CINXE.COM
Search results for: computer aided engineering
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: computer aided engineering</title> <meta name="description" content="Search results for: computer aided engineering"> <meta name="keywords" content="computer aided engineering"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="computer aided engineering" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="computer aided engineering"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5333</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: computer aided engineering</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5333</span> The Use of Computer-Aided Design in Small Contractors in a Local Area of Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myunghoun%20Jang">Myunghoun Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A survey of small-size contractors in Jeju was conducted to investigate college graduate's computer-aided design (CAD) competence. Most of small-size contractors use CAD software to review and update drawings submitted from an architect. This research analyzed the curriculum of the architectural engineering in several national universities. The CAD classes have 4 or 6 hours per week and use AutoCAD primarily. This paper proposes that a CAD class needs 6 hours per week, 2D drawing is the main theme in the curriculum, and exercises to make 3D models are also included in the CAD class. An improved method, for example Internet cafe and real time feedbacks using smartphones, to evaluate the reports and exercise results is necessary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAD%20%28Computer%20Aided%20Design%29" title="CAD (Computer Aided Design)">CAD (Computer Aided Design)</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD%20education" title=" CAD education"> CAD education</a>, <a href="https://publications.waset.org/abstracts/search?q=education%20improvement" title=" education improvement"> education improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=small-size%20contractor" title=" small-size contractor"> small-size contractor</a> </p> <a href="https://publications.waset.org/abstracts/77224/the-use-of-computer-aided-design-in-small-contractors-in-a-local-area-of-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5332</span> Ethical Perspectives on Implementation of Computer Aided Design Curriculum in Architecture in Nigeria: A Case Study of Chukwuemeka Odumegwu Ojukwu University, Uli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kelechi%20Ezeji">Kelechi Ezeji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of Computer Aided Design (CAD) technologies has become pervasive in the Architecture, Engineering and Construction (AEC) industry. This has led to its inclusion as an important part of the training module in the curriculum for Architecture Schools in Nigeria. This paper examines the ethical questions that arise in the implementation of Computer Aided Design (CAD) Content of the curriculum for Architectural education. Using existing literature, it begins this scrutiny from the propriety of inclusion of CAD into the education of the architect and the obligations of the different stakeholders in the implementation process. It also examines the questions raised by the negative use of computing technologies as well as perceived negative influence of the use of CAD on design creativity. Survey methodology was employed to gather data from the Department of Architecture, Chukwuemeka Odumegwu Ojukwu University Uli, which has been used as a case study on how the issues raised are being addressed. The paper draws conclusions on what will make for successful ethical implementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20aided%20design" title="computer aided design">computer aided design</a>, <a href="https://publications.waset.org/abstracts/search?q=curriculum" title=" curriculum"> curriculum</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=ethics" title=" ethics"> ethics</a> </p> <a href="https://publications.waset.org/abstracts/40243/ethical-perspectives-on-implementation-of-computer-aided-design-curriculum-in-architecture-in-nigeria-a-case-study-of-chukwuemeka-odumegwu-ojukwu-university-uli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5331</span> Computer-Aided Teaching of Transformers for Undergraduates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar">Rajesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Roopali%20Dogra"> Roopali Dogra</a>, <a href="https://publications.waset.org/abstracts/search?q=Puneet%20Aggarwal"> Puneet Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the era of technological advancement, use of computer technology has become inevitable. Hence it has become the need of the hour to integrate software methods in engineering curriculum as a part to boost pedagogy techniques. Simulations software is a great help to graduates of disciplines such as electrical engineering. Since electrical engineering deals with high voltages and heavy instruments, extra care must be taken while operating with them. The viable solution would be to have appropriate control. The appropriate control could be well designed if engineers have knowledge of kind of waveforms associated with the system. Though these waveforms can be plotted manually, but it consumes a lot of time. Hence aid of simulation helps to understand steady state of system and resulting in better performance. In this paper computer, aided teaching of transformer is carried out using MATLAB/Simulink. The test carried out on a transformer includes open circuit test and short circuit respectively. The respective parameters of transformer are then calculated using the values obtained from open circuit and short circuit test respectively using Simulink. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20aided%20teaching" title="computer aided teaching">computer aided teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20circuit%20test" title=" open circuit test"> open circuit test</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20circuit%20test" title=" short circuit test"> short circuit test</a>, <a href="https://publications.waset.org/abstracts/search?q=simulink" title=" simulink"> simulink</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer" title=" transformer"> transformer</a> </p> <a href="https://publications.waset.org/abstracts/73486/computer-aided-teaching-of-transformers-for-undergraduates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5330</span> Computer Aided Assembly Attributes Retrieval Methods for Automated Assembly Sequence Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20A.%20Raju%20Bahubalendruni">M. V. A. Raju Bahubalendruni</a>, <a href="https://publications.waset.org/abstracts/search?q=Bibhuti%20Bhusan%20Biswal"> Bibhuti Bhusan Biswal</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20B.%20V.%20L.