CINXE.COM

Search results for: erythropoietin

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: erythropoietin</title> <meta name="description" content="Search results for: erythropoietin"> <meta name="keywords" content="erythropoietin"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="erythropoietin" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="erythropoietin"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: erythropoietin</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Increases in Serum Erythropoietin Hormone in Recreational Breath-Hold Divers Following a Series of Repeated Apnoeas: Apnoea beyond Freediving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonis%20Elia">Antonis Elia</a>, <a href="https://publications.waset.org/abstracts/search?q=Theo%20Loizou"> Theo Loizou</a>, <a href="https://publications.waset.org/abstracts/search?q=Gladys%20Onambele-Pearson"> Gladys Onambele-Pearson</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Barlow"> Matthew Barlow</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgina%20Stebbings"> Georgina Stebbings</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hypoxic conditions have been reported to enhance red blood cell production in both acclimatised low-landers and altitude adapted populations. This process is mediated by the erythropoietin hormone, which is released predominantly by the hypoxic kidney. A higher haemoglobin concentration was previously reported in elite breath-hold divers when compared to elite-skiers and untrained individuals. Therefore, the present study aimed to investigate whether apnoea induced hypoxia could induce a significant increase in serum erythropoietin concentration in recreational breath-hold divers which would provide an explanation to the higher haemoglobin levels observed in elite breath-hold divers. Identifying whether apnoea induced hypoxia induces a significant increase in serum erythropoietin might suggest that apnoea can be used as an alternative acclimatisation method to high altitude exposure. Seven healthy, recreational male breath-hold divers performed two sets of five 180 second breath-holds with a ten-minute supine rest between each set and a two-minute seated rest between each apnoea. During each breath-hold, participant’s heart rate and peripheral oxygen saturation levels were recorded every subsequent 10 seconds until the end of the 180 second breath-hold. After each 180 second breath-hold a capillary blood sample was collected from the finger to identify circulating haemoglobin levels. Following completion of the apnoeic protocol, three blood samples were collected at 30, 90 and 180 minutes to measure circulating erythropoietin levels. A significant interaction between erythropoietin and time was observed (F(3,18)= 4.72, p < 0.001), with significant increases in erythropoietin evident at 30 (t(6)= -5.035, p < 0.0590 (t(6)= -6.162, p < 0.05) and 180 (t(6)= - 7.232, p < 0.001) minutes post the last apnoea when compared to baseline. Corresponding average increases when compared to baseline were 16% at 30, 23% at 90 and 40% at 180 minutes post the last apnoea. A significant interaction between haemoglobin and time was observed (F(78,84)= 20.814, p < 0.001), with significant increases in haemoglobin evident at the fifth (t(29)= -1.124, p < 0.001), ninth (t(29)= -1.357, p < 0.001) and tenth (t(29)= -1.211, p < 0.05) apnoeas when compared to baseline. A significant interaction between peripheral oxygen saturation and time was observed (F(10,60)= 408.23, p < 0.001). The present study demonstrates that a series of ten 180 second breath-holds is sufficient to induce a significant increase in the circulating erythropoietin concentration of recreational breath hold divers. These observations may suggest that apnoea induced hypoxia may be used as an alternative acclimatisation method to high altitude exposure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apnoea" title="apnoea">apnoea</a>, <a href="https://publications.waset.org/abstracts/search?q=breath-holding" title=" breath-holding"> breath-holding</a>, <a href="https://publications.waset.org/abstracts/search?q=diving%20reflex" title=" diving reflex"> diving reflex</a>, <a href="https://publications.waset.org/abstracts/search?q=erythropoietin" title=" erythropoietin"> erythropoietin</a>, <a href="https://publications.waset.org/abstracts/search?q=haemoglobin" title=" haemoglobin"> haemoglobin</a> </p> <a href="https://publications.waset.org/abstracts/53069/increases-in-serum-erythropoietin-hormone-in-recreational-breath-hold-divers-following-a-series-of-repeated-apnoeas-apnoea-beyond-freediving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Effect of Erythropoietin Hormone Supplementation on Hypoxia-Inducible Factor1-Alpha in Rat Kidneys with Experimental Diabetic Nephropathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maha%20Deif">Maha Deif</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Eldin%20%20Hassan"> Alaa Eldin Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20Shaat"> Eman Shaat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesrine%20Elazhary"> Nesrine Elazhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20Magdy"> Eman Magdy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Erythropoietin (EPO) is a hematopoietic factor with multiple protective effects. The aim of the present study was to