CINXE.COM
{"title":"Risk Classification of SMEs by Early Warning Model Based on Data Mining","authors":"Nermin Ozgulbas, Ali Serhan Koyuncugil","volume":70,"journal":"International Journal of Economics and Management Engineering","pagesStart":2649,"pagesEnd":2661,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/14725","abstract":"<p>One of the biggest problems of SMEs is their tendencies to financial distress because of insufficient finance background. In this study, an Early Warning System (EWS) model based on data mining for financial risk detection is presented. CHAID algorithm has been used for development of the EWS. Developed EWS can be served like a tailor made financial advisor in decision making process of the firms with its automated nature to the ones who have inadequate financial background. Besides, an application of the model implemented which covered 7,853 SMEs based on Turkish Central Bank (TCB) 2007 data. By using EWS model, 31 risk profiles, 15 risk indicators, 2 early warning signals, and 4 financial road maps has been determined for financial risk mitigation.<\/p>\r\n","references":"[1] Commission Recommendation of 6 May 2003 Concerning the\r\nDefinition of Micro, Small and Medium-sized Enterprises\r\n(2003\/361\/EC), L 124\/36 2003. Official Journal of the European Union,\r\nRetrieved August 2010, from http:\/\/eurlex.\r\neuropa.eu\/LexUriServ\/LexUriServ.do?uri =OJ: L:\r\n2003:124:0036:0041: en: PDF.\r\n[2] OECD, \"Policy responses to the economic crisis: Investing in innovation\r\nfor long-term growth\", 2009, retrieved August 2010, from\r\nhttp:\/\/www.oecd.org\/dataoecd\/59\/45\/42983414.pdf.\r\n[3] J. Warner, \"Bankruptcy costs: some evidence\" Journal of Finance,\r\nvol.32, pp.337-347, 1977.\r\n[4] S.A. Ross, R. Westerfield, and B.D. Jordan, Fundamentals of Corporate\r\nFinance. New York: McGraw-Hill Publishing Company, 2008.\r\n[5] K. Terdpaopong, K. \"Financially distressed, small and medium-sized\r\nenterprises- characteristics and discriminant analysis model: Evidence\r\nfrom the Thai market\" Proceedings of the Small Enterprise Association\r\nof Australia & New Zealand (SEAANZ) Conference 2008, Sydney,\r\nAustralia, ISBN: 978-0-646-50668-5 p.125-165. Retrieved August 2010,\r\nfrom\r\nhhtp:\/\/www.seaanz.org\/documents\/SEAANZ2008ConferenceProceeding\r\n_000.pdf.\r\n[6] N. Ozgulbas and A.S. Koyuncugil, \"Financial early warning system for\r\nrisk detection and prevention from financial crisis\" In Surveillance\r\nTechnologies and Early Warning Systems: Data Mining Applications for\r\nRisk Detection, 2010, in A. S. Koyuncugil, & N. Ozgulbas (Eds.).\r\nSurveillance Technologies and Early Warning Systems: Data Mining\r\nApplications for Risk Detection (pp. 76-108). New York: Idea Group\r\nInc.\r\n[7] W. Frawley, G. Piatetsky-Shapiro and C. Matheus, C. \"Knowledge\r\ndiscovery in databases: An overview\" AI Magazine: Fall, pp.213-228,\r\n1992.\r\n[8] D. Hand, H. Mannila and P Smyth, Principles of data mining.\r\nCambridge: MIT Press, 2001.\r\n[9] K. Thearling, Data mining and analytic technologies, 2004. Retrieved\r\nAugust 2010, from hhtp:\/\/www.thearling.com\/.\r\n[10] A.S. Koyuncugil and N. Ozgulbas, \"Social Aid fraud detection system\r\nand poverty map model suggestion based on data mining for social risk\r\nmitigation\", 2010. In A. S. Koyuncugil, & N. Ozgulbas (Eds.).\r\nSurveillance Technologies and Early Warning Systems: Data Mining\r\nApplications for Risk Detection (pp. 173-193). New York: Idea Group\r\nInc.\r\n[11] E. Monk and B. Wagner, Concepts in Enterprise Resource Planning.\r\nSecond Edition. Boston: Thomson Course Technologies, 2006.\r\n[12] K. Y. Tam and M. Y. Kiang, \"Managerial applications of neural\r\nnetworks: The case of bank failure predictions\" Decision Sciences,\r\nvol.38, pp.926-948, 1992.\r\n[13] K. C. Lee, I. Han, I and Y. Kwon, \"Hybrid neural network models for\r\nbankruptcy predictions\" Decision Support Systems, vol.18, pp.63-73,\r\n1996.\r\n[14] N. Kumar, R. Krovi and B. Rajagopalan, \"Financial decision support\r\nwith hybrid genetic and neural based modeling tools\" European Journal\r\nof Operational Research, vol.103, pp.339-349, 1997.\r\n[15] S. Nazem, and B. Shin, \"Data mining: New arsenal for strategic decision\r\nmaking\" Journal of Database Management, vol.10(1), pp.39-42. 