CINXE.COM

Search results for: AlGaN/GaN HEMTs

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: AlGaN/GaN HEMTs</title> <meta name="description" content="Search results for: AlGaN/GaN HEMTs"> <meta name="keywords" content="AlGaN/GaN HEMTs"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="AlGaN/GaN HEMTs" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="AlGaN/GaN HEMTs"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 21</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: AlGaN/GaN HEMTs</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Capacitance Models of AlGaN/GaN High Electron Mobility Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Douara">A. Douara</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kermas"> N. Kermas</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Djellouli"> B. Djellouli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we report calculations of gate capacitance of AlGaN/GaN HEMTs with nextnano device simulation software. We have used a physical gate capacitance model for III-V FETs that incorporates quantum capacitance and centroid capacitance in the channel. These simulations explore various device structures with different values of barrier thickness and channel thickness. A detailed understanding of the impact of gate capacitance in HEMTs will allow us to determine their role in future 10 nm physical gate length node. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gate%20capacitance" title="gate capacitance">gate capacitance</a>, <a href="https://publications.waset.org/abstracts/search?q=AlGaN%2FGaN" title=" AlGaN/GaN"> AlGaN/GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=HEMTs" title=" HEMTs"> HEMTs</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20%20capacitance" title=" quantum capacitance"> quantum capacitance</a>, <a href="https://publications.waset.org/abstracts/search?q=centroid%20capacitance" title=" centroid capacitance"> centroid capacitance</a> </p> <a href="https://publications.waset.org/abstracts/39564/capacitance-models-of-algangan-high-electron-mobility-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Improved Performance of AlGaN/GaN HEMTs Using N₂/NH₃ Pretreatment before Passivation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yifan%20Gao">Yifan Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Owing to the high breakdown field, high saturation drift velocity, 2DEG with high density and mobility and so on, AlGaN/GaN HEMTs have been widely used in high-frequency and high-power applications. To acquire a higher power often means higher breakdown voltage and higher drain current. Surface leakage current is usually the key issue affecting the breakdown voltage and power performance. In this work, we have performed in-situ N₂/NH₃ pretreatment before the passivation to suppress the surface leakage and achieve device performance enhancement. The AlGaN/GaN HEMT used in this work was grown on a 3-in. SiC substrate, whose epitaxial structure consists of a 3.5-nm GaN cap layer, a 25-nm Al₀.₂₅GaN barrier layer, a 1-nm AlN layer, a 400-nm i-GaN layer and a buffer layer. In order to analyze the mechanism for the N-based pretreatment, the details are measured by XPS analysis. It is found that the intensity of Ga-O bonds is decreasing and the intensity of Ga-N bonds is increasing, which means with the supplement of N, the dangling bonds on the surface are indeed reduced with the forming of Ga-N bonds, reducing the surface states. The surface states have a great influence on the leakage current, and improved surface states represent a better off-state of the device. After the N-based pretreatment, the breakdown voltage of the device with Lₛ𝒹=6 μm increased from 93V to 170V, which increased by 82.8%. Moreover, for HEMTs with Lₛ𝒹 of 6-μm, we can obtain a peak output power (Pout) of 12.79W/mm, power added efficiency (PAE) of 49.84% and a linear gain of 20.2 dB at 60V under 3.6GHz. Comparing the result with the reference 6-μm device, Pout is increased by 16.5%. Meanwhile, PAE and the linear gain also have a slight increase. The experimental results indicate that using N₂/NH₃ pretreatment before passivation is an attractive approach to achieving power performance enhancement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlGaN%2FGaN%20HEMT" title="AlGaN/GaN HEMT">AlGaN/GaN HEMT</a>, <a href="https://publications.waset.org/abstracts/search?q=N-based%20pretreatment" title=" N-based pretreatment"> N-based pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=output%20power" title=" output power"> output power</a>, <a href="https://publications.waset.org/abstracts/search?q=passivation" title=" passivation"> passivation</a> </p> <a href="https://publications.waset.org/abstracts/159861/improved-performance-of-algangan-hemts-using-n2nh3-pretreatment-before-passivation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Cyclic Etching Process Using Inductively Coupled Plasma for Polycrystalline Diamond on AlGaN/GaN Heterostructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haolun%20Sun">Haolun Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Wang"> Ping Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei%20Wu"> Mei Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Zhang"> Meng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Hou"> Bin Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling%20Yang"> Ling Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohua%20Ma"> Xiaohua Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Yue%20Hao"> Yue Hao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gallium nitride (GaN) is an attractive material for next-generation power devices. It is noted that the performance of GaN-based high electron mobility transistors (HEMTs) is always limited by the self-heating effect. In response to the problem, integrating devices with polycrystalline diamond (PCD) has been demonstrated to be an efficient way to alleviate the self-heating issue of the GaN-based HEMTs. Among all the heat-spreading schemes, using PCD to cap the epitaxial layer before the HEMTs process is one of the most effective schemes. Now, the mainstream method of fabricating the PCD-capped HEMTs is to deposit the diamond heat-spreading layer on the AlGaN surface, which is covered by a thin nucleation dielectric/passivation layer. To achieve the pattern etching of the diamond heat spreader and device preparation, we selected SiN as the hard mask for diamond etching, which was deposited by plasma-enhanced chemical vapor deposition (PECVD). The conventional diamond etching method first uses F-based etching to remove the SiN from the special window region, followed by using O₂/Ar plasma to etch the diamond. However, the results of the scanning electron microscope (SEM) and focused ion beam microscopy (FIB) show that there are lots of diamond pillars on the etched diamond surface. Through our study, we found that it was caused by the high roughness of the diamond surface and the existence of the overlap between the diamond grains, which makes the etching of the SiN hard mask insufficient