CINXE.COM

Search results for: remote areas

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: remote areas</title> <meta name="description" content="Search results for: remote areas"> <meta name="keywords" content="remote areas"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="remote areas" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="remote areas"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7512</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: remote areas</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7512</span> Studying in the Outback: A Hermeneutic Phenomenological Study of the Lived Experience of Women in Regional, Rural and Remote Areas Studying Nursing Online</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keden%20Montgomery">Keden Montgomery</a>, <a href="https://publications.waset.org/abstracts/search?q=Kathie%20Ardzejewska"> Kathie Ardzejewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Alison%20Casey"> Alison Casey</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosemarie%20Hogan"> Rosemarie Hogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research was undertaken to explore the question “what is known about the experiences of regional, rural and remote Australian women undertaking a Bachelor of Nursing program delivered online?”. The findings will support future research aimed at improving the retention and completion rates of women studying nursing in regional, rural and remote areas.  There is a critical shortage of nurses working in regional, rural and remote (RRR) Australia. It is well supported that this shortage of nurses is most likely to be addressed by nursing students who are completing their studies in RRR areas. Despite this, students from RRR Australia remain an equity group and experience poorer outcomes than their metropolitan counterparts. Completion rates for RRR students who enrol in tertiary education courses are much less than students from metropolitan areas. In addition to this, RRR students are less likely than students from metropolitan areas to gain a tertiary level qualification at all, and even less likely to gain a Bachelor level degree which is required for Registered Nurses. Supporting students to remain in regional, rural and remote areas while they study reduces the need for students to relocate to metropolitan areas and to continue living and working in RRR areas after graduation. This research holds implications for workforce shortages internationally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nurse%20education" title="nurse education">nurse education</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20education" title=" online education"> online education</a>, <a href="https://publications.waset.org/abstracts/search?q=regional" title=" regional"> regional</a>, <a href="https://publications.waset.org/abstracts/search?q=rural" title=" rural"> rural</a>, <a href="https://publications.waset.org/abstracts/search?q=remote" title=" remote"> remote</a>, <a href="https://publications.waset.org/abstracts/search?q=workforce" title=" workforce"> workforce</a> </p> <a href="https://publications.waset.org/abstracts/169161/studying-in-the-outback-a-hermeneutic-phenomenological-study-of-the-lived-experience-of-women-in-regional-rural-and-remote-areas-studying-nursing-online" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7511</span> Benefits of Tele ICU in Remote Parts of India: A Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajendra%20Raval">Rajendra Raval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tele ICU services leverage advanced telecommunication technologies to enhance intensive care unit (ICU) capabilities. By integrating real-time remote monitoring, diagnostic tools, and expert consultations, these services provide continuous, high-quality care to critically ill patients. Healthcare professionals can access patient data, view live video feeds, and collaborate with on-site ICU teams, regardless of their physical location. This model improves patient outcomes through timely interventions, optimizes resource utilization, and extends the reach of specialized care to underserved or remote areas. The implementation of Tele ICU services represents a significant advancement in critical care, bridging gaps in accessibility and ensuring a consistent standard of care across various settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimised%20human%20resource" title="optimised human resource">optimised human resource</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20areas" title=" remote areas"> remote areas</a>, <a href="https://publications.waset.org/abstracts/search?q=tele-ICU" title=" tele-ICU"> tele-ICU</a>, <a href="https://publications.waset.org/abstracts/search?q=telemedicine" title=" telemedicine"> telemedicine</a> </p> <a href="https://publications.waset.org/abstracts/189159/benefits-of-tele-icu-in-remote-parts-of-india-a-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7510</span> Innovative Waste Management Practices in Remote Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dolores%20Hidalgo">Dolores Hidalgo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jes%C3%BAs%20M.%20Mart%C3%ADn-Marroqu%C3%ADn"> Jesús M. Martín-Marroquín</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Corona"> Francisco Corona</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Municipal waste consist of a variety of items that are everyday discarded by the population. They are usually collected by municipalities and include waste generated by households, commercial activities (local shops) and public buildings. The composition of municipal waste varies greatly from place to place, being mostly related to levels and patterns of consumption, rates of urbanization, lifestyles, and local or national waste management practices. Each year, a huge amount of resources is consumed in the EU, and according to that, also a huge amount of waste is produced. The environmental problems derived from the management and processing of these waste streams are well known, and include impacts on land, water and air. The situation in remote areas is even worst. Difficult access when climatic conditions are adverse, remoteness of centralized municipal treatment systems or dispersion of the population, are all factors that make remote areas a real municipal waste treatment challenge. Furthermore, the scope of the problem increases significantly because the total lack of awareness of the existing risks in this area together with the poor implementation of advanced culture on waste minimization and recycling responsibly. The aim of this work is to analyze the existing situation in remote areas in reference to the production of municipal waste and evaluate the efficiency of different management alternatives. Ideas for improving waste management in remote areas include, for example: the implementation of self-management systems for the organic fraction; establish door-to-door collection models; promote small-scale treatment facilities or adjust the rates of waste generation thereof. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=door%20to%20door%20collection" title="door to door collection">door to door collection</a>, <a href="https://publications.waset.org/abstracts/search?q=islands" title=" islands"> islands</a>, <a href="https://publications.waset.org/abstracts/search?q=isolated%20areas" title=" isolated areas"> isolated areas</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20waste" title=" municipal waste"> municipal waste</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20areas" title=" remote areas"> remote areas</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20communities" title=" rural communities"> rural communities</a> </p> <a href="https://publications.waset.org/abstracts/59765/innovative-waste-management-practices-in-remote-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7509</span> From the Bright Lights of the City to the Shadows of the Bush: Expanding Knowledge through a Case-Based Teaching Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henriette%20van%20Rensburg">Henriette van Rensburg</a>, <a href="https://publications.waset.org/abstracts/search?q=Betty%20Adcock"> Betty Adcock </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concern about the lack of knowledge of quality teaching and teacher retention in rural and remote areas of Australia, has caused academics to improve pre-service teachers’ understanding of this problem. The participants in this study were forty students enrolled in an undergraduate educational course (EDO3341 Teaching in rural and remote communities) at the University of Southern Queensland in