CINXE.COM
Динамика (в физике). Большая российская энциклопедия
<!DOCTYPE html><html lang="ru"><head><meta charset="utf-8"> <meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=1"> <title>Динамика (в физике). Большая российская энциклопедия</title> <link href="https://mc.yandex.ru" rel="preconnect"> <link href="https://top-fwz1.mail.ru/js/code.js" as="script" crossorigin> <link href="https://news.gnezdo2.ru/gnezdo_news_tracker_new.js" as="script" crossorigin> <link href="https://mc.yandex.ru" rel="dns-prefetch"> <link href="https://mc.yandex.ru/metrika/tag.js" as="script" crossorigin> <meta name="msapplication-TileColor" content="#da532c"> <meta name="msapplication-config" content="/meta/browserconfig.xml"> <meta name="theme-color" content="#ffffff"> <link rel="icon" sizes="32x32" href="/favicon.ico"> <link rel="icon" type="image/svg+xml" href="/meta/favicon.svg"> <link rel="apple-touch-icon" href="/meta/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="48x48" href="/meta/favicon-48x48.png"> <link rel="manifest" href="/meta/site.webmanifest"> <meta content="2024-03-27T16:19:33.000Z" name="article:modified_time"> <meta content="Термины" property="article:section"> <meta content="Разделы механики" property="article:tag"> <meta content="Дина́мика, раздел механики, посвящённый изучению изменения характеристик движения материальных тел под действием приложенных к ним сил. Динамика –..." name="description"> <meta content="Разделы механики" name="keywords"> <meta content="Дина́мика, раздел механики, посвящённый изучению изменения характеристик движения материальных тел под действием приложенных к ним сил. Динамика –..." property="og:description"> <meta content="https://i.bigenc.ru/resizer/resize?sign=K2mwjNK87zofppSZEffyIw&filename=vault/3cf067030012eb10bb78b0ddf25f3b6b.webp&width=1200" property="og:image"> <meta content="«Большая российская энциклопедия»" property="og:image:alt"> <meta content="792" property="og:image:height"> <meta content="webp&width=1200" property="og:image:type"> <meta content="1200" property="og:image:width"> <meta content="Динамика (в физике)" property="og:title"> <meta content="article" property="og:type"> <meta content="https://bigenc.ru/c/dinamika-c3b94d" property="og:url"> <meta content="summary_large_image" property="twitter:card"> <meta content="Большая российская энциклопедия" property="og:site_name"> <meta content="2023-06-06T16:24:11.000Z" name="article:published_time"> <link rel="stylesheet" href="https://s.bigenc.ru/_nuxt/entry.mpjHLZVQ.css"> <link rel="stylesheet" href="https://s.bigenc.ru/_nuxt/components.EYp_E6uU.css"> <link rel="stylesheet" href="https://s.bigenc.ru/_nuxt/Formula.OAWbmYZe.css"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/entry.-Z8AjeEO.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/chunk.eVCQshbn.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/components.a6A3eWos.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/index.64RxBmGv.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Renderer.vue.KBqHlDjs.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/ArticleSidebar.vue.QjMjnOY7.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Image.vue.hLe6_eLu.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/MediaFigure.vue.8Cjz8VZ4.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Image.MIRfcYkN.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Formula.hIoX9Hw3.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/PreviewLink.1ksiu7wu.js"> <link rel="prefetch" as="image" type="image/jpeg" href="https://s.bigenc.ru/_nuxt/fallback.OCsNm7LY.jpg"> <script type="module" src="https://s.bigenc.ru/_nuxt/entry.-Z8AjeEO.js" crossorigin></script></head><body><div id="__nuxt"><!--[--><div class="loading-indicator" style="position:fixed;top:0;right:0;left:0;pointer-events:none;width:0%;height:1px;opacity:0;background:repeating-linear-gradient(to right,#7698f5 0%,#436ee6 50%,#0047e1 100%);background-size:Infinity% auto;transition:width 0.1s, height 0.4s, opacity 0.4s;z-index:999999;"></div><div><!----><div class="bre-page" itemscope itemprop="mainEntity" itemtype="https://schema.org/WebPage"><header class="bre-header" itemprop="hasPart" itemscope itemtype="https://schema.org/WPHeader" style=""><div class="bre-header-fixed"><nav class="bre-header-nav"><div class="bre-header-nav-item _flex-start _logo"><a class="bre-header-logo -show-on-desktop-s _big" aria-label="Домой"></a><a class="bre-header-logo _small" aria-label="Домой"></a></div><div class="bre-header-nav-item _flex-start _catalog"><button type="button" class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer tw-h-11 -show-on-desktop-s tw-px-4 tw-w-[132px] !tw-justify-start" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M20.75 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h16a.75.75 0 0 1 .75.75Zm-7 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h9a.75.75 0 0 1 .75.75ZM20 18.75a.75.75 0 0 0 0-1.5H4a.75.75 0 0 0 0 1.5h16Z" fill="currentColor"/></svg> </span><span class="c-button__content" data-v-cfbedafc><!--[--> Каталог <!--]--></span></button><button type="button" class="b-button b-button--transparent -text-button tw-rounded-lg tw-cursor-pointer tw-gap-0 md:tw-gap-2 -hide-on-desktop-s" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0 tw-text-primary-black" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M20.75 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h16a.75.75 0 0 1 .75.75Zm-7 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h9a.75.75 0 0 1 .75.75ZM20 18.75a.75.75 0 0 0 0-1.5H4a.75.75 0 0 0 0 1.5h16Z" fill="currentColor"/></svg> </span><span class="c-button__content" data-v-cfbedafc><!--[--><span class="tw-hidden tw-pt-0.5 tw-text-primary-black md:tw-block">Каталог</span><!--]--></span></button></div><div class="bre-header-nav-item _flex-start lg:tw-flex-1"><div class="min-lg:tw-w-[228px] tw-relative max-md:tw-mb-[6px] max-md:tw-mt-4 lg:tw-w-full lg:tw-max-w-[606px] max-md:tw-hidden"><div class="tw-flex max-lg:tw-hidden" data-v-f39cd9b8><div class="tw-flex tw-w-full tw-items-center tw-border tw-border-solid tw-border-transparent tw-bg-gray-6 tw-px-3 tw-transition lg:hover:tw-bg-gray-5 lg:tw-bg-primary-white lg:tw-border-gray-5 lg:hover:tw-border-transparent lg:tw-rounded-e-none lg:tw-pr-4 tw-rounded-lg tw-h-11" data-v-f39cd9b8><span class="nuxt-icon _no-icon-margin tw-shrink-0 tw-text-2xl tw-text-gray-2 tw-cursor-pointer" style="display:none;" data-v-f39cd9b8><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M10 17C13.866 17 17 13.866 17 10C17 6.13401 13.866 3 10 3C6.13401 3 3 6.13401 3 10C3 13.866 6.13401 17 10 17Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M21.0004 21.0004L15.5 15.5" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span><input class="b-search-input -text-headline-6 tw-h-full tw-shrink tw-grow tw-basis-auto tw-border-none tw-bg-transparent tw-p-0 tw-indent-2 tw-leading-none tw-text-primary-black tw-outline-none tw-transition md:tw-w-[154px] tw-placeholder-gray-2 lg:tw-placeholder-gray-1 lg:tw-indent-1 lg:tw-pr-4 lg:-text-caption-1 placeholder-on-focus" name="new-search" value="" type="text" placeholder="Искать в энциклопедии" autocomplete="off" spellcheck="false" data-v-f39cd9b8><button type="button" class="b-button tw-gap-2 b-button--transparent -text-button tw-rounded-lg tw-cursor-pointer b-button--icon-only" style="display:none;" data-v-f39cd9b8 data-v-cfbedafc><span class="nuxt-icon nuxt-icon--fill nuxt-icon--stroke tw-text-2xl tw-shrink-0 tw-text-gray-2" data-v-cfbedafc><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="1.5" d="M17 17 7 7M17 7 7 17"/></svg> </span><!