investigate the potential effect of EPO administration on renal functions and hypoxia inducible factor 1-alpha (HIF-1a) in diabetic rat kidneys. Methodology: The current study was carried out on 40 male albino rats divided into four groups (n= 10 in each). Group I served as normal control, group II was the diabetic control, group III rats received EPO on the same day of diagnosis of diabetes mellitus (DM), while group IV received the first dose of EPO 2 weeks after the diagnosis of DM. Results: The results showed that EPO supplementation leads to a significant decrease in serum urea, urinary protein and creatinine clearance as well as a significant increase in renal HIF-1a in group III and IV rats compared to the diabetic control group (group II). However, fasting blood glucose was significantly decreased in group III as compared to the diabetic control group in the third week, but no significant difference was reported in the fourth week among groups II, III and IV. Conclusion: EPO administration leads to the improvement of renal functions and increased levels of HIF-1a in diabetic rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erythropoietin" title="erythropoietin">erythropoietin</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetic%20nephropathy" title=" diabetic nephropathy"> diabetic nephropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=hypoxia-inducible%20factor1-alpha" title=" hypoxia-inducible factor1-alpha"> hypoxia-inducible factor1-alpha</a>, <a href="https://publications.waset.org/abstracts/search?q=renal%20functions" title=" renal functions"> renal functions</a> </p> <a href="https://publications.waset.org/abstracts/52298/effect-of-erythropoietin-hormone-supplementation-on-hypoxia-inducible-factor1-alpha-in-rat-kidneys-with-experimental-diabetic-nephropathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> A Brief Review on Doping in Sports and Performance-Enhancing Drugs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Mohajer">Zahra Mohajer</a>, <a href="https://publications.waset.org/abstracts/search?q=Afsaneh%20Soltani"> Afsaneh Soltani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doping is a major issue in competitive sports and is favored by vast groups of athletes. The feeling of being higher-ranking than others and gaining fame has caused many athletes to misuse drugs. The definition of doping is to use prohibited substances and/or methods that help physical or mental performances or both. Doping counts as the illegal use of chemical substances or drugs, excessive amounts of physiological substances to increase the performance at or out of competition or even the use of inappropriate medications to treat an injury to gain the ability to participate in a competition. The International Olympic Committee (IOC) and World Anti-Doping Agency (WADA) have forbidden these substances to ensure fair and equal competition and also the health of the competitors. As of 2004 WADA has published an international list of illegal substances used for doping, which is updated annually. In the process of the Genome Project scientists have gained the ability to treat numerous diseases by gene therapy, which may result in bodily performance increase and therefore a potential opportunity to misuse by some athletes. Gene doping is defined as the non-therapeutic direct and indirect genetic modifications using genetic materials that can improve the performances in sports events. Biosynthetic drugs are a form of indirect genetic engineering. The method can be performed in three ways such as injecting the DNA directly into the muscle, inserting the genetically engineered cells, or transferring the DNA using a virus as a vector. Erythropoietin is a hormone majorly released by the kidney and in small amounts by the liver. Its function is to stimulate the erythropoiesis and therefore the more production of red blood cells (RBC) which causes an increase in Hemoglobin (Hb). During this process, the oxygen delivery to muscles will increase, which will improve athletic performance and postpone exhaustion. There are ways to increase the oxygen transferred to muscles such as blood transfusion, stimulating the production of red blood cells by using Erythropoietin (EPO), and also using allosteric effectors of Hemoglobin. EPO can either be injected as a protein or can be inserted into the cells as the gene which encodes EPO. Adeno-associated viruses have been employed to deliver the EPO gene to the cells. Employing the genes that naturally exist in the human body such as the EPO gene can reduce the risk of detecting gene doping. The first research about blood doping was conducted in 1947. The study has shown that an increase in hematocrit (HCT) up to 55% following homologous transfusion makes it more unchallenging for the body to perform the exercise at the altitude. Thereafter athletes’ attraction to blood infusion escalated. Also, a study has demonstrated that by reinfusing their own blood 4 weeks after being drawn, three men have shown a rise in Hb level which improved the oxygen uptake, and a delay in exhaustion. The list of performance-enhancing drugs is published by WADA annually and includes the following drugs: anabolic agents, hormones, Beta-2 agonists, Beta-blockers, Diuretics, Stimulants, narcotics, cannabinoids, and corticosteroids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doping" title="doping">doping</a>, <a