and leaves micro-masks on the diamond surface. Thus, a cyclic etching method was proposed to solve the problem of the residual SiN, which was left in the F-based etching. We used F-based etching during the first step to remove the SiN hard mask in the specific region; then, the O₂/Ar plasma was introduced to etch the diamond in the corresponding region. These two etching steps were set as one cycle. After the first cycle, we further used cyclic etching to clear the pillars, in which the F-based etching was used to remove the residual SiN, and then the O₂/Ar plasma was used to etch the diamond. Whether to take the next cyclic etching depends on whether there are still SiN micro-masks left. By using this method, we eventually achieved the self-terminated etching of the diamond and the smooth surface after the etching. These results demonstrate that the cyclic etching method can be successfully applied to the integrated preparation of polycrystalline diamond thin films and GaN HEMTs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlGaN%2FGaN%20heterojunction" title="AlGaN/GaN heterojunction">AlGaN/GaN heterojunction</a>, <a href="https://publications.waset.org/abstracts/search?q=O%E2%82%82%2FAr%20plasma" title=" O₂/Ar plasma"> O₂/Ar plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20etching" title=" cyclic etching"> cyclic etching</a>, <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20diamond" title=" polycrystalline diamond"> polycrystalline diamond</a> </p> <a href="https://publications.waset.org/abstracts/159880/cyclic-etching-process-using-inductively-coupled-plasma-for-polycrystalline-diamond-on-algangan-heterostructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Comparative Study of Al₂O₃ and HfO₂ as Gate Dielectric on AlGaN/GaN Metal Oxide Semiconductor High-Electron Mobility Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaivan%20%20Karami">Kaivan Karami</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahalu%20Hassan"> Sahalu Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanna%20Taking"> Sanna Taking</a>, <a href="https://publications.waset.org/abstracts/search?q=Afesome%20Ofiare"> Afesome Ofiare</a>, <a href="https://publications.waset.org/abstracts/search?q=Aniket%20Dhongde"> Aniket Dhongde</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Al-Khalidi"> Abdullah Al-Khalidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Wasige"> Edward Wasige</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have made a comparative study on the influence of Al₂O₃ and HfO₂ grown using atomic layer deposition (ALD) technique as dielectric in the AlGaN/GaN metal oxide semiconductor high electron mobility transistor (MOS-HEMT) structure. Five samples consisting of 20 nm and 10 nm each of Al₂O₃ and HfO₂ respectively and a Schottky gate HEMT, were fabricated and measured. The threshold voltage shifts towards negative by 0.1 V and 1.8 V for 10 nm thick HfO2 and 10 nm thick Al₂O₃ gate dielectric layers respectively. The negative shift for the 20 nm HfO2 and 20 nm Al₂O₃ were 1.2 V and 4.9 V respectively. Higher gm/IDS (transconductance to drain current) ratio was also obtained in HfO₂ than Al₂O₃. With both materials as dielectric, a significant reduction in the gate leakage current in the order of 10^4 was obtained compared to the sample without the dielectric material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlGaN%2FGaN%20HEMTs" title="AlGaN/GaN HEMTs">AlGaN/GaN HEMTs</a>, <a href="https://publications.waset.org/abstracts/search?q=Al2O3" title=" Al2O3"> Al2O3</a>, <a href="https://publications.waset.org/abstracts/search?q=HfO2" title=" HfO2"> HfO2</a>, <a href="https://publications.waset.org/abstracts/search?q=MOSHEMTs." title=" MOSHEMTs."> MOSHEMTs.</a> </p> <a href="https://publications.waset.org/abstracts/155167/comparative-study-of-al2o3-and-hfo2-as-gate-dielectric-on-algangan-metal-oxide-semiconductor-high-electron-mobility-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Investigation into the Homoepitaxy of AlGaN/GaN Heterostructure via Molecular Beam Epitaxy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiajia%20Yao">Jiajia Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Guanlin%20Wu"> Guanlin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Liu"> Fang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junshuai%20Xue"> Junshuai Xue</a>, <a href="https://publications.waset.org/abstracts/search?q=Yue%20Hao"> Yue Hao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the production process of self-standing GaN substrates evolves, the commercialization of low dislocation density, large-scale, semi-insulating self-standing GaN substrates is gradually becoming a reality. This advancement has given rise to increased interest in GaN materials' homoepitaxial technology. However, at the homoepitaxial interface, there are considerable concentrations of impurity elements, including C, Si, and O, which generate parasitic leakage channels at the re-growth junction. This phenomenon results in leaked HEMTs that prove difficult to switch off, rendering them effectively non-functional. The emergence of leakage channels can also degrade the high-frequency properties and lower the power devices' breakdown voltage. In this study, the uniform epitaxy of AlGaN/GaN heterojunction with high electron mobility was accomplished through the surface treatment of the GaN substrates prior to growth and the design of the AlN isolation layer structure. By employing a procedure combining gallium atom in-situ cleaning and plasma nitridation, the C and O impurity concentrations at the homoepitaxial interface were diminished to the scale of 10¹⁷ cm-³. Additionally, the 1.5 nm nitrogen-rich AlN isolation layer successfully prevented the diffusion of Si impurities into the GaN channel layer. The result was an AlGaN/GaN heterojunction with an electron mobility of 1552 cm²/Vs and an electron density of 1.1 × 10¹³ cm-² at room temperature, obtained on a Fe-doped semi-insulating GaN substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MBE" title="MBE">MBE</a>, <a href="https://publications.waset.org/abstracts/search?q=AlGaN%2FGaN" title=" AlGaN/GaN"> AlGaN/GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=homogenerous%20epitaxy" title=" homogenerous epitaxy"> homogenerous epitaxy</a>, <a href="https://publications.waset.org/abstracts/search?q=HEMT" title=" HEMT"> HEMT</a> </p> <a href="https://publications.waset.org/abstracts/183594/investigation-into-the-homoepitaxy-of-algangan-heterostructure-via-molecular-beam-epitaxy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Growth of Non-Polar a-Plane AlGaN Epilayer with High Crystalline Quality and Smooth Surface Morphology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Nasir">Abbas Nasir</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiong%20Zhang"> Xiong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohail%20Ahmad"> Sohail Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiping%20Cui"> Yiping Cui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-polar a-plane AlGaN epilayers of high structural