----></button></div><!--[--><button type="button" class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer b-button--icon-only tw-h-11 tw-w-11 tw-rounded-s-none tw-flex-none" style="" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M10 17C13.866 17 17 13.866 17 10C17 6.13401 13.866 3 10 3C6.13401 3 3 6.13401 3 10C3 13.866 6.13401 17 10 17Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M21.0004 21.0004L15.5 15.5" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span><!----></button><!--]--></div><!----></div><button class="lg:tw-hidden"><span class="nuxt-icon tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M10 17C13.866 17 17 13.866 17 10C17 6.13401 13.866 3 10 3C6.13401 3 3 6.13401 3 10C3 13.866 6.13401 17 10 17Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M21.0004 21.0004L15.5 15.5" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span></button></div><div class="bre-header-nav-item _flex-start -show-on-tablet button-author-animation lg:tw-justify-end lg:tw-basis-[calc(50vw-348px)]"><a class="b-button tw-gap-2 b-button--secondary -text-button tw-rounded-lg tw-cursor-pointer tw-h-10 tw-w-[172px] tw-px-6 lg:tw-h-11" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[--> Стать автором <!--]--></span></a></div><div class="bre-header-nav-item _flex-start tw-relative max-md:tw-w-6 sm:tw-z-[9] md:tw-z-[21]"><div class="bre-header-profile"><!--[--><!--[--><a class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer tw-h-10 tw-px-6 -show-on-tablet -hide-on-desktop-s tw-w-[102px]" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[--> Войти <!--]--></span></a><a class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer tw-h-11 tw-px-6 -show-on-desktop-s tw-w-[102px]" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[--> Войти <!--]--></span></a><a class="b-button tw-gap-2 b-button--transparent -text-button tw-rounded-lg tw-cursor-pointer b-button--icon-only tw-mx-1 -hide-on-tablet" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0 tw-text-primary-black" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M20 21V19C20 17.9391 19.5786 16.9217 18.8284 16.1716C18.0783 15.4214 17.0609 15 16 15H8C6.93913 15 5.92172 15.4214 5.17157 16.1716C4.42143 16.9217 4 17.9391 4 19V21" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M12 12C14.2091 12 16 10.2091 16 8C16 5.79086 14.2091 4 12 4C9.79086 4 8 5.79086 8 8C8 10.2091 9.79086 12 12 12Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span><!----></a><!--]--></div></div></nav><!----><!----></div><!----><!----></header><main class="bre-page-main"><!--[--><div class="bre-article-layout _no-margin"><nav class="bre-article-layout__menu"><div class="bre-article-menu lg:tw-sticky"><div class="bre-article-menu__list"><!--[--><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><span class="bre-article-menu__list-item _active"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-blue"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M4.29919 18V6C4.29919 4.61929 5.41848 3.5 6.79919 3.5H11.7992H13.4413C13.7192 3.5 13.9922 3.54628 14.25 3.63441V7C14.25 8.51878 15.4812 9.75 17 9.75H19.2992V12V18C19.2992 19.3807 18.1799 20.5 16.7992 20.5H6.79919C5.41848 20.5 4.29919 19.3807 4.29919 18ZM18.9149 8.25C18.8305 8.11585 18.7329 7.98916 18.623 7.87194L15.75 4.80733V7C15.75 7.69036 16.3096 8.25 17 8.25H18.9149ZM2.79919 6C2.79919 3.79086 4.59006 2 6.79919 2H11.7992H13.4413C14.5469 2 15.6032 2.45763 16.3594 3.26424L19.7173 6.84603C20.4124 7.58741 20.7992 8.56555 20.7992 9.58179V12V18C20.7992 20.2091 19.0083 22 16.7992 22H6.79919C4.59006 22 2.79919 20.2091 2.79919 18V6ZM7.04919 12C7.04919 11.5858 7.38498 11.25 7.79919 11.25H15.7992C16.2134 11.25 16.5492 11.5858 16.5492 12C16.5492 12.4142 16.2134 12.75 15.7992 12.75H7.79919C7.38498 12.75 7.04919 12.4142 7.04919 12ZM7.79919 16.25C7.38498 16.25 7.04919 16.5858 7.04919 17C7.04919 17.4142 7.38498 17.75 7.79919 17.75H12.7992C13.2134 17.75 13.5492 17.4142 13.5492 17C13.5492 16.5858 13.2134 16.25 12.7992 16.25H7.79919Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Статья</span></span><!--]--><!--]--><span style="display:none;" class=""><span>Статья</span></span></span><span class="bre-article-menu__list-item _active tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-blue"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M4.29919 18V6C4.29919 4.61929 5.41848 3.5 6.79919 3.5H11.7992H13.4413C13.7192 3.5 13.9922 3.54628 14.25 3.63441V7C14.25 8.51878 15.4812 9.75 17 9.75H19.2992V12V18C19.2992 19.3807 18.1799 20.5 16.7992 20.5H6.79919C5.41848 20.5 4.29919 19.3807 4.29919 18ZM18.9149 8.25C18.8305 8.11585 18.7329 7.98916 18.623 7.87194L15.75 4.80733V7C15.75 7.69036 16.3096 8.25 17 8.25H18.9149ZM2.79919 6C2.79919 3.79086 4.59006 2 6.79919 2H11.7992H13.4413C14.5469 2 15.6032 2.45763 16.3594 3.26424L19.7173 6.84603C20.4124 7.58741 20.7992 8.56555 20.7992 9.58179V12V18C20.7992 20.2091 19.0083 22 16.7992 22H6.79919C4.59006 22 2.79919 20.2091 2.79919 18V6ZM7.04919 12C7.04919 11.5858 7.38498 11.25 7.79919 11.25H15.7992C16.2134 11.25 16.5492 11.5858 16.5492 12C16.5492 12.4142 16.2134 12.75 15.7992 12.75H7.79919C7.38498 12.75 7.04919 12.4142 7.04919 12ZM7.79919 16.25C7.38498 16.25 7.04919 16.5858 7.04919 17C7.04919 17.4142 7.38498 17.75 7.79919 17.75H12.7992C13.2134 17.75 13.5492 17.4142 13.5492 17C13.5492 16.5858 13.2134 16.25 12.7992 16.25H7.79919Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Статья</span></span></div><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><a href="/c/dinamika-c3b94d/annotation" class="bre-article-menu__list-item"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M18.2363 4.12686C18.2363 3.43651 18.796 2.87686 19.4863 2.87686C20.1767 2.87686 20.7363 3.43651 20.7363 4.12686C20.7363 4.81722 20.1767 5.37686 19.4863 5.37686C18.796 5.37686 18.2363 4.81722 18.2363 4.12686ZM19.4863 1.37686C17.9675 1.37686 16.7363 2.60808 16.7363 4.12686C16.7363 4.43206 16.786 4.72564 16.8778 4.99996H7C4.79086 4.99996 3 6.79082 3 8.99996V19C3 21.2091 4.79086 23 7 23H17C19.2091 23 21 21.2091 21 19V8.99996C21 8.16642 20.745 7.39244 20.3089 6.75173C21.4258 6.40207 22.2363 5.35911 22.2363 4.12686C22.2363 2.60808 21.0051 1.37686 19.4863 1.37686ZM7 6.49996H16.6319L14.6964 8.43547C14.4035 8.72837 14.4035 9.20324 14.6964 9.49613C14.9893 9.78903 15.4641 9.78903 15.757 9.49613L18.3547 6.89846C19.0438 7.34362 19.5 8.11852 19.5 8.99996V19C19.5 20.3807 18.3807 21.5 17 21.5H7C5.61929 21.5 4.5 20.3807 4.5 19V8.99996C4.5 7.61924 5.61929 6.49996 7 6.49996ZM9.25 12C9.25 11.5857 9.58579 11.25 10 11.25H12H14C14.4142 11.25 14.75 11.5857 14.75 12C14.75 12.4142 14.4142 12.75 14 12.75H12H10C9.58579 12.75 9.25 12.4142 9.25 12ZM9.25 17C9.25 16.5857 9.58579 16.25 10 16.25H12H14C14.4142 16.25 14.75 16.5857 14.75 17C14.75 17.4142 14.4142 17.75 14 17.75H12H10C9.58579 17.75 9.25 17.4142 9.25 17Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Аннотация</span></a><!