Toowoomba in 2012. This study involved an innovative case-based teaching approach in order to broaden their generally under-informed understanding of teaching in a rural and remote area. Three themes have been identified through analysing students’ critical reflections: learning expertise, case-based learning support and authentic learning. The outcomes identified the changes in pre-service teachers’ understanding after they have deepened their knowledge of the realities of teaching in rural and remote areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rural%20and%20remote%20education" title="rural and remote education">rural and remote education</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20based%20teaching" title=" case based teaching"> case based teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=innovative%20education%20approach" title=" innovative education approach"> innovative education approach</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20education" title=" higher education"> higher education</a> </p> <a href="https://publications.waset.org/abstracts/18292/from-the-bright-lights-of-the-city-to-the-shadows-of-the-bush-expanding-knowledge-through-a-case-based-teaching-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7508</span> RV Car Clinic as Cost-Effective Health Care</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dessy%20Arumsari">Dessy Arumsari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ais%20Assana%20Athqiya"> Ais Assana Athqiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Mulyaminingrum"> Mulyaminingrum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Healthcare in remote areas is one of the major concerns in Indonesia. Building hospitals in a nation of 18.000 islands with a larger-than-life bureaucracy and problems with corruption, a critical shortage of qualified medical professionals and well-heeled patients resigned to traveling abroad for health care is a hard feat to accomplish. To assuring that all populations have access to appropriate and cost-effective care, a new solution to tackle this problem is with the presence of RV Car Clinic. This car has a concept such as a walking hospital that provides health facilities inside it. All of the health professionals who work in RV Car Clinic will do the rotation for a year in order to the equitable distribution of health workers. We need to advocate the policy makers to help realize RV Car Clinic in remote areas. Health services can be disseminated by the present of RV Car Clinic. Summarily, the local communities can get cost effectively because RV Car Clinic will come to their place and serve the health services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health%20policy" title="health policy">health policy</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20professional" title=" health professional"> health professional</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20areas" title=" remote areas"> remote areas</a>, <a href="https://publications.waset.org/abstracts/search?q=RV%20Car%20Clinic" title=" RV Car Clinic"> RV Car Clinic</a> </p> <a href="https://publications.waset.org/abstracts/61049/rv-car-clinic-as-cost-effective-health-care" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7507</span> Identification of Flood Prone Areas in Adigrat Town Using Boolean Logic with GIS and Remote Sensing Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fikre%20Belay%20Tekulu">Fikre Belay Tekulu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Adigrat town lies in the Tigray region of Ethiopia. This region is mountainous and experiences a semiarid type of climate. Most of the rainfall occurs in four months of the year, which are June to September. During this season, flood is a common natural disaster, especially in urban areas. In this paper, an attempt is made to identify flood-prone areas in Adigrat town using Boolean logic with GIS and remote sensing techniques. Three parameters were incorporated as land use type, elevation, and slope. Boolean logic was used as land use equal to buildup land, elevation less than 2430 m, and slope less than 5 degrees. As a result, 0.575 km² was identified severely affected by floods during the rainy season. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood" title="flood">flood</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrology" title=" hydrology"> hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=Adigrat" title=" Adigrat"> Adigrat</a> </p> <a href="https://publications.waset.org/abstracts/161977/identification-of-flood-prone-areas-in-adigrat-town-using-boolean-logic-with-gis-and-remote-sensing-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7506</span> Security Features for Remote Healthcare System: A Feasibility Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamil%20Chelvi%20Vadivelu">Tamil Chelvi Vadivelu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurazean%20Maarop"> Nurazean Maarop</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasimah%20Che%20Yusoff"> Rasimah Che Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhana%20Aini%20Saludin"> Farhana Aini Saludin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Implementing a remote healthcare system needs to consider many security features. Therefore, before any deployment of the remote healthcare system, a feasibility study from the security perspective is crucial. Remote healthcare system using WBAN technology has been used in other countries for medical purposes but in Malaysia, such projects are still not yet implemented. This study was conducted qualitatively. The interview results involving five healthcare practitioners are further elaborated. The study has addressed four important security features in order to incorporate remote healthcare system using WBAN in Malaysian government hospitals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20healthcare" title="remote healthcare">remote healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=IT%20security" title=" IT security"> IT security</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20features" title=" security features"> security features</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20application" title=" wireless sensor application"> wireless sensor application</a> </p> <a href="https://publications.waset.org/abstracts/20183/security-features-for-remote-healthcare-system-a-feasibility-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7505</span> Factors Influencing Soil Organic Carbon Storage Estimation in Agricultural Soils: A Machine Learning Approach Using Remote Sensing Data Integration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Sunantha">O. Sunantha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zhenfeng"> S. Zhenfeng</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Phattraporn"> S. Phattraporn</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zeeshan"> A. Zeeshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The decline of soil organic carbon (SOC) in global agriculture is a critical issue requiring rapid and accurate estimation for informed policymaking. While it is recognized that SOC predictors vary significantly when derived from remote sensing data and environmental variables, identifying the specific parameters most suitable for accurately estimating SOC in diverse agricultural areas remains a challenge. This study utilizes remote sensing data to precisely estimate SOC and identify influential factors in diverse agricultural areas, such as paddy, corn, sugarcane, cassava, and perennial crops. Extreme gradient boosting (XGBoost), random forest (RF), and support vector regression (SVR) models are employed to analyze these factors' impact on SOC estimation. The results show key factors influencing SOC estimation include slope, vegetation indices (EVI), spectral reflectance indices (red index, red edge2), temperature, land use, and surface soil moisture, as indicated by their averaged importance scores across XGBoost, RF, and SVR models. Therefore, using different machine learning algorithms for SOC estimation reveals varying influential factors from remote sensing data and environmental variables. This approach emphasizes feature selection, as different machine learning algorithms identify various key factors from remote sensing data and environmental variables for accurate SOC estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factors%20influencing%20SOC%20estimation" title="factors influencing SOC estimation">factors influencing SOC estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing%20data" title=" remote sensing data"> remote sensing data</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20variables" title=" environmental