quality have been grown on <em>r</em>-sapphire substrate by using metalorganic chemical vapor deposition (MOCVD). A graded non-polar AlGaN buffer layer with variable aluminium concentration was used to improve the structural quality of the non-polar <em>a-</em>plane AlGaN epilayer. The characterisations were carried out by high-resolution X-ray diffraction (HR-XRD), atomic force microscopy (AFM) and Hall effect measurement. The XRD and AFM results demonstrate that the Al-composition-graded non-polar AlGaN buffer layer significantly improved the crystalline quality and the surface morphology of the top layer. A low root mean square roughness 1.52 nm is obtained from AFM, and relatively low background carrier concentration down to 3.9&times; &nbsp;cm<sup>-3</sup> is obtained from Hall effect measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-polar%20AlGaN%20epilayer" title="non-polar AlGaN epilayer">non-polar AlGaN epilayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%20composition-graded%20AlGaN%20layer" title=" Al composition-graded AlGaN layer"> Al composition-graded AlGaN layer</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20mean%20square" title=" root mean square"> root mean square</a>, <a href="https://publications.waset.org/abstracts/search?q=background%20carrier%20concentration" title=" background carrier concentration"> background carrier concentration</a> </p> <a href="https://publications.waset.org/abstracts/130598/growth-of-non-polar-a-plane-algan-epilayer-with-high-crystalline-quality-and-smooth-surface-morphology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Al2O3-Dielectric AlGaN/GaN Enhancement-Mode MOS-HEMTs by Using Ozone Water Oxidization Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ching-Sung%20Lee">Ching-Sung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Chou%20Hsu"> Wei-Chou Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Han-Yin%20Liu"> Han-Yin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Hsi%20Huang"> Hung-Hsi Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Si-Fu%20Chen"> Si-Fu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Jung%20Yang"> Yun-Jung Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo-Chun%20Chiang"> Bo-Chun Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chuang%20Chen"> Yu-Chuang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shen-Tin%20Yang"> Shen-Tin Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> AlGaN/GaN high electron mobility transistors (HEMTs) have been intensively studied due to their intrinsic advantages of high breakdown electric field, high electron saturation velocity, and excellent chemical stability. They are also suitable for ultra-violet (UV) photodetection due to the corresponding wavelengths of GaN bandgap. To improve the optical responsivity by decreasing the dark current due to gate leakage problems and limited Schottky barrier heights in GaN-based HEMT devices, various metal-oxide-semiconductor HEMTs (MOS-HEMTs) have been devised by using atomic layer deposition (ALD), molecular beam epitaxy (MBE), metal-organic chemical vapor deposition (MOCVD), liquid phase deposition (LPD), and RF sputtering. The gate dielectrics include MgO, HfO2, Al2O3, La2O3, and TiO2. In order to provide complementary circuit operation, enhancement-mode (E-mode) devices have been lately studied using techniques of fluorine treatment, p-type capper, piezoneutralization layer, and MOS-gate structure. This work reports an Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMT design by using a cost-effective ozone water oxidization technique. The present ozone oxidization method advantages of low cost processing facility, processing simplicity, compatibility to device fabrication, and room-temperature operation under atmospheric pressure. It can further reduce the gate-to-channel distance and improve the transocnductance (gm) gain for a specific oxide thickness, since the formation of the Al2O3 will consume part of the AlGaN barrier at the same time. The epitaxial structure of the studied devices was grown by using the MOCVD technique. On a Si substrate, the layer structures include a 3.9 m C-doped GaN buffer, a 300 nm GaN channel layer, and a 5 nm Al0.25Ga0.75N barrier layer. Mesa etching was performed to provide electrical isolation by using an inductively coupled-plasma reactive ion etcher (ICP-RIE). Ti/Al/Au were thermally evaporated and annealed to form the source and drain ohmic contacts. The device was immersed into the H2O2 solution pumped with ozone gas generated by using an OW-K2 ozone generator. Ni/Au were deposited as the gate electrode to complete device fabrication of MOS-HEMT. The formed Al2O3 oxide thickness 7 nm and the remained AlGaN barrier thickness is 2 nm. A reference HEMT device has also been fabricated in comparison on the same epitaxial structure. The gate dimensions are 1.2 × 100 µm 2 with a source-to-drain spacing of 5 μm for both devices. The dielectric constant (k) of Al2O3 was characterized to be 9.2 by using C-V measurement. Reduced interface state density after oxidization has been verified by the low-frequency noise spectra, Hooge coefficients, and pulse I-V measurement. Improved device characteristics at temperatures of 300 K-450 K have been achieved for the present MOS-HEMT design. Consequently, Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMTs by using the ozone water oxidization method are reported. In comparison with a conventional Schottky-gate HEMT, the MOS-HEMT design has demonstrated excellent enhancements of 138% (176%) in gm, max, 118% (139%) in IDS, max, 53% (62%) in BVGD, 3 (2)-order reduction in IG leakage at VGD = -60 V at 300 (450) K. This work is promising for millimeter-wave integrated circuit (MMIC) and three-terminal active UV photodetector applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MOS-HEMT" title="MOS-HEMT">MOS-HEMT</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement%20mode" title=" enhancement mode"> enhancement mode</a>, <a href="https://publications.waset.org/abstracts/search?q=AlGaN%2FGaN" title=" AlGaN/GaN"> AlGaN/GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=passivation" title=" passivation"> passivation</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone%20water%20oxidation" title=" ozone water oxidation"> ozone water oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=gate%20leakage" title=" gate leakage"> gate leakage</a> </p> <a href="https://publications.waset.org/abstracts/45567/al2o3-dielectric-algangan-enhancement-mode-mos-hemts-by-using-ozone-water-oxidization-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Thermal Effect in Power Electrical for HEMTs Devices with InAlN/GaN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakarya%20Kourdi">Zakarya Kourdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Khaouani"> Mohammed Khaouani</a>, <a href="https://publications.waset.org/abstracts/search?q=Benyounes%20Bouazza"> Benyounes Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahlam%20Guen-Bouazza"> Ahlam Guen-Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Amine%20Boursali"> Amine Boursali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have evaluated the thermal effect for high electron mobility transistors (HEMTs) heterostructure InAlN/GaN with a gate length 30nm high-performance. It also shows the analysis and simulated these devices, and how can be used in different application. The simulator Tcad-Silvaco software has used for predictive results good for the DC, AC and RF characteristic, Devices offered max drain current 0.67A; transconductance is 720 mS/mm the unilateral power gain of 180 dB. A cutoff frequency of 385 GHz, and max frequency 810 GHz These results confirm the feasibility of using HEMTs with InAlN/GaN in high power amplifiers, as well as thermal places. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HEMT" title="HEMT">HEMT</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermal%20Effect" title=" Thermal Effect"> Thermal Effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvaco" title=" Silvaco"> Silvaco</a>, <a href="https://publications.waset.org/abstracts/search?q=InAlN%2FGaN" title=" InAlN/GaN"> InAlN/GaN</a> </p> <a href="https://publications.waset.org/abstracts/25974/thermal-effect-in-power-electrical-for-hemts-devices-with-inalngan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Improved Non-Ideal Effects in AlGaN/GaN-Based Ion-Sensitive Field-Effect Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei-Chou%20Hsu">Wei-Chou Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Sung%20Lee"> Ching-Sung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Han-Yin%20Liu"> Han-Yin Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work uses H2O2 oxidation technique to improve the pH sensitivity of the AlGaN/GaN-based ion-sensitive field-effect transistors (ISFETs). 10-nm-thick Al2O3 was grown on the surface of the AlGaN. It was found that the pH sensitivity was improved from 41.6 mV/pH to 55.2 mV/pH. Since the H2O2-grown Al2O3 was served as a passivation layer and the problem of Fermi-level pinning was suppressed for the ISFET with the H2O2 oxidation process. Hysteresis effect in the ISFET with the H2O2 treatment also became insignificant. The hysteresis effect was observed by dipping the ISFETs into different pH value solutions and comparing the voltage difference between the initial and final conditions. The hysteresis voltage (Vhys) of the ISFET with the H2O2 oxidation process was improved from 8.7 mV to 4.8 mV. The hysteresis effect is related to the buried binding sites which are related to the material defects like threading dislocations in the AlGaN/GaN heterostructure which was grown by the hetero-epitaxy technique. The H2O2-grown Al2O3 passivate these material defects and the Al2O3 has less material defects. The long-term stability of the ISFET is estimated by the drift effect measurement. The drift measurement was conducted by dipping the ISFETs into a specific pH value solution for 12 hours and the ISFETs were operating at a specific quiescent point. The drift rate is estimated by the drift voltage divided by the total measuring time. It was found that the drift rate of the ISFET was improved from 10.1 mV/hour to 1.91 mV/hour in the pH 7 solution, from 14.06 mV/hour to 6.38 mV/pH in the pH 2 solution, and from 12.8 mV/hour to 5.48 mV/hour in the pH 12 solution. The drift effect results from the capacitance variation in the electric double layer. The H2O2-grown Al2O3 provides an additional capacitance connection in series with the electric double layer. Therefore, the capacitance variation of the electric double layer became insignificant. Generally, the H2O2 oxidation process is a simple, fast, and cost-effective method for the AlGaN/GaN-based ISFET. Furthermore, the performance of the AlGaN/GaN ISFET was improved effectively and the non-ideal effects were suppressed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlGaN%2FGaN" title="AlGaN/GaN">AlGaN/GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=Al2O3" title=" Al2O3"> Al2O3</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis%20effect" title=" hysteresis effect"> hysteresis effect</a>, <a href="https://publications.waset.org/abstracts/search?q=drift%20effect" title=" drift effect"> drift effect</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=passivation" title=" passivation"> passivation</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20sensors" title=" pH sensors"> pH sensors</a> </p> <a href="https://publications.waset.org/abstracts/45952/improved-non-ideal-effects-in-algangan-based-ion-sensitive-field-effect-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Fabrication of Aluminum Nitride Thick Layers by Modified Reactive Plasma Spraying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C%C3%A9cile%20Dufloux">Cécile Dufloux</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus%20B%C3%B6ttcher"> Klaus Böttcher</a>, <a href="https://publications.waset.org/abstracts/search?q=Heike%20Oppermann"> Heike Oppermann</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%BCrgen%20Wollweber"> Jürgen Wollweber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hexagonal aluminum nitride (AlN) is a promising candidate for several wide band gap semiconductor compound applications such as deep UV light emitting diodes (UVC LED) and fast power transistors (HEMTs). To date, bulk AlN single crystals are still commonly grown from the physical vapor transport (PVT). Single crystalline AlN wafers obtained from this process could offer suitable substrates for a defect-free growth of ultimately active AlGaN layers, however, these wafers still lack from small sizes, limited delivery quantities and high prices so far.Although there is already an increasing interest in the commercial availability of AlN wafers, comparatively cheap Si, SiC or sapphire are still predominantly used as substrate material for the deposition of active AlGaN layers. Nevertheless, due to a lattice mismatch up to 20%, the obtained material shows high defect densities and is, therefore, less suitable for high power devices as described above. Therefore, the use of AlN with specially adapted properties for optical and sensor applications could be promising for mass market products which seem to fulfill fewer requirements. To respond to the demand of suitable AlN target material for the growth of AlGaN layers, we have designed an innovative technology based on reactive plasma spraying. The goal is to produce coarse grained AlN boules with N-terminated columnar structure and high purity. In this process, aluminum is injected into a microwave stimulated nitrogen plasma. AlN, as the product of the reaction between aluminum powder and the plasma activated N2, is deposited onto the target. We used an aluminum filament as the initial material to minimize oxygen contamination during the process. The material was guided through the nitrogen plasma so that the mass turnover was 10g/h. To avoid any impurity contamination by an erosion of the electrodes, an electrode-less discharge was used for the plasma ignition. The pressure was maintained at 600-700 mbar, so the plasma