--]--><!--]--><span style="display:none;" class=""><span>Аннотация</span></span></span><a href="/c/dinamika-c3b94d/annotation" class="bre-article-menu__list-item tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M18.2363 4.12686C18.2363 3.43651 18.796 2.87686 19.4863 2.87686C20.1767 2.87686 20.7363 3.43651 20.7363 4.12686C20.7363 4.81722 20.1767 5.37686 19.4863 5.37686C18.796 5.37686 18.2363 4.81722 18.2363 4.12686ZM19.4863 1.37686C17.9675 1.37686 16.7363 2.60808 16.7363 4.12686C16.7363 4.43206 16.786 4.72564 16.8778 4.99996H7C4.79086 4.99996 3 6.79082 3 8.99996V19C3 21.2091 4.79086 23 7 23H17C19.2091 23 21 21.2091 21 19V8.99996C21 8.16642 20.745 7.39244 20.3089 6.75173C21.4258 6.40207 22.2363 5.35911 22.2363 4.12686C22.2363 2.60808 21.0051 1.37686 19.4863 1.37686ZM7 6.49996H16.6319L14.6964 8.43547C14.4035 8.72837 14.4035 9.20324 14.6964 9.49613C14.9893 9.78903 15.4641 9.78903 15.757 9.49613L18.3547 6.89846C19.0438 7.34362 19.5 8.11852 19.5 8.99996V19C19.5 20.3807 18.3807 21.5 17 21.5H7C5.61929 21.5 4.5 20.3807 4.5 19V8.99996C4.5 7.61924 5.61929 6.49996 7 6.49996ZM9.25 12C9.25 11.5857 9.58579 11.25 10 11.25H12H14C14.4142 11.25 14.75 11.5857 14.75 12C14.75 12.4142 14.4142 12.75 14 12.75H12H10C9.58579 12.75 9.25 12.4142 9.25 12ZM9.25 17C9.25 16.5857 9.58579 16.25 10 16.25H12H14C14.4142 16.25 14.75 16.5857 14.75 17C14.75 17.4142 14.4142 17.75 14 17.75H12H10C9.58579 17.75 9.25 17.4142 9.25 17Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Аннотация</span></a></div><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><a href="/c/dinamika-c3b94d/references" class="bre-article-menu__list-item"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M5 3.25C3.48122 3.25 2.25 4.48122 2.25 6V16.1667C2.25 17.6854 3.48122 18.9167 5 18.9167H9.3C9.80519 18.9167 10.2974 19.1269 10.6662 19.5139C11.0362 19.9022 11.25 20.4361 11.25 21C11.25 21.4142 11.5858 21.75 12 21.75C12.4142 21.75 12.75 21.4142 12.75 21C12.75 20.4227 12.9564 19.8833 13.3026 19.4973C13.6464 19.114 14.0941 18.9167 14.5412 18.9167H19C20.5188 18.9167 21.75 17.6855 21.75 16.1667V6C21.75 4.48122 20.5188 3.25 19 3.25H15.3882C14.2627 3.25 13.2022 3.74922 12.4341 4.60572C12.266 4.79308 12.1147 4.99431 11.9809 5.20674C11.8358 4.98777 11.6713 4.78092 11.4885 4.58908C10.6758 3.73626 9.56568 3.25 8.4 3.25H5ZM12.75 17.993C13.2735 17.6237 13.8929 17.4167 14.5412 17.4167H19C19.6904 17.4167 20.25 16.857 20.25 16.1667V6C20.25 5.30964 19.6904 4.75 19 4.75H15.3882C14.7165 4.75 14.0534 5.04681 13.5507 5.60725C13.0457 6.17037 12.75 6.95001 12.75 7.77778V17.993ZM11.25 18.0438V7.77778C11.25 6.96341 10.9414 6.18924 10.4026 5.62389C9.86506 5.05976 9.14388 4.75 8.4 4.75H5C4.30964 4.75 3.75 5.30964 3.75 6V16.1667C3.75 16.857 4.30964 17.4167 5 17.4167H9.3C10.0044 17.4167 10.6825 17.64 11.25 18.0438Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Библиография</span></a><!--]--><!--]--><span style="display:none;" class=""><span>Библиография</span></span></span><a href="/c/dinamika-c3b94d/references" class="bre-article-menu__list-item tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M5 3.25C3.48122 3.25 2.25 4.48122 2.25 6V16.1667C2.25 17.6854 3.48122 18.9167 5 18.9167H9.3C9.80519 18.9167 10.2974 19.1269 10.6662 19.5139C11.0362 19.9022 11.25 20.4361 11.25 21C11.25 21.4142 11.5858 21.75 12 21.75C12.4142 21.75 12.75 21.4142 12.75 21C12.75 20.4227 12.9564 19.8833 13.3026 19.4973C13.6464 19.114 14.0941 18.9167 14.5412 18.9167H19C20.5188 18.9167 21.75 17.6855 21.75 16.1667V6C21.75 4.48122 20.5188 3.25 19 3.25H15.3882C14.2627 3.25 13.2022 3.74922 12.4341 4.60572C12.266 4.79308 12.1147 4.99431 11.9809 5.20674C11.8358 4.98777 11.6713 4.78092 11.4885 4.58908C10.6758 3.73626 9.56568 3.25 8.4 3.25H5ZM12.75 17.993C13.2735 17.6237 13.8929 17.4167 14.5412 17.4167H19C19.6904 17.4167 20.25 16.857 20.25 16.1667V6C20.25 5.30964 19.6904 4.75 19 4.75H15.3882C14.7165 4.75 14.0534 5.04681 13.5507 5.60725C13.0457 6.17037 12.75 6.95001 12.75 7.77778V17.993ZM11.25 18.0438V7.77778C11.25 6.96341 10.9414 6.18924 10.4026 5.62389C9.86506 5.05976 9.14388 4.75 8.4 4.75H5C4.30964 4.75 3.75 5.30964 3.75 6V16.1667C3.75 16.857 4.30964 17.4167 5 17.4167H9.3C10.0044 17.4167 10.6825 17.64 11.25 18.0438Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Библиография</span></a></div><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><a href="/c/dinamika-c3b94d/versions" class="bre-article-menu__list-item"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M10.9565 3.85864H7.51619C7.8045 3.2057 8.4577 2.75 9.21734 2.75H13.5652H14.7687C15.4365 2.75 16.0697 3.0466 16.4972 3.55959L19.2502 6.86313C19.5871 7.26748 19.7717 7.77718 19.7717 8.30354V10.6957V16.7826C19.7717 17.5422 19.316 18.1954 18.663 18.4838V13.3043V10.9122C18.663 10.0349 18.3555 9.18542 17.7939 8.51149L15.0409 5.20795C14.3284 4.35298 13.273 3.85864 12.1601 3.85864H10.9565ZM14.913 22.7499C16.6051 22.7499 18.0354 21.6293 18.5022 20.0898C20.0762 19.8113 21.2717 18.4365 21.2717 16.7826V10.6957V8.30354C21.2717 7.42628 20.9641 6.57678 20.4025 5.90285L17.6496 2.59931C16.9371 1.74434 15.8817 1.25 14.7687 1.25H13.5652H9.21734C7.56341 1.25 6.18869 2.44548 5.91016 4.01947C4.37062 4.48633 3.25 5.91662 3.25 7.60864V18.9999C3.25 21.071 4.92893 22.7499 7 22.7499H14.913ZM7 5.35864C5.75736 5.35864 4.75 6.366 4.75 7.60864V18.9999C4.75 20.2426 5.75736 21.2499 7 21.2499H14.913C16.1557 21.2499 17.163 20.2426 17.163 18.9999V13.3043V10.9122C17.163 10.7991 17.1545 10.6867 17.1378 10.5761H15.3043C13.9296 10.5761 12.8152 9.46164 12.8152 8.08694V5.45611C12.6051 5.39215 12.3845 5.35864 12.1601 5.35864H10.9565H7ZM14.3152 6.68014V8.08694C14.3152 8.63322 14.758 9.07607 15.3043 9.07607H16.3118L14.3152 6.68014ZM6.72827 13.3043C6.72827 12.8901 7.06406 12.5543 7.47827 12.5543H14.4348C14.849 12.5543 15.1848 12.8901 15.1848 13.3043C15.1848 13.7185 14.849 14.0543 14.4348 14.0543H7.47827C7.06406 14.0543 6.72827 13.7185 6.72827 13.3043ZM7.47827 16.9022C7.06406 16.9022 6.72827 17.238 6.72827 17.6522C6.72827 18.0664 7.06406 18.4022 7.47827 18.4022H10.9565C11.3707 18.4022 11.7065 18.0664 11.7065 17.6522C11.7065 17.238 11.3707 16.9022 10.9565 16.9022H7.47827Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Версии</span></a><!--]--><!