CINXE.COM
Search results for: Metarhizium sp
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Metarhizium sp</title> <meta name="description" content="Search results for: Metarhizium sp"> <meta name="keywords" content="Metarhizium sp"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Metarhizium sp" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Metarhizium sp"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Metarhizium sp</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Impact of a Biopesticide Formulated an Entomopathogenic Fungus Metarhizium Anisopliae et Abstracts of Two Different Plants Sage (Salvia officinalis) and American Paper (Schinus molle) on Aphis Fabae (Homoptera - Aphididae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hicham%20Abidallah">Hicham Abidallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work we realized a formulation of an entomopathogenic fungus Metarhizium anisopliae with a dose of 1,7 x 105 spores/ml, and aqueous abstracts of two different plants sage (Salvia officinalis) and American paper (Schinus molle) with they’re full dose and half dose, on a black bean aphid populations (Aphis fabae) on a bean crop planted in pots at semi-controlled conditions. Five formulations were achieved (Met, Fd, F1/2d, Sd et S1/2d) and tested on six blocks each one contained six pots. This study revealed that four (04) formulations exercised an influence over black bean aphid (Met, Fd, F1/2d, Sd), of which Metarhizium marked the most elevated and aggressive toxicity with an efficiency of 99,24%, however, sage formulation with the half dose (S1/2d ) marked a weak toxicity with an efficiency of 18%. Test of Metarhizium anisopliae on bees didn’t show toxicity, and no mortality has been marked, and no trace of green Muscardine observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Metarhizium%20anisopliae" title="Metarhizium anisopliae">Metarhizium anisopliae</a>, <a href="https://publications.waset.org/abstracts/search?q=salvia%20officinalis" title=" salvia officinalis"> salvia officinalis</a>, <a href="https://publications.waset.org/abstracts/search?q=Schinus%20molle" title=" Schinus molle"> Schinus molle</a>, <a href="https://publications.waset.org/abstracts/search?q=Aphis%20fabae" title=" Aphis fabae"> Aphis fabae</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20degree" title=" efficiency degree"> efficiency degree</a> </p> <a href="https://publications.waset.org/abstracts/15071/impact-of-a-biopesticide-formulated-an-entomopathogenic-fungus-metarhizium-anisopliae-et-abstracts-of-two-different-plants-sage-salvia-officinalis-and-american-paper-schinus-molle-on-aphis-fabae-homoptera-aphididae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Effect of Two Entomopathogenic Fungi Beauveria bassiana and Metarhizium anisopliae var. acridum on the Haemolymph of the Desert Locust Schistocerca gregaria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Zohra%20Bissaad">Fatima Zohra Bissaad</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Bounaceur"> Farid Bounaceur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nassima%20Behidj"> Nassima Behidj</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadjiba%20Chebouti"> Nadjiba Chebouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Halouane"> Fatma Halouane</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahia%20Doumandji-Mitiche"> Bahia Doumandji-Mitiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of <em>Beauveria bassiana</em> and <em>Metarhizium anisopliae</em> var. <em>acridum</em> on the 5<sup>th </sup>instar nymphs of <em>Schistocerca gregaria</em> was studied in the laboratory. Infection by these both entomopathogenic fungi caused reduction in the hemolymph total protein. The average amounts of total proteins were 2.3, 2.07, 2.09 µg/100 ml of haemolymph in the control and <em>M. anisopliae </em>var. <em>acridum</em>, and <em>B. bassiana</em> based-treatments, respectively. Three types of haemocytes were recognized and identified as prohaemocytes, plasmatocytes and granulocytes. The treatment caused significant reduction in the total haemocyte count and in each haemocyte type on the 9<sup>th</sup> day after its application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beauveria%20bassiana" title="Beauveria bassiana">Beauveria bassiana</a>, <a href="https://publications.waset.org/abstracts/search?q=haemolymph%20picture" title=" haemolymph picture"> haemolymph picture</a>, <a href="https://publications.waset.org/abstracts/search?q=haemolymph%20protein" title=" haemolymph protein"> haemolymph protein</a>, <a href="https://publications.waset.org/abstracts/search?q=Metarhizium%20anisopliae%20var.