href="https://publications.waset.org/abstracts/search?q=PEDs" title=" PEDs"> PEDs</a>, <a href="https://publications.waset.org/abstracts/search?q=sports" title=" sports"> sports</a>, <a href="https://publications.waset.org/abstracts/search?q=WADA" title=" WADA"> WADA</a> </p> <a href="https://publications.waset.org/abstracts/148976/a-brief-review-on-doping-in-sports-and-performance-enhancing-drugs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Hemoglobin Levels at a Standalone Dialysis Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babu%20Shersad">Babu Shersad</a>, <a href="https://publications.waset.org/abstracts/search?q=Partha%20Banerjee"> Partha Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reduction in haemoglobin levels has been implicated to be a cause for reduced exercise tolerance and cardiovascular complications of chronic renal diseases. Trends of hemoglobin levels in patients on haemodialysis could be an indicator of efficacy of hemodialysis and an indicator of quality of life in haemodialysis patients. In the UAE, the rate of growth (of patients on dialysis) is 10 to 15 per cent per year. The primary mode of haemodialysis in the region is based on in-patient hospital-based hemodialysis units. The increase in risk of cardiovascular and cerebrovascular morbidity as well as mortality in pre-dialysis Chronic Renal Disease has been reported. However, data on the health burden on haemodialysis in standalone dialysis facilities is very scarce. This is mainly due to the paucity of ambulatory centres for haemodialysis in the region. AMSA is the first center to offer standalone dialysis in the UAE and a study over a one year period was performed. Patient data was analyzed using a questionnaire for 45 patients with an average of 2.5 dialysis sessions per week. All patients were on chronic haemodialysis as outpatients. The trends of haemoglobin levels as an independent variable were evaluated. These trends were interpreted in comparison with other parameters of renal function (creatinine, uric acid, blood pressure and ferritin). Trends indicate an increase in hemoglobin levels with increased supplementation of iron and erythropoietin over time. The adequacy of hemodialysis shows improvement concomitantly. This, in turn, correlates with better patient outcomes and has a direct impact on morbidity and mortality. This study is a pilot study and further studies are indicated so that objective parameters can be studied and validated for hemodialysis in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=haemodialysis" title="haemodialysis">haemodialysis</a>, <a href="https://publications.waset.org/abstracts/search?q=haemoglobin%20in%20haemodialysis" title=" haemoglobin in haemodialysis"> haemoglobin in haemodialysis</a>, <a href="https://publications.waset.org/abstracts/search?q=haemodialysis%20parameters" title=" haemodialysis parameters"> haemodialysis parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=erythropoietic%20agents%20in%20haemodialysis" title=" erythropoietic agents in haemodialysis"> erythropoietic agents in haemodialysis</a> </p> <a href="https://publications.waset.org/abstracts/29511/hemoglobin-levels-at-a-standalone-dialysis-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Incorporation of Growth Factors onto Hydrogels via Peptide Mediated Binding for Development of Vascular Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katie%20Kilgour">Katie Kilgour</a>, <a href="https://publications.waset.org/abstracts/search?q=Brendan%20Turner"> Brendan Turner</a>, <a href="https://publications.waset.org/abstracts/search?q=Carly%20Catella"> Carly Catella</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Daniele"> Michael Daniele</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Menegatti"> Stefano Menegatti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In vivo, the extracellular matrix (ECM) provides biochemical and mechanical properties that are instructional to resident cells to form complex tissues with characteristics to develop and support vascular networks. In vitro, the development of vascular networks can be guided by biochemical patterning of substrates via spatial distribution and display of peptides and growth factors to prompt cell adhesion, differentiation, and proliferation. We have developed a technique utilizing peptide ligands that specifically bind vascular endothelial growth factor (VEGF), erythropoietin (EPO), or angiopoietin-1 (ANG1) to spatiotemporally distribute growth factors to cells. This allows for the controlled release of each growth factor, ultimately enhancing the formation of a vascular network. Our engineered tissue constructs (ETCs) are fabricated out of gelatin methacryloyl (GelMA), which is an ideal substrate for tailored stiffness and bio-functionality, and covalently patterned with growth factor specific peptides. These peptides mimic growth factor receptors, facilitating the non-covalent binding of the growth factors to the ETC, allowing for facile uptake by the cells. We have demonstrated in the absence of cells the binding affinity of VEGF, EPO, and ANG1 to their respective peptides and the ability for each to be patterned onto a GelMA substrate. The ability to organize growth factors on an ETC provides different functionality to develop organized vascular networks. Our results demonstrated a