--]--><span style="display:none;" class=""><span>Версии</span></span></span><a href="/c/dinamika-c3b94d/versions" class="bre-article-menu__list-item tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M10.9565 3.85864H7.51619C7.8045 3.2057 8.4577 2.75 9.21734 2.75H13.5652H14.7687C15.4365 2.75 16.0697 3.0466 16.4972 3.55959L19.2502 6.86313C19.5871 7.26748 19.7717 7.77718 19.7717 8.30354V10.6957V16.7826C19.7717 17.5422 19.316 18.1954 18.663 18.4838V13.3043V10.9122C18.663 10.0349 18.3555 9.18542 17.7939 8.51149L15.0409 5.20795C14.3284 4.35298 13.273 3.85864 12.1601 3.85864H10.9565ZM14.913 22.7499C16.6051 22.7499 18.0354 21.6293 18.5022 20.0898C20.0762 19.8113 21.2717 18.4365 21.2717 16.7826V10.6957V8.30354C21.2717 7.42628 20.9641 6.57678 20.4025 5.90285L17.6496 2.59931C16.9371 1.74434 15.8817 1.25 14.7687 1.25H13.5652H9.21734C7.56341 1.25 6.18869 2.44548 5.91016 4.01947C4.37062 4.48633 3.25 5.91662 3.25 7.60864V18.9999C3.25 21.071 4.92893 22.7499 7 22.7499H14.913ZM7 5.35864C5.75736 5.35864 4.75 6.366 4.75 7.60864V18.9999C4.75 20.2426 5.75736 21.2499 7 21.2499H14.913C16.1557 21.2499 17.163 20.2426 17.163 18.9999V13.3043V10.9122C17.163 10.7991 17.1545 10.6867 17.1378 10.5761H15.3043C13.9296 10.5761 12.8152 9.46164 12.8152 8.08694V5.45611C12.6051 5.39215 12.3845 5.35864 12.1601 5.35864H10.9565H7ZM14.3152 6.68014V8.08694C14.3152 8.63322 14.758 9.07607 15.3043 9.07607H16.3118L14.3152 6.68014ZM6.72827 13.3043C6.72827 12.8901 7.06406 12.5543 7.47827 12.5543H14.4348C14.849 12.5543 15.1848 12.8901 15.1848 13.3043C15.1848 13.7185 14.849 14.0543 14.4348 14.0543H7.47827C7.06406 14.0543 6.72827 13.7185 6.72827 13.3043ZM7.47827 16.9022C7.06406 16.9022 6.72827 17.238 6.72827 17.6522C6.72827 18.0664 7.06406 18.4022 7.47827 18.4022H10.9565C11.3707 18.4022 11.7065 18.0664 11.7065 17.6522C11.7065 17.238 11.3707 16.9022 10.9565 16.9022H7.47827Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Версии</span></a></div><!--]--></div></div></nav><!--[--><div><meta itemprop="image primaryImageOfPage" content="https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=120"><article itemscope itemprop="mainEntity" itemtype="https://schema.org/Article"><div itemprop="publisher" itemscope itemtype="https://schema.org/Organization"><meta itemprop="name" content="Автономная некоммерческая организация «Национальный научно-образовательный центр «Большая российская энциклопедия»"><meta itemprop="address" content="Покровский бульвар, д. 8, стр. 1А, Москва, 109028"><meta itemprop="telephone" content="+7 (495) 781-15-95"><meta itemprop="logo" content="https://s.bigenc.ru/_nuxt/logo.98u7ubS9.svg"></div><div itemprop="copyrightHolder" itemscope itemtype="https://schema.org/Organization"><meta itemprop="name" content="Автономная некоммерческая организация «Национальный научно-образовательный центр «Большая российская энциклопедия»"><meta itemprop="address" content="Покровский бульвар, д. 8, стр. 1А, Москва, 109028"><meta itemprop="telephone" content="+7 (495) 781-15-95"><meta itemprop="logo" content="https://s.bigenc.ru/_nuxt/logo.98u7ubS9.svg"></div><meta itemprop="articleSection" content="Термины"><meta itemprop="headline" content="Динамика (в физике)"><meta itemprop="keywords" content="Разделы механики"><!----><div class="bre-article-page max-md:tw-mt-10 md:max-lg:tw-mt-[81px] max-md:tw-mt-[105px]"><!----><nav class="bre-article-loc -hide-on-desktop-s"><div class="bre-article-loc-button"><span class="bre-article-loc-title">Содержание</span><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M6 9l6 6 6-6" stroke="currentColor" stroke-width="1.5" stroke-linecap="round"/></svg> </span><div class="bre-article-loc-short">Динамика материальной точки</div></div><!----></nav><div class="article-sidebar -hide-on-desktop-s"><div class="article-sidebar-button -show-on-tablet -hide-on-desktop-s"><span class="article-sidebar-title">Информация</span><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M6 9l6 6 6-6" stroke="currentColor" stroke-width="1.5" stroke-linecap="round"/></svg> </span><!--[--><div class="article-sidebar-text -show-on-tablet -hide-on-desktop-s">Динамика (в физике)</div><!--]--></div><div class="article-sidebar-wrapper -hide-on-tablet"><header class="bre-article-header -hide-on-tablet"><div class="bre-label__wrap"><span data-v-tippy class="tw-leading-[0px]"><!--[--><!--[--><a href="/t/terms" class="bre-label _link">Термины</a><!--]--><!--]--><span style="display:none;" class=""><span>Термины</span></span></span><!----></div><!--[--><!----><h1 class="bre-article-header-title">Динамика (в физике)</h1><!--]--><!----></header><section class="-hide-on-tablet tw-h-14 md:tw-h-20"><!----></section><!----><span class="bre-media-image article-sidebar-image _note-exclude _clean" data-width="100%" data-display="block"><span class="bre-media-figure _note-exclude _clean" itemscope itemtype="https://schema.org/ImageObject" itemprop="image"><!--[--><span class="bre-media-image-container _placeholder"><meta itemprop="name" content="Физика"><meta itemprop="caption" content="Физика. Научно-образовательный портал «Большая российская энциклопедия»"><!----><!----><span class="tw-flex tw-w-full" style=""><img src="https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=120" onerror="this.setAttribute('data-error', 1)" alt="Физика" data-nuxt-img sizes="320px" srcset="https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=Jf8Ovt6NK1CJRMEXmLmu9w&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=9FmjZNIS1_JG-eBy3nkCow&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=W0YAxakNej-ihBYTmKOUhA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=bU5vxPnJKBxMhvgLEjl-uA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=CO7eqX0CglCAJmsuCYDJxQ&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=SNrDJXfJeDUaOjs9TGABPA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=A65s2m2zZF6hgTDDppMoDA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1920 1920w" title="Физика" class="" itemprop="contentUrl"></span><!----></span><!--]--><!----></span><!----><!----></span><div class="article-sidebar-meta"><dl class="tw-mt-0"><!--[--><!--[--><dt>Области знаний:</dt><dd>Классическая механика Ньютона</dd><!--]--><!--]--><!----></dl></div></div></div><div class="bre-article-page__container"><div class="bre-article-page__content bre-article-content"><header class="bre-article-header -show-on-tablet"><div class="bre-label__wrap"><span data-v-tippy class="tw-leading-[0px]"><!--[--><!--[--><a href="/t/terms" class="bre-label _link">Термины</a><!--]--><!--]--><span style="display:none;" class=""><span>Термины</span></span></span><!----></div><!--[--><!----><h1 class="bre-article-header-title">Динамика (в физике)</h1><!--]--><!----></header><section class="tw-flex"><div class="-show-on-tablet tw-h-14 md:tw-h-20"><div><div><div itemprop="interactionStatistic" itemscope itemtype="https://schema.org/InteractionCounter"><meta itemprop="interactionType" content="https://schema.org/ViewAction"><meta itemprop="userInteractionCount" content=""></div><div itemprop="interactionStatistic" itemscope itemtype="https://schema.org/InteractionCounter"><meta itemprop="interactionType" content="https://schema.org/ShareAction"><meta itemprop="userInteractionCount" content=""></div><div itemprop="interactionStatistic" itemscope itemtype="https://schema.org/InteractionCounter"><meta itemprop="interactionType" content="https://schema.org/LikeAction"><meta itemprop="userInteractionCount" content=""></div></div><span></span></div></div><span></span></section><div class="js-preview-link-root"><div itemprop="articleBody" class="bre-article-body"><!