%20acridum" title=" Metarhizium anisopliae var. acridum"> Metarhizium anisopliae var. acridum</a>, <a href="https://publications.waset.org/abstracts/search?q=Schistocerca%20gregaria" title=" Schistocerca gregaria"> Schistocerca gregaria</a> </p> <a href="https://publications.waset.org/abstracts/16594/effect-of-two-entomopathogenic-fungi-beauveria-bassiana-and-metarhizium-anisopliae-var-acridum-on-the-haemolymph-of-the-desert-locust-schistocerca-gregaria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Biological Control of Tuta absoluta (Meyrick) (Lep: Gelechiidae) with Enthomopathogenic Fungi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dahliz%20Abderrahm%C3%A8ne">Dahliz Abderrahmène</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhdari%20Wassim"> Lakhdari Wassim</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouchikh%20Yamina"> Bouchikh Yamina</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammi%20Hamida"> Hammi Hamida</a>, <a href="https://publications.waset.org/abstracts/search?q=Soud%20Adila"> Soud Adila</a>, <a href="https://publications.waset.org/abstracts/search?q=M%E2%80%99lik%20Randa"> M’lik Randa</a>, <a href="https://publications.waset.org/abstracts/search?q=Benglia%20Sara"> Benglia Sara </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Devastating insects constitute one of strains for cultivate tomato. Among this vandal insects, the tomato leafminer (T. absoluta), which has been introduced in Algeria constitute a challenge for both agricultures and scientists. Firstly, this insect is introduced without their natural enemies which may reduce their damage. Secondly, this species has developed insecticide resistance to many active matters. To contribute to establish a control strategy for T. absoluta we have mad an inventory for their enthomopathogenic fungi. Two fungi were identified among others taken from adults and pupae. These fungi are Aspergillus flavus and Metarhizium sp. A study was conducted in laboratory to recognize the efficiency of these antagonists. These species had unregistered a mortality mounts of 42% and 56% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tuta%20absoluta" title="Tuta absoluta">Tuta absoluta</a>, <a href="https://publications.waset.org/abstracts/search?q=enthomopathogenic%20fungi" title=" enthomopathogenic fungi"> enthomopathogenic fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20flavus" title=" Aspergillus flavus"> Aspergillus flavus</a>, <a href="https://publications.waset.org/abstracts/search?q=Metarhizium%20sp" title=" Metarhizium sp"> Metarhizium sp</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20strategy" title=" control strategy"> control strategy</a> </p> <a href="https://publications.waset.org/abstracts/14173/biological-control-of-tuta-absoluta-meyrick-lep-gelechiidae-with-enthomopathogenic-fungi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Toxic Activity of Biopesticide Metarhizium anisopliae var acridium ‘Green Muscle’ on the Cuticle of the Desert Locust Schistocerca gegaria (Forskål, 1775)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Haddadj">F. Haddadj</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Acheuk"> F. Acheuk</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hamdi"> S. Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zenia"> S. Zenia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Smai"> A. Smai</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Saadi"> H. Saadi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Doumandji-Mitiche"> B. Doumandji-Mitiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Locust is causing significant losses in agricultural production in the countries concerned by the invasion. Up to the present control strategy has consisted only of the spreaders chemicals; they have proven harmful to the environment and taking a conscience prompted researchers and institutions to lean towards the biological control based mostly by using microorganism. It is in that sense is we've made our contribution by the use of a biopesticide which is entomopathogenic fungus Metarhizium anisopliae var acridium ‘Green Muscle’ on part of the cuticle the larval of fifth instar locust Schistocerca gregaria. Preliminary test on the study of the pathogenicity of the bio-control agent, was conducted in the laboratory on L5 S. gregaria, on which we inoculated treatment by direct spraying of the cuticle, 5 days after treatment individuals are sacrificed. Microscopic observation revealed alterations in the architecture of the cuticle which leads to disorganization of cell layers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopesticide" title="biopesticide">biopesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=cuticle" title=" cuticle"> cuticle</a>, <a href="https://publications.waset.org/abstracts/search?q=desert%20locust" title=" desert locust"> desert locust</a>, <a href="https://publications.waset.org/abstracts/search?q=effect" title=" effect"> effect</a> </p> <a href="https://publications.waset.org/abstracts/25894/toxic-activity-of-biopesticide-metarhizium-anisopliae-var-acridium-green-muscle-on-the-cuticle-of-the-desert-locust-schistocerca-gegaria-forskal-1775" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Toxicity of Biopesticide Metarhizium anisopliae var acridium "Green Muscle" on the Cuticle of the Desert Locust Schistocerca gegaria (Forskål, 1775)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Haddadj">F. Haddadj</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Acheuk"> F. Acheuk</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hamdi"> S. Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zenia"> S. Zenia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Smai"> A. Smai</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Saadi"> H. Saadi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Doumandji-Mitiche"> B. Doumandji-Mitiche </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Locust is causing significant losses in agricultural production in the countries concerned by the invasion. Up to the present control strategy has consisted only of the spreaders chemicals; they have proven harmful to the environment and. For this, a new control method appeared it comes to the biological control based mostly by using microorganism. It is in that sense is we've made our contribution by the use of a biopesticide which is entomopathogenic fungus Metarhizium anisopliae var acridium "Green Muscle" on part of the cuticule the larval of fifth instar locust Schistocerca gregaria (Forskål, 1775). Preliminary test on the study of the pathogenicity of M. anisopliae var acridium biocontrol agent, was conducted in the laboratory on L5 S. gregaria, on which we inoculated treatment in the digestive tract and it administrant 20μl of entomopathogenic solution orally at a dose DL50 = 3.25 x107 sp./ ml (median lethal dose estimated at earlier), 5 days after treatment individuals are sacrificed. After dissection cuticles are recovered and then subjected to histological sections. The histological technique followed is that of Martoja Martoja-Pierson (1967). Microscopic observation revealed alterations in the architecture of the cuticule which leads to disorganization of cell layers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopesticide" title="biopesticide">biopesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=cuticle" title=" cuticle"> cuticle</a>, <a href="https://publications.waset.org/abstracts/search?q=desert%20locust" title=" desert locust"> desert locust</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/17059/toxicity-of-biopesticide-metarhizium-anisopliae-var-acridium-green-muscle-on-the-cuticle-of-the-desert-locust-schistocerca-gegaria-forskal-1775" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Studies on Efficacy of Some Acaricidal Molecules against Mites in Polyhouse Capsicum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20N.%20Guru">P. N. Guru</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Patil"> C. S. Patil </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experiment was conducted during Kharif 2016 at Hingoni, Ahmednagar (dist.), Maharashtra (India) to evaluate the novel molecules of acaricides against mites in polyhouse capsicum. The study was planned with randomized block design (RBD) and included nine treatments replicated thrice with 30 m² each plot size. The crop (var. Bachata) was raised according to the standard package of practices except plant protection measures. The molecules viz., spiromesifen 22.9SC (95 gm a.i. ha⁻¹), fenpyroximate 5EC (15 gm a.i. ha⁻¹), hexythiazox 5.45EC (15 gm a.i. ha⁻¹), diafenthiuron 50WP (300 gm a.i. ha⁻¹), chlorfenapyr 10SC (75 gm a.i. ha⁻¹) were compared with a standard acaricide, dicofol 18.5EC (500 gm a.i. ha⁻¹) and biopesticides like Verticillium lecanii (2 g/l), Metarhizium anisopliae (2 g/l) and Neem oil 10,000ppm (2ml/l). In total three sprays were given after 30, 50 and 70 days after transplanting (DAT) at an interval of 20 days. The insecticidal solutions were prepared in water by diluting required concentration of chemical and applied using knapsack sprayer with hollow cone nozzle @ 500L of solution per hectare. The mites were counted per 4 cm² in three leaves from randomly selected five plants in each plot at 1 day before treatment (precount) and 1, 3, 5, 7, 10 and 15 days after treatment. The results revealed that fenpyroximate 5EC found best by recording significantly least mite population (2.72/4 cm² leaf area) followed by hexythiazox 5.45EC and spiromesifen 22.9SC (3.78 and 3.82 per 4 cm² leaf area, respectively) and followed by remaining treatments chlorfenapyr 10SC (4.13/4 cm² leaf area), diafenthiuron 50WP (4.32/4 cm² leaf area), and dicofol 18.5EC (4.48/4 cm² leaf area). Among the biopesticides tested Neem oil and Verticillium lecanii were found to be superior to Metarhizium anisopliae. Overall, newer molecules like fenpyroximate, hexythiazox, spiromesifen, diafenthiuron, and Chlorfenapyr can be used for the effective management of mites under polyhouse capsicum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acaricides" title="acaricides">acaricides</a>, <a href="https://publications.waset.org/abstracts/search?q=capsicum" title=" capsicum"> capsicum</a>, <a href="https://publications.waset.org/abstracts/search?q=mites" title=" mites"> mites</a>, <a href="https://publications.waset.org/abstracts/search?q=spiromesifen" title=" spiromesifen"> spiromesifen</a> </p> <a href="https://publications.waset.org/abstracts/78211/studies-on-efficacy-of-some-acaricidal-molecules-against-mites-in-polyhouse-capsicum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Application of Metarhizium anisopliae against Meloidogyne javanica in Soil Amended with Oak Debris</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abdollahi">Mohammad Abdollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tomato (<em>Lycopersicon esculentum</em> Mill.) is one of the most popular, widely grown and the second most important vegetable crop, after potatoes. Nematodes have been identified as one of the major pests affecting tomato production throughout the world. The most destructive nematodes are the genus <em>Meloidogyne</em>. Most widespread and devastating species of this genus are <em>M. incognita</em>, <em>M. javanica</em>, and <em>M. arenaria</em>. These species can cause complete crop loss under adverse growing conditions. There are several potential methods for management of the root knot