CINXE.COM
{"title":"The Effect of Carboxymethyl Cellulose on the Stability of Emulsions Stabilized by Whey Proteins under Digestion in vitro and in vivo","authors":"D. Leskauskaite, I. Jasutiene, M. Kersiene, E. Malinauskyte, P. Matusevicius","volume":79,"journal":"International Journal of Nutrition and Food Engineering","pagesStart":538,"pagesEnd":544,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/16316","abstract":"<p>In vitro gastro-duodenal digestion model was used to investigate the changes of emulsions under digestion conditions. Oil in water emulsions stabilized by whey proteins (2%) and stabilized by whey proteins (2%) with addition of carboxymethyl cellulose (0.75%) as gelling agent of continuous phase were prepared at pH7. Both emulsions were destabilized under gastric conditions; however the protective role of carboxymethyl cellulose was indicated by recording delay of fat digestibility of this emulsion. In the presence of carboxymethyl cellulose whey proteins on the interfacial surface of droplets were more resistant to gastric degradation causing limited hydrolysis of fat due to the poor acceptability of lipids for the enzymes. Studies of emulsions using in vivo model supported results from in vitro studies. Lower content of triglycerides in blood serum and higher amount of fecal fat of rats were determined when rats were fed by diet containing emulsion made with whey proteins and carboxymethyl cellulose. <\/p>\r\n","references":"<p>[1] H. Singh, A. Sarkar, \u201cBehaviour of protein-stabilised emulsions under\r\nvarious physiological conditions\u201d. Advances in Colloid and Interface\r\nScience, vol. 165, no. (1), pp. 47\u201357, June 2011.\r\n[2] A. M. Nik, A. J. Wright, M. Corredig, \u201cImpact of interfacial\r\ncomposition on emulsion digestion and rate of lipid hydrolysis using\r\ndifferent in vitro digestion models,\u201c Colloid surface B., vol. 83, no. 2,\r\npp. 321\u2013330, Apr. 2011.\r\n[3] N. Kitabatake, Y. I. Kinekawa, \u201cDigestibility of bovine milk whey\r\nprotein and \u03b2- lactoglobulin in vitro and in vivo\u201d. J Agr Food Chem, vol.\r\n46, no. 12, pp. 4917-4923. Dec. 1998.\r\n[4] A. Macierzanka, A. I. Sancho, E. N. C. Mills, N. M. Rigby, A. R.\r\nMackie, \u201cEmulsification alters simulated gastrointestinal proteolysis of\r\nb-casein and b-lactoglobulin,\u201c Soft Matter, vol. 5, no. 3, pp. 538\u2013550,\r\nFeb. 2009.\r\n[5] A. M. Mackie, N. M. Rigby, M. S. Wickham, E. N. Mills, \u201cPhysiological\r\nphosphatidylcholine protects bovine beta-lactoglobulin from simulated\r\ngastroin-testinal proteolysis,\u201c Mol Nutr Food Res, vol. 53, no. 1, pp.\r\nS131\u20139, May 2009.\r\n[6] A. Sarkar, K. T. Goh, R. P. Singh, H. Singh, \u201cColloidal stability and\r\ninteraction of milk-protein-stabilized emulsions in an artificial saliva,\u201c\r\nFood Hydrocolloid., vol. 23, no. 5, pp. 1270\u20131278, July 2009.\r\n[7] A. Sarkar, D. Horne, H. Singh, \u201cInteractions of milk protein stabilized\r\noil-in-water emulsions with bile salts in a simulated upper intestinal\r\nmodel,\u201c Food Hydrocolloid, vol. 24, no. 2-3, pp. 142-51, Mar.-May\r\n2010.\r\n[8] A. M. Nik, A.J. Wright, M. Corredig, \u201cSurface adsorption altersthe\r\nsusceptibility of whey proteins to pepsin digestion,\u201c J Colloid Interf\r\nSci., vol. 344, no. 2, pp. 372-381, Apr. 2010.\r\n[9] D. J. McClements, E. A. Decker, Y. Park, \u201cControlling lipid\r\nbioavailability through physicochemical and structural approaches,\u201c Crit\r\nRev Food Sci Nutr., vol. 49, no. 1, pp. 48-67, Jan. 2009.\r\n[10] E. Dickinson, \u201cInterfacial structure and stability of food emulsions as\r\naffected by protein\u2013polysaccharide interactions,\u201c Soft Matter, vol. 4, no.\r\n5, pp. 932\u2013942, Feb. 2008.\r\n[11] Y. Li, M. Hu, H. Xiao, Y. Du, EA. Decker, DJ. McClements,\r\n\u201cControlling the functional performance of emulsion-based delivery\r\nsystems using multi-component biopolymer coatings,\u201c Eur J Pharm\r\nBiopharm.,vol. 76, no. 1, pp. 38\u201347, Sept. 2010.