--[--><section><section><p><b>Дина́мика</b> (от греч. δύναμις – возможность, сила), раздел <a href="/c/mekhanika-abd757" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->механики<!--]--><!--]--><!----></a>, посвящённый изучению изменения характеристик движения материальных тел под действием приложенных к ним <a href="/c/sila-77a176" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->сил<!--]--><!--]--><!----></a>. Основы динамики свободной <a href="/c/material-naia-tochka-a6ca99" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->материальной точки<!--]--><!--]--><!----></a> заложены в начале 17 в. <a href="/c/galilei-galileo-0b9095" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Г. Галилеем<!--]--><!--]--><!----></a>, который рассмотрел падение тел под действием <a href="/c/sila-tiazhesti-c50b1b" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->силы тяжести<!--]--><!--]--><!----></a> и сформулировал <a href="/c/zakon-inertsii-6b6b01" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->закон инерции<!--]--><!--]--><!----></a>. В 1687 г. <a href="/c/n-iuton-isaak-0f3dbe" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->И. Ньютон<!--]--><!--]--><!----></a> дал чёткую формулировку трёх основных <a href="/c/zakony-mekhaniki-n-iutona-84aa92" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->законов динамики<!--]--><!--]--><!----></a>. В 18 в. существенный вклад в постановку и решение общих задач динамики внесли <a href="/c/eiler-leonard-0e881f" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Л. Эйлер<!--]--><!--]--><!----></a>, <a href="/c/dalamber-zhan-leron-22730e" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Ж. Л. Д’ Аламбер<!--]--><!--]--><!----></a> и <a href="/c/lagranzh-zhozef-lui-f66cf7" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Ж.-Л. Лагранж<!--]--><!--]--><!----></a>.</p><p>Динамика – важная составляющая математического естествознания, сформировавшая правила и приёмы построения механико-математических моделей <a href="/c/mekhanicheskoe-dvizhenie-6727b4" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->механического движения<!--]--><!--]--><!----></a>. Для описания движения объектов реального мира применяют различные модели, в которых объекты принимают за материальную точку, <a href="/c/tviordoe-telo-e5875e" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->твёрдое тело<!--]--><!--]--><!----></a> и т. п.</p><h2 id="h2_dinamika_material'noi_tochki">Динамика материальной точки</h2><p>Динамика, основанная на положениях Галилея и Ньютона, называется классической, или ньютоновской. Она описывает движение объектов, размерами которых можно пренебречь (материальных точек), со скоростями, много меньшими <a href="/c/skorost-sveta-a676e2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->скорости света<!--]--><!--]--><!----></a> (движение микрочастиц рассматривается в <a href="/c/kvantovaia-mekhanika-6d0792" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->квантовой механике<!--]--><!--]--><!----></a>, движение со скоростями, близкими к скорости света, – в <a href="/c/reliativistskaia-mekhanika-50571e" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->релятивистской механике<!--]--><!--]--><!----></a>). В классической динамике аксиоматически вводятся понятия неподвижного пространства и абсолютного времени, одинакового во всех точках пространства и не зависящего от выбора конкретной системы координат.</p><p>Классическая динамика базируется на трёх основных законах – <a href="/c/zakony-mekhaniki-n-iutona-84aa92" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->законах механики Ньютона<!--]--><!--]--><!----></a>. Первый из них, называемый также законом инерции, вводит понятие <a href="/c/inertsial-naia-sistema-otschiota-bd89b3" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->инерциальной системы отсчёта<!--]--><!--]--><!----></a>, в которой материальная точка покоится или движется прямолинейно и равномерно, если на неё не действуют другие тела или влияние этих тел скомпенсировано. Меру механического действия одного тела на другое называют <a href="/c/sila-77a176" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->силой<!--]--><!--]--><!----></a>. Второй закон устанавливает, что действие силы <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">F</span></span></span></span></span></span><!----></span> на материальную точку массой <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">{m}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord"><span class="mord mathnormal">m</span></span></span></span></span></span><!----></span> вызывает ускорение <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>w</mi></mrow><annotation encoding="application/x-tex">{w}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02691em;">w</span></span></span></span></span></span><!----></span> точки, определяемое равенством</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mi>w</mi><mo>=</mo><mi>F</mi><mi mathvariant="normal">/</mi><mi>m</mi></mrow><mi mathvariant="normal">.</mi><mspace width="1em"/><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">{w=F/m}.\quad (1)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="mord">/</span><span class="mord mathnormal">m</span></span><span class="mord">.</span><span class="mspace" style="margin-right:1em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mclose">)</span></span></span></span></span><!----></span>Третий закон динамики устанавливает, что при взаимодействии двух материальных точек возникает пара сил, равных по величине и противоположных по направлению (см. <a href="/c/zakon-deistviia-i-protivodeistviia-3f828f" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->закон действия и противодействия<!--]--><!--]--><!----></a>). Если к телу приложено несколько сил, то в соответствии с принципом независимости действия сил каждая из них сообщает телу такое же <a href="/c/uskorenie-37472d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->ускорение<!--]--><!--]--><!----></a>, какое она сообщила бы, если бы действовала одна. Поэтому в качестве <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">F</span></span></span></span></span></span><!----></span> в уравнении (1)</p><p>рассматривается <a href="/c/ravnodeistvuiushchaia-b38de4" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->равнодействующая<!--]--><!--]--><!----></a> сил, действующих на тело.</p><p>Динамика решает 2 класса задач: прямые и обратные. Прямая задача динамики состоит в определении движения точки, происходящего под действием заданных сил. Сила <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">F</span></span></span></span></span></span><!