nematodes. Although the chemicals are widely used against the phytonematodes, because of hazardous effects of these compounds on non-target organisms and on the environment, there is a need to develop other control strategies. Nowadays, non-chemical measures are widely used to control the plant parasitic nematodes. Biocontrol of phytonematodes is an important method among environment-friendly measures of nematode management. There are some soil-inhabiting fungi that have biocontrol potential on phytonematodes, which can be used in nematode management program. The fungus <em>Metarhizium anisopliae</em>, originally is an entomopathogenic bioagent. Biocontrol potential of this fungus on some phytonematodes has been reported earlier. Recently, use of organic soil amendments as well as the use of bioagents is under special attention in sustainable agriculture. This research aimed to reduce the pesticide use in control of root-knot nematode, <em>Meloidogyne javanica</em> in tomato. The effects of <em>M. anisopliae</em> IMI 330189 and different levels of oak tree debris on <em>M. javanica </em>were determined. The combination effect of the fungus as well as the different rates of soil amendments was determined. Pots were filled with steam pasteurized soil mixture and the six leaf tomato seedlings were inoculated with 3000 second stage larvae of <em>M. javanica</em>/kg of soil. After eight weeks, plant growth parameters and nematode reproduction factors were compared. Based on the results of our experiment, combination of <em>M. anisopliae</em> IMI 330189 and oak debris caused more than 90% reduction in reproduction factor of nematode, at the rates of 100 and 150 g/kg soil (P ≤ 0.05). As compared to control, the reduction in number of galls was 76%. It was 86% for nematode reproduction factor, showing the significance of combined effect of both tested agents. Our results showed that plant debris can increase the biological activity of the tested bioagent. It was also proved that there was no adverse effect of oak debris, which potentially has antimicrobial activity, on antagonistic power of applied bioagent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title="biological control">biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=nematode%20management" title=" nematode management"> nematode management</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20soil" title=" organic soil"> organic soil</a>, <a href="https://publications.waset.org/abstracts/search?q=Quercus%20branti" title=" Quercus branti"> Quercus branti</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20knot%20nematode" title=" root knot nematode"> root knot nematode</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20amendment" title=" soil amendment"> soil amendment</a> </p> <a href="https://publications.waset.org/abstracts/82033/application-of-metarhizium-anisopliae-against-meloidogyne-javanica-in-soil-amended-with-oak-debris" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Evaluation of Different Inoculation Methods of Entomopathogenic Fungi on Their Endophytism and Pathogenicity against Chilo partellus (Swinhoe)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mubashar%20Iqbal">Mubashar Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Iqra%20Anjum"> Iqra Anjum</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Dildar%20Gogi"> Muhammad Dildar Gogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Jalal%20Arif"> Muhammad Jalal Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was carried to screen out the effective entomopathogenic fungi (EPF) inoculation method in maize and to evaluate pathogenicity and oviposition-choice in C. partellus. Three entomopathogenic fungi (EPF) formulations Pacer® (Metarhizium anisopliae), Racer® (Beauveria bassiana) and Meailkil® (Verticillium lecanii) were evaluated at three concentrations (5000, 10000 and 20000 ppm) for their endophytism in maize and pathogenicity in C. partellus. The stock solution of the highest concentration (20,000 ppm) was prepared and next lower from stock solution. In the first experiment, three EPF was inoculated in maize plant by four methods, i.e., leaf-inoculation (LI), whorl-inoculation (WI), shoot-inoculation (SI) and root-inoculation (RI). Leaf-discs and stem-cutting were sampled in all four inoculation methods and placed on fungus growth media in Petri dishes. In the second experiment, pathogenicity, pupal formation, adult emergence, sex ratio, oviposition-choice, and growth index of C. partellus were calculated. The leaves and stem of the inoculated plants were given to the counted number of larvae of C. Partellus. The mortality of larvae was recorded on daily basis till the pupation. The result shows that maximum percent mortality (86.67%) was recorded at high concentration (20000ppm) of Beauveria bassiana by leaf inoculation method. For oviposition choice bioassay, the newly emerged adults were fed on diet (water, honey and yeast in 9:1:1) for 48 hours. One pair of C. Partellus were aspirated from the rearing cages and were detained in large test tube plugged with diet soaked cotton. A set of four plants for each treatment were prepared and randomized inside the large oviposition chamber. The test tubes were opened and fitted in the hole made in the wall of oviposition chamber in front of each treatment. The oviposition chamber was placed in a completely dark