variables"> environmental variables</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/188382/factors-influencing-soil-organic-carbon-storage-estimation-in-agricultural-soils-a-machine-learning-approach-using-remote-sensing-data-integration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7504</span> Wildfires Assessed By Remote Sensed Images And Burned Land Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20da%20Concei%C3%A7%C3%A3o%20Proen%C3%A7a">Maria da Conceição Proença</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This case study implements the evaluation of burned areas that suffered successive wildfires in Portugal mainland during the summer of 2017, killing more than 60 people. It’s intended to show that this evaluation can be done with remote sensing data free of charges in a simple laptop, with open-source software, describing the not-so-simple methodology step by step, to make it available for county workers in city halls of the areas attained, where the availability of information is essential for the immediate planning of mitigation measures, such as restoring road access, allocate funds for the recovery of human dwellings and assess further restoration of the ecological system. Wildfires also devastate forest ecosystems having a direct impact on vegetation cover and killing or driving away from the animal population. The economic interest is also attained, as the pinewood burned becomes useless for the noblest applications, so its value decreases, and resin extraction ends for several years. The tools described in this paper enable the location of the areas where took place the annihilation of natural habitats and establish a baseline for major changes in forest ecosystems recovery. Moreover, the result allows the follow up of the surface fuel loading, enabling the targeting and evaluation of restoration measures in a time basis planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title="image processing">image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=wildfires" title=" wildfires"> wildfires</a>, <a href="https://publications.waset.org/abstracts/search?q=burned%20areas%20evaluation" title=" burned areas evaluation"> burned areas evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=sentinel-2" title=" sentinel-2"> sentinel-2</a> </p> <a href="https://publications.waset.org/abstracts/144422/wildfires-assessed-by-remote-sensed-images-and-burned-land-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7503</span> Assesing Spatio-Temporal Growth of Kochi City Using Remote Sensing Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navya%20Saira%20%20George">Navya Saira George</a>, <a href="https://publications.waset.org/abstracts/search?q=Patroba%20Achola%20Odera"> Patroba Achola Odera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to determine spatio-temporal expansion of Kochi City, situated on the west coast of Kerala State in India. Remote sensing and GIS techniques have been used to determine land use/cover and urban expansion of the City. Classification of Landsat images of the years 1973, 1988, 2002 and 2018 have been used to reproduce a visual story of the growth of the City over a period of 45 years. Accuracy range of 0.79 ~ 0.86 is achieved with kappa coefficient range of 0.69 ~ 0.80. Results show that the areas covered by vegetation and water bodies decreased progressively from 53.0 ~ 30.1% and 34.1 ~ 26.2% respectively, while built-up areas increased steadily from 12.5 to 42.2% over the entire study period (1973 ~ 2018). The shift in land use from agriculture to non-agriculture may be attributed to the land reforms since 1980s. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geographical%20Information%20Systems" title="Geographical Information Systems">Geographical Information Systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Kochi%20City" title=" Kochi City"> Kochi City</a>, <a href="https://publications.waset.org/abstracts/search?q=Land%20use%2Fcover" title=" Land use/cover"> Land use/cover</a>, <a href="https://publications.waset.org/abstracts/search?q=Remote%20Sensing" title=" Remote Sensing"> Remote Sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=Urban%20Sprawl" title=" Urban Sprawl"> Urban Sprawl</a> </p> <a href="https://publications.waset.org/abstracts/124291/assesing-spatio-temporal-growth-of-kochi-city-using-remote-sensing-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7502</span> Combining ASTER Thermal Data and Spatial-Based Insolation Model for Identification of Geothermal Active Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Hussein">Khalid Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Abdalati"> Waleed Abdalati</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakorn%20Petchprayoon"> Pakorn Petchprayoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaula%20Alkaabi"> Khaula Alkaabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we integrated ASTER thermal data with an area-based spatial insolation model to identify and delineate geothermally active areas in Yellowstone National Park (YNP). Two pairs of L1B ASTER day- and nighttime scenes were used to calculate land surface temperature. We employed the Emissivity Normalization Algorithm which separates temperature from emissivity to calculate surface temperature. We calculated the incoming solar radiation for the area covered by each of the four ASTER scenes using an insolation model and used this information to compute temperature due to solar radiation. We then identified the statistical thermal anomalies using land surface temperature and the residuals calculated from modeled temperatures and ASTER-derived surface temperatures. Areas that had temperatures or temperature residuals greater than 2&sigma; and between 1&sigma; and 2&sigma; were considered ASTER-modeled thermal anomalies. The areas identified as thermal anomalies were in strong agreement with the thermal areas obtained from the YNP GIS database. Also the YNP hot springs and geysers were located within areas identified as anomalous thermal areas. The consistency between our results and known geothermally active areas indicate that thermal remote sensing data, integrated with a spatial-based insolation model, provides an effective means for identifying and locating areas of geothermal activities over large areas and rough terrain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20remote%20sensing" title="thermal remote sensing">thermal remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=insolation%20model" title=" insolation model"> insolation model</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20surface%20temperature" title=" land surface temperature"> land surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20anomalies" title=" geothermal anomalies"> geothermal anomalies</a> </p> <a href="https://publications.waset.org/abstracts/25535/combining-aster-thermal-data-and-spatial-based-insolation-model-for-identification-of-geothermal-active-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7501</span> Efficient Schemes of Classifiers for Remote Sensing Satellite Imageries of Land Use Pattern Classifications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Patil">S. S. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachidanand%20Kini"> Sachidanand Kini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classification of land use patterns is compelling in complexity and variability of remote sensing imageries data. An imperative research in remote sensing application exploited to mine some of the significant spatially variable factors as land cover and land use from satellite images for remote arid areas in Karnataka State, India. The diverse classification techniques, unsupervised and supervised consisting of maximum likelihood, Mahalanobis distance, and minimum distance are applied in Bellary District in Karnataka State, India for the classification of the raw satellite images. The accuracy evaluations of results are compared visually with the standard maps with ground-truths. We initiated with the maximum likelihood technique that gave the finest results and both minimum distance and Mahalanobis distance methods over valued agriculture land areas. In meanness of mislaid few irrelevant features due to the low resolution of the satellite images, high-quality accord between parameters extracted automatically from the developed maps and field observations was found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahalanobis%20distance" title="Mahalanobis distance">Mahalanobis distance</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20distance" title=" minimum distance"> minimum distance</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised" title=" supervised"> supervised</a>, <a href="https://publications.waset.org/abstracts/search?q=unsupervised" title=" unsupervised"> unsupervised</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20classification%20accuracy" title=" user classification accuracy"> user classification accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=producer%27s%20classification%20accuracy" title=" producer&#039;s classification accuracy"> producer&#039;s classification accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood" title=" maximum likelihood"> maximum likelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=kappa%20coefficient" title=" kappa coefficient"> kappa coefficient</a> </p> <a href="https://publications.waset.org/abstracts/103621/efficient-schemes-of-classifiers-for-remote-sensing-satellite-imageries-of-land-use-pattern-classifications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7500</span> Answering the Call for Empirical Evidence: Burnout, Context and Remote Work</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clif%20P.