----></span> считается заданной, если известна её зависимость от времени <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi></mrow><annotation encoding="application/x-tex">{t}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6151em;"></span><span class="mord"><span class="mord mathnormal">t</span></span></span></span></span></span><!----></span> и векторов <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">r</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{r}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4444em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">r</span></span></span></span></span></span></span><!----></span> и <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">v</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{v}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4444em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03704em;">v</span></span></span></span></span></span></span><!----></span>, определяющих положение и скорость материальной точки:</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mi>F</mi><mo>=</mo><mi>F</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">r</mi><mo separator="true">,</mo><mi mathvariant="bold-italic">v</mi><mo separator="true">,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mi mathvariant="normal">.</mi><mspace width="1em"/><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">{F=F(\boldsymbol{r},\boldsymbol{v},t)}.\quad (2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">r</span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03704em;">v</span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">t</span><span class="mclose">)</span></span><span class="mord">.</span><span class="mspace" style="margin-right:1em;"></span><span class="mopen">(</span><span class="mord">2</span><span class="mclose">)</span></span></span></span></span><!----></span>В этом случае равенство (1) превращается в <a href="/c/differentsial-noe-uravnenie-7e57fc" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->дифференциальное уравнение<!--]--><!--]--><!----></a> движения точки. Его решение описывает зависимость вектора <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">r</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{r}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4444em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">r</span></span></span></span></span></span></span><!----></span> от времени и начальных условий:</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">r</mi><mo>=</mo><mi mathvariant="bold-italic">r</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><msub><mi mathvariant="bold-italic">r</mi><mn>0</mn></msub><mo separator="true">,</mo><msub><mi mathvariant="bold-italic">v</mi><mn>0</mn></msub><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi><mspace width="1em"/><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\boldsymbol{r}=\boldsymbol{r}(t,\boldsymbol{r}_{0},\boldsymbol{v}_{0}).\quad (3)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4444em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">r</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">r</span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">r</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03704em;">v</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord">.</span><span class="mspace" style="margin-right:1em;"></span><span class="mopen">(</span><span class="mord">3</span><span class="mclose">)</span></span></span></span></span><!----></span>Примером подобной задачи может служить задача по определению <a href="/c/traektoriia-079f31" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->траектории<!--]--><!--]--><!----></a> движения снаряда по его начальной скорости (силы тяжести и сопротивление воздуха считаются известными).</p><p>Обратная задача динамики состоит в определении силы, обеспечивающей заданное движение: по семейству законов движения, описываемых выражением (3), требуется восстановить зависимость силы (2) от перечисленных аргументов. Классическим примером решения этой задачи является открытие И. Ньютоном <a href="/c/zakon-vsemirnogo-tiagoteniia-ac9aa2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->закона всемирного тяготения<!--]--><!--]--><!----></a>. Рассматривая <a href="/c/zakony-keplera-be033d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->законы движения планет Кеплера<!--]--><!--]--><!----></a>, Ньютон пришёл к выводу, что эти движения происходят под действием силы, обратно пропорциональной квадрату расстояния от <a href="/c/solntse-6df72e" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Солнца<!--]--><!--]--><!----></a> до планеты и не зависящей ни от времени, ни от скоростей движения планет.</p><p>В ряде задач динамики удобно использовать различные динамические меры движения точки: <a href="/c/impul-s-c287b2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->импульс<!--]--><!--]--><!----></a> (количество движения) <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">K</mi><mo>=</mo><mi>m</mi><mi mathvariant="bold-italic">v</mi></mrow><annotation encoding="application/x-tex">{\boldsymbol{K}=m\boldsymbol{v}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.06979em;">K</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal">m</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03704em;">v</span></span></span></span></span></span></span></span><!----></span>, <a href="/c/moment-impul-sa-f669a3" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->момент импульса<!--]--><!--]--><!----></a> (<a href="/c/kineticheskii-moment-1e6be6" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->кинетический момент<!--]--><!--]--><!----></a>) относительно начала координат <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">G</mi><mo>=</mo><mi mathvariant="bold-italic">r</mi><mo>×</mo><mi>m</mi><mi mathvariant="bold-italic">v</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{G}=\boldsymbol{r}×m\boldsymbol{v}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol">G</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">r</span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.4444em;"></span><span class="mord mathnormal">m</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03704em;">v</span></span></span></span></span></span></span><!----></span>, <a href="/c/kineticheskaia-energiia-06ee5a" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->кинетическую энергию<!--]--><!--]--><!----></a><i> </i><span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>T</mtext><mo>=</mo><mi>m</mi><msup><mi>v</mi><mn>2</mn></msup><mi mathvariant="normal">/</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">\text{T}=mv^{2}/2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord text"><span class="mord">T</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord mathnormal">m</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mord">/2</span></span></span></span></span><!