laboratory to eliminate the effect of light on moth’s behavior. The plants were removed from the oviposition chamber after the death of adults. The number of eggs deposited on the plant was counted. The results of 2nd experiment revealed that in all EPF and inoculation methods, the fecundity, egg fertility and growth index of C. partellus decreased with the increase in concentration being significantly higher at low concentration (5000ppm) and lower at higher concentration (20000ppm). Application of B. bassiana demonstrated that minimum fecundity (126.83), egg fertility (119.52) and growth index (15%) in C. partellus followed by M. anisopliae with fecundity (135.93), egg fertility (132.29) and growth index (17.50%) while V. lecanii show higher values of fecundity (137.37), egg fertility (1135.42) and growth index (20%). Overall leaf inoculation method showed least fecundity (123.89) with egg fertility (115.36) and growth index (14%) followed by whorl, shoot inoculation method and root inoculation method show higher values of fecundity, egg fertility and growth index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beauveria%20bassiana" title="Beauveria bassiana">Beauveria bassiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Chilo%20partellus" title=" Chilo partellus"> Chilo partellus</a>, <a href="https://publications.waset.org/abstracts/search?q=entomopathoganic" title=" entomopathoganic"> entomopathoganic</a>, <a href="https://publications.waset.org/abstracts/search?q=Metarhizium%20anisopliae" title=" Metarhizium anisopliae"> Metarhizium anisopliae</a>, <a href="https://publications.waset.org/abstracts/search?q=Verticillium%20lecanii" title=" Verticillium lecanii "> Verticillium lecanii </a> </p> <a href="https://publications.waset.org/abstracts/111683/evaluation-of-different-inoculation-methods-of-entomopathogenic-fungi-on-their-endophytism-and-pathogenicity-against-chilo-partellus-swinhoe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Effect of Metarhizium robertsii in Rhipicephalus microplus hemocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jessica%20P.%20Fiorotti">Jessica P. Fiorotti</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20C.%20Freitas"> Maria C. Freitas</a>, <a href="https://publications.waset.org/abstracts/search?q=Caio%20%20J.%20B.%20Coutinho-Rodrigues"> Caio J. B. Coutinho-Rodrigues</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20G.%20Camargo"> Mariana G. Camargo</a>, <a href="https://publications.waset.org/abstracts/search?q=Emily%20S.%20Mesquita"> Emily S. Mesquita</a>, <a href="https://publications.waset.org/abstracts/search?q=Amanda%20R.%20C.%20Corval"> Amanda R. C. Corval</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20O.%20B.%20Bitencourt"> Ricardo O. B. Bitencourt</a>, <a href="https://publications.waset.org/abstracts/search?q=Allan%20F.%20Marciano"> Allan F. Marciano</a>, <a href="https://publications.waset.org/abstracts/search?q=Diva%20D.%20Spadacci-Morena"> Diva D. Spadacci-Morena</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20S.%20Golo"> Patricia S. Golo</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabele%20C.%20Angelo"> Isabele C. Angelo</a>, <a href="https://publications.waset.org/abstracts/search?q=Vania%20R.%20E.%20P.%20Bittencourt"> Vania R. E. P. Bittencourt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bovine tick, Rhipicephalus microplus, is an arthropod of great importance in veterinary medicine leading to anemia, weight loss, animals' leather depreciation and also acting as a vector of many pathogens. In this way, the parasitism causes a loss of 3.24 billion dollars per year in Brazil. Knowingly, entomopathogenic fungi act as natural controller of some arthropods, acting mainly by active penetration through the cuticle. However, it can also act on the hemolymph and through the production of mycotoxins. Hemocytes are responsible for the cellular immune response and participate in the processes of phagocytosis, nodulation and encapsulation and may undergo changes when challenged by pathogens. The aim of the present study was to evaluate changes in R. microplus hemocytes after inoculation of Metarhizium robertsii using transmission electron microscopy. The isolate ARSEF 2575 and 200 engorged R. microplus females were used. The groups were divided into control, in which the females were inoculated with 5 μL of sterile distilled water solution and 0.1% Tween 80, and a group inoculated with 5 μL of fungal suspension at the concentration of 10⁷ conidia mL⁻¹. The experiment was performed in duplicate and each group contained 50 females. Twenty-four hours after fungal inoculation, hemolymph was collected through the cuticle dorsal surface perforation of the tick females. After collection, the hemolymph samples were centrifuged at 500 x g for 3 minutes at 4 °C, the plasma was discarded and the hemocyte pellet was resuspended in 50 μl PBS. The suspension material was fixed in 2% glutaraldehyde in Millonig buffer for three hours. After fixation, the material was centrifuged at 500 x g for 3 minutes, the supernatant was discarded and the cells were resuspended in a wash solution. Subsequently, the cells were post-fixed with 1% osmium tetroxide in phosphate buffer for one hour at room temperature and dehydrated in increasing concentrations of ethanol, and then embedded in Epon resin. The ultrathin sections were examined under the LEO EM 