method to incorporate biochemical cues into ETCs that enable spatial and temporal control of growth factors. Future efforts will investigate the cellular response by evaluating gene expression, quantifying angiogenic activity, and measuring the speed of growth factor consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth%20factor" title="growth factor">growth factor</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide" title=" peptide"> peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=angiogenesis" title=" angiogenesis"> angiogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=vascular" title=" vascular"> vascular</a>, <a href="https://publications.waset.org/abstracts/search?q=patterning" title=" patterning"> patterning</a> </p> <a href="https://publications.waset.org/abstracts/148298/incorporation-of-growth-factors-onto-hydrogels-via-peptide-mediated-binding-for-development-of-vascular-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Targeting the EphA2 Receptor Tyrosine Kinases in Melanoma Cancer, both in Humans and Dogs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shabnam%20Abdi">Shabnam Abdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Toosi"> Behzad Toosi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Melanoma is the most lethal type of malignant skin cancer in humans and dogs since it spreads rapidly throughout the body. Despite significant advances in treatment, cancer at an advanced stage has a poor prognosis. Hence, more effective treatments are needed to enhance outcomes with fewer side effects. Erythropoietin-producing hepatocellular receptors are the largest family of receptor tyrosine kinases and are divided into two subfamilies, EphA and EphB, both of which play a significant role in disease, especially cancer. Due to their association with proliferation and invasion in many aggressive types of cancer, Eph receptor tyrosine kinases (Eph RTKs) are promising cancer therapy molecules. Because these receptors have not been studied in canine melanoma, we investigated how EphA2 influences survival and tumorigenicity of melanoma cells. Methods: Expression of EphA2 protein in canine melanoma cell lines and human melanoma cell line was evaluated by Western blot. Melanoma cells were transduced with lentiviral particles encoding Eph-targeting shRNAs or non-silencing shRNAs (control) for silencing the expression of EphA2 receptor, and silencing was confirmed by Western blotting and immunofluorescence. The effect of siRNA treatment on cellular proliferation, colony formation, tumorsphere assay, invasion was analyzed by Resazurin assay Matrigel invasion assay, respectively. Results: Expression of EphA2 was detected in canine and human melanoma cell lines. Moreover, stably silencing EphA2 by specific shRNAs significantly and consistently decreased the expression of EphA2 protein in both human and canine melanoma cells. Proliferation, colony formation, tumorsphere and invasion of melanoma cells were significantly decreased in EphA2 siRNA-treated cells compared to control. Conclusion: Our data provide the first functional evidence that the EphA2 receptor plays a critical role in the malignant cellular behavior of melanoma in both human and dogs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ephA2" title="ephA2">ephA2</a>, <a href="https://publications.waset.org/abstracts/search?q=targeting" title=" targeting"> targeting</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=human" title=" human"> human</a>, <a href="https://publications.waset.org/abstracts/search?q=canine" title=" canine"> canine</a> </p> <a href="https://publications.waset.org/abstracts/173830/targeting-the-epha2-receptor-tyrosine-kinases-in-melanoma-cancer-both-in-humans-and-dogs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Biochemical and Cellular Correlates of Essential Oil of Pistacia Integerrima against in vitro and Murine Models of Bronchial Asthma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20L.%20Shirole">R. L. Shirole</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20L.%20Shirole"> N. L. Shirole</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Patil"> R. B. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Saraf"> M. N. Saraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation aimed to elucidate the probable mechanism of antiasthmatic action of essential oil of Pistacia integerrima J.L. Stewart ex Brandis galls (EOPI). EOPI was investigated for its potential antiasthmatic action using in vitro antiallergic assays mast cell degranulation and soyabean lipoxidase enzyme activit, and spasmolytic action using isolated guinea pig ileum preparation. In vivo studies included lipopolysaccharide-induced bronchial inflammation in rats and airway hyperresponsiveness in ovalbumin in sensitized guinea pigs using spirometry. Data was analysed by GraphPad Prism 5.01 and results were expressed as means ± SEM. P < 0.05 was considered to be significant. EOPI inhibits 5-lipoxidase enzyme activity, DPPH scavenging activity and erythropoietin- induced angiogenesis. It showed dose dependent anti-allergic activity by inhibiting compound 48/80 induced mast cell degranulation. The finding that essential oil induced inhibition of transient contraction of acetylcholine in calcium free medium, and relaxation of S-(-)-Bay 8644-precontracted isolated guinea pig ileum jointly suggest that