%20Deepak"> B. B. V. L. Deepak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Achieving an appropriate assembly sequence needs deep verification for its physical feasibility. For this purpose, industrial engineers use several assembly predicates; namely, liaison, geometric feasibility, stability and mechanical feasibility. However, testing an assembly sequence for these predicates requires huge assembly information. Extracting such assembly information from an assembled product is a time consuming and highly skillful task with complex reasoning methods. In this paper, computer aided methods are proposed to extract all the necessary assembly information from computer aided design (CAD) environment in order to perform the assembly sequence planning efficiently. These methods use preliminary capabilities of three-dimensional solid modelling and assembly modelling methods used in CAD software considering equilibrium laws of physical bodies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20automation" title="assembly automation">assembly automation</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly%20attributes" title=" assembly attributes"> assembly attributes</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly" title=" assembly"> assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD" title=" CAD"> CAD</a> </p> <a href="https://publications.waset.org/abstracts/55591/computer-aided-assembly-attributes-retrieval-methods-for-automated-assembly-sequence-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5329</span> Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atanu%20K%20Samanta">Atanu K Samanta</a>, <a href="https://publications.waset.org/abstracts/search?q=Asim%20Ali%20Khan"> Asim Ali Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20tumor" title="brain tumor">brain tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20diagnostic%20%28CAD%29%20system" title=" computer-aided diagnostic (CAD) system"> computer-aided diagnostic (CAD) system</a>, <a href="https://publications.waset.org/abstracts/search?q=gray-level%20co-occurrence%20matrix%20%28GLCM%29" title=" gray-level co-occurrence matrix (GLCM)"> gray-level co-occurrence matrix (GLCM)</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20segmentation" title=" tumor segmentation"> tumor segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20set%20method" title=" level set method"> level set method</a> </p> <a href="https://publications.waset.org/abstracts/61237/computer-aided-diagnostic-system-for-detection-and-classification-of-a-brain-tumor-through-mri-using-level-set-based-segmentation-technique-and-ann-classifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5328</span> A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Bazarganigilani">Mahdi Bazarganigilani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20diagnosis%20systems" title="computer-aided diagnosis systems">computer-aided diagnosis systems</a>, <a href="https://publications.waset.org/abstracts/search?q=thermographic%20analysis" title=" thermographic analysis"> thermographic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=spatio-temporal%20analysis" title=" spatio-temporal analysis"> spatio-temporal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/144933/a-highly-accurate-computer-aided-diagnosis-cad-system-for-the-diagnosis-of-breast-cancer-by-using-thermographic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5327</span> A Study on the Impacts of Computer Aided Design on the Architectural Design Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Halleh%20Nejadriahi">Halleh Nejadriahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamyar%20Arab"> Kamyar Arab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computer-aided design (CAD) tools have been extensively used by the architects for the several decades. It has evolved from being a simple drafting tool to being an intelligent architectural software and a powerful means of communication for architects. CAD plays an essential role in the profession of architecture and is a basic tool for any architectural firm. It is not possible for an architectural firm to compete without taking the advantage of computer software, due to the high demand and competition in the architectural industry. The aim of this study is to evaluate the impacts of CAD on the architectural design process from conceptual level to final product, particularly in architectural practice. It examines the range of benefits of integrating CAD into the industry and discusses the possible defects limiting the architects. Method of this study is qualitatively based on data collected from the professionals’ perspective. The identified benefits and limitations of CAD on the architectural design process will raise the awareness of professionals on the potentials of CAD and proper utilization of that in the industry, which would result in a higher productivity along with a better quality in the architectural offices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architecture" title="architecture">architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=architectural%20practice" title=" architectural practice"> architectural practice</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20aided%20design%20%28CAD%29" title=" computer aided design (CAD)"> computer aided design (CAD)</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20process" title=" design process"> design process</a> </p> <a href="https://publications.waset.org/abstracts/75147/a-study-on-the-impacts-of-computer-aided-design-on-the-architectural-design-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5326</span> Effects of Computer Aided Instructional Package on Performance and Retention of Genetic Concepts amongst Secondary School Students in Niger State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20R.%20Bello">Muhammad R. Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamman%20A.%20Wasagu"> Mamman A. Wasagu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahya%20M.%20Kamar"> Yahya M. Kamar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigated the effects of computer-aided instructional package (CAIP) on performance and retention of genetic concepts among secondary school students in Niger State. Quasi-experimental research design i.e. pre-test-post-test experimental and control groups were adopted for the study. The population of the study was all senior secondary school three (SS3) students’ offering biology. A sample of 223 students was randomly drawn from six purposively selected secondary schools. The researchers’ developed computer aided instructional package (CAIP) on genetic concepts was used as treatment instrument for the experimental group while the control group was exposed to the conventional lecture method (CLM). The instrument for data collection was a Genetic Performance Test (GEPET) that had 50 multiple-choice questions which were validated by science educators. A Reliability coefficient of 0.92 was obtained for GEPET using Pearson Product Moment Correlation (PPMC). The data collected were analyzed using IBM SPSS Version 20 package for computation of Means, Standard deviation, t-test, and analysis of covariance (ANCOVA). The ANOVA analysis (Fcal (220) = 27.147, P < 0.05) shows that students who received instruction with CAIP outperformed the students who received instruction with CLM and also had higher retention. The findings also revealed no significant difference in performance and retention between male and female students (tcal (103) = -1.429, P > 0.05). It was recommended amongst others that teachers should use computer-aided instructional package in teaching genetic concepts in order to improve students’ performance and retention in biology subject. Keywords: Computer-aided Instructional Package, Performance, Retention and Genetic Concepts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20aided%20instructional%20package" title="computer aided instructional package">computer aided instructional package</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=retention" title=" retention"> retention</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20concepts" title=" genetic concepts"> genetic concepts</a>, <a href="https://publications.waset.org/abstracts/search?q=senior%20secondary%20school%20students" title=" senior secondary school students"> senior secondary school students</a> </p> <a href="https://publications.waset.org/abstracts/60590/effects-of-computer-aided-instructional-package-on-performance-and-retention-of-genetic-concepts-amongst-secondary-school-students-in-niger-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5325</span> Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Jahani">K. Jahani</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Razavi"> J. Razavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20aided%20engineering" title="computer aided engineering">computer aided engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20maintenance" title=" predictive maintenance"> predictive maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection" title=" fault detection"> fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=mining%20process%20line" title=" mining process line"> mining process line</a>, <a href="https://publications.waset.org/abstracts/search?q=slurry%20pump" title=" slurry pump"> slurry pump</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocyclone" title=" hydrocyclone"> hydrocyclone</a> </p> <a href="https://publications.waset.org/abstracts/49774/application-of-computer-aided-engineering-tools-in-performance-prediction-and-fault-detection-of-mechanical-equipment-of-mining-process-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5324</span> Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Birmohan%20Singh">Birmohan Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=V.K.Jain"> V.K.Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Masses and microcalcifications, architectural distortions are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support Vector Machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and accuracy of 96% for the detection of abnormalities with mammogram images collected from Digital Database for Screening Mammography (DDSM) database. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architecture%20distortion" title="architecture distortion">architecture distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=mammograms" title=" mammograms"> mammograms</a>, <a href="https://publications.waset.org/abstracts/search?q=GLCM%20texture%20features" title=" GLCM texture features"> GLCM texture features</a>, <a href="https://publications.waset.org/abstracts/search?q=GLRLM%20texture%20features" title=" GLRLM texture features"> GLRLM texture features</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine%20classifier" title=" support vector machine classifier"> support vector machine classifier</a> </p> <a href="https://publications.waset.org/abstracts/29952/computer-aided-classification-of-architectural-distortion-in-mammograms-using-texture-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5323</span> An Accurate Computer-Aided Diagnosis: CAD System for Diagnosis of Aortic Enlargement by Using Convolutional Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Bazarganigilani">Mahdi Bazarganigilani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aortic enlargement, also known as an aortic aneurysm, can occur when the walls of the aorta become weak. This disease can become deadly if overlooked and undiagnosed. In this paper, a computer-aided diagnosis (CAD) system was introduced to accurately diagnose aortic enlargement from chest x-ray images. An enhanced convolutional neural network (CNN) was employed and then trained by transfer learning by using three different main areas from the original images. The areas included the left lung, heart, and right lung. The accuracy of the system was then evaluated on 1001 samples by using 4-fold cross-validation. A promising accuracy of 90% was achieved in terms of the F-measure indicator. The results showed using different areas from the original image in the training phase of CNN could increase the accuracy of predictions. This encouraged the author to evaluate this method on a larger dataset and even on different CAD systems for further enhancement of this methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20diagnosis%20systems" title="computer-aided diagnosis systems">computer-aided diagnosis systems</a>, <a href="https://publications.waset.org/abstracts/search?q=aortic%20enlargement" title=" aortic enlargement"> aortic enlargement</a>, <a href="https://publications.waset.org/abstracts/search?q=chest%20X-ray" title=" chest X-ray"> chest X-ray</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a> </p> <a href="https://publications.waset.org/abstracts/145129/an-accurate-computer-aided-diagnosis-cad-system-for-diagnosis-of-aortic-enlargement-by-using-convolutional-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5322</span> A Design System for Complex Profiles of Machine Members Using a Synthetic Curve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Sateesh">N. Sateesh</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20P.%20Rao"> C. S. P. Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Satyanarayana"> K. Satyanarayana</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Rajashekar"> C. Rajashekar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a development of a CAD/CAM system for complex profiles of various machine members using a synthetic curve i.e. B-spline. Conventional methods in designing and manufacturing of complex profiles are tedious and time consuming. Even programming those on a computer numerical control (CNC) machine can be a difficult job because of the complexity of the profiles. The system developed provides graphical and numerical representation B-spline profile for any given input. In this paper, the system is applicable to represent a cam profile with B-spline and attempt is made to improve the follower motion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plate-cams" title="plate-cams">plate-cams</a>, <a href="https://publications.waset.org/abstracts/search?q=cam%20profile" title=" cam profile"> cam profile</a>, <a href="https://publications.waset.org/abstracts/search?q=b-spline" title=" b-spline"> b-spline</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20numerical%20control%20%28CNC%29" title=" computer numerical control (CNC)"> computer numerical control (CNC)</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20aided%20design%20and%20computer%20aided%20manufacturing%20%28CAD%2FCAM%29" title=" computer aided design and computer aided manufacturing (CAD/CAM)"> computer aided design and computer aided manufacturing (CAD/CAM)</a>, <a href="https://publications.waset.org/abstracts/search?q=R-D-R-D%20%28rise-dwell-return-dwell%29" title=" R-D-R-D (rise-dwell-return-dwell)"> R-D-R-D (rise-dwell-return-dwell)</a> </p> <a href="https://publications.waset.org/abstracts/37611/a-design-system-for-complex-profiles-of-machine-members-using-a-synthetic-curve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">611</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5321</span> Design of a Surveillance Drone with Computer Aided Durability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maram%20Shahad%20Dana%20Anfal">Maram Shahad Dana Anfal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper presents the design of a surveillance drone with computer-aided durability and model analyses that provides a cost-effective and efficient solution for various applications. The quadcopter's design is based on a lightweight and strong structure made of materials such as aluminum and titanium, which provide a durable structure for the quadcopter. The structure of this product and the computer-aided durability system are both designed to ensure frequent repairs or replacements, which will save time and money in the long run. Moreover, the study discusses the drone's ability to track, investigate, and deliver objects more quickly than traditional methods, makes it a highly efficient and cost-effective technology. In this paper, a comprehensive analysis of the quadcopter's operation dynamics and limitations is presented. In both simulation and experimental data, the computer-aided durability system and the drone's design demonstrate their effectiveness, highlighting the potential for a variety of applications, such as search and rescue missions, infrastructure monitoring, and agricultural operations. Also, the findings provide insights into possible areas for