906E transmission electron microscopy at 80kV. The ultrastructural results revealed that.in control group, the cells were considered intact, in which the granulocytes were observed with granules of different electrodensities, intact mitochondria and cytoplasm without vacuolization. In addition, granulocytes showed plasma membrane projections similar to pseudopodia. Plasmatocytes presented as irregularly shaped cells, with the eccentric nucleus, agranular cytoplasm and some cells presented pseudopodia. Nevertheless, in the group exposed to the fungus, most of the cells presented in degeneration. The granulocytes found had fewer granules in the cytoplasm and more vacuoles. Plasmatocytes, after treatment, presented many vacuoles also in the cytoplasm and the lysosomes presented great amount of electrodense material in their interior. Thus, the results suggest that the fungus has a depressant action in the immune system of the tick, not only by the cell degranulation, but also suggesting that this leads to morphological changes in the hemocytes and may even trigger processes such as phagocytosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bovine%20tick" title="bovine tick">bovine tick</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20defense" title=" cellular defense"> cellular defense</a>, <a href="https://publications.waset.org/abstracts/search?q=entomopathogenic%20fungi" title=" entomopathogenic fungi"> entomopathogenic fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20response" title=" immune response"> immune response</a> </p> <a href="https://publications.waset.org/abstracts/89287/effect-of-metarhizium-robertsii-in-rhipicephalus-microplus-hemocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Evaluation of Entomopathogenic Fungi Strains for Field Persistence and Its Relationship to in Vitro Heat Tolerance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mulue%20Girmay%20Gebreslasie">Mulue Girmay Gebreslasie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Entomopathogenic fungi are naturally safe and eco-friendly biological agents. Their potential of host specificity and ease handling made them appealing options to substitute synthetic pesticides in pest control programs. However, they are highly delicate and unstable under field conditions. Therefore, the current experiment was held to search out persistent fungal strains by defining the relationship between invitro heat tolerance and field persistence. Current results on leaf and soil persistence assay revealed that strains of Metarhizium species, M. pingshaense (F2685), M. pingshaense (MS2) and M. brunneum (F709) exhibit maximum cumulative CFUs count, relative survival rate and least percent of CFUs reductions showed significant difference at 7 days and 28 days post inoculations (dpi) in hot seasons from sampled soils and leaves and in cold season from soil samples. Whereas relative survival of B. brongniartii (TNO6) found significantly higher in cold weather leaf treatment application as compared to hot season and found as persistent as other fungal strains, while higher deterioration of fungal conidia seen with M. pingshaense (MS2). In the current study, strains of Beauveria brongniartii (TNO6) and Cordyceps javanica (Czy-LP) were relatively vulnerable in field condition with utmost colony forming units (CFUs) reduction and least survival rates. Further, the relationship of the two parameters (heat tolerance and field persistence) was seen with strong linear positive correlations elucidated that heat test could be used in selection of field persistent fungal strains for hot season applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated%20pest%20management" title="integrated pest management">integrated pest management</a>, <a href="https://publications.waset.org/abstracts/search?q=biopesticides" title=" biopesticides"> biopesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=Insect%20pathology%20and%20microbial%20control" title=" Insect pathology and microbial control"> Insect pathology and microbial control</a>, <a href="https://publications.waset.org/abstracts/search?q=entomology" title=" entomology"> entomology</a> </p> <a href="https://publications.waset.org/abstracts/167965/evaluation-of-entomopathogenic-fungi-strains-for-field-persistence-and-its-relationship-to-in-vitro-heat-tolerance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Evaluation of the Pathogenicity Test of Some Entomopathogenic Fungus Isolates against Tomato Leaf Miner Tuta Absoluta (Meyrick) Larvae [Lepidoptera: Gelechiidae])</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tadesse%20Kebede">Tadesse Kebede</a>, <a href="https://publications.waset.org/abstracts/search?q=Orkun%20Baris%20Kovanci"> Orkun Baris Kovanci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tomatoes leaf minor (Tutaabasoluta) is one of the most economically important insect pest in tomatoes production. The use of biological control such as entomopathogen fungi isolates would be a long-term and cost-effective solution to control insects pest. Therefore, identifying the most virulent and pathogenic entomopathogen fungi is one of the basic requirements for effective management options to combat Tomatoes leaf minor (Tutaabasoluta). Furthermore, the pathogenicity and virulence difference among entomopathogenfungus strains is not widely well investıgated. The current study was