reached a temperature high enough to vaporize the aluminum which subsequently was reacting with the surrounding plasma. The obtained products consist of thick polycrystalline AlN layers with a diameter of 2-3 cm. The crystallinity was determined by X-ray crystallography. The grain structure was systematically investigated by optical and scanning electron microscopy. Furthermore, we performed a Raman spectroscopy to provide evidence of stress in the layers. This paper will discuss the effects of process parameters such as microwave power and deposition geometry (specimen holder, radiation shields, ...) on the topography, crystallinity, and stress distribution of AlN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20nitride" title="aluminum nitride">aluminum nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=polycrystal" title=" polycrystal"> polycrystal</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20plasma%20spraying" title=" reactive plasma spraying"> reactive plasma spraying</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a> </p> <a href="https://publications.waset.org/abstracts/47813/fabrication-of-aluminum-nitride-thick-layers-by-modified-reactive-plasma-spraying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Fabrication of High-Power AlGaN/GaN Schottky Barrier Diode with Field Plate Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Jui%20Yu">Chia-Jui Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Ju%20Chen"> Chien-Ju Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyun-Hao%20Liao"> Jyun-Hao Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Ching%20Wu"> Chia-Ching Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng-Chyi%20Wu"> Meng-Chyi Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this letter, we demonstrate high-performance AlGaN/GaN planar Schottky barrier diodes (SBDs) on the silicon substrate with field plate structure for increasing breakdown voltage <em>V</em><sub>B</sub>. A low turn-on resistance R<sub>ON</sub> (3.55 m&Omega;-cm<sup>2</sup>), low reverse leakage current (&lt; 0.1 &micro;A) at -100 V, and high reverse breakdown voltage <em>V</em><sub>B</sub> (&gt; 1.1 kV) SBD has been fabricated. A virgin SBD exhibited a breakdown voltage (measured at 1 mA/mm) of 615 V, and with the field plate technology device exhibited a breakdown voltage (measured at 1 mA/mm) of 1525 V (the anode&ndash;cathode distance was L<sub>AC</sub> = 40 &micro;m). Devices without the field plate design exhibit a Baliga&rsquo;s figure of merit of <em>V</em><sub>B</sub><sup>2</sup>/ R<sub>ON</sub> = 60.2 MW/cm<sup>2</sup>, whereas devices with the field plate design show a Baliga&rsquo;s figure of merit of <em>V</em><sub>B</sub><sup>2</sup>/ R<sub>ON</sub> = 340.9 MW/cm<sup>2</sup> (the anode&ndash;cathode distance was L<sub>AC</sub> = 20 &micro;m). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlGaN%2FGaN%20heterostructure" title="AlGaN/GaN heterostructure">AlGaN/GaN heterostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20substrate" title=" silicon substrate"> silicon substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=Schottky%20barrier%20diode%20%28SBD%29" title=" Schottky barrier diode (SBD)"> Schottky barrier diode (SBD)</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20breakdown%20voltage" title=" high breakdown voltage"> high breakdown voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=Baliga%E2%80%99s%20figure-of-merit" title=" Baliga’s figure-of-merit"> Baliga’s figure-of-merit</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20plate" title=" field plate"> field plate</a> </p> <a href="https://publications.waset.org/abstracts/73759/fabrication-of-high-power-algangan-schottky-barrier-diode-with-field-plate-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Power HEMTs Transistors for Radar Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20boursali">A. boursali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guen%20Bouazza"> A. Guen Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khaouani"> M. Khaouani</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kourdi"> Z. Kourdi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouazza"> B. Bouazza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design, development and characterization of the devices simulation for X-Band Radar applications. The effect of an InAlN/GaN structure on the RF performance High Electron Mobility Transistor (HEMT) device. Systematic investigations on the small signal as well as power performance as functions of the drain biases are presented. Were improved for X-band applications. The Power Added Efficiency (PAE) was achieved over 23% for X-band. The developed devices combine two InAlN/GaN HEMTs of 30nm gate periphery and exhibited the output power of over 50W. An InAlN/GaN HEMT with 30nm gate periphery was developed and exhibited the output power of over 120W. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=InAlN%2FGaN" title="InAlN/GaN">InAlN/GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=HEMT" title=" HEMT"> HEMT</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20analyses" title=" RF analyses"> RF analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=PAE" title=" PAE"> PAE</a>, <a href="https://publications.waset.org/abstracts/search?q=X-Band" title=" X-Band"> X-Band</a>, <a href="https://publications.waset.org/abstracts/search?q=radar" title=" radar"> radar</a> </p> <a href="https://publications.waset.org/abstracts/30489/power-hemts-transistors-for-radar-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">560</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Metalorganic Chemical Vapor Deposition Overgrowth on the Bragg Grating for Gallium Nitride Based Distributed Feedback Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junze%20Li">Junze Li</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Li"> M. Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser diodes fabricated from the III-nitride material system are emerging solutions for the next generation telecommunication systems and optical clocks based on Ca at 397nm, Rb at 420.2nm and Yb at 398.9nm combined 556 nm. Most of the applications require single longitudinal optical mode lasers, with very narrow linewidth and compact size, such as communication systems and laser cooling. In this case, the GaN based distributed feedback (DFB) laser diode is one of the most effective candidates with gratings are known to operate with narrow spectra as well as high power and efficiency. Given the wavelength range, the period of the first-order diffraction grating is under 100 nm, and the realization of such gratings is technically difficult due to the narrow line width and the high quality nitride overgrowth based on the Bragg grating. Some groups have reported GaN DFB lasers with high order distributed feedback surface gratings, which avoids the overgrowth. However, generally the strength of coupling is lower than that with Bragg grating embedded into the waveguide within the GaN laser structure by two-step-epitaxy. Therefore, the overgrowth on the