improvement in the design and operation of the drone. Ultimately, this paper presents a reliable and cost-effective solution for surveillance applications by designing a drone with computer-aided durability and modeling. With its potential to save time and money, increase reliability, and enhance safety, it is a promising technology for the future of surveillance drones. operation dynamic equations have been evaluated successfully for different flight conditions of a quadcopter. Also, CAE modeling techniques have been applied for the modal risk assessment at operating conditions.Stress analysis have been performed under the loadings of the worst-case combined motion flight conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drone" title="drone">drone</a>, <a href="https://publications.waset.org/abstracts/search?q=material" title=" material"> material</a>, <a href="https://publications.waset.org/abstracts/search?q=solidwork" title=" solidwork"> solidwork</a>, <a href="https://publications.waset.org/abstracts/search?q=hypermesh" title=" hypermesh"> hypermesh</a> </p> <a href="https://publications.waset.org/abstracts/167463/design-of-a-surveillance-drone-with-computer-aided-durability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5320</span> Computer-Aided Exudate Diagnosis for the Screening of Diabetic Retinopathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shu-Min%20Tsao">Shu-Min Tsao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung-Ming%20Lo"> Chung-Ming Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shao-Chun%20Chen"> Shao-Chun Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most diabetes patients tend to suffer from its complication of retina diseases. Therefore, early detection and early treatment are important. In clinical examinations, using color fundus image was the most convenient and available examination method. According to the exudates appeared in the retinal image, the status of retina can be confirmed. However, the routine screening of diabetic retinopathy by color fundus images would bring time-consuming tasks to physicians. This study thus proposed a computer-aided exudate diagnosis for the screening of diabetic retinopathy. After removing vessels and optic disc in the retinal image, six quantitative features including region number, region area, and gray-scale values etc… were extracted from the remaining regions for classification. As results, all six features were evaluated to be statistically significant (p-value < 0.001). The accuracy of classifying the retinal images into normal and diabetic retinopathy achieved 82%. Based on this system, the clinical workload could be reduced. The examination procedure may also be improved to be more efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20diagnosis" title="computer-aided diagnosis">computer-aided diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetic%20retinopathy" title=" diabetic retinopathy"> diabetic retinopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=exudate" title=" exudate"> exudate</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a> </p> <a href="https://publications.waset.org/abstracts/70086/computer-aided-exudate-diagnosis-for-the-screening-of-diabetic-retinopathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5319</span> Approximation of Intersection Curves of Two Parametric Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misbah%20Irshad">Misbah Irshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Faiza%20Sarfraz"> Faiza Sarfraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of approximating surface to surface intersection is considered to be very important in computer aided geometric design and computer aided manufacturing. Although it is a complex problem to handle, its continuous need in the industry makes it an active topic in research. A technique for approximating intersection curves of two parametric surfaces is proposed, which extracts boundary points and turning points from a sequence of intersection points and interpolate them with the help of rational cubic spline functions. The proposed approach is demonstrated with the help of examples and analyzed by calculating error. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximation" title="approximation">approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20surface" title=" parametric surface"> parametric surface</a>, <a href="https://publications.waset.org/abstracts/search?q=spline%20function" title=" spline function"> spline function</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20intersection" title=" surface intersection"> surface intersection</a> </p> <a href="https://publications.waset.org/abstracts/52667/approximation-of-intersection-curves-of-two-parametric-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5318</span> Study the Effect of Tolerances for Press Tool Assembly: Computer Aided Tolerance Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subodh%20Kumar">Subodh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramkisan%20Pawar"> Ramkisan Pawar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopal%20D.%20%20Belurkar"> Gopal D. Belurkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a study for simple blanking tool. In blanking or piercing operation, punch and die should be concentric for proper cutting. In this study, tolerance analysis method is used to analyze the variation in the press tool assembly. Variation results into the eccentricity in between die and punch due to cumulative tolerance of parts used in assembly. 1D variation analysis were performed by CREO parametric computer aided design (CAD) Software Powered by CETOL 6σ computer aided tolerance analysis software. Use of CAD analysis software given the opportunity to find out the cause of variation in tool assembly. Accordingly, the new specification of tolerance and process setting for die set manufacturing has determined. Tolerance allocation and tolerance analysis method were performed iteratively to conclude that position tolerance as well as size tolerance of hole in top plate for bush and size tolerance of guide pillar were more responsible for eccentricity in punch and die. This work proposes optimum tolerance for press tool assembly parts to achieve 100 % yield for specified .015mm minimum tolerance zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blanking" title="blanking">blanking</a>, <a href="https://publications.waset.org/abstracts/search?q=GD%26T%20%28Geometric%20Dimension%20and%20Tolerancing%29" title=" GD&T (Geometric Dimension and Tolerancing)"> GD&T (Geometric Dimension and Tolerancing)</a>, <a href="https://publications.waset.org/abstracts/search?q=DPMU%20%28defects%20per%20million%20unit%29" title=" DPMU (defects per million unit)"> DPMU (defects per million unit)</a>, <a href="https://publications.waset.org/abstracts/search?q=press%20tool" title=" press tool"> press tool</a>, <a href="https://publications.waset.org/abstracts/search?q=stackup%20analysis" title=" stackup analysis"> stackup analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance%20allocation" title=" tolerance allocation"> tolerance allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20percentage" title=" yield percentage"> yield percentage</a> </p> <a href="https://publications.waset.org/abstracts/84639/study-the-effect-of-tolerances-for-press-tool-assembly-computer-aided-tolerance-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5317</span> Optimal Operation of a Photovoltaic Induction Motor Drive Water Pumping System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nelson%20K.