS, SRSS and SSRS when the underlying distribution of the variable of interest is symmetric or asymmetric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20extreme%20ranked%20set%20sampling" title="double extreme ranked set sampling">double extreme ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20ranked%20set%20sampling" title=" extreme ranked set sampling"> extreme ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=ranked%20set%20sampling" title=" ranked set sampling"> ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20double%20extreme%20ranked%20set%20sampling" title=" stratified double extreme ranked set sampling"> stratified double extreme ranked set sampling</a> </p> <a href="https://publications.waset.org/abstracts/25207/estimating-the-population-mean-by-using-stratified-double-extreme-ranked-set-sample" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1760</span> Estimation of Respiratory Parameters in Pressure Controlled Ventilation System with Double Lungs on Secretion Clearance </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qian%20Zhang">Qian Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongkai%20Shen"> Dongkai Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Shi"> Yan Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new mechanical ventilator with automatic secretion clearance function can improve the secretion clearance safely and efficiently. However, in recent modeling studies on various mechanical ventilators, it was considered that human had one lung, and the coupling effect of double lungs was never illustrated. In this paper, to expound the coupling effect of double lungs, a mathematical model of a ventilation system of a bi-level positive airway pressure (BiPAP) controlled ventilator with secretion clearance was set up. Moreover, an experimental study about the mechanical ventilation system of double lungs on BiPAP ventilator was conducted to verify the mathematical model. Finally, the coupling effect of double lungs of the mathematical ventilation was studied by simulation and orthogonal experimental design. This paper adds to previous studies and can be referred to optimization methods in medical researches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20lungs" title="double lungs">double lungs</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling%20effect" title=" coupling effect"> coupling effect</a>, <a href="https://publications.waset.org/abstracts/search?q=secretion%20clearance" title=" secretion clearance"> secretion clearance</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20experimental%20design" title=" orthogonal experimental design"> orthogonal experimental design</a> </p> <a href="https://publications.waset.org/abstracts/67166/estimation-of-respiratory-parameters-in-pressure-controlled-ventilation-system-with-double-lungs-on-secretion-clearance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">609</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1759</span> Dynamic Analysis of Double Deck Tunnel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Kwak">C. W. Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20J.%20Park"> I. J. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20I.%20Jang"> D. I. Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of cost-wise effective application and construction is getting increase due to the surge of traffic volume in the metropolitan cities. Accordingly, the necessity of the tunnel has large section becomes more critical. Double deck tunnel can be one of the most appropriate solutions to the necessity. The dynamic stability of double deck tunnel is essential against seismic load since it has large section and connection between perimeter lining and interim slab. In this study, 3-dimensional dynamic numerical analysis was conducted based on the Finite Difference Method to investigate the seismic behavior of double deck tunnel. Seismic joint for dynamic stability and the mitigation of seismic impact on the lining was considered in the modeling and analysis. Consequently, the mitigation of acceleration, lining displacement and stress were verified successfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20deck%20tunnel" title="double deck tunnel">double deck tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=interim%20slab" title=" interim slab"> interim slab</a>, <a href="https://publications.waset.org/abstracts/search?q=3-dimensional%20dynamic%20numerical%20analysis" title=" 3-dimensional dynamic numerical analysis"> 3-dimensional dynamic numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20joint" title=" seismic joint "> seismic joint </a> </p> <a href="https://publications.waset.org/abstracts/33999/dynamic-analysis-of-double-deck-tunnel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1758</span> Effect of Open-Ended Laboratory toward Learners Performance in Environmental Engineering Course: Case Study of Civil Engineering at Universiti Malaysia Sabah</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Bolong">N. Bolong</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Makinda"> J. Makinda</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Saad"> I. Saad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laboratory activities have produced benefits in student learning. With current drives of new technology resources and evolving era of education methods, renewal status of learning and teaching in laboratory methods are in progress, for both learners and the educators. To enhance learning outcomes in laboratory works particularly in engineering practices and testing, learning via hands-on by instruction may not sufficient. This paper describes and compares techniques and implementation of traditional (expository) with open-ended laboratory (problem-based) for two consecutive cohorts studying environmental laboratory course in civil engineering program. The transition of traditional to problem-based findings and effect were investigated in terms of course assessment student feedback survey, course outcome learning measurement and student performance grades. It was proved that students have demonstrated better performance in their grades and 12% increase in the course outcome (CO) in problem-based open-ended laboratory style than traditional method; although in perception, students has responded less favorable in their feedback. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engineering%20education" title="engineering education">engineering education</a>, <a href="https://publications.waset.org/abstracts/search?q=open-ended%20laboratory" title=" open-ended laboratory"> open-ended laboratory</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20engineering%20lab" title=" environmental engineering lab"> environmental engineering lab</a> </p> <a href="https://publications.waset.org/abstracts/13413/effect-of-open-ended-laboratory-toward-learners-performance-in-environmental-engineering-course-case-study-of-civil-engineering-at-universiti-malaysia-sabah" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1757</span> On the Efficiency of a Double-Cone Gravitational Motor and Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barenten%20Suciu">Barenten Suciu</a>, <a href="https://publications.waset.org/abstracts/search?q=Akio%20Miyamura"> Akio Miyamura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, following the study-case of an inclined plane gravitational machine, efficiency of a double-cone gravitational motor and generator is evaluated. Two types of efficiency ratios, called <em>translational efficiency</em> and <em>rotational efficiency</em>, are defined relative to the intended duty of the gravitational machine, which can be either the production of translational kinetic energy, or rotational kinetic energy. One proved that, for pure rolling movement of the double- cone, in the absence of rolling friction, the total mechanical energy is conserved. In such circumstances, as the motion of the double-cone progresses along rails, the translational efficiency decreases and the rotational efficiency increases, in such way that sum of the rotational and translational efficiencies remains unchanged and equal to 1. Results obtained allow a comparison of the gravitational machine with other types of motor-generators, in terms of the achievable efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=gravitational%20motor%20and%20generator" title=" gravitational motor and generator"> gravitational motor and generator</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20and%20sliding" title=" rolling and sliding"> rolling and sliding</a>, <a href="https://publications.waset.org/abstracts/search?q=truncated%20double-cone" title=" truncated double-cone"> truncated double-cone</a> </p> <a href="https://publications.waset.org/abstracts/80923/on-the-efficiency-of-a-double-cone-gravitational-motor-and-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1756</span> High Rise Building Vibration Control Using Tuned Mass Damper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Vikneshvaran">T. Vikneshvaran</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aminudin"> A. Aminudin</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Alyaa%20Hashim"> U. Alyaa Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Waziralilah%20N.%20Fathiah"> Waziralilah N. Fathiah</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Shakirah%20Shukor"> D. Shakirah Shukor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental study conducted on a structure of three-floor height building model. Most vibrations are undesirable and can cause damages to the buildings, machines and people all around us. The vibration wave from earthquakes, construction and winds have high potential to bring damage to the buildings. Excessive vibrations can result in structural and machinery failures. This failure is related to the human life and environment around it. The effect of vibration which causes failure and damage to the high rise buildings can be controlled in real life by implementing tuned mass damper (TMD) into the structure of the buildings. This research aims to study the effect and performance improvement achieved by applying TMD into the building structure. A structure model of three degrees of freedom (3DOF) is designed to demonstrate the performance of TMD to the designed model. The model designed is the physical representation of actual building structure in real life. It is constructed at a reduced scale and will be used for the experiment. Thus, the result obtained will be more accurate to compared with the real life effect. Based on the result from experimental study, by applying TMD to the structure model, the forces of vibration and the displacement mode of the building reduced. Thus, the reduced in vibration of the building helps to maintain the good condition of the building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degrees-of-freedom" title="degrees-of-freedom">degrees-of-freedom</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement%20mode" title=" displacement mode"> displacement mode</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper" title=" tuned mass damper"> tuned mass damper</a> </p> <a href="https://publications.waset.org/abstracts/63247/high-rise-building-vibration-control-using-tuned-mass-damper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1755</span> Study on Multi-Point Stretch Forming Process for Double