grating technology need to be studied and optimized. Here we propose to fabricate the fine step shape structure of first-order grating by the nanoimprint combined inductively coupled plasma (ICP) dry etching, then carry out overgrowth high quality AlGaN film by metalorganic chemical vapor deposition (MOCVD). Then a series of gratings with different period, depths and duty ratios are designed and fabricated to study the influence of grating structure to the nano-heteroepitaxy. Moreover, we observe the nucleation and growth process by step-by-step growth to study the growth mode for nitride overgrowth on grating, under the condition that the grating period is larger than the mental migration length on the surface. The AFM images demonstrate that a smooth surface of AlGaN film is achieved with an average roughness of 0.20 nm over 3 × 3 μm2. The full width at half maximums (FWHMs) of the (002) reflections in the XRD rocking curves are 278 arcsec for the AlGaN film, and the component of the Al within the film is 8% according to the XRD mapping measurement, which is in accordance with design values. By observing the samples with growth time changing from 200s, 400s to 600s, the growth model is summarized as the follow steps: initially, the nucleation is evenly distributed on the grating structure, as the migration length of Al atoms is low; then, AlGaN growth alone with the grating top surface; finally, the AlGaN film formed by lateral growth. This work contributed to carrying out GaN DFB laser by fabricating grating and overgrowth on the nano-grating patterned substrate by wafer scale, moreover, growth dynamics had been analyzed as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFB%20laser" title="DFB laser">DFB laser</a>, <a href="https://publications.waset.org/abstracts/search?q=MOCVD" title=" MOCVD"> MOCVD</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoepitaxy" title=" nanoepitaxy"> nanoepitaxy</a>, <a href="https://publications.waset.org/abstracts/search?q=III-niitride" title=" III-niitride"> III-niitride</a> </p> <a href="https://publications.waset.org/abstracts/90518/metalorganic-chemical-vapor-deposition-overgrowth-on-the-bragg-grating-for-gallium-nitride-based-distributed-feedback-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Modeling and Design of E-mode GaN High Electron Mobility Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samson%20Mil%27shtein">Samson Mil&#039;shtein</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhawal%20Asthana"> Dhawal Asthana</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Sullivan"> Benjamin Sullivan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wide energy gap of GaN is the major parameter justifying the design and fabrication of high-power electronic components made of this material. However, the existence of a piezo-electrics in nature sheet charge at the AlGaN/GaN interface complicates the control of carrier injection into the intrinsic channel of GaN HEMTs (High Electron Mobility Transistors). As a result, most of the transistors created as R&D prototypes and all of the designs used for mass production are D-mode devices which introduce challenges in the design of integrated circuits. This research presents the design and modeling of an E-mode GaN HEMT with a very low turn-on voltage. The proposed device includes two critical elements allowing the transistor to achieve zero conductance across the channel when Vg = 0V. This is accomplished through the inclusion of an extremely thin, 2.5nm intrinsic Ga₀.₇₄Al₀.₂₆N spacer layer. The added spacer layer does not create piezoelectric strain but rather elastically follows the variations of the crystal structure of the adjacent GaN channel. The second important factor is the design of a gate metal with a high work function. The use of a metal gate with a work function (Ni in this research) greater than 5.3eV positioned on top of n-type doped (Nd=10¹⁷cm⁻³) Ga₀.₇₄Al₀.₂₆N creates the necessary built-in potential, which controls the injection of electrons into the intrinsic channel as the gate voltage is increased. The 5µm long transistor with a 0.18µm long gate and a channel width of 30µm operate at Vd=10V. At Vg =1V, the device reaches the maximum drain current of 0.6mA, which indicates a high current density. The presented device is operational at frequencies greater than 10GHz and exhibits a stable transconductance over the full range of operational gate voltages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compound%20semiconductors" title="compound semiconductors">compound semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20modeling" title=" device modeling"> device modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement%20mode%20HEMT" title=" enhancement mode HEMT"> enhancement mode HEMT</a>, <a href="https://publications.waset.org/abstracts/search?q=gallium%20nitride" title=" gallium nitride"> gallium nitride</a> </p> <a href="https://publications.waset.org/abstracts/139689/modeling-and-design-of-e-mode-gan-high-electron-mobility-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Device-integrated Micro-thermocouples for Reliable Temperature Measurement of GaN HEMTs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Irshad%20Bhatti">Hassan Irshad Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Saravanan%20Yuvaraja"> Saravanan Yuvaraja</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohang%20Li"> Xiaohang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GaN-based devices, such as high electron mobility transistors (HEMTs), offer superior characteristics for high-power, high-frequency, and high-temperature applications [1]. However, this exceptional electrical performance is compromised by undesirable self-heating effects under high-power applications [2, 3]. Some of the issues caused by self-heating are current collapse, thermal runway and performance degradation [4, 5]. Therefore, accurate and reliable methods for measuring the temperature of individual devices on a chip are needed to monitor and control the thermal behavior of GaN-based devices [6]. Temperature measurement at the micro/nanoscale is a challenging task that requires specialized techniques such as Infrared microscopy, Raman thermometry, and thermoreflectance. Recently, micro-thermocouples (MTCs) have attracted considerable attention due to their advantages of simplicity, low cost, high sensitivity, and compatibility with standard fabrication processes [7, 8]. A micro-thermocouple is a junction of two different metal thin films, which generates a Seebeck voltage related to the temperature difference between a hot and cold zone. Integrating MTC in a device allows local temperature to be measured with high sensitivity and accuracy [9]. This work involves the fabrication and integration of micro-thermocouples (MTCs) to measure the channel temperature of GaN HEMT. Our fabricated MTC (Platinum-Chromium junction) has shown a sensitivity of 16.98 µV/K and can measure device channel temperature with high precision and accuracy. The temperature information obtained using this sensor