%20Lujara">Nelson K. Lujara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance characteristics of a photovoltaic induction motor drive water pumping system with and without maximum power tracker is analyzed and presented. The analysis is done through determination and assessment of critical loss components in the system using computer aided design (CAD) tools for optimal operation of the system. The results can be used to formulate a well-calibrated computer aided design package of photovoltaic water pumping systems based on the induction motor drive. The results allow the design engineer to pre-determine the flow rate and efficiency of the system to suit particular application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title="photovoltaic">photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pumping" title=" water pumping"> water pumping</a>, <a href="https://publications.waset.org/abstracts/search?q=losses" title=" losses"> losses</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title=" induction motor"> induction motor</a> </p> <a href="https://publications.waset.org/abstracts/45964/optimal-operation-of-a-photovoltaic-induction-motor-drive-water-pumping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5316</span> Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Berkan%20Ural">Ali Berkan Ural</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20aided%20diagnosis" title="computer aided diagnosis">computer aided diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=region%20growing" title=" region growing"> region growing</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/155700/computer-aided-analysis-of-breast-based-diagnostic-problems-from-mammograms-using-image-processing-and-deep-learning-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5315</span> Computer Aided Diagnosis Bringing Changes in Breast Cancer Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devadrita%20Dey%20Sarkar">Devadrita Dey Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regardless of the many technologic advances in the past decade, increased training and experience, and the obvious benefits of uniform standards, the false-negative rate in screening mammography remains unacceptably high .A computer aided neural network classification of regions of suspicion (ROS) on digitized mammograms is presented in this abstract which employs features extracted by a new technique based on independent component analysis. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral breast images has the potential to improve the overall performance in the detection of breast lumps. Because breast lumps can be detected reliably by computer on lateral breast mammographs, radiologists’ accuracy in the detection of breast lumps would be improved by the use of CAD, and thus early diagnosis of breast cancer would become possible. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for breast CAD may include the computerized detection of breast nodules, as well as the computerized classification of benign and malignant nodules. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with these CAD systems, which would be reliable and useful method for quantifying the similarity of a pair of images for visual comparison by radiologists. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAD%28computer-aided%20design%29" title="CAD(computer-aided design)">CAD(computer-aided design)</a>, <a href="https://publications.waset.org/abstracts/search?q=lesions" title=" lesions"> lesions</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS%28region%20of%20suspicion%29" title=" ROS(region of suspicion)"> ROS(region of suspicion)</a> </p> <a href="https://publications.waset.org/abstracts/23237/computer-aided-diagnosis-bringing-changes-in-breast-cancer-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5314</span> A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ian%20Omung%27a">Ian Omung'a</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20diagnosis" title="breast cancer diagnosis">breast cancer diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20aided%20detection%20and%20diagnosis" title=" computer aided detection and diagnosis"> computer aided detection and diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=whole%20mammogram%20classfication" title=" whole mammogram classfication"> whole mammogram classfication</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20classification" title=" ultrasound classification"> ultrasound classification</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a> </p> <a href="https://publications.waset.org/abstracts/148925/a-review-of-deep-learning-methods-in-computer-aided-detection-and-diagnosis-systems-based-on-whole-mammogram-and-ultrasound-scan-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5313</span> Computer-Aided Detection of Simultaneous Abdominal Organ CT Images by Iterative Watershed Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belgherbi%20Aicha">Belgherbi Aicha</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadjidj%20Ismahen"> Hadjidj Ismahen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bessaid%20Abdelhafid"> Bessaid Abdelhafid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis applications. Segmentation of liver, spleen and kidneys is regarded as a major primary step in the computer-aided diagnosis of abdominal organ diseases. In this paper, a semi-automated method for medical image data is presented for the abdominal organ segmentation data using mathematical morphology. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. Our algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter, we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20diffusion%20filter" title="anisotropic diffusion filter">anisotropic diffusion filter</a>, <a href="https://publications.waset.org/abstracts/search?q=CT%20images" title=" CT images"> CT images</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20filter" title=" morphological filter"> morphological filter</a>, <a href="https://publications.waset.org/abstracts/search?q=mosaic%20image" title=" mosaic image"> mosaic image</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneous%20organ%20segmentation" title=" simultaneous organ segmentation"> simultaneous organ segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20watershed%20algorithm" title=" the watershed algorithm"> the watershed algorithm</a> </p> <a href="https://publications.waset.org/abstracts/19602/computer-aided-detection-of-simultaneous-abdominal-organ-ct-images-by-iterative-watershed-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5312</span> Technology Computer Aided Design Simulation of Space Charge Limited Conduction in Polycrystalline Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kunj%20Parikh">Kunj Parikh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bhattacharya"> S. Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Natarajan"> V. Natarajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TCAD numerical simulation is one of the most tried and tested powerful tools for designing devices in semiconductor foundries worldwide. It has also been used to explain conduction in organic thin films where the processing temperature is often enough to make homogeneous samples (often imperfect, but homogeneously imperfect). In this report, we have presented the results of TCAD simulation in multi-grain thin films. The work has addressed the inhomogeneity in one dimension, but can easily be extended to two and three dimensions. The effect of grain boundaries has mainly been approximated as barriers located at the junction between two adjacent grains. The effect of the value of grain boundary barrier, the bulk traps, and the measurement temperature have been investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20thin%20films" title="polycrystalline thin films">polycrystalline thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20charge%20limited%20conduction" title=" space charge limited conduction"> space charge limited conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=Technology%20Computer-Aided%20Design%20%28TCAD%29%20simulation" title=" Technology