Curved Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiwoo%20Park">Jiwoo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Junseok%20Yoon"> Junseok Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Kim"> Jeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Beomsoo%20Kang"> Beomsoo Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi-Point Stretch Forming (MPSF) process is suitable for flexible manufacturing, and it has several advantages including that it could be applied to various forming such as sheet metal forming, single curved surface forming and double curved one. In this study, a systematic numerical simulation was carried out for atypical double curved surface forming using the multiple die stretch forming process. In this simulation, urethane pads were defined based on hyper-elastic material model as a cushion for the smooth forming surface. The deformation behaviour on elastic recovery was also investigated to consider the exact result after the last forming process, and then the experiment was also carried out to confirm the formability of this forming process. By comparing the simulation and experiment results, the suitability of the multiple die stretch forming process for the atypical double curved surface was verified. Consequently, it is confirmed that the multi-point stretch forming process has the capability and feasibility of being used to manufacture the double curved surfaces of sheet metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-point%20stretch%20forming" title="multi-point stretch forming">multi-point stretch forming</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20curved%20surface" title=" double curved surface"> double curved surface</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/7221/study-on-multi-point-stretch-forming-process-for-double-curved-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1754</span> Design and Development of an Innovative MR Damper Based on Intelligent Active Suspension Control of a Malaysia&#039;s Model Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Wei%20Sheng">L. Wei Sheng</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Noor%20Syazwanee"> M. T. Noor Syazwanee</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Carolyna"> C. J. Carolyna</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Amiruddin"> M. Amiruddin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pauziah"> M. Pauziah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper exhibits the alternatives towards active suspension systems revised based on the classical passive suspension system to improve comfort and handling performance. An active Magneto rheological (MR) suspension system is proposed as to explore the active based suspension system to enhance performance given its freedom to independently specify the characteristics of load carrying, handling, and ride quality. Malaysian quarter car with two degrees of freedom (2DOF) system is designed and constructed to simulate the actions of an active vehicle suspension system. The structure of a conventional twin-tube shock absorber is modified both internally and externally to comprehend with the active suspension system. The shock absorber peripheral structure is altered to enable the assembling and disassembling of the damper through a non-permanent joint whereby the stress analysis of the designed joint is simulated using Finite Element Analysis. Simulation on the internal part where an electrified copper coil of 24AWG is winded is done using Finite Element Method Magnetics to measure the magnetic flux density inside the MR damper. The primary purpose of this approach is to reduce the vibration transmitted from the effects of road surface irregularities while maintaining solid manoeuvrability. The aim of this research is to develop an intelligent control system of a consecutive damping automotive suspension system. The ride quality is improved by means of the reduction of the vertical body acceleration caused by the car body when it experiences disturbances from speed bump and random road roughness. Findings from this research are expected to enhance the quality of ride which in return can prevent the deteriorating effect of vibration on the vehicle condition as well as the passengers’ well-being. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20suspension" title="active suspension">active suspension</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA"> FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto%20rheological%20damper" title=" magneto rheological damper"> magneto rheological damper</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysian%20quarter%20car%20model" title=" Malaysian quarter car model"> Malaysian quarter car model</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20control" title=" vibration control"> vibration control</a> </p> <a href="https://publications.waset.org/abstracts/63408/design-and-development-of-an-innovative-mr-damper-based-on-intelligent-active-suspension-control-of-a-malaysias-model-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1753</span> Design Manufacture and Testing of a Combined Alpha-Beta Double Piston Stirling Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Calvin%20Antony">A. Calvin Antony</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakthi%20Kumar%20Arul%20Prakash"> Sakthi Kumar Arul Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper a unique alpha-beta double piston 'stirling engine' is designed, manufactured and conducted laboratory test to ameliorate the efficiency of the stirling engine. The paper focuses on alpha and beta type engines, capturing their benefits and eradicating their short comings; along with the output observed from the flywheel. In this model alpha engine is kinematically with a piston cylinder