therefore initiated to test the pathogenicity of some entomopathogenic fungus isolates against Tutaabsoluta. The experiment was conducted at Bursa Uludag University, Agiculutre faculty, horticulture department glasshouse in 2020/2021. Tutabasoluta adult were collected, and masslarvae were reared in a growth chamber. Then, ten third instar larvae were inoculated with four entomopathogen fungi isolates (Beuaveriabassania Ak-10, Beuaveriabassania Ak-14, Metarhziumanisoplai Ak-11, and Metarhziumanisoplai Ak-12) with different inoculum suspension (0, 1x10⁶, 1x10⁷,,4 × 10⁸, 4× 10⁹ and 1×10¹⁰ conidia /ml) in a factorial experiment arranged in randomized complete block design with three replication. Mortality data assessment was done on the 3rd, 5thand 7th days after treatment and analyzed. The analysis of variance for mortality rate revealed significant variations (p<0.05) among entomoptahogen fungi isolates and conidia concentrations. The results revealed thatMetarhziumanisoplai Ak-12was found to show the lowest mortality percentage80.77%, highest LC50 2.3x108, and the longest incubation period, LT50, 4.9 and LT90, 9.9daysand considered to be less pathogenic fungi. On the other hand, Beuaveriabassania Ak-10 isolate showed the highest mortality percentage, 91%, and the lowest LT50, 4, and LT90, 7.6 values at 1×10¹⁰ conidia /ml, followed by Beuaveriabassania Ak-14 and being considered as the most aggressive bio-agent. Metarhziumanisoplai Ak-11 was determined as moderately virulent, having a mortality rate 27-81%. Results also revealed that among conidia concentrations, 1x10⁹ and 1x10¹⁰ suspensions is the most effective, while 1x10⁶ conidia/ml concentration is the least effective. Hence, results indicated that EPF tested were effective against T. absoluta larvae. As the current work revealed the potential variation among entomopathogen fungi isolates and concentration against third instar larvae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tuta%20absoluta" title="tuta absoluta">tuta absoluta</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=metarhizium%20anisopliae" title=" metarhizium anisopliae"> metarhizium anisopliae</a>, <a href="https://publications.waset.org/abstracts/search?q=beauveria%20bassiana" title=" beauveria bassiana"> beauveria bassiana</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title=" biological control"> biological control</a> </p> <a href="https://publications.waset.org/abstracts/150011/evaluation-of-the-pathogenicity-test-of-some-entomopathogenic-fungus-isolates-against-tomato-leaf-miner-tuta-absoluta-meyrick-larvae-lepidoptera-gelechiidae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Species Profiling of Scarab Beetles with the Help of Light Trap in Western Himalayan Region of Uttarakhand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Pandey">Ajay Kumar Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> White grub (Coleoptera: Scarabaeidae), locally known as Kurmula, Pagra, Chinchu, is a major destructive pest in western Himalayan region of Uttarakhand state of India. Various crops like cereals (up land paddy, wheat, and barley), vegetables (capsicum, cabbage, tomato, cauliflower, carrot etc) and some pulse (like pigeon pea, green gram, black gram) are grown with limited availability of primary resources. Among the various limitations in successful cultivation of these crops, white grub has been proved a major constraint in for all crops grown in hilly area. The losses incurred due to white grubs are huge in case of commercial crops like sugarcane, groundnut, potato, maize and upland rice. Moreover, it has been proved major constraint in potato production in mid and higher hills of India. Adults emerge in May-June following the onset of monsoon and thereafter defoliate the apple, apricot, plum, and walnut during night while 2nd and 3rd instar grubs feed on live roots of cultivated as well as non cultivated crops from August to January. Survey was conducted in hilly (Pauri and Tehri) as well as plain area (Haridwar district) of Uttarakhand state. Collection of beetle was done from various locations from August to September of five consecutive years with the help of light trap and directly from host plant. The grub was also collected by excavating one square meter area from different locations and reared in laboratory to find out adult. During the collection, the diseased or dead cadaver were also collected and brought in the laboratory and identified the causal organisms. Total 25 species of white grub was identified out of which Holotrichia longipennis, Anomala dimidiata, Holotrichia lineatopennis, Maladera insanabilis, Brahmina sp. make complex problem in different area of Uttarakhand where they cause severe damage to various crops. During the survey, it was observed that white grubs beetles have variation in preference of host plant, even in choice of fruit and leaves of host plant. It was observed that, a white grub species, which identified as Lepidiota mansueta Burmeister., was causing severe havoc to sugarcane crop grown in major sugarcane growing belt of Haridwar district. The study also revealed that Bacillus cereus, Beauveria bassiana, Metarhizium anisopliae, Steinernema, Heterorhabditis are major disease causing agents in immature stage of white grub under rain-fed condition of Uttarakhand which caused 15.55 to 21.63 percent natural mortality of grubs with an average of 18.91 percent. However, among the microorganisms, B. cereus found to be significantly more efficient (7.03 percent mortality) then the entomopathogenic fungi (3.80 percent mortality) and nematodes (3.20 percent mortality). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lepidiota" title="Lepidiota">Lepidiota</a>, <a href="https://publications.waset.org/abstracts/search?q=profiling" title=" profiling"> profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttarakhand" title=" Uttarakhand"> Uttarakhand</a>, <a href="https://publications.waset.org/abstracts/search?q=whitegrub" title=" whitegrub"> whitegrub</a> </p> <a href="https://publications.waset.org/abstracts/77013/species-profiling-of-scarab-beetles-with-the-help-of-light-trap-in-western-himalayan-region-of-uttarakhand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> A Review on Biological Control of Mosquito Vectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asim%20Abbasi">Asim Abbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sufyan"> Muhammad Sufyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Iqra"> Iqra</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafiza%20Javaria%20Ashraf"> Hafiza Javaria Ashraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The share of vector-borne diseases (VBDs) in the global burden of infectious diseases is almost 17%. The advent of new drugs and latest research in medical science helped mankind to compete with these lethal diseases but still diseases transmitted by different mosquito species, including filariasis, malaria, viral encephalitis and dengue are serious threats for people living in disease endemic areas. Injudicious and repeated use of pesticides posed selection pressure on mosquitoes leading to development of resistance. Hence biological control agents are under serious consideration of scientific community to be used in vector control programmes. Fish have a history of predating immature stages of different aquatic insects including mosquitoes. The noteworthy examples in Africa and Asia includes, Aphanius discolour and a fish in the Panchax group. Moreover, common mosquito fish, Gambusia affinis predates mostly on temporary water mosquitoes like anopheline as compared to permanent water breeders like culicines. Mosquitoes belonging to genus Toxorhynchites have a worldwide distribution and are mostly associated with the predation of other mosquito larvae habituating with them in natural and artificial water containers. These species are harmless to humans as their adults do not suck human blood but feeds on floral nectar. However, their activity is mostly temperature dependent as Toxorhynchites brevipalpis consume 359 Aedes aegypti larvae at 30-32 ºC in contrast to 154 larvae at 20-26 ºC. Although many bacterial species were isolated from mosquito cadavers but those belonging to genus Bacillus are found highly pathogenic against them. The successful species of this genus include Bacillus thuringiensis and Bacillus sphaericus. The prime targets of B. thuringiensis are mostly the immatures of genus Aedes, Culex, Anopheles and Psorophora while B. sphaericus is specifically toxic against species of Culex, Psorophora and Culiseta. The entomopathogenic nematodes belonging to family, mermithidae are also pathogenic to different mosquito species. Eighty different species of mosquitoes including Anopheles, Aedes and Culex proved to be highly vulnerable to the attack of two mermithid species, Romanomermis culicivorax and R. iyengari. Cytoplasmic polyhedrosis virus was the first described pathogenic virus, isolated from the cadavers of mosquito specie, Culex tarsalis. Other viruses which are pathogenic to culicine includes, iridoviruses, cytopolyhedrosis viruses, entomopoxviruses and parvoviruses. Protozoa species belonging to division microsporidia are the common pathogenic protozoans in mosquito populations which kill their host by the chronic effects of parasitism. Moreover, due to their wide prevalence in anopheline mosquitoes and transversal and horizontal transmission from infected to healthy host, microsporidia of the genera Nosema and Amblyospora have received much attention in various mosquito control programmes. Fungal based mycopesticides are used in biological control of insect pests with 47 species reported virulent against different stages of mosquitoes. These include both aquatic fungi i.e. species of Coelomomyces, Lagenidium giganteum and Culicinomyces clavosporus, and the terrestrial fungi Metarhizium anisopliae and Beauveria bassiana. Hence, it was concluded that the integrated use of all these biological control agents can be a healthy contribution in mosquito control programmes and become a dire need of the time to avoid repeated use of pesticides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entomopathogenic%20nematodes" title="entomopathogenic nematodes">entomopathogenic nematodes</a>, <a href="https://publications.waset.org/abstracts/search?q=protozoa" title=" protozoa"> protozoa</a>, <a href="https://publications.waset.org/abstracts/search?q=Toxorhynchites" title=" Toxorhynchites"> Toxorhynchites</a>, <a href="https://publications.waset.org/abstracts/search?q=vector-borne" title=" vector-borne"> vector-borne</a> </p> <a href="https://publications.waset.org/abstracts/80088/a-review-on-biological-control-of-mosquito-vectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>