Computer-Aided Design (TCAD) simulation"> Technology Computer-Aided Design (TCAD) simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=traps" title=" traps"> traps</a> </p> <a href="https://publications.waset.org/abstracts/87550/technology-computer-aided-design-simulation-of-space-charge-limited-conduction-in-polycrystalline-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5311</span> Edge Detection and Morphological Image for Estimating Gestational Age Based on Fetus Length Automatically</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Retno%20Supriyanti">Retno Supriyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Chuzaeri"> Ahmad Chuzaeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogi%20Ramadhani"> Yogi Ramadhani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Haris%20Budi%20Widodo"> A. Haris Budi Widodo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of ultrasonography in the medical world has been very popular including the diagnosis of pregnancy. In determining pregnancy, ultrasonography has many roles, such as to check the position of the fetus, abnormal pregnancy, fetal age and others. Unfortunately, all these things still need to analyze the role of the obstetrician in the sense of image raised by ultrasonography. One of the most striking is the determination of gestational age. Usually, it is done by measuring the length of the fetus manually by obstetricians. In this study, we developed a computer-aided diagnosis for the determination of gestational age by measuring the length of the fetus automatically using edge detection method and image morphology. Results showed that the system is sufficiently accurate in determining the gestational age based image processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20aided%20diagnosis" title="computer aided diagnosis">computer aided diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=gestational%20age" title=" gestational age"> gestational age</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20diameter%20of%20uterus" title=" and diameter of uterus"> and diameter of uterus</a>, <a href="https://publications.waset.org/abstracts/search?q=length%20of%20fetus" title=" length of fetus"> length of fetus</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20detection%20method" title=" edge detection method"> edge detection method</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology%20image" title=" morphology image"> morphology image</a> </p> <a href="https://publications.waset.org/abstracts/46484/edge-detection-and-morphological-image-for-estimating-gestational-age-based-on-fetus-length-automatically" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5310</span> A Computer-Aided System for Detection and Classification of Liver Cirrhosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Hadi%20N.%20Ebraheim">Abdel Hadi N. Ebraheim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20Azomi"> Eman Azomi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nefisa%20A.%20Fahmy"> Nefisa A. Fahmy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper designs and implements a computer-aided system (CAS) to help detect and diagnose liver cirrhosis in patients with Chronic Hepatitis C. Our system reduces the required features (tests) the patient is asked to do to tests to their minimal best most informative subset of tests, with a diagnostic accuracy above 99%, and hence saving both time and costs. We use the Support Vector Machine (SVM) with cross-validation, a Multilayer Perceptron Neural Network (MLP), and a Generalized Regression Neural Network (GRNN) that employs a base of radial functions for functional approximation, as classifiers. Our system is tested on 199 subjects, of them 99 Chronic Hepatitis C.The subjects were selected from among the outpatient clinic in National Herpetology and Tropical Medicine Research Institute (NHTMRI). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liver%20cirrhosis" title="liver cirrhosis">liver cirrhosis</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20perceptron" title=" multi-layer perceptron"> multi-layer perceptron</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy" title=" accuracy"> accuracy</a> </p> <a href="https://publications.waset.org/abstracts/39260/a-computer-aided-system-for-detection-and-classification-of-liver-cirrhosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5309</span> Liver and Liver Lesion Segmentation From Abdominal CT Scans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belgherbi%20Aicha">Belgherbi Aicha</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadjidj%20Ismahen"> Hadjidj Ismahen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bessaid%20Abdelhafid"> Bessaid Abdelhafid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interpretation of medical images benefits from anatomical and physiological priors to optimize computer- aided diagnosis applications. Segmentation of liver and liver lesion is regarded as a major primary step in computer aided diagnosis of liver diseases. Precise liver segmentation in abdominal CT images is one of the most important steps for the computer-aided diagnosis of liver pathology. In this papers, a semi- automated method for medical image data is presented for the liver and liver lesion segmentation data using mathematical morphology. Our algorithm is currency in two parts. In the first, we seek to determine the region of interest by applying the morphological filters to extract the liver. The second step consists to detect the liver lesion. In this task; we proposed a new method developed for the semi-automatic segmentation of the liver and hepatic lesions. Our proposed method is based on the anatomical information and mathematical morphology tools used in the image processing field. At first, we try to improve the quality of the original image and image gradient by applying the spatial filter followed by the morphological filters. The second step consists to calculate the internal and external markers of the liver and hepatic lesions. Thereafter we proceed to the liver and hepatic lesions segmentation by the watershed transform controlled by markers. The validation of the developed algorithm is done using several images. Obtained results show the good performances of our proposed algorithm <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20diffusion%20filter" title="anisotropic diffusion filter">anisotropic diffusion filter</a>, <a href="https://publications.waset.org/abstracts/search?q=CT%20images" title=" CT images"> CT images</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatic%20lesion%20segmentation" title=" hepatic lesion segmentation"> hepatic lesion segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Liver%20segmentation" title=" Liver segmentation"> Liver segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20filter" title=" morphological filter"> morphological filter</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20watershed%20algorithm" title=" the watershed algorithm"> the watershed algorithm</a> </p> <a href="https://publications.waset.org/abstracts/20381/liver-and-liver-lesion-segmentation-from-abdominal-ct-scans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5308</span> The importance of Clinical Pharmacy and Computer Aided Drug Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Edwar%20Mortada%20Nasif">Peter Edwar Mortada Nasif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of CAD (Computer Aided Design) technology is ubiquitous in the architecture, engineering and construction (AEC) industry. This has led to its inclusion in the curriculum of architecture schools in Nigeria as an important part of the training module. This article examines the ethical issues involved in implementing CAD (Computer Aided Design) content into the architectural