arrangement which works quite like a beta engine. The piston of the new cylinder is so designed that it replicates a glued displacer and power piston as similar to that of beta engine. The bigger part of the piston is the power piston, which has a gap around it, while the smaller part of the piston is tightly fit in the cylinder and acts like the displacer piston. We observed that the alpha-beta double piston stirling engine produces 25% increase in power compare to a conventional alpha stirling engine. This working model is a pointer towards for the design and development of an alpha-beta double piston Stirling engine for industrial applications for producing electricity from the heat producing exhaust gases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha-beta%20double%20piston%20stirling%20engine" title="alpha-beta double piston stirling engine ">alpha-beta double piston stirling engine </a>, <a href="https://publications.waset.org/abstracts/search?q=alpha%20stirling%20engine" title=" alpha stirling engine "> alpha stirling engine </a>, <a href="https://publications.waset.org/abstracts/search?q=beta%20double%20piston%20stirling%20engine" title=" beta double piston stirling engine "> beta double piston stirling engine </a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20from%20stirling%20engine" title=" electricity from stirling engine"> electricity from stirling engine</a> </p> <a href="https://publications.waset.org/abstracts/35104/design-manufacture-and-testing-of-a-combined-alpha-beta-double-piston-stirling-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1752</span> Global Direct Search Optimization of a Tuned Liquid Column Damper Subject to Stochastic Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansour%20H.%20Alkmim">Mansour H. Alkmim</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriano%20T.%20Fabro"> Adriano T. Fabro</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcus%20V.%20G.%20De%20Morais"> Marcus V. G. De Morais</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of an undamped primary system under white noise excitation. Finally, a numerical example considering a simplified wind turbine model is given to illustrate the efficacy of the TLCD. Results from the random vibration analysis are shown for four types of random excitation wind model where the response PSDs obtained showed good vibration attenuation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20pattern%20search" title="generalized pattern search">generalized pattern search</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20optimization" title=" parameter optimization"> parameter optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20vibration%20analysis" title=" random vibration analysis"> random vibration analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20suppression" title=" vibration suppression"> vibration suppression</a> </p> <a href="https://publications.waset.org/abstracts/68674/global-direct-search-optimization-of-a-tuned-liquid-column-damper-subject-to-stochastic-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1751</span> Characterizing the Diffused Double Layer Properties of Clay Minerals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Saranya">N. Saranya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The difference in characteristic behavior of clay minerals for different electrolyte solution is dictated by the corresponding variation occurring at its diffused double layer thickness (DDL). The diffused double layer of clay mineral has two distinct regions; the inner region is termed as ‘Stern layer’ where ions are strongly attached to the clay surface. In the outer region, the ions are not strongly bonded with the clay surface, and this region is termed as ‘diffuse layer’. Within the diffuse layer, there is a plane that forms a boundary between the moving ions and the ions attached to the clay surface, which is termed as slipping or shear plane, and the potential of this plane is defined as zeta potential (ζ). Therefore, the variation in diffused double layer properties of clay mineral for different electrolyte solutions can be modeled if the corresponding variation in surface charge, surface potential, and zeta potential are computed. In view of this, the present study has attempted to characterize the diffused double layer properties of three different clay minerals interacting with different pore fluids by measuring the corresponding variation in surface charge, surface potential, and zeta potential. Further, the obtained variation in the diffused double layer property is compared with the Gouy-Chapman model, which is the widely accepted theoretical model to characterize the diffused double layer properties of clay minerals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DDL" title="DDL">DDL</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20charge" title=" surface charge"> surface charge</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20potential" title=" surface potential"> surface potential</a>, <a href="https://publications.waset.org/abstracts/search?q=zeta%20potential" title=" zeta potential"> zeta potential</a> </p> <a href="https://publications.waset.org/abstracts/116388/characterizing-the-diffused-double-layer-properties-of-clay-minerals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1750</span> Development and Characterization of Double Liposomes Based Dual Drug Delivery System for H. Pylori Targeting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Kumar%20Jain">Ashish Kumar Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Mishra"> Deepak Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the present investigation was to prepare and evaluate a vesicular dual drug delivery system for effective