suggesting that the L-subtype Cav channel is involved in spasmolytic action of EOPI. Treatment with EOPI dose dependently (7.5, 15 and 30 mg/kg i.p.) inhibited lipopolysaccharide- induced increased in total cell count, neutrophil count, nitrate-nitrite, total protein, albumin levels in bronchoalveolar fluid and myeloperoxidase levels in lung homogenates. Mild diffused lesions involving focal interalveolar septal, intraluminal infiltration of neutrophils were observed in EOPI (7.5 &15 mg/kg) pretreated while no abnormality was detected in EOPI (30 mg/kg) and roflumilast (1mg/kg) pretreated rats. Roflumilast was used as standard. EOPI reduced the respiratory flow due to gasping in ovalbumin sensitized guinea pigs. The study demonstrates the effectiveness of EOPI in bronchial asthma possibly related to its ability to inhibit L-subtype Cav channel, mast cell stabilization, antioxidant, angiostatic and through inhibition of 5-lipoxygenase enzyme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asthma" title="asthma">asthma</a>, <a href="https://publications.waset.org/abstracts/search?q=lipopolysaccharide" title=" lipopolysaccharide"> lipopolysaccharide</a>, <a href="https://publications.waset.org/abstracts/search?q=spirometry" title=" spirometry"> spirometry</a>, <a href="https://publications.waset.org/abstracts/search?q=Pistacia%20integerrima%20J.L.%20Stewart%20ex%20Brandis" title=" Pistacia integerrima J.L. Stewart ex Brandis"> Pistacia integerrima J.L. Stewart ex Brandis</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a> </p> <a href="https://publications.waset.org/abstracts/28988/biochemical-and-cellular-correlates-of-essential-oil-of-pistacia-integerrima-against-in-vitro-and-murine-models-of-bronchial-asthma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Haematological Correlates of Ischemic Stroke and Transient Ischemic Attack: Lessons Learned </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Himali%20Gunasekara">Himali Gunasekara</a>, <a href="https://publications.waset.org/abstracts/search?q=Baddika%20Jayaratne"> Baddika Jayaratne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Haematological abnormalities are known to cause Ischemic Stroke or Transient Ischemic Attack (TIA). The identification of haematological correlates plays an important role in a management and secondary prevention. The objective of this study was to describe haematological correlates of stroke and their association between stroke profile. The haematological correlates screened were Lupus Anticoagulant, Dysfibroginemia, Paroxysmal nocturnal haemoglobinurea (PNH), Sickle cell disease, Systemic Lupus Erythematosis (SLE) and Myeloploriferative Neoplasms (MPN). A cross sectional descriptive study was conducted in a sample of 152 stroke patients referred to haematology department of National Hospital of Sri Lanka for thrombophilia screening. Different tests were performed to assess each hematological correlate. Diluted Russels Viper Venom Test and Kaolin clotting time were done to assess Lupus anticoagulant. Full blood count (FBC), blood picture, Sickling test and High Performance Liquid Chromatography were the tests used for detection of Sickle cell disease. Paroxysmal nocturnal haemoglobinurea was assessed by FBC, blood picture, Ham test and Flowcytometry. FBC, blood picture, Janus Kinase 2 (V617F) mutation analysis, erythropoietin level and bone marrow examination were done to look for the Myeloproliferative neoplasms. Dysfibrinogenaemia was assessed by TT, fibrinogen antigen test, clot observation and clauss test. Anti nuclear antibody test was done to look for systemic lupus erythematosis. Among study sample, 134 patients had strokes and only 18 had TIA. The recurrence of stroke/TIA was observed in 13.2% of patients. The majority of patients (94.7%) have had radiological evidence of thrombotic event. One fourth of patients had past thrombotic events while 12.5% had family history of thrombosis. Out of haematological correlates screened, Lupus anticoagulant was the commonest haematological correlate (n=16 ) and dysfibrigonaemia(n=11 ) had the next high prevalence. One patient was diagnosed with Essential thrombocythaemia and one with SLE. None of the patients were positive for screening tests done for sickle cell disease and PNH. The Haematological correlates were identified in 19% of our study sample. Among stroke profile only presence of past thrombotic history was statistically significantly associated with haematological disorders (P= 0.04). Therefore, hematological disorders appear to be an important factor in etiological work-up of stroke patients particularly in patients with past thrombotic events. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stroke" title="stroke">stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20ischemic%20attack" title=" transient ischemic attack"> transient ischemic attack</a>, <a href="https://publications.waset.org/abstracts/search?q=hematological%20correlates" title=" hematological correlates"> hematological correlates</a>, <a href="https://publications.waset.org/abstracts/search?q=hematological%20disorders" title=" hematological disorders"> hematological disorders</a> </p> <a href="https://publications.waset.org/abstracts/53563/haematological-correlates-of-ischemic-stroke-and-transient-ischemic-attack-lessons-learned" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10