education curriculum. Using existing literature, this study begins with the benefits of integrating CAD into architectural education and the responsibilities of different stakeholders in the implementation process. It also examines issues related to the negative use of information technology and the perceived negative impact of CAD use on design creativity. Using a survey method, data from the architecture department of Chukwuemeka Odumegwu Ojukwu Uli University was collected to serve as a case study on how the issues raised were being addressed. The article draws conclusions on what ensures successful ethical implementation. Millions of people around the world suffer from hepatitis C, one of the world's deadliest diseases. Interferon (IFN) is treatment options for patients with hepatitis C, but these treatments have their side effects. Our research focused on developing an oral small molecule drug that targets hepatitis C virus (HCV) proteins and has fewer side effects. Our current study aims to develop a drug based on a small molecule antiviral drug specific for the hepatitis C virus (HCV). Drug development using laboratory experiments is not only expensive, but also time-consuming to conduct these experiments. Instead, in this in silicon study, we used computational techniques to propose a specific antiviral drug for the protein domains of found in the hepatitis C virus. This study used homology modeling and abs initio modeling to generate the 3D structure of the proteins, then identifying pockets in the proteins. Acceptable lagans for pocket drugs have been developed using the de novo drug design method. Pocket geometry is taken into account when designing ligands. Among the various lagans generated, a new specific for each of the HCV protein domains has been proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20design" title="drug design">drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-viral%20drug" title=" anti-viral drug"> anti-viral drug</a>, <a href="https://publications.waset.org/abstracts/search?q=in-silicon%20drug%20design" title=" in-silicon drug design"> in-silicon drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatitis%20C%20virus" title=" hepatitis C virus"> hepatitis C virus</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20aided%20design" title=" computer aided design"> computer aided design</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD%20education" title=" CAD education"> CAD education</a>, <a href="https://publications.waset.org/abstracts/search?q=education%20improvement" title=" education improvement"> education improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=small-size%20contractor%20automatic%20pharmacy" title=" small-size contractor automatic pharmacy"> small-size contractor automatic pharmacy</a>, <a href="https://publications.waset.org/abstracts/search?q=PLC" title=" PLC"> PLC</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20system" title=" management system"> management system</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a> </p> <a href="https://publications.waset.org/abstracts/188179/the-importance-of-clinical-pharmacy-and-computer-aided-drug-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5307</span> Computer-Aided Diagnosis System Based on Multiple Quantitative Magnetic Resonance Imaging Features in the Classification of Brain Tumor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih%20Jou%20Hsiao">Chih Jou Hsiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung%20Ming%20Lo"> Chung Ming Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Chun%20Hsieh"> Li Chun Hsieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain tumor is not the cancer having high incidence rate, but its high mortality rate and poor prognosis still make it as a big concern. On clinical examination, the grading of brain tumors depends on pathological features. However, there are some weak points of histopathological analysis which can cause misgrading. For example, the interpretations can be various without a well-known definition. Furthermore, the heterogeneity of malignant tumors is a challenge to extract meaningful tissues under surgical biopsy. With the development of magnetic resonance imaging (MRI), tumor grading can be accomplished by a noninvasive procedure. To improve the diagnostic accuracy further, this study proposed a computer-aided diagnosis (CAD) system based on MRI features to provide suggestions of tumor grading. Gliomas are the most common type of malignant brain tumors (about 70%). This study collected 34 glioblastomas (GBMs) and 73 lower-grade gliomas (LGGs) from The Cancer Imaging Archive. After defining the region-of-interests in MRI images, multiple quantitative morphological features such as region perimeter, region area, compactness, the mean and standard deviation of the normalized radial length, and moment features were extracted from the tumors for classification. As results, two of five morphological features and three of four image moment features achieved p values of <0.001, and the remaining moment feature had p value <0.05. Performance of the CAD system using the combination of all features achieved the accuracy of 83.18% in classifying the gliomas into LGG and GBM. The sensitivity is 70.59% and the specificity is 89.04%. The proposed system can become a second viewer on clinical examinations for radiologists. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20tumor" title="brain tumor">brain tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20diagnosis" title=" computer-aided diagnosis"> computer-aided diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=gliomas" title=" gliomas"> gliomas</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a> </p> <a href="https://publications.waset.org/abstracts/70083/computer-aided-diagnosis-system-based-on-multiple-quantitative-magnetic-resonance-imaging-features-in-the-classification-of-brain-tumor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5306</span> Integrating Computer-Aided Manufacturing and Computer-Aided Design for Streamlined Carpentry Production in Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benson%20Tette">Benson Tette</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Mensah"> Thomas Mensah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a developing country, Ghana has a high potential to harness the economic value of every industry. Two of the industries that produce below capacity are handicrafts (for instance, carpentry) and information technology (i.e., computer science). To boost production and maintain competitiveness, the carpentry sector in Ghana needs more effective manufacturing procedures that are also more affordable. This issue can be resolved using computer-aided manufacturing (CAM) technology, which automates the fabrication process and decreases the amount of time and labor needed to make wood goods. Yet, the integration of CAM in carpentry-related production is rarely explored. To streamline the manufacturing process, this research investigates the equipment and technology that are currently used in the Ghanaian carpentry sector for automated fabrication. The research looks at the various CAM technologies, such as Computer Numerical Control routers, laser cutters, and plasma cutters, that are accessible to Ghanaian carpenters yet unexplored. We also investigate their potential to enhance the production process. To achieve the objective, 150 carpenters, 15 software engineers, and 10 policymakers were interviewed using structured questionnaires. The responses provided by the 175 respondents were processed to eliminate outliers and omissions were corrected using multiple imputations techniques. The processed responses were analyzed through thematic analysis. The findings showed that adaptation and integration of CAD software with CAM technologies would