%20Lewis">Clif P. Lewis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ise-Lu%20M%C3%B6ller"> Ise-Lu Möller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The COVID-19 pandemic has had a profound impact on employment. The ‘future of work’ is now the ‘present of work’. Changes in the social context within which organisations are embedded necessitated drastic changes in how we work. Through the leveraging of technology and changes in mindset, we have seen exciting innovations in the world of work. This global shift in the context of employment offers a unique opportunity to examine a key unresolved issue in the study of Burnout, namely contextual antecedents. This study answers the call for deeper empirical insight into the contexts within which Burnout occur. We explore the emergence of Burnout within a remote work context by using survey data that incorporates the latest global work trends into the Areas of Worklife framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=burnout" title="burnout">burnout</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20work" title=" remote work"> remote work</a>, <a href="https://publications.waset.org/abstracts/search?q=pandemic" title=" pandemic"> pandemic</a>, <a href="https://publications.waset.org/abstracts/search?q=wellness" title=" wellness"> wellness</a> </p> <a href="https://publications.waset.org/abstracts/144624/answering-the-call-for-empirical-evidence-burnout-context-and-remote-work" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7499</span> Remote Wireless Communications Lab in Real Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Miloudi%20Djelloul">El Miloudi Djelloul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technology nowadays enables the remote access to laboratory equipment and instruments via Internet. This is especially useful in engineering education, where students can conduct laboratory experiment remotely. Such remote laboratory access can enable student to use expensive laboratory equipment, which is not usually available to students. In this paper, we present a method of creating a Web-based Remote Laboratory Experimentation in the master degree course “Wireless Communications Systems” which is part of “ICS (Information and Communication Systems)” and “Investment Management in Telecommunications” curriculums. This is done within the RIPLECS Project and the NI2011 FF005 Research Project “Implementation of Project-Based Learning in an Interdisciplinary Master Program”. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20access" title="remote access">remote access</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20laboratory" title=" remote laboratory"> remote laboratory</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20telecommunications" title=" wireless telecommunications"> wireless telecommunications</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20antenna-switching%20controller%20board%20%28EASCB%29" title=" external antenna-switching controller board (EASCB)"> external antenna-switching controller board (EASCB)</a> </p> <a href="https://publications.waset.org/abstracts/20947/remote-wireless-communications-lab-in-real-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7498</span> Use of Remote Sensing for Seasonal and Temporal Monitoring in Wetlands: A Case Study of Akyatan Lagoon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Cilek">A. Cilek</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Berberoglu"> S. Berberoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Akin%20Tanriover"> A. Akin Tanriover</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Donmez"> C. Donmez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wetlands are the areas which have important effects and functions on protecting human life, adjust to nature, and biological variety, besides being potential exploitation sources. Observing the changes in these sensitive areas is important to study for data collecting and correct planning for the future. Remote sensing and Geographic Information System are being increasingly used for environmental studies such as biotope mapping and habitat monitoring. Akyatan Lagoon, one of the most important wetlands in Turkey, has been facing serious threats from agricultural applications in recent years. In this study, seasonal and temporal monitoring in wetlands system are determined by using remotely sensed data and Geographic Information Systems (GIS) between 1985 and 2015. The research method is based on classifying and mapping biotopes in the study area. The natural biotope types were determined as coastal sand dunes, salt marshes, river beds, coastal woods, lakes, lagoons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biotope%20mapping" title="biotope mapping">biotope mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=wetlands" title=" wetlands"> wetlands</a> </p> <a href="https://publications.waset.org/abstracts/61888/use-of-remote-sensing-for-seasonal-and-temporal-monitoring-in-wetlands-a-case-study-of-akyatan-lagoon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7497</span> Monitoring Urban Green Space Cover Change Using GIS and Remote Sensing in Two Rapidly Urbanizing Cities, Debre Berhan and Debre Markos, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alemaw%20Kefale">Alemaw Kefale</a>, <a href="https://publications.waset.org/abstracts/search?q=Aramde%20Fetene"> Aramde Fetene</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayal%20Desta"> Hayal Desta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring the amount of green space in urban areas is important for ensuring sustainable development and proper management. The study analyzed changes in urban green space coverage over the past 20 years in two rapidly urbanizing cities in Ethiopia, Debre Berhan and Debre Markos, using GIS and remote sensing. The researchers used Landsat 5 and 8 data with a spatial resolution of 30 m to determine different land use and land cover classes, including urban green spaces, barren and croplands, built-up areas, and water bodies. The classification accuracy ranged between 90% and 91.4%, with a Kappa Statistic of 0.85 to 0.88. The results showed that both cities experienced significant decreases in vegetation cover in their urban cores between 2000 and 2020, with radical changes observed from green spaces and croplands to built-up areas. In Debre Berhan, barren and croplands decreased by 32.96%, while built-up and green spaces increased by 357.9% and 37.4%, respectively, in 2020. In Debre Markos, built-up areas increased by 224.2%, while green spaces and barren and croplands decreased by 41% and 5.71%, respectively. The spatial structure of cities and planning policies were noticed as the major factors for big green cover change. Thus it has an implication for other rapidly urbanized cities in Africa and Asia. Overall, rapid urbanization threatens green spaces and agricultural areas, highlighting the need for ecological-based spatial planning in rapidly urbanizing cities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20space%20coverage" title="green space coverage">green space coverage</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20and%20remote%20sensing" title=" GIS and remote sensing"> GIS and remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=Landsat" title=" Landsat"> Landsat</a>, <a href="https://publications.waset.org/abstracts/search?q=LULC" title=" LULC"> LULC</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethiopia" title=" Ethiopia"> Ethiopia</a> </p> <a