CINXE.COM

{"title":"Locomotion Effects of Redundant Degrees of Freedom in Multi-Legged Quadruped Robots","authors":"Hossein Keshavarz, Alejandro Ramirez-Serrano","volume":213,"journal":"International Journal of Mechanical and Mechatronics Engineering","pagesStart":257,"pagesEnd":264,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10013825","abstract":"<p>Energy efficiency and locomotion speed are two key parameters for legged robots, thus finding ways to improve them are important. This paper proposes a locomotion framework to analyze the energy usage and speed of quadruped robots via a Genetic Algorithm (GA) optimization process. For this, a quadruped robot platform with joint redundancy in its hind legs that we believe will help multi-legged robots improve their speed and energy consumption is used. ContinuO, the quadruped robot of interest, has 14 active degrees of freedom (DoFs), including three DoFs for each front leg, and unlike previously developed quadruped robots, four DoFs for each hind leg. ContinuO aims to realize a cost-effective quadruped robot for real-world scenarios with high-speeds and the ability to overcome large obstructions. The proposed framework is used to locomote the robot and analyze its energy consumed at diverse stride lengths and locomotion speeds. The analysis is performed by comparing the obtained results in two modes, with and without the joint redundancy on the robot\u2019s hind legs.<\/p>","references":"[1] J. Wang, K. Lu, S. Xu, and Y. Lei, \u201cResearch situation and prospect on\r\nquadruped walking robot,\u201d Manuf Autom, vol. 31, no. 2, pp. 4\u20136, 2009.\r\n[2] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, \u201cBigdog, the\r\nrough-terrain quadruped robot,\u201d IFAC Proceedings Volumes, vol. 41,\r\nno. 2, pp. 10 822\u201310 825, 2008.\r\n[3] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella,\r\nand D. G. Caldwell, \u201cDesign of hyq\u2013a hydraulically and electrically\r\nactuated quadruped robot,\u201d Proceedings of the Institution of Mechanical\r\nEngineers, Part I: Journal of Systems and Control Engineering, vol.\r\n225, no. 6, pp. 831\u2013849, 2011.\r\n[4] S. Seok, A. Wang, M. Y. Chuah, D. Otten, J. Lang, and S. Kim, \u201cDesign\r\nprinciples for highly efficient quadrupeds and implementation on the mit\r\ncheetah robot,\u201d in 2013 IEEE International Conference on Robotics and\r\nAutomation. IEEE, 2013, pp. 3307\u20133312.\r\n[5] Y. Wang and S. Boyd, \u201cFast model predictive control using online\r\noptimization,\u201d IEEE Transactions on control systems technology, vol. 18,\r\nno. 2, pp. 267\u2013278, 2009.\r\n[6] S. Seok, A. Wang, M. Y. Chuah, D. J. Hyun, J. Lee, D. M. Otten,\r\nJ. H. Lang, and S. Kim, \u201cDesign principles for energy-efficient legged\r\nlocomotion and implementation on the mit cheetah robot,\u201d Ieee\/asme\r\ntransactions on mechatronics, vol. 20, no. 3, pp. 1117\u20131129, 2014.\r\n[7] B. Dynamics, \u201cCheetah robot runs 28.3 mph; a bit faster than usain\r\nbolt,\u201d 2009.\r\n[8] Introducing wildcat. Online. Available: https:\/\/www.youtube.com\/\r\nwatch?v=wE3fmFTtP9g\r\n[9] E. Garcia, J. C. Arevalo, G. Mu\u02dcnoz, and P. Gonzalez-de Santos,\r\n\u201cCombining series elastic actuation and magneto-rheological damping\r\nfor the control of agile locomotion,\u201d Robotics and Autonomous Systems,\r\nvol. 59, no. 10, pp. 827\u2013839, 2011.\r\n[10] H.-W. Park and S. Kim, \u201cThe mit cheetah, an electrically-powered\r\nquadrupedal robot for high-speed running,\u201d , vol. 32, no. 4, pp. 323\u2013328,\r\n2014.\r\n[11] A. Spr\u00a8owitz, A. Tuleu, M. Vespignani, M. Ajallooeian, E. Badri, and\r\nA. J. Ijspeert, \u201cTowards dynamic trot gait locomotion: Design, control,\r\nand experiments with cheetah-cub, a compliant quadruped robot,\u201d The\r\nInternational Journal of Robotics Research, vol. 32, no. 8, pp. 932\u2013950,\r\n2013.\r\n[12] M. Sadedel, A. Yousefi-Koma, M. Khadiv, and M. Mahdavian, \u201cAdding\r\nlow-cost passive toe joints to the feet structure of surena iii humanoid\r\nrobot,\u201d Robotica, vol. 35, no. 11, pp. 2099\u20132121, 2017.\r\n[13] G. Lu, T. Chen, Q. Liu, G. Zhang, X. Rong, and S. Wang, \u201cA\r\nnovel multi-configuration quadruped robot with redundant dofs and\r\nits application scenario analysis,\u201d in 2021 International Conference on\r\nComputer, Control and Robotics (ICCCR). IEEE, 2021, pp. 14\u201320.\r\n[14] H. Z. Ting, M. Hairi, M. Zaman, M. Ibrahim, and A. Moubark,\r\n\u201cKinematic analysis for trajectory planning of open-source 4-dof\r\nrobot arm,\u201d International Journal of Advanced Computer Science and\r\nApplications, vol. 12, no. 6, pp. 769\u2013777, 2021.\r\n[15] Q. Huang and Y. Nakamura, \u201cSensory reflex control for humanoid\r\nwalking,\u201d IEEE Transactions on Robotics, vol. 21, no. 5, pp. 977\u2013984,\r\n2005.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 213, 2024"}