management of mucosal ulcer. Inner encapsulating and Double liposomes were prepared by glass bead and reverse phase evaporation method respectively. The formulation consisted of inner liposomes bearing Ranitidine Bismuth Citrate (RBC) and outer liposomes encapsulating Amoxicillin trihydrate (AMOX). The optimized inner liposomes and double liposomes were extensively characterized for vesicle size, morphology, zeta potential, vesicles count, entrapment efficiency and in vitro drug release. In vitro, the double liposomes demonstrated a sustained release of AMOX and RBC viz 91.4±1.8% and 77.2±2.1% respectively at the end of 72 hr. Furthermore binding specificity and targeting propensity toward H. pylori (SKP-56) was confirmed by agglutination and in situ adherence assay. Reduction of the absolute alcohol induced ulcerogenic index from 3.01 ± 0.25 to 0.31 ± 0.09 and 100% H. pylori clearance rate was observed. These results suggested that double liposomes are potential vector for the development of dual drug delivery for effective treatment of H. pylori-associated peptic ulcer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20liposomes" title="double liposomes">double liposomes</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20pylori%20targeting" title=" H. pylori targeting"> H. pylori targeting</a>, <a href="https://publications.waset.org/abstracts/search?q=PE%20liposomes" title=" PE liposomes"> PE liposomes</a>, <a href="https://publications.waset.org/abstracts/search?q=glass-beads%20method" title=" glass-beads method"> glass-beads method</a>, <a href="https://publications.waset.org/abstracts/search?q=peptic%20ulcers" title=" peptic ulcers"> peptic ulcers</a> </p> <a href="https://publications.waset.org/abstracts/18114/development-and-characterization-of-double-liposomes-based-dual-drug-delivery-system-for-h-pylori-targeting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1749</span> Theoretical and Experimental Analysis of End Milling Process with Multiple Finger Inserted Cutters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Krishna%20Mohana%20Rao">G. Krishna Mohana Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Ravi%20Kumar"> P. Ravi Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Milling is the process of removing unwanted material with suitable tool. Even though the milling process is having wider application, the vibration of machine tool and work piece during the process produces chatter on the products. Various methods of preventing the chatter have been incorporated into machine tool systems. Damper is cut into equal number of parts. Each part is called as finger. Multiple fingers were inserted in the hollow portion of the shank to reduce tool vibrations. In the present work, nonlinear static and dynamic analysis of the damper inserted end milling cutter used to reduce the chatter was done. A comparison is made for the milling cutter with multiple dampers. Surface roughness was determined by machining with multiple finger inserted milling cutters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping%20inserts" title="damping inserts">damping inserts</a>, <a href="https://publications.waset.org/abstracts/search?q=end%20milling" title=" end milling"> end milling</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamic%20analysis" title=" nonlinear dynamic analysis"> nonlinear dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20of%20fingers" title=" number of fingers"> number of fingers</a> </p> <a href="https://publications.waset.org/abstracts/4973/theoretical-and-experimental-analysis-of-end-milling-process-with-multiple-finger-inserted-cutters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1748</span> Flux-Linkage Performance of DFIG Under Different Types of Faults and Locations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Moustafa%20Mahmoud%20Sedky">Mohamed Moustafa Mahmoud Sedky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The double-fed induction generator wind turbine has recently received a great attention. The steady state performance and response of double fed induction generator (DFIG) based wind turbine are now well understood. This paper presents the analysis of stator and rotor flux linkage dq models operation of DFIG under different faults and at different locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20fed%20induction%20motor" title="double fed induction motor">double fed induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20linkage" title=" flux linkage"> flux linkage</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20circuit" title=" short circuit"> short circuit</a> </p> <a href="https://publications.waset.org/abstracts/27816/flux-linkage-performance-of-dfig-under-different-types-of-faults-and-locations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1747</span> Acceleration Techniques of DEM Simulation for Dynamics of Particle Damping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masato%20Saeki">Masato Saeki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Presented herein is a novel algorithms for calculating the damping performance of particle dampers. The particle damper is a passive vibration control technique and has many practical applications due to simple design. It consists of granular materials constrained to move between two ends in the cavity of a primary vibrating system. The damping effect results from the exchange of momentum during the impact of granular materials against the wall of the cavity. This damping has the advantage of being independent of the environment. Therefore, particle damping can be applied in extreme temperature environments, where most conventional dampers would fail. It was shown experimentally in many papers that the efficiency