href="https://publications.waset.org/abstracts/181113/monitoring-urban-green-space-cover-change-using-gis-and-remote-sensing-in-two-rapidly-urbanizing-cities-debre-berhan-and-debre-markos-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7496</span> Remote Sensing and Gis Use in Trends of Urbanization and Regional Planning </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sawan%20Kumar%20Jangid">Sawan Kumar Jangid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper attempts to study various facets of urbanization and regional planning in the framework of the present conditions and future needs. Urbanization is a dynamic system in which development and changes are prominent features; which implies population growth and changes in the primary, secondary and tertiary sector in the economy. Urban population is increasing day by day due to a natural increase in population and migration from rural areas, and the impact is bound to have in urban areas in terms of infrastructure, environment, water supply and other vital resources. For the organized way of planning and monitoring the implementation of Physical urban and regional plans high-resolution satellite imagery is the potential solution. Now the Remote Sensing data is widely used in urban as well as regional planning, infrastructure planning mainly telecommunication and transport network planning, highway development, accessibility to market area development in terms of catchment and population built-up area density. With Remote Sensing it is possible to identify urban growth, which falls outside the formal planning control. Remote Sensing and GIS technique combined together facilitate the planners, in making a decision, for general public and investors to have relevant data for their use in minimum time. This paper sketches out the Urbanization modal for the future development of Urban and Regional Planning. The paper suggests, a dynamic approach towards regional development strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=development" title="development">development</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic" title=" dynamic"> dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=migration" title=" migration"> migration</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution" title=" resolution"> resolution</a> </p> <a href="https://publications.waset.org/abstracts/56529/remote-sensing-and-gis-use-in-trends-of-urbanization-and-regional-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7495</span> Micro Grids, Solution to Power Off-Grid Areas in Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Naveed%20Iqbal">M. Naveed Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheza%20Fatima"> Sheza Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Noman%20Shabbir"> Noman Shabbir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the presence of energy crisis in Pakistan, off-grid remote areas are not on priority list. The use of new large scale coal fired power plants will also make this situation worst. Therefore, the greatest challenge in our society is to explore new ways to power off grid remote areas with renewable energy sources. It is time for a sustainable energy policy which puts consumers, the environment, human health, and peace first. The renewable energy is one of the biggest growing sectors of the energy industry. Therefore, the large scale use of micro grid is thus described here with modeling, simulation, planning and operating of the micro grid. The goal of this research paper is to go into detail of a library of major components of micro grid. The introduction will go through the detail view of micro grid definition. Then, the simulation of Micro Grid in MATLAB/ Simulink including the Photo Voltaic Cell will be described with the detailed modeling. The simulation with the design and modeling will be introduced too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20grids" title="micro grids">micro grids</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20generation" title=" distribution generation"> distribution generation</a>, <a href="https://publications.waset.org/abstracts/search?q=PV" title=" PV"> PV</a>, <a href="https://publications.waset.org/abstracts/search?q=off-grid%20operations" title=" off-grid operations"> off-grid operations</a> </p> <a href="https://publications.waset.org/abstracts/48418/micro-grids-solution-to-power-off-grid-areas-in-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7494</span> Gold-Bearing Alteration Zones in South Eastern Desert of Egypt: Geology and Remote Sensing Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20F.%20Sadek">Mohamed F. Sadek</a>, <a href="https://publications.waset.org/abstracts/search?q=Safaa%20M.%20%20Hassan"> Safaa M. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Safwat%20S.%20%20Gabr"> Safwat S. Gabr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several alteration zones hosting gold mineralization are wide spreading in the South Eastern Desert of Egypt where gold has been mined from many localities since the time of the Pharaohs. The Sukkari is the only mine currently producing gold in the Eastern Desert of Egypt. Therefore, it is necessary to conduct more detailed studies on these locations using modern exploratory methods. The remote sensing plays an important role in lithological mapping and detection of associated hydrothermal mineralization particularly the exploration of gold mineralization. This study is focused on three localities in South Eastern Desert of Egypt, namely Beida, Defiet and Hoteib-Eiqat aiming to detect the gold-bearing hydrothermal alteration zones using the integrated data of remote sensing, field study and mineralogical investigation. Generally, these areas are dominated by Precambrian basement rocks including metamorphic and magmatic assemblages. They comprise ophiolitic serpentinite-talc carbonate, island-arc metavolcanics which were intruded by syn to late orogenic mafic and felsic intrusions mainly gabbro, granodiorite and monzogranite. The processed data of Advanced Spaceborne Thermal Emission and Reflection (ASTER) and Landsat-8 images are used in the present study to map the gold bearing-hydrothermal alteration zones. Band rationing and principal component analysis techniques are used to discriminate the different lithologic units exposed in the studied three areas. Field study and mineralogical investigation have been used to verify the remote sensing data. This study concluded that, the integrated remote sensing data with geological, field and mineralogical investigations are very effective in lithological discrimination, detailed geological mapping and detection of the gold-bearing hydrothermal alteration zones. More detailed exploration for gold mineralization with the help of remote sensing techniques is recommended to evaluate its potentiality in the study areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pan-african" title="pan-african">pan-african</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=landsat-8%3B%20ASTER" title=" landsat-8; ASTER"> landsat-8; ASTER</a>, <a href="https://publications.waset.org/abstracts/search?q=gold" title=" gold"> gold</a>, <a href="https://publications.waset.org/abstracts/search?q=alteration%20zones" title=" alteration zones"> alteration zones</a> </p> <a href="https://publications.waset.org/abstracts/114792/gold-bearing-alteration-zones-in-south-eastern-desert-of-egypt-geology-and-remote-sensing-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7493</span> Standardization of Solar Water Pumping System for Remote Areas in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danar%20Agus%20Susanto">Danar Agus Susanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Hermawan%20Febriansyah"> Hermawan Febriansyah</a>, <a href="https://publications.waset.org/abstracts/search?q=Meilinda%20Ayundyahrini"> Meilinda Ayundyahrini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The availability of spring water to meet people demand is often a problem, especially in tropical areas with very limited surface water sources, or very deep underground water. Although the technology and equipment of pumping system are available and easy to obtain, but in remote areas, the availability of pumping system is difficult, due to the unavailability of fuel or the lack of electricity. Solar Water Pumping System (SWPS) became one of the alternatives that can overcome these obstacles. In the tropical country, sunlight can be obtained throughout the year, even in remote areas. SWPS were already widely built in Indonesia, but many encounter problems during operations, such as decreased of efficiency; pump damaged, damaged of controllers or inverters, and inappropriate photovoltaic performance. In 2011, International Electrotechnical Commission (IEC) issued the IEC standard 62253:2011 titled Photovoltaic pumping systems - Design qualification and performance measurements. This standard establishes design qualifications and performance measurements related to the product of a solar water pumping system. National Standardization Agency of Indonesia (BSN) as the national standardization body in Indonesia, has not set the standard related to solar water pumping system. This research to study operational procedures of SWPS by adopting of IEC Standard 62253:2011 to be Indonesia Standard (SNI). This research used literature study and field observation for installed SWPS in Indonesia. Based on the results of research on SWPS already installed in Indonesia, IEC 62253: 2011 standard can improve efficiency and reduce operational failure of SWPS. SWPS installed in Indonesia still has GAP of 51% against parameters in IEC standard 62253: 2011. The biggest factor not being met is related to operating and maintenance handbooks for personnel that included operation and repair procedures. This may result in operator ignorance in installing, operating and maintaining the system. The Photovoltaic (PV) was also the most non-compliance factor of 71%, although there are 22 Indonesia Standard (SNI) for PV (modules, installation, testing, and construction). These research samples (installers, manufacturers/distributors, and experts) agreed on the parameter in the IEC standard 62253: 2011 able to improve the quality of SWPS in Indonesia. Recommendations of this study, that is required the adoption of IEC standard 62253:2011 into SNI to support the development of SWPS for remote areas in Indonesia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=inappropriate%20installation" title=" inappropriate installation"> inappropriate installation</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20areas" title=" remote areas"> remote areas</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20water%20pumping%20system" title=" solar water pumping system"> solar water pumping system</a>, <a href="https://publications.waset.org/abstracts/search?q=standard" title=" standard"> standard</a> </p> <a href="https://publications.waset.org/abstracts/90760/standardization-of-solar-water-pumping-system-for-remote-areas-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7492</span> Application of Unmanned Aerial Vehicle in Geohazard Mapping: Case Study Dominica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Mickson">Michael Mickson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent development of unmanned aerial vehicles (UAVs) has been increasing the number of technical solutions that can be used to identify, map, and manage the effects of geohazards. UAVs are generally cheaper and more versatile than traditional remote-sensing techniques, and they can be therefore considered as a good alternative for the acquisition of imagery and other remote sensing data before, during and after a natural hazard event. This study aims to use UAV for investigating areas susceptible to high mobility flows such as debris flow in Dominica, especially after the 2017 Hurricane Maria. The use of UAVs in identifying, mapping and managing of natural hazards helps to mitigate the negative effects of natural hazards on livelihood, properties and the built environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle%20%28UAV%29" title="unmanned aerial vehicle (UAV)">unmanned aerial vehicle (UAV)</a>, <a href="https://publications.waset.org/abstracts/search?q=geohazards" title=" geohazards"> geohazards</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominica" title=" Dominica "> Dominica </a> </p> <a href="https://publications.waset.org/abstracts/118559/application-of-unmanned-aerial-vehicle-in-geohazard-mapping-case-study-dominica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7491</span> Teaching Remotely during COVID-19 Pandemic: Effectiveness and Challenges Faced by Teachers of Remote Teaching Strategies with Autistic Children in the Kingdom of Bahrain-Teachers’ Point of View</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wid%20Daghustani">Wid Daghustani</a>, <a href="https://publications.waset.org/abstracts/search?q=Alison%20Mackenzie"> Alison Mackenzie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to understand how teachers of autistic children responded to teaching remotely during the Covid-19 pandemic. Six teachers who work in an autism centre were interviewed in face-to-face, semi-structured interviews in the Kingdom of Bahrain. The interviews focused on three themes, the effectiveness of remote teaching strategies, the types of remote teachings employed, and the impact on student’s educational outcomes. WhatsApp video calls were used to conduct the remote teaching since it was easy for mothers to us. According to all teachers, the unprecedented change was quite challenging for autos and their families, especially the mothers being the primary caretakers. Additionally, the effectiveness of remote teaching mainly depended on the cooperation and the willingness of the mothers and on the behaviour of the autistic child. Overall, teachers have agreed that in comparison to face-to-face teaching, remote teaching was not a very successful experience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20teaching" title="remote teaching">remote teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=autistic" title=" autistic"> autistic</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=teachers" title=" teachers"> teachers</a> </p> <a href="https://publications.waset.org/abstracts/151274/teaching-remotely-during-covid-19-pandemic-effectiveness-and-challenges-faced-by-teachers-of-remote-teaching-strategies-with-autistic-children-in-the-kingdom-of-bahrain-teachers-point-of-view" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7490</span> An Industrial Scada System Remote Control Using Mobile Phones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmidah%20Elgali">Ahmidah Elgali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SCADA is the abbreviation for "Administrative Control And Data Acquisition." SCADA frameworks are generally utilized in industry for administrative control and information securing of modern cycles. Regular SCADA frameworks use PC, journal, slim client, and PDA as a client. In this paper, a Java-empowered cell phone has been utilized as a client in an example SCADA application to show and regulate the place of an example model crane. The paper presents a genuine execution of the online controlling of the model crane through a cell phone. The remote correspondence between the cell phone and the SCADA server is performed through a base station by means of general parcel radio assistance GPRS and remote application convention WAP. This application can be used in industrial sites in areas that are likely to be exposed to a security emergency (like terrorist attacks) which causes the sudden exit of the operators; however, no time to perform the shutdown procedures for the plant. Hence this application allows shutting down units and equipment remotely by mobile and so avoids damage and losses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control" title="control">control</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial" title=" industrial"> industrial</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile" title=" mobile"> mobile</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a>, <a href="https://publications.waset.org/abstracts/search?q=remote" title=" remote"> remote</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a> </p> <a href="https://publications.waset.org/abstracts/150682/an-industrial-scada-system-remote-control-using-mobile-phones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7489</span> Land Subsidence Monitoring in Semarang and Demak Coastal Area Using Persistent Scatterer Interferometric Synthetic Aperture Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reyhan%20Azeriansyah">Reyhan Azeriansyah</a>, <a href="https://publications.waset.org/abstracts/search?q=Yudo%20Prasetyo"> Yudo Prasetyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Bambang%20Darmo%20Yuwono"> Bambang Darmo Yuwono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land subsidence is one of the problems that occur in the coastal areas of Java Island, one of which is the Semarang and Demak areas located in the northern region of Central Java. The impact of sea erosion, rising sea levels, soil structure vulnerable and economic development activities led to both these areas often occurs on land subsidence. To know how