1999.\r\n[16] T. Eklund, B. Back, H. Vanharanta and A. Visa, \"Using the selforganizing\r\nmap as a visualization tool in financial benchmarking\"\r\nInformation Visualization, vol.2(3), pp.171-81, 2003.\r\n[17] S. Hoppszallern, \"Healthcare benchmarking\" Hospitals & Health\r\nNetworks, vol.77, pp.37-44, 2003\r\n[18] B. L. Derby, \"Data mining for improper payments\" The Journal of\r\nGovernment Financial Management, vol.52(1), pp.10-13, 2003.\r\n[19] S. Chang, H. Chang, C. Lin and S. Kao. \"The effect of organizational\r\nattributes on the adoption of data mining techniques in the financial\r\nservice industry: An empirical study in Taiwan\" International Journal of\r\nManagement, vol. 20(1), pp. 497-503, 2003.\r\n[20] A. Kloptchenko, T. Eklund, J. Karlsson, B. Back, H. Vanhatanta, and A.\r\nVisa, \"Combining data and text mining techniques for analyzing\r\nfinancial reports\" Intelligent Systems in Accounting Finance and\r\nManagement, vol.12(1), pp.29-41, 2004.\r\n[21] C. Magnusson, A. Arppe, T. Eklund and B. Back, \"The language of\r\nquarterly reports as an indicator of change in the company-s financial\r\nstatus\" Information & Management. Vol.42, pp.561-70, 2005.\r\n[22] A. S. Koyuncugil and N. Ozgulbas, \"Financial profiling of SMEs: An\r\napplication by data mining\" Proceedings Book of the European Applied\r\nBusiness Research (EABR) Conference, Clute Institute for Academic\r\nResearch, p.1-22, 2006\r\n[23] A. S. Koyuncugil and N. Ozgulbas, \"Is there a specific measure for\r\nfinancial performance of SMEs?\" The Business Review, Cambridge,\r\nvol.5(2), pp.314-319, 2006..\r\n[24] A. S. Koyuncugil and N. Ozgulbas, \"Determination of factors affected\r\nfinancial distress of SMEs listed in ISE by data mining\" Proceedings\r\nBook of 3rd Congress of SMEs and Productivity. KOSGEB and Istanbul\r\nKultur University, Istanbul, 2006.\r\n[25] A. S. Koyuncugil and N. Ozgulbas, \"Developing financial early warning\r\nsystem via data mining\" Proceedings Book of 4th Congress of SMEs and\r\nProductivity, Istanbul, p. 153-166, 2007.\r\n[26] A. S. Koyuncugil and N. Ozgulbas, \"Detecting financial early warning\r\nsigns in Istanbul Stock Exchange by data mining\" International Journal\r\nof Business Research, vol. VII(3), pp.188-193, 2007..\r\n[27] A. S. Koyuncugil and N. Ozgulbas, \"Early warning system for SMEs as\r\na financial risk detector\" In Hakikur Rahman (Ed.), Data mining\r\napplications for empowering knowledge societies. (pp. 221-240). New\r\nYork: Idea Group Inc, 2008.\r\n[28] A. S. Koyuncugil and N. Ozgulbas, \"Strengths and weaknesses of SMEs\r\nlisted in ISE: A CHAID Decision Tree application\" Journal of Dokuz\r\nEylul University, Faculty of Economics and Administrative Sciences,\r\nvol.23(1), pp.1-22, 2008.\r\n[29] A. S. Koyuncugil and N. Ozgulbas, \"Measuring and hedging operational\r\nrisk by data mining\" Proceedings Book of World Summit on Economic-\r\nFinancial Crisis and International Business, Washington, p.1-6, 2009\r\n[30] A. S. Koyuncugil and N. Ozgulbas, \"An intelligent financial early\r\nwarning System model based on data mining for SMEs\" Proceedings of\r\nthe International Conference on Future Computer and Communication,\r\nKuala Lumpur, Malaysia. DOI:10.1109\/ICFCC.2009.118 , p. 662-666,\r\n2009.\r\n[31] N. Ozgulbas and A.S. Koyuncugil, \"Profiling and determining the\r\nstrengths and weaknesses of SMEs listed in ISE by the Data Mining\r\nDecision Trees Algorithm CHAID\" 10th National Finance Symposium,\r\nIzmir, 2006.\r\n[32] N. Ozgulbas and A.S. Koyuncugil, \"Developing road maps for financial\r\ndecision making by CHAID Decision Tree\" Proceeding of International\r\nConference on Information Management and Engineering, p.723-727,\r\nIEEE Computer Society Press, 2009.\r\n[33] G. Fayyad, P. Piatetsky-Shapiro and P. Symth, \"From data mining to\r\nknowledge discovery in databases\" AI Magazine, vol.17(3), pp.37-54,\r\n1996.\r\n[34] A. S. Koyuncugil, Fuzzy Data Mining and its application to capital\r\nmarkets. Unpublished doctoral dissertation, Ankara University, Ankara,\r\n2006.\r\n[35] S.J. Lee and K. Siau, \"A review of data mining techniques\" Industrial\r\nManagement & Data Systems, vol.101(1), pp.41-46, 2001.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 70, 2012"}