----></span>. При помощи этих мер уравнение (1) можно записать в виде закона изменения импульса <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi mathvariant="bold-italic">K</mi><mi mathvariant="normal">/</mi><mi>d</mi><mi>t</mi><mo>=</mo><mi mathvariant="bold-italic">F</mi></mrow><annotation encoding="application/x-tex">d\boldsymbol{K}/dt=\boldsymbol{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">d</span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.06979em;">K</span></span></span><span class="mord">/</span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.15972em;">F</span></span></span></span></span></span></span><!----></span>, или закона изменения момента импульса <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi mathvariant="bold-italic">G</mi><mi mathvariant="normal">/</mi><mi>d</mi><mi>t</mi><mo>=</mo><mi mathvariant="bold-italic">r</mi><mo>×</mo><mi mathvariant="bold-italic">F</mi><mo>=</mo><mi mathvariant="bold-italic">M</mi></mrow><annotation encoding="application/x-tex">d\boldsymbol{G}/dt=\boldsymbol{r}×\boldsymbol{F}=\boldsymbol{M}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">d</span><span class="mord"><span class="mord"><span class="mord boldsymbol">G</span></span></span><span class="mord">/</span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">r</span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.15972em;">F</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.11424em;">M</span></span></span></span></span></span></span><!----></span>, где <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">M</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{M}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.11424em;">M</span></span></span></span></span></span></span><!----></span> – момент силы относительно начала координат, или закона изменения энергии <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi>T</mi><mi mathvariant="normal">/</mi><mi>d</mi><mi>t</mi><mo>=</mo><mi>F</mi><mi>v</mi><mo>=</mo><mi>N</mi></mrow><annotation encoding="application/x-tex">{dT/dt=Fv=N}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mord">/</span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span></span></span></span><!----></span>, где <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">{N}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span></span></span></span><!----></span>– мощность силы <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">F</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.15972em;">F</span></span></span></span></span></span></span><!----></span>.</p><h2 id="h2_dinamika_sistemы_svoбodnыh_tochek">Динамика системы свободных точек</h2><p>Движение системы свободных материальных точек с массами <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>m</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">m_{i}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> можно описать совокупностью уравнений вида (1), вводя суммарные меры движения: импульс системы точек <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">K</mi><mo>=</mo><munder><mo>∑</mo><mi>i</mi></munder><msub><mi>m</mi><mi>i</mi></msub><msub><mi mathvariant="bold-italic">v</mi><mi>i</mi></msub><mo>=</mo><mi>m</mi><msub><mi mathvariant="bold-italic">v</mi><mi>c</mi></msub></mrow><annotation encoding="application/x-tex">\boldsymbol{K}=\sum\limits_{i}m_{i}\boldsymbol{v}_{i}=m\boldsymbol{v}_{c}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.06979em;">K</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.7277em;vertical-align:-0.9777em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.75em;"><span style="top:-2.1223em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop op-symbol small-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9777em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03704em;">v</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5944em;vertical-align:-0.15em;"></span><span class="mord mathnormal">m</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03704em;">v</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">c</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, где <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">{m}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord"><span class="mord mathnormal">m</span></span></span></span></span></span><!----></span> – общая масса системы, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="bold-italic">v</mi><mi>c</mi></msub></mrow><annotation encoding="application/x-tex">\boldsymbol{v}_{c}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5944em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03704em;">v</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">c</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> – скорость центра масс системы; главный кинетический момент системы <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">G</mi><mo>=</mo><munder><mo>∑</mo><mi>i</mi></munder><msub><mi mathvariant="bold-italic">r</mi><mi>i</mi></msub><mo>×</mo><msub><mi>m</mi><mi>i</mi></msub><msub><mi mathvariant="bold-italic">v</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\boldsymbol{G}=\sum\limits_{i}\boldsymbol{r}_{i}×m_{i}\boldsymbol{v}_{i}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol">G</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.7277em;vertical-align:-0.9777em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.75em;"><span style="top:-2.1223em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop op-symbol small-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9777em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03194em;">r</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.5944em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03704em;">v</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>; кинетическую энергию <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>T</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><munder><mo>∑</mo><mi>i</mi></munder><msub><mi>m</mi><mi>i</mi></msub><msubsup><mi mathvariant="bold-italic">v</mi><mi>i</mi><mn>2</mn></msubsup></mrow><annotation encoding="application/x-tex">T=\frac{1}{2}\sum\limits_{i}m_{i}\boldsymbol{v}^2_{i}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.8228em;vertical-align:-0.9777em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.75em;"><span style="top:-2.1223em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop op-symbol small-op">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9777em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3117em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.03704em;">v</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-2.4413em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2587em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>. Соотношения между суммарными мерами движения и силами, приложенными к точкам, называются общими теоремами динамики. К этим теоремам относятся следующие:</p><p>1. Теорема об изменении импульса системы: изменение импульса системы за любой промежуток времени равняется геометрической сумме импульсов, действующих на систему внешних сил. Следствиями этой теоремы являются <a href="/c/zakon-sokhraneniia-impul-sa-d06b11" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->закон сохранения импульса<!