speed up the design-to-manufacturing process for carpenters. It must be noted that achieving such results entails first; examining the capabilities of current CAD software, then determining what new functions and resources are required to improve the software's suitability for carpentry tasks. Responses from both carpenters and computer scientists showed that it is highly practical and achievable to streamline the design-to-manufacturing process through processes such as modifying and combining CAD software with CAM technology. Making the carpentry-software integration program more useful for carpentry projects would necessitate investigating the capabilities of the current CAD software and identifying additional features in the Ghanaian ecosystem and tools that are required. In conclusion, the Ghanaian carpentry sector has a chance to increase productivity and competitiveness through the integration of CAM technology with CAD software. Carpentry companies may lower labor costs and boost production capacity by automating the fabrication process, giving them a competitive advantage. This study offers implementation-ready and representative recommendations for successful implementation as well as important insights into the equipment and technologies available for automated fabrication in the Ghanaian carpentry sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carpentry" title="carpentry">carpentry</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20manufacturing%20%28CAM%29" title=" computer-aided manufacturing (CAM)"> computer-aided manufacturing (CAM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghana" title=" Ghana"> Ghana</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20technology%28IT%29" title=" information technology(IT)"> information technology(IT)</a> </p> <a href="https://publications.waset.org/abstracts/166238/integrating-computer-aided-manufacturing-and-computer-aided-design-for-streamlined-carpentry-production-in-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5305</span> Analysis of Hard Turning Process of AISI D3-Thermal Aspects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Varaprasad">B. Varaprasad</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Srinivasa%20Rao"> C. Srinivasa Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the manufacturing sector, hard turning has emerged as vital machining process for cutting hardened steels. Besides many advantages of hard turning operation, one has to implement to achieve close tolerances in terms of surface finish, high product quality, reduced machining time, low operating cost and environmentally friendly characteristics. In the present study, three-dimensional CAE (Computer Aided Engineering) based simulation of hard turning by using commercial software DEFORM 3D has been compared to experimental results of stresses, temperatures and tool forces in machining of AISI D3 steel using mixed Ceramic inserts (CC6050). In the present analysis, orthogonal cutting models are proposed, considering several processing parameters such as cutting speed, feed, and depth of cut. An exhaustive friction modeling at the tool-work interfaces is carried out. Work material flow around the cutting edge is carefully modeled with adaptive re-meshing simulation capability. In process simulations, feed rate and cutting speed are constant (i.e.,. 0.075 mm/rev and 155 m/min), and analysis is focused on stresses, forces, and temperatures during machining. Close agreement is observed between CAE simulation and experimental values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20turning" title="hard turning">hard turning</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20aided%20engineering" title=" computer aided engineering"> computer aided engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20machining" title=" computational machining"> computational machining</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method "> finite element method </a> </p> <a href="https://publications.waset.org/abstracts/25534/analysis-of-hard-turning-process-of-aisi-d3-thermal-aspects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5304</span> Significance of Personnel Recruitment in Implementation of Computer Aided Design Curriculum of Architecture Schools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kelechi%20E.%20Ezeji">Kelechi E. Ezeji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inclusion of relevant content in curricula of architecture schools is vital for attainment of Computer Aided Design (CAD) proficiency by graduates. Implementing this content involves, among other variables, the presence of competent tutors. Consequently, this study sought to investigate the importance of personnel recruitment for inclusion of content vital to the implementation of CAD in the curriculum for architecture education. This was with a view to developing a framework for appropriate implementation of CAD curriculum. It was focused on departments of architecture in universities in south-east Nigeria which have been accredited by National Universities Commission. Survey research design was employed. Data were obtained from sources within the study area using questionnaires, personal interviews, physical observation/enumeration and examination of institutional documents. A multi-stage stratified random sampling method was adopted. The first stage of stratification involved random sampling by balloting of the departments. The second stage involved obtaining respondents’ population from the number of staff and students of sample population. Chi Square analysis tool for nominal variables and Pearson’s product moment correlation test for interval variables were used for data analysis. With ρ < 0.5, the study found significant correlation between the number of CAD literate academic staff and use of CAD in design studio/assignments; that increase in the overall number of teaching staff significantly affected total CAD credit units in the curriculum of the department. The implications of these findings were that for successful implementation leading to attainment of CAD proficiency to occur, CAD-literacy should be a factor in the recruitment of staff and a policy of in-house training should be pursued. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20design" title="computer-aided design">computer-aided design</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=personnel%20recruitment" title=" personnel recruitment"> personnel recruitment</a>, <a href="https://publications.waset.org/abstracts/search?q=curriculum" title=" curriculum"> curriculum</a> </p> <a href="https://publications.waset.org/abstracts/84166/significance-of-personnel-recruitment-in-implementation-of-computer-aided-design-curriculum-of-architecture-schools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computer%20aided%20engineering&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computer%20aided%20engineering&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computer%20aided%20engineering&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computer%20aided%20engineering&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computer%20aided%20engineering&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computer%20aided%20engineering&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computer%20aided%20engineering&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computer%20aided%20engineering&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computer%20aided%20engineering&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computer%20aided%20engineering&page=177">177</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computer%20aided%20engineering&page=178">178</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computer%20aided%20engineering&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>