can help improve GaN-based devices and provide thermal engineers with useful insights for optimizing their designs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Electrical%20Engineering" title="Electrical Engineering">Electrical Engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermal%20engineering" title=" Thermal engineering"> Thermal engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=Power%20Devices" title=" Power Devices"> Power Devices</a>, <a href="https://publications.waset.org/abstracts/search?q=Semiconuctors" title=" Semiconuctors"> Semiconuctors</a> </p> <a href="https://publications.waset.org/abstracts/193207/device-integrated-micro-thermocouples-for-reliable-temperature-measurement-of-gan-hemts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anwar%20Jarndal">Anwar Jarndal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaN%20HEMT" title="GaN HEMT">GaN HEMT</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20design%20and%20modeling" title=" computer-aided design and modeling"> computer-aided design and modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20optimization" title=" genetic optimization"> genetic optimization</a> </p> <a href="https://publications.waset.org/abstracts/39157/a-genetic-neural-network-modeling-approach-for-self-heating-in-gan-high-electron-mobility-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Etude 3D Quantum Numerical Simulation of Performance in the HEMT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Boursali">A. Boursali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guen-Bouazza"> A. Guen-Bouazza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a simulation of a HEMT (high electron mobility transistor) structure with and without a field plate. We extract the device characteristics through the analysis of DC, AC and high frequency regimes, as shown in this paper. This work demonstrates the optimal device with a gate length of 15 nm, InAlN/GaN heterostructure and field plate structure, making it superior to modern HEMTs when compared with otherwise equivalent devices. This improves the ability to bear the burden of the current density passes in the channel. We have demonstrated an excellent current density, as high as 2.05 A/m, a peak extrinsic transconductance of 0.59S/m at VDS=2 V, and cutting frequency cutoffs of 638 GHz in the first HEMT and 463 GHz for Field plate HEMT., maximum frequency of 1.7 THz, maximum efficiency of 73%, maximum breakdown voltage of 400 V, leakage current density IFuite=1 x 10-26 A, DIBL=33.52 mV/V and an ON/OFF current density ratio higher than 1 x 1010. These values were determined through the simulation by deriving genetic and Monte Carlo algorithms that optimize the design and the future of this technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HEMT" title="HEMT">HEMT</a>, <a href="https://publications.waset.org/abstracts/search?q=silvaco" title=" silvaco"> silvaco</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20plate" title=" field plate"> field plate</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum" title=" quantum"> quantum</a> </p> <a href="https://publications.waset.org/abstracts/39443/etude-3d-quantum-numerical-simulation-of-performance-in-the-hemt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> 3D Quantum Simulation of a HEMT Device Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kourdi">Z. Kourdi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouazza"> B. Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khaouani"> M. Khaouani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guen-Bouazza"> A. Guen-Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Djennati"> Z. Djennati</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Boursali"> A. Boursali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a simulation of a HEMT (high electron mobility transistor) structure with and without a field plate. We extract the device characteristics through the analysis of DC, AC and high frequency regimes, as shown in this paper. This work demonstrates the optimal device with a gate length of 15 nm, InAlN/GaN heterostructure and field plate structure, making it superior to modern HEMTs when compared with otherwise equivalent devices. This improves the ability to bear the burden of the current density passes in the channel. We have demonstrated an excellent current density, as high as 2.05 A/mm, a peak extrinsic transconductance of 590 mS/mm at VDS=2 V, and cutting frequency cutoffs of 638 GHz in the first HEMT and 463 GHz for Field plate HEMT., maximum frequency of 1.7 THz, maximum efficiency of 73%, maximum breakdown voltage of 400 V, DIBL=33.52 mV/V and an ON/OFF current density ratio higher than 1 x 1010. These values were determined through the simulation by deriving genetic and Monte Carlo algorithms that optimize the design and the future of this technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HEMT" title="HEMT">HEMT</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvaco" title=" Silvaco"> Silvaco</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20plate" title=" field plate"> field plate</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum" title=" quantum"> quantum</a> </p> <a href="https://publications.waset.org/abstracts/30552/3d-quantum-simulation-of-a-hemt-device-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gorkem%20Algan">Gorkem Algan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilkay%20Ulusoy"> Ilkay Ulusoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Saban%20Gonul"> Saban Gonul</a>, <a href="https://publications.waset.org/abstracts/search?q=Banu%20Turgut"> Banu Turgut</a>, <a href="https://publications.waset.org/abstracts/search?q=Berker%20Bakbak"> Berker Bakbak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, a label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article. The proposed solution is tested on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=label%20noise" title=" label noise"> label noise</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20learning" title=" robust learning"> robust learning</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-learning" title=" meta-learning"> meta-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=retinopathy%20of%20prematurity" title=" retinopathy of prematurity"> retinopathy of prematurity</a> </p> <a href="https://publications.waset.org/abstracts/134242/learning-from-small-amount-of-medical-data-with-noisy-labels-a-meta-learning-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> High-Frequency Modulation of Light-Emitting Diodes for New Ultraviolet Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meng-Chyi%20Wu">Meng-Chyi Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bonn%20Lin"> Bonn Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyun-Hao%20Liao"> Jyun-Hao Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chein-Ju%20Chen"> Chein-Ju Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Cheng%20Jhuang"> Yu-Cheng Jhuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mau-Phon%20Houng"> Mau-Phon Houng</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang-Hsing%20Wang"> Fang-Hsing Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Chu%20Liu"> Min-Chu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Fu%20Yang"> Cheng-Fu Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Shong%20Hong"> Cheng-Shong Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the use of wireless communications has become critical nowadays, the available RF spectrum has become limited. Ultraviolet (UV) communication system can alleviate the spectrum constraint making UV communication system a potential alternative to future communication demands. Also, UV links can provide faster communication rate and can be used in combination with existing RF communication links, providing new communications diversity with higher user capacity. The UV region of electromagnetic spectrum has been of interest to detector, imaging and communication technologies because the stratospheric ozone layer effectively absorbs some solar UV radiation from reaching the earth surface. The wavebands where most of UV radiation is absorbed by the ozone are commonly known as the solar blind region. By operating in UV-C band (200-280 nm) the communication system can minimize the transmission power consumption since it will have less radiation noise. UV communication uses the UV ray as the medium. Electric signal is carried on this band after being modulated and then be transmitted within the atmosphere as channel. Though the background noise of UV-C communication is very low owing to the solar-blind feature, it leads to a large propagation loss. The 370 nm UV provides a much lower propagation loss than that the UV-C does and the recent device technology for UV source on this band is more mature. The fabricated 370 nm AlGaN light-emitting diodes (LEDs) with an aperture size of 45 m exhibit a modulation bandwidth of 165 MHz at 30 mA and a high power of 7 W/cm2 at 230 A/cm2. In order to solve the problem of low power in single UV LED, a UV LED array is presented in. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20%28UV%29%20communication" title="ultraviolet (UV) communication">ultraviolet (UV) communication</a>, <a href="https://publications.waset.org/abstracts/search?q=light-emitting%20diodes%20%28LEDs%29" title=" light-emitting diodes (LEDs)"> light-emitting diodes (LEDs)</a>, <a href="https://publications.waset.org/abstracts/search?q=modulation%20bandwidth" title=" modulation bandwidth"> modulation bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=LED%20array" title=" LED array"> LED array</a>, <a href="https://publications.waset.org/abstracts/search?q=370%20nm" title=" 370 nm"> 370 nm</a> </p> <a href="https://publications.waset.org/abstracts/46357/high-frequency-modulation-of-light-emitting-diodes-for-new-ultraviolet-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Electrical Degradation of GaN-based p-channel HFETs Under Dynamic Electrical Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuerui%20Niu">Xuerui Niu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bolin%20Wang"> Bolin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinchuang%20Zhang"> Xinchuang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohua%20Ma"> Xiaohua Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Hou"> Bin Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling%20Yang"> Ling Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of discrete GaN-based power switches requires the collaboration of silicon-based peripheral circuit structures. However, the packages and interconnection between the Si and GaN devices can introduce parasitic effects to the circuit, which has great impacts on GaN power transistors. GaN-based monolithic power integration technology is an emerging solution which can improve the stability of circuits and allow the GaN-based devices to achieve more functions. Complementary logic circuits consisting of GaN-based E-mode p-channel heterostructure field-effect transistors (p-HFETs) and E-mode n-channel HEMTs can be served as the gate drivers. E-mode p-HFETs with recessed gate have attracted increasing interest because of the low leakage current and large gate swing. However, they suffer from a poor interface between the gate dielectric and polarized nitride layers. The reliability of p-HFETs is analyzed and discussed in this work. In circuit applications, the inverter is always operated with dynamic gate voltage (VGS) rather than a constant VGS. Therefore, dynamic electrical stress has been simulated to resemble the operation conditions for E-mode p-HFETs. The dynamic electrical stress condition is as follows. VGS is a square waveform switching from -5 V to 0 V, VDS is fixed, and the source grounded. The frequency of the square waveform is 100kHz with the rising/falling time of 100 ns and duty ratio of 50%. The effective stress time is 1000s. A number of stress tests are carried out. The stress was briefly interrupted to measure the linear IDS-VGS, saturation IDS-VGS, As VGS switches from -5 V to 0 V and VDS = 0 V, devices are under negative-bias-instability (NBI) condition. Holes are trapped at the interface of oxide layer and GaN channel layer, which results in the reduction of VTH. The negative shift of VTH is serious at the first 10s and then changes slightly with the following stress time. However, different phenomenon is observed when VDS reduces to -5V. VTH shifts negatively during stress condition, and the variation in VTH increases with time, which is different from that when VDS is 0V. Two mechanisms exists in this condition. On the one hand, the electric field in the gate region is influenced by the drain voltage, so that the trapping behavior of holes in the gate region changes. The impact of the gate voltage is weakened. On the other hand, large drain voltage can induce the hot holes generation and lead to serious hot carrier stress (HCS) degradation with time. The poor-quality interface between the oxide layer and GaN channel layer at the gate region makes a major contribution to the high-density interface traps, which will greatly influence the reliability of devices. These results emphasize that the improved etching and pretreatment processes needs to be developed so that high-performance GaN complementary logics with enhanced stability can be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaN-based%20E-mode%20p-HFETs" title="GaN-based E-mode p-HFETs">GaN-based E-mode p-HFETs</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20electric%20stress" title=" dynamic electric stress"> dynamic electric stress</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20voltage" title=" threshold voltage"> threshold voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=monolithic%20power%20integration%20technology" title=" monolithic power integration technology"> monolithic power integration technology</a> </p> <a href="https://publications.waset.org/abstracts/159834/electrical-degradation-of-gan-based-p-channel-hfets-under-dynamic-electrical-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10