--]--><!--]--><!----></a> системы и теорема о движении центра масс системы.</p><p>2. Теорема об изменении главного кинетического момента системы: <a href="/c/proizvodnaia-68fd90" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->производная<!--]--><!--]--><!----></a> по времени от главного кинетического момента системы относительно любого неподвижного центра (или оси) равна сумме моментов действующих внешних сил относительно того же центра (или оси). Следствием данной теоремы является закон сохранения главного кинетического момента системы при равенстве нулю суммы моментов внешних сил.</p><p>3. Теорема об изменении кинетической энергии системы: изменение кинетической энергии системы при любом её перемещении равняется сумме работ всех приложенных сил на том же перемещении. Для случая, когда все приложенные силы потенциальны, из теоремы вытекает <a href="/c/zakon-sokhraneniia-energii-c12c59" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->закон сохранения механической энергии<!--]--><!--]--><!----></a>.</p><h2 id="h2_dinamika_sistem_so_svyazyami">Динамика систем со связями</h2><p>В моделях, описывающих различные движения, происходящие в природе и технике, объекты рассматриваются как системы материальных точек и твёрдых тел, соединённых <a href="/c/mekhanicheskie-sviazi-30fcc2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->механическими связями<!--]--><!--]--><!----></a>. В этих случаях в задачу динамики входит определение не только закона движения системы связанных точек и тел, но и сил реакции связей. Последние добавляются в уравнение (1), записываемое для каждой точки системы. Для систем с т. н. идеальными связями (для которых сумма элементарных работ всех реакций при любом возможном перемещении системы равна нулю) Ж. Д’Аламбер и Ж. Лагранж разработали общие методы составления уравнений движения, не содержащих реакций связей (см. <a href="/c/printsip-dalambera-8e46a8" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->принцип Д’Аламбера<!--]--><!--]--><!----></a> и <a href="/c/printsip-dalambera-lagranzha-e0c686" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->принцип Д’Аламбера– Лагранжа<!--]--><!--]--><!----></a>). Эти методы приводят к несколько иной формулировке общих теорем динамики (добавляются условия, налагаемые на связи), а <a href="/c/zakony-sokhraneniia-5e4f61" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->законы сохранения<!--]--><!--]--><!----></a> динамических мер приобретают математически строгую форму интегралов уравнений движения.</p><p>Кинетическая энергия – скалярная величина, обладающая определённой универсальностью. Ж. Лагранж ввёл понятие <a href="/c/obobshchionnye-koordinaty-a8a098" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->обобщённых координат<!--]--><!--]--><!----></a> и записал кинетическую энергию в виде функции от обобщённых скоростей и обобщённых координат. Используя эту функцию, Лагранж вывел новую форму уравнений движения механических <a href="/c/golonomnye-sistemy-aa1f75" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->голономных систем<!--]--><!--]--><!----></a> (см. <a href="/c/uravneniia-lagranzha-d8b586" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->уравнения Лагранжа<!--]--><!--]--><!----></a>, <a href="/c/uravneniia-gamil-tona-8a716e" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->уравнения Гамильтона<!--]--><!--]--><!----></a>, <a href="/c/variatsionnye-printsipy-mekhaniki-7eccf8" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->вариационные принципы механики<!--]--><!--]--><!----></a>). Изучением свойств этих уравнений и их решений занимается <a href="/c/analiticheskaia-mekhanika-6d57cc" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->аналитическая механика<!--]--><!--]--><!----></a>, методы которой нашли широкое применение в различных областях физики.</p><h2 id="h2_dinamika_otnositel'nogo_dvizheniya">Динамика относительного движения</h2><p>Многие задачи механики сводятся к изучению движения одного объекта относительно другого, с которым нельзя связать инерциальную систему координат (например, движение тела относительно вращающейся Земли). В этом случае уравнение относительного движения материальной точки можно свести к виду (1), если к числу сил <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">F</span></span></span></span></span></span><!----></span> добавить силы инерции: переносную <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>F</mi><mi>e</mi></msub><mo>=</mo><mo>−</mo><mi>m</mi><msub><mi mathvariant="bold-italic">w</mi><mi>e</mi></msub></mrow><annotation encoding="application/x-tex">{F}_{e}=−m\boldsymbol{w}_{e}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">F</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">e</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7333em;vertical-align:-0.15em;"></span><span class="mord">−</span><span class="mord mathnormal">m</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.02778em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">e</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> и <a href="/c/sila-koriolisa-fa00d2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->кориолисову<!--]--><!--]--><!----></a> <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>F</mi><mi>c</mi></msub><mo>=</mo><mo>−</mo><mi>m</mi><msub><mi mathvariant="bold-italic">w</mi><mi>c</mi></msub></mrow><annotation encoding="application/x-tex">{F}_{c} =−m\boldsymbol{w}_{c}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">F</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">c</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7333em;vertical-align:-0.15em;"></span><span class="mord">−</span><span class="mord mathnormal">m</span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.02778em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">c</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, где <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="bold-italic">w</mi><mi>e</mi></msub></mrow><annotation encoding="application/x-tex">\boldsymbol{w}_{e}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5944em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.02778em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">e</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="bold-italic">w</mi><mi>c</mi></msub></mrow><annotation encoding="application/x-tex">\boldsymbol{w}_{c}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5944em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.02778em;">w</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">c</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> – соответственно переносное и кориолисово ускорения. Примерами задач динамики относительного движения могут служить задачи экспериментального доказательства вращения Земли (падