CINXE.COM
{"title":"In vitro and in vivo Anticancer Activity of Nanosize Zinc Oxide Composites of Doxorubicin ","authors":"E. R. Arakelova, S. G. Grigoryan, F. G. Arsenyan, N. S. Babayan, R. M. Grigoryan, N. K. Sarkisyan","volume":85,"journal":"International Journal of Chemical and Molecular Engineering","pagesStart":33,"pagesEnd":39,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/9997243","abstract":"<p>The nanotechnology offers some exciting possibilities in cancer treatment, including the possibility of destroying tumors with minimal damage to healthy tissue and organs by targeted drug delivery systems. Considerable achievements in investigations aimed at the use of ZnO nanoparticles and nanocontainers in diagnostics and antitumor therapy were described. However, there are substantial obstacles to the purposes to be achieved by the use of zinc oxide nanosize materials in antitumor therapy. Among the serious problems are the techniques of obtaining ZnO nanosize materials. The article presents a new vector delivery system for the known antitumor drug, doxorubicin in the form of polymeric (PEO, starch-NaCMC) hydrogels, in which nanosize ZnO film of a certain thickness are deposited directly on the drug surface on glass substrate by DC-magnetron sputtering of a zinc target. Anticancer activity <em>in vitro<\/em> and <em>in vivo<\/em> of those nanosize zinc oxide composites is shown.<\/p>\r\n","references":"[1]\tJ. K. Vasir, and V. Labhasetwar, \"Targeted drug delivery in cancer therapy,\u201d Technol. Cancer Res. Treat., vol. 4, pp. 363-374, Aug. 2005.\r\n[2]\tK. Deepak, J. Deepti, S. Vivek, K. Rajendra, and A. T. Patil, \"Cancer therapeutics - opportunities, challenges and advances in drug delivery,\u201d JAPS, vol. 01 (09), pp. 1-10, 2011.\r\n[3]\tD. R. Paul, and L. M. Robeson, \"Polymer nanotechnology: Nanocomposites,\u201d Polymer, vol. 49, pp. 3187\u20133204, 2008. \r\n[4]\tV. K. Varadan, A. S. Pillai, D. Mukherji, M. Dwivedi, and L. Chen, \"Nanoscience and nanotechnology in engineering,\u201d in Nanoscale Fabrication and Characterization, Singapore: World Scientific, 2010, pp-71-105.\r\n[5]\tG. Pasut, M. Sergi, F. M. Veronese, \"Anti-cancer PEG-enzymes: 30 years, old, but still a current approach,\u201d Adv. Drug Deliv. Rev., vol. 60(1), pp. 69\u201378, 2008.\r\n[6]\tK. Greish, \"Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines.\u201d J. Drug Target. vol. 15(7\u20138), pp. 457\u2013464, 2007\r\n[7]\tM. J. Santander-Ortega, T. Staunerc, B. Loretzb, J. L. Ortega-Vinuesaa, D. Bastos-Gonz\u00e1lez, G. Wenzc, U. F. Schaefer, and C. M. Lehr, \"Nanoparticles made from novel starch derivatives for transdermal drug delivery,\u201d J. Control Release, vol. 141, pp. 85\u201392, 2010.\r\n[8]\tR. Gref, J. Rodrigues, and P. Couvreur, \"Polysaccharides grafted with polyesters: novel amphiphilic copolymers for biomedical applications,\u201d Macromolecules, vol. 35 (27), pp. 9861\u20139867, 2002.\r\n[9]\tJ. J. Listinsky, G. P. Siegal, and C. M. Listinsky, \"Alpha-L-fucose - a potentially critical molecule in pathologic processes including neoplasia,\u201d Am. J. Clin. Pathol., vol. 110 (4), pp. 425\u2013440, 1998.\r\n[10]\tE. Osterberg, K. Bergstrom, K. Holmberg, T. P. Schuman, J. A. Riggs, N. L. Burns, J. M. Vanalstine, and J. M. Harris, \"Protein-rejecting ability of surface-bound dextran in endon and side-on configurations - comparison to Peg,\u201d J. Biomed. Mater. Res., vol. 29 (6), pp. 741\u2013747, 1995.\r\n[11]\tS. Jevsevar, M. Kunstelj, and V.G. Porekar, \"PEGylation of therapeutic proteins,\u201d Biotechnol. J. vol. 5 (1), pp. 113\u2013128, 2010. \r\n[12]\tA. P. Marques, R. L. Reis, and J. A. Hunt, \"The biocompatibility of novel starch-based polymers and composites: in vitro studies,\u201d Biomaterials, vol. 23 (6), pp. 1471\u20131478, 2002. \r\n[13]\tM. A. Araujo, A. M. Cunha, and M. Mota, \"Enzymatic degradation of starch-based thermoplastic compounds used in protheses: identification of the degradation products in solution,\u201d Biomaterials, vol. 25 (13), pp. 2687\u20132693, 2004.\r\n[14]\tN. G. Portney, M. Ozkan. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 384: pp.620\u2013630, 2006.\r\n[15]\tM. Rawat, D. Singh, S. Saraf, S.Saraf. Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull 29:pp.1790\u20131798, 2006.\r\n[16]\tJ.L. Fraikin, T. M. Teesalu, C.M. McKenney, E. Ruoslahti & N Andrew, Cleland (). A high-throughputlabel-free nanoparticle analyser. Nature Nanotechnology 6: pp.308-313, 2011.\r\n[17]\tS. Ostrovsky, G. Kazimirsky, A. Gedanken, and C. Brodie, \"Selective cytotoxic effect of ZnO nanoparticles on glioma cells,\u201d Nano Res., vol. 2 (11), pp. 882- 890, Nov. 2009.\r\n[18]\tE. Arakelova, A. Khachatryan, K. Avjyan, Z. Farmazyan, A. Mirzoyan, L. Savchenko, S. Ghazaryan, and F. Arsenyan, \"Zinc oxide nanocomposites with antitumor activity,\u201d Natural Science, vol. 2 (12), pp. 1341-1348, 2010.\r\n[19]\tE. Arakelova, A. Khachatryan, K. Avdjyan, Z. Farmazyan, L. Savshenko, A. Mirzoyan, S. Ghazaryan, and F. Arsenyan, \"Method of obtaining anticancer composite films and coatings,\u201d Patent application of Republic of Armenia, \u2116 2010-0053 from 07.05.10.\r\n[20]\tA. A. van de Loosdrecht, R. H. J. Beelen, G. J. Ossenkoppele, M. G. Broekhoven, and M. M. A. C. Langenhuijsen, \"A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia,\u201d J. Immunol. Methods, vol. 174 (1-2), pp. 311-320, Sept. 1994.\r\n[21]\tW. Strober, \"Trypan blue exclusion test of cell viability,\" Curr. Protoc. Immunol., Appendix 3: Appendix 3B, May 2001.\r\n[22]\tR. B. Badisa, S. F. Darling-Reed, P. Joseph, J. S. Cooperwood, L. M. Latinwo, and C. B. Goodman, \"Selective cytotoxic activities of two novel synthetic drugs on human breast carcinoma MCF-7 cells,\u201d Anticancer Res., vol. 29, pp. 2993-2996, 2009.\r\n[23]\tP. Pozarowski, and Z. Darzynkiewicz, \"Analysis of cell cycle by flow cytometry,\" Methods Mol. Biol., vol. 281, pp. 301-311, 2004.\r\n[24]\tY. Deshan, Z. Y. Choe, Y. H. Zhao, Q. H. Ming-Ching, and P. Ping, \"Cellular penetration and localization of polyethylene glycol,\u201d Proc. Amer. Assoc. Cancer Res., vol. 45, p. 149-a, 2004.\r\n[25]\tF. M. Veronese, O. Schiavon, G. Pasut, R. Mendichi, L. Andersson, A.Tsirk, J.Ford, G. Wu, S. Kneller, J. Davies, and R. Duncan, \"Peg \u2013 doxorubicin conjugates:\u2009 influence of polymer structure on drug release in in vitro cytotoxicity, biodistribution, and antitumor activity,\u201d Bioconjugate Chem., vol. 16 (4), pp. 775\u2013784, 2005.\r\n[26]\tA. Schimmer, and I. Tannock, \"Discovery and evaluation of anticancer drugs,\u201d in Basic Science of Oncology, 5th ed., I. Tannock and R. Hill, Eds, New York: McGraw-Hill, 2013, pp. 393-419.\r\n[27]\tE. J. Park, H. K. Kwon, Y. M. Choi, H. J. Shin, and S. Choi, \"Doxorubicin induces cytotoxicity through upregulation of perk\u2013dependent ATF3,\u201d PLoS ONE, vol. 7(9), e44990, doi:10.1371\/journal.pone.0044990, 2012.\r\n[28]\tI. M. Ghobrial, T. E. Witzig, and A. A. Adjei, \"Targeting apoptosis pathways in cancer therapy,\u201d CA Cancer J Clin, vol. 55 (3), pp. 139\u2013198, Feb. 2009.\r\n[29]\tB. Barlogie, B. Drewinko, D.A. Johnston, and E.J. Freireich, \"The effect of adriamycin on the cell cycle traverse of a human lymphoid cell line,\u201d Cancer Res., vol. 36, pp. 1975-1979, Jun 1976.\r\n[30]\tC. O'Loughlin, M. Heenan, S. Coyle, and M. Clynes, \"Altered cell cycle response of drug-resistant lung carcinoma cells to doxorubicin,\u201d Eur. J. Cancer, vol. 36, pp. 1149-1160, 2000.\r\n[31]\tJ. Emami, \"In vitro - in vivo correlation: from theory to applications,\u201d J. Pharm. Pharmaceut. Sci., vol. 9(2), pp. 169-189, 2006.\r\n[32]\tS. Arora, J. M. Rajwade, and K. M. Paknikar, \"Nanotoxicology and in vitro studies: The need of the hour,\u201d Toxicol. Appl. Pharmacol., vol. 258, pp. 151\u2013165, 2012.\r\n[33]\tX. Han, N. Corson, P. Wade-Mercer, R. Gelein, J. Jiang, M. Sahu, P. Biswas, J. N. Finkelstein, A. Elder, and G. Oberd\u00f6rster, \"Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data,\u201d Toxicology, vol. 16;297(1-3), pp. 1\u20139, July 2012.\r\n[34]\tC.M. Sayes, K.L. Reed, D.B. Warheit, \"Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles,\u201d Toxicol. Sci., vol. 97, pp. 163\u2013180, Apr. 2012.\r\n[35]\tN. Desai, \"Challenges in Development of Nanoparticle-Based Therapeutics,\u201d AAPS J., vol. 14(2), pp. 282\u2013295, 2012.\r\n","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 85, 2014"}