much land subsidence that occurred in the region needs to do the monitoring carried out by remote sensing methods such as PS-InSAR method. PS-InSAR is a remote sensing technique that is the development of the DInSAR method that can monitor the movement of the ground surface that allows users to perform regular measurements and monitoring of fixed objects on the surface of the earth. PS InSAR processing is done using Standford Method of Persistent Scatterers (StaMPS). Same as the recent analysis technique, Persistent Scatterer (PS) InSAR addresses both the decorrelation and atmospheric problems of conventional InSAR. StaMPS identify and extract the deformation signal even in the absence of bright scatterers. StaMPS is also applicable in areas undergoing non-steady deformation, with no prior knowledge of the variations in deformation rate. In addition, this method can also cover a large area so that the decline in the face of the land can cover all coastal areas of Semarang and Demak. From the PS-InSAR method can be known the impact on the existing area in Semarang and Demak region per year. The PS-InSAR results will also be compared with the GPS monitoring data to determine the difference in land decline that occurs between the two methods. By utilizing remote sensing methods such as PS-InSAR method, it is hoped that the PS-InSAR method can be utilized in monitoring the land subsidence and can assist other survey methods such as GPS surveys and the results can be used in policy determination in the affected coastal areas of Semarang and Demak. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20area" title="coastal area">coastal area</a>, <a href="https://publications.waset.org/abstracts/search?q=Demak" title=" Demak"> Demak</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20subsidence" title=" land subsidence"> land subsidence</a>, <a href="https://publications.waset.org/abstracts/search?q=PS-InSAR" title=" PS-InSAR"> PS-InSAR</a>, <a href="https://publications.waset.org/abstracts/search?q=Semarang" title=" Semarang"> Semarang</a>, <a href="https://publications.waset.org/abstracts/search?q=StaMPS" title=" StaMPS"> StaMPS</a> </p> <a href="https://publications.waset.org/abstracts/88688/land-subsidence-monitoring-in-semarang-and-demak-coastal-area-using-persistent-scatterer-interferometric-synthetic-aperture-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7488</span> Satellite-Based Drought Monitoring in Korea: Methodologies and Merits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joo-Heon%20Lee">Joo-Heon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seo-Yeon%20Park"> Seo-Yeon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanyang%20Sur"> Chanyang Sur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho-Won%20Jang"> Ho-Won Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Satellite-based remote sensing technique has been widely used in the area of drought and environmental monitoring to overcome the weakness of in-situ based monitoring. There are many advantages of remote sensing for drought watch in terms of data accessibility, monitoring resolution and types of available hydro-meteorological data including environmental areas. This study was focused on the applicability of drought monitoring based on satellite imageries by applying to the historical drought events, which had a huge impact on meteorological, agricultural, and hydrological drought. Satellite-based drought indices, the Standardized Precipitation Index (SPI) using Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM); Vegetation Health Index (VHI) using MODIS based Land Surface Temperature (LST), and Normalized Difference Vegetation Index (NDVI); and Scaled Drought Condition Index (SDCI) were evaluated to assess its capability to analyze the complex topography of the Korean peninsula. While the VHI was accurate when capturing moderate drought conditions in agricultural drought-damaged areas, the SDCI was relatively well monitored in hydrological drought-damaged areas. In addition, this study found correlations among various drought indices and applicability using Receiver Operating Characteristic (ROC) method, which will expand our understanding of the relationships between hydro-meteorological variables and drought events at global scale. The results of this research are expected to assist decision makers in taking timely and appropriate action in order to save millions of lives in drought-damaged areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought%20monitoring" title="drought monitoring">drought monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=moderate%20resolution%20imaging%20spectroradiometer%20%28MODIS%29" title=" moderate resolution imaging spectroradiometer (MODIS)"> moderate resolution imaging spectroradiometer (MODIS)</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver%20operating%20characteristic%20%28ROC%29" title=" receiver operating characteristic (ROC)"> receiver operating characteristic (ROC)</a> </p> <a href="https://publications.waset.org/abstracts/71898/satellite-based-drought-monitoring-in-korea-methodologies-and-merits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7487</span> Remote Patient Monitoring for Covid-19</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Launcelot%20McGrath">Launcelot McGrath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Coronavirus disease 2019 (COVID-19) has spread rapidly around the world, resulting in high mortality rates and very large numbers of people requiring medical treatment in ICU. Management of patient hospitalisation is a critical aspect to control this disease and reduce chaos in the healthcare systems. Remote monitoring provides a solution to protect vulnerable and elderly high-risk patients. Continuous remote monitoring of oxygen saturation, respiratory rate, heart rate, and temperature, etc., provides medical systems with up-to-the-minute information about their patients' statuses. Remote monitoring also limits the spread of infection by reducing hospital overcrowding. This paper examines the potential of remote monitoring for Covid-19 to assist in the rapid identification of patients at risk, facilitate the detection of patient deterioration, and enable early interventions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20monitoring" title="remote monitoring">remote monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20care" title=" patient care"> patient care</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20saturation" title=" oxygen saturation"> oxygen saturation</a>, <a href="https://publications.waset.org/abstracts/search?q=Covid-19" title=" Covid-19"> Covid-19</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital%20management" title=" hospital management"> hospital management</a> </p> <a href="https://publications.waset.org/abstracts/158709/remote-patient-monitoring-for-covid-19" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7486</span> Assessment of Environmental Quality of an Urban Setting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Namrata%20Khatri">Namrata Khatri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid growth of cities is transforming the urban environment and posing significant challenges for environmental quality. This study examines the urban environment of Belagavi in Karnataka, India, using geostatistical methods to assess the spatial pattern and land use distribution of the city and to evaluate the quality of the urban environment. The study is driven by the necessity to assess the environmental impact of urbanisation. Satellite data was utilised to derive information on land use and land cover. The investigation revealed that land use had changed significantly over time, with a drop in plant cover and an increase in built-up areas. High-resolution satellite data was also utilised to map the city's open areas and gardens. GIS-based research was used to assess public green space accessibility and to identify regions with inadequate waste management practises. The findings revealed that garbage collection and disposal techniques in specific areas of the city needed to be improved. Moreover, the study evaluated the city's thermal environment using Landsat 8 land surface temperature (LST) data. The investigation found that built-up regions had higher LST values than green areas, pointing to the city's urban heat island (UHI) impact. The study's conclusions have far-reaching ramifications for urban planners and politicians in Belgaum and other similar cities. The findings may be utilised to create sustainable urban planning strategies that address the environmental effect of urbanisation while also improving the quality of life for city dwellers. Satellite data and high-resolution satellite pictures were gathered for the study, and remote sensing and GIS tools were utilised to process and analyse the data. Ground truthing surveys were also carried out to confirm the accuracy of the remote sensing and GIS-based data. Overall, this study provides a complete assessment of Belgaum's environmental quality and emphasizes the potential of remote sensing and geographic information systems (GIS) approaches in environmental assessment and management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20quality" title="environmental quality">environmental quality</a>, <a href="https://publications.waset.org/abstracts/search?q=UEQ" title=" UEQ"> UEQ</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a> </p> <a href="https://publications.waset.org/abstracts/164303/assessment-of-environmental-quality-of-an-urban-setting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7485</span> Oil-Spill Monitoring in Istanbul Strait and Marmara Sea by RASAT Remote Sensing Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozgun%20Oktar">Ozgun Oktar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevilay%20Can"> Sevilay Can</a>, <a href="https://publications.waset.org/abstracts/search?q=Cengiz%20V.%20Ekici"> Cengiz V. Ekici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oil spill is a form of pollution caused by releasing of a liquid petroleum hydrocarbon into the marine environment. Considering the growth of ship traffic, increasing of off-shore oil drilling and seaside refineries affect the risk of oil spill upward. The oil spill is easy to spread to large areas when occurs especially on the sea surface. Remote sensing technology offers the easiest way to control/monitor the area of the oil spill in a large region. It’s usually easy to detect pollution when occurs by the ship accidents, however monitoring non-accidental pollution could be possible by remote sensing. It is also needed to observe specific regions daily and continuously by satellite solutions. Remote sensing satellites mostly and effectively used for monitoring oil pollution are RADARSAT, ENVISAT and MODIS. Spectral coverage and transition period of these satellites are not proper to monitor Marmara Sea and Istanbul Strait continuously. In this study, RASAT and GOKTURK-2 are suggested to use for monitoring Marmara Sea and Istanbul Strait. RASAT, with spectral resolution 420 – 730 nm, is the first Turkish-built satellite. GOKTURK-2’s resolution can reach up to 2,5 meters. This study aims to analyze the images from both satellites and produce maps to show the regions which have potentially affected by spills from shipping traffic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marmara%20Sea" title="Marmara Sea">Marmara Sea</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title=" oil spill"> oil spill</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20remote%20sensing" title=" satellite remote sensing"> satellite remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/52390/oil-spill-monitoring-in-istanbul-strait-and-marmara-sea-by-rasat-remote-sensing-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7484</span> Analyzing e-Leadership Literature in Applying an e-Leadership Model for Community College Leaders of Hybrid Remote Teams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lori%20Timmis">Lori Timmis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The COVID-19 pandemic precipitated significant organizational change in employee turnover, retirements, and burnout exacerbated by enrollment declines in higher education, especially community colleges. To counter this downturn, community college leaders must thoughtfully examine meaningful work opportunities to retain an engaged and productive workforce. Higher education led fully remote teams during the pandemic, which highlighted the benefits and weaknesses of building and leading remote teams. Hybrid remote teams offer possibility to reimagine community college structures, though leading remote teams requires specific e-leadership competencies. This paper examines the literature of studies on e-leadership conducted during the pandemic and from several higher education studies, pre-pandemic, against an e-leadership competency framework. The e-leadership studies conducted pre-pandemic and from the pandemic complement the e-leadership competency framework, comprising six e-leadership competencies performed via information technology communications, which provides community college (and higher education) leaders to consider hybrid remote team structures and the necessary leadership skills to lead hybrid remote teams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20college" title="community college">community college</a>, <a href="https://publications.waset.org/abstracts/search?q=e-leadership" title=" e-leadership"> e-leadership</a>, <a href="https://publications.waset.org/abstracts/search?q=great%20resignation" title=" great resignation"> great resignation</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20remote%20teams" title=" hybrid remote teams"> hybrid remote teams</a> </p> <a href="https://publications.waset.org/abstracts/147544/analyzing-e-leadership-literature-in-applying-an-e-leadership-model-for-community-college-leaders-of-hybrid-remote-teams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7483</span> Experimental Evaluation of Stand Alone Solar Driven Membrane Distillation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mejbri%20Sami">Mejbri Sami</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhani%20Khalifa"> Zhani Khalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarzoum%20Kamel"> Zarzoum Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Bacha%20Habib"> Ben Bacha Habib</a>, <a href="https://publications.waset.org/abstracts/search?q=Koschikowski%20Joachim"> Koschikowski Joachim</a>, <a href="https://publications.waset.org/abstracts/search?q=Pfeifle%20Daniel"> Pfeifle Daniel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many places worldwide, especially arid and semi-arid remote regions, are suffering from the lack of drinkable water and the situation will be aggravated in the near future. Furthermore, remote areas are characterised by lack of conventional energy sources, skilled personnel and maintenance facilities. Therefore, the development of small to medium size, stand-alone and robust solar desalination systems is needed to provide independent fresh water supply in remote areas. This paper is focused on experimental studies on compact membrane distillation (MD) solar desalination prototype located at the Mechanical Engineering Department site, Kairouan University, Kairouan, Tunisia. The pilot system is designed and manufactured as a part of a research and development project funded by the MESRS/BMBF. The pilot system is totally autonomous. The electrical energy required to operate the unit is generated through a field of 4 m² of photovoltaic panels, and the heating of feed water is provided by a field of 6 m² of solar collectors. The Kairouan plant performance of the first few months of operation is presented. The highest freshwater production of 150 L/d is obtained on a sunny day in July of 633 W/m²d. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental" title="experimental">experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20distillation" title=" membrane distillation"> membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20desalination" title=" solar desalination"> solar desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=Permeat%20gap" title=" Permeat gap"> Permeat gap</a> </p> <a href="https://publications.waset.org/abstracts/105241/experimental-evaluation-of-stand-alone-solar-driven-membrane-distillation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=remote%20areas&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=remote%20areas&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=remote%20areas&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=remote%20areas&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=remote%20areas&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=remote%20areas&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=remote%20areas&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=remote%20areas&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=remote%20areas&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=remote%20areas&amp;page=250">250</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=remote%20areas&amp;page=251">251</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=remote%20areas&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10