of the particle dampers is high in the case of resonant vibration. In order to use the particle dampers effectively, it is necessary to solve the equations of motion for each particle, considering the granularity. The discrete element method (DEM) has been found to be effective for revealing the dynamics of particle damping. In this method, individual particles are assumed as rigid body and interparticle collisions are modeled by mechanical elements as springs and dashpots. However, the computational cost is significant since the equation of motion for each particle must be solved at each time step. In order to improve the computational efficiency of the DEM, the new algorithms are needed. In this study, new algorithms are proposed for implementing the high performance DEM. On the assumption that behaviors of the granular particles in the each divided area of the damper container are the same, the contact force of the primary system with all particles can be considered to be equal to the product of the divided number of the damper area and the contact force of the primary system with granular materials per divided area. This convenience makes it possible to considerably reduce the calculation time. The validity of this calculation method was investigated and the calculated results were compared with the experimental ones. This paper also presents the results of experimental studies of the performance of particle dampers. It is shown that the particle radius affect the noise level. It is also shown that the particle size and the particle material influence the damper performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20damping" title="particle damping">particle damping</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method%20%28DEM%29" title=" discrete element method (DEM)"> discrete element method (DEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20materials" title=" granular materials"> granular materials</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20noise%20level" title=" equivalent noise level"> equivalent noise level</a> </p> <a href="https://publications.waset.org/abstracts/29111/acceleration-techniques-of-dem-simulation-for-dynamics-of-particle-damping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1746</span> 2D Structured Non-Cyclic Fuzzy Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Pathinathan">T. Pathinathan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Peter"> M. Peter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuzzy graphs incorporate concepts from graph theory with fuzzy principles. In this paper, we make a study on the properties of fuzzy graphs which are non-cyclic and are of two-dimensional in structure. In particular, this paper presents 2D structure or the structure of double layer for a non-cyclic fuzzy graph whose underlying crisp graph is non-cyclic. In any graph structure, introducing 2D structure may lead to an inherent cycle. We propose relevant conditions for 2D structured non-cyclic fuzzy graphs. These conditions are extended even to fuzzy graphs of the 3D structure. General theoretical properties that are studied for any fuzzy graph are verified to 2D structured or double layered fuzzy graphs. Concepts like Order, Degree, Strong and Size for a fuzzy graph are studied for 2D structured or double layered non-cyclic fuzzy graphs. Using different types of fuzzy graphs, the proposed concepts relating to 2D structured fuzzy graphs are verified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20layered%20fuzzy%20graph" title="double layered fuzzy graph">double layered fuzzy graph</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20layered%20non%E2%80%93cyclic%20fuzzy%20graph" title=" double layered non–cyclic fuzzy graph"> double layered non–cyclic fuzzy graph</a>, <a href="https://publications.waset.org/abstracts/search?q=order" title=" order"> order</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20and%20size" title=" degree and size"> degree and size</a> </p> <a href="https://publications.waset.org/abstracts/80562/2d-structured-non-cyclic-fuzzy-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1745</span> Design and Implementation of A 10-bit SAR ADC with A Programmable Reference</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasmayadi%20Abdul%20Majid">Hasmayadi Abdul Majid</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuzman%20Yusoff"> Yuzman Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Shelida%20Salleh"> Noor Shelida Salleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of a single-ended 38.5 kS/s 10-bit programmable reference SAR ADC which is realized in MIMOS’s 0.35 µm CMOS process. The design uses a resistive DAC, a dynamic comparator with pre-amplifier and a SAR digital logic to create 10 effective bits ADC. A programmable reference circuitry allows the ADC to operate with different input range from 0.6 V to 2.1 V. A single ended 38.5 kS/s 10-bit programmable reference SAR ADC was proposed and implemented in a 0.35 µm CMOS technology and consumed less than 7.5 mW power with a 3 V supply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=successive%20approximation%20register%20analog-to-digital%20converter" title="successive approximation register analog-to-digital converter">successive approximation register analog-to-digital converter</a>, <a href="https://publications.waset.org/abstracts/search?q=SAR%20ADC" title=" SAR ADC"> SAR ADC</a>, <a href="https://publications.waset.org/abstracts/search?q=resistive%20DAC" title=" resistive DAC"> resistive DAC</a>, <a href="https://publications.waset.org/abstracts/search?q=programmable%20reference" title=" programmable reference"> programmable reference</a> </p> <a href="https://publications.waset.org/abstracts/19760/design-and-implementation-of-a-10-bit-sar-adc-with-a-programmable-reference" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1744</span> Graphene-Oxide-Supported Coal-Layered Double Hydroxides: Synthesis and Characterizations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaeel%20A.