\r\n[12] S.L. Turgeon, C. Schmitt, C., Sanchez, \u201cProtein\u2013polysaccharide\r\ncomplexes and coacervates,\u201c Curr Opin Colloid Interface Sci., vol. 12,\r\nno. 4-5, pp. 166-178, Oct. 2007.\r\n[13] D. G. Fatouros, A. Mullertz, \u201cIn vitro lipid digestion models in design of\r\ndrug delivery systems for enhancing oral bioavailability,\u201c Expert Opin\r\nDrug Metab Toxicol, vol. 4, no. 1, pp. 65-76, Jan. 2008.\r\n[14] S. J. Hur, B. O Lim, Decker E. A., D. McClements J, \u201cIn vitro Human\r\nDigestion Models for Food Applications,\u201c Food Chem., vol. 125, no. 1,\r\npp. 1-12, Mar. 2011.\r\n[15] A. Dahan, A. Hoffman, \u201cThe effect of different lipid based formulations\r\non the oral absorption of lipophilic drugs: The ability of in vitro lipolysis\r\nand consecutive ex vivo intestinal permeability data to predict in vivo\r\nbioavailability in rats,\u201c Eur J Pharm Biopharm, vol. 67, no. 1, pp. 96-\r\n105, Aug. 2007.\r\n[16] E. F. A. Brandon, A. G. Oomen, C. J. M. Rompelberg, C. H. M.\r\nVersantvoort, J. G. M. van Engelen, A, J. A. M. Sips, \u201cConsumer\r\nproduct in vitro digestion model: bioaccessibility of contaminants and its\r\napplication in risk assessment,\u201c Regul Toxicol Pharmacol., vol. 44, no.\r\n2, pp. 161-171, Mar. 2006.\r\n[17] S. Mun, E.A. Decker, Y. Park, J. Weiss, D.J. McClements, Influence of\r\nInterfacial Composition on in vitro Digestibility of Emulsified Lipids:\r\nPotential Mechanism for Chitosan's Ability to Inhibit Fat Digestion,\u201d\r\nFood Biophysics, vol. 1, no. 1, pp. 21\u201329, Mar. 2006.\r\n[18] G. Y. Park, S. Mun, Y. Park, S. Rhee, E. A. Decker, J. Weiss, D. J.\r\nMcClements, Y. Park, \u201cInfluence of encapsulation of emulsified lipids\r\nwith chitosan on their in vivo digestibility,\u201c Food Chem., vol. 104, no. 2,\r\npp. 761\u2013767, 2007.\r\n[19] D.J. McClements, E.A. Decker, Y. Park, J Weiss, \u201cDesigning Food\r\nStructure to Control Stability, Digestion, Release and Absorption of\r\nLipophilic Food Components,\u201d Food Biophysics, vol. 3, no.2, pp. 219-\r\n228, June 2008.\r\n[20] M. Girard, S. Turgeon, P. Paquin, \u201cEmulsifying properties of whey\r\nproteins-carboxymethylcellulose complexes,\u201c J Food Sci.,vol. 67, no. 1,\r\npp. 113-119. Jan. 2002.\r\n[21] H. Almaas, A-L. Cases, T. G. Devold, H. Holm, T. Langsrud, L.\r\nAabakken, T. Aadnoey, G. E. Vegarud, \u201cIn vitro digestion of bovine and\r\ncaprine milk by human gastric and duodenal enzymes,\u201c Int Dairy J.,\r\nvol. 16, no. 9, pp. 961\u2013968, Sept. 2006.\r\n[22] A. Sarkar, K. T. Goh, R. P. Singh, H. Singh, \u201cBehavior of an oil-inwater\r\nemulsion stabilazed bu \u03b2-lactoglobulin in an in vitro gastric\r\nmodel,\u201c Food Hydrocolloid, vol. 23, no. 6, pp. 1563\u20131569, Aug. 2009.\r\n[23] S J. Folch, M. Lees, G. H. Stenley Sloane, \u201cA simple method for the\r\nisplation and purification of total lipids from animal tissue,\u201d J. Biolog.\r\nChem., vol. 226, no. 1, pp. 497\u2013509, May 1957.\r\n[24] J. Ruiz, T. Antequera, A. I. Andres, M. J. Petron, E.Muriel,\r\n\u201cImprovement of a solid phase extraction method for analysis of lipid\r\nfractions in muscle foods,\u201d Anal. Chim. Acta, vol. 520, no. 1-2, pp. 201\u2013\r\n205, August 2004.\r\n[25] M. Armand, P. Borel, P. Ythier, G. Dutot, C. Melin, M. Senft,\r\nH. Lafont, D. Lairon, \u201cEffects of droplet size, triacylglycerol\r\ncomposition, and calcium on the hydrolysis of complex emulsions by\r\npancreatic lipase\u2014An in vitro study,\u201c J. Nutr. Biochem., vol. 3, no. 7,\r\npp. 333\u2013341, July 1992.\r\n[26] M. Armand, B. Pasquier, M. Andr\u00e9, P. Borel, M. Senft, J. Peyrot, J.\r\nSalducci, H. Portugal, V. Jaussan, D. Lairon, \u201cDigestion and absorption\r\nof 2 fat emulsions with different droplet sizes in the human digestive\r\ntract,\u201c Am J Clin Nutr, vol. 70, no. 6, pp. 1096-1106, Dec. 1999.\r\n[27] R. K. Ockner, J. P. Pittman, J. L. Yager, \u201cDifferences in the intestinal\r\nabsorption of saturated and unsaturated long chain fatty acids,\u201c\r\nGastroenterology, vol. 62, pp. 981\u2013992, May 1972.<\/p>\r\n","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 79, 2013"}