%20Al%20Thabaiti">Shaeel A. Al Thabaiti</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20N.%20Basahel"> Sulaiman N. Basahel</a>, <a href="https://publications.waset.org/abstracts/search?q=Salem%20M.%20Bawaked"> Salem M. Bawaked</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Mokhtar"> Mohamed Mokhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanosheets for cobalt-layered double hydroxide (Co-Al-LDH)/GO were successfully synthesized with different Co:M g:Al ratios (0:3:1, 1.5:1.5:1, and 3:0:1). The layered double hydroxide structure and morphology were determined using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Temperature prgrammed reduction (TPR) of Co-Al-LDH showed reduction peaks at lower temperature which indicates the ease reducibility of this particular sample. The thermal behaviour was studied using thermal graviemetric technique (TG), and the BET-surface area was determined using N2 physisorption at -196°C. The C-C coupling reaction was carried out over all the investigated catalysts. The Mg–Al LDH catalyst without Co ions is inactive, but the isomorphic substitution of Mg by Co ions (Co:Mg:Al = 1.5:1.5:1) in the cationic sheet resulted in 88% conversion of iodobenzene under reflux. LDH/GO hybrid is up to 2 times higher activity than for the unsupported LDH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=co-precipitation" title=" co-precipitation"> co-precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=layer%20double%20hydroxide" title=" layer double hydroxide"> layer double hydroxide</a> </p> <a href="https://publications.waset.org/abstracts/67980/graphene-oxide-supported-coal-layered-double-hydroxides-synthesis-and-characterizations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1743</span> Analysis of Efficiency Production of Grass Black Jelly (Mesona palustris) in Double Scale</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irvan%20Adhin%20Cholilie">Irvan Adhin Cholilie</a>, <a href="https://publications.waset.org/abstracts/search?q=Susinggih%20Wijana"> Susinggih Wijana</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusron%20Sugiarto"> Yusron Sugiarto </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to compare the results of black grass jelly produced using laboratory scale and double scale. In this research, the production from the laboratory scale is using ingredients of 1 kg black grass jelly added with 5 liters of water, while the double scale is using 5 kg black grass jelly and 75 liters of water. The results of organoleptic tests performed by 30 panelists (general) to the sample gels of grass black powder produced from both of laboratory and double scale are not different significantly in color, odor, flavor, and texture. Proximate test results conducted in both of grass black jelly powder produced in laboratory scale and double scale also have no significant differences in all parameters. Grass black jelly powder from double scale contains water, carbohydrate, crude fiber, and yield in the amount of 12,25 %; 43,7 %; 5,89 %; and 16,28 % respectively. The results of the energy efficiency analysis by boiling, draining, evaporation, drying, and milling processes are 85,11 %; 76,97 %; 99,64 %; 99,99% and 99,39% respectively. The utility needs including water needs for each batch amounted 0.1 m3 and cost Rp 220,5 per batch, the electricity needs for each batch is 20.01 kWh and cost Rp 18569.28 per batch, and LPG needs for each batch is 30 kg costed Rp 234,000.00 so that the total cost spent for the process is Rp 252,789.78 . <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20grass%20jelly" title="black grass jelly">black grass jelly</a>, <a href="https://publications.waset.org/abstracts/search?q=powder" title=" powder"> powder</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20balance" title=" mass balance"> mass balance</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20balance" title=" energy balance"> energy balance</a>, <a href="https://publications.waset.org/abstracts/search?q=cost" title=" cost"> cost</a> </p> <a href="https://publications.waset.org/abstracts/21463/analysis-of-efficiency-production-of-grass-black-jelly-mesona-palustris-in-double-scale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1742</span> A Double Epilayer PSGT Trench Power MOSFETs for Low to Medium Voltage Power Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alok%20Kumar%20Kamal">Alok Kumar Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar"> Vinod Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The trench gate MOSFET has shown itself as the most appropriate power device for low to medium voltage power applications due to its lowest possible ON resistance among all power semiconductor devices. In this research work a double-epilayer PSGT structure using a thin layer of N+ polysilicon as gate material. The total ON-state resistance (RON) of UMOSFET can be reduced by optimizing the epilayer thickness. The optimized structure of Double-Epilayer exhibits a 25.8% reduction in the ON-state resistance at Vgs=5V and improving the switching characteristics by reducing the Reverse transfer capacitance (Cgd) by 7.4%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miller-capacitance" title="Miller-capacitance">Miller-capacitance</a>, <a href="https://publications.waset.org/abstracts/search?q=double-Epilayer%3Bswitching%20characteristics" title=" double-Epilayer;switching characteristics"> double-Epilayer;switching characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20trench%20MOSFET%20%28U-MOSFET%29" title=" power trench MOSFET (U-MOSFET)"> power trench MOSFET (U-MOSFET)</a>, <a href="https://publications.waset.org/abstracts/search?q=on-state%20resistance" title=" on-state resistance"> on-state resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=blocking%20voltage" title=" blocking voltage"> blocking voltage</a> </p> <a href="https://publications.waset.org/abstracts/183038/a-double-epilayer-psgt-trench-power-mosfets-for-low-to-medium-voltage-power-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1741</span> Dominant Correlation Effects in Atomic Spectra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hubert%20Klar">Hubert Klar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High double excitation of two-electron atoms has been investigated using hyperpherical coordinates within a modified adiabatic expansion technique. This modification creates a novel fictitious force leading to a spontaneous exchange symmetry breaking at high double excitation. The Pauli principle must therefore be regarded as approximation valid only at low excitation energy. Threshold electron scattering from high Rydberg states shows an unexpected time reversal symmetry breaking. At threshold for double escape we discover a broad (few eV) Cooper pair. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=resonances" title=" resonances"> resonances</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20ionization" title=" threshold ionization"> threshold ionization</a>, <a href="https://publications.waset.org/abstracts/search?q=Cooper%20pair" title=" Cooper pair"> Cooper pair</a> </p> <a href="https://publications.waset.org/abstracts/42435/dominant-correlation-effects-in-atomic-spectra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1740</span> Direct-Displacement Based Design for Buildings with Non-Linear Viscous Dampers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kelly%20F.%20Delgado-De%20Agrela">Kelly F. Delgado-De Agrela</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20E.%20Ruiz"> Sonia E. Ruiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20A.%20Santos-Santiago"> Marco A. Santos-Santiago</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An approach is proposed for the design of regular buildings equipped with non-linear viscous dissipating devices. The approach is based on a direct-displacement seismic design method which satisfies seismic performance objectives. The global system involved is formed by structural regular moment frames capable of supporting gravity and lateral loads with elastic response behavior plus a set of non-linear viscous dissipating devices which reduce the structural seismic response. The dampers are characterized by two design parameters: (1) a positive real exponent α which represents the non-linearity of the damper, and (2) the damping coefficient C of the device, whose constitutive force-velocity law is given by F=Cvᵃ, where v is the velocity between the ends of the damper. The procedure is carried out using a substitute structure. Two limits states are verified: serviceability and near collapse. The reduction of the spectral ordinates by the additional damping assumed in the design process and introduced to the structure by the viscous non-linear dampers is performed according to a damping reduction factor. For the design of the non-linear damper system, the real velocity is considered instead of the pseudo-velocity. The proposed design methodology is applied to an 8-story steel moment frame building equipped with non-linear viscous dampers, located in intermediate soil zone of Mexico City, with a dominant period Tₛ = 1s. In order to validate the approach, nonlinear static analyses and nonlinear time history analyses are performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=based%20design" title="based design">based design</a>, <a href="https://publications.waset.org/abstracts/search?q=direct-displacement%20based%20design" title=" direct-displacement based design"> direct-displacement based design</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20viscous%20dampers" title=" non-linear viscous dampers"> non-linear viscous dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20design" title=" performance design"> performance design</a> </p> <a href="https://publications.waset.org/abstracts/83169/direct-displacement-based-design-for-buildings-with-non-linear-viscous-dampers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=double%20ended%20MR%20damper&amp;page=2" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=double%20ended%20MR%20damper&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=double%20ended%20MR%20damper&amp;page=2">2</a></li> <li class="page-item active"><span class="page-link">3</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=double%20ended%20MR%20damper&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=double%20ended%20MR%20damper&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=double%20ended%20MR%20damper&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=double%20ended%20MR%20damper&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=double%20ended%20MR%20damper&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=double%20ended%20MR%20damper&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=double%20ended%20MR%20damper&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=double%20ended%20MR%20damper&amp;page=60">60</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=double%20ended%20MR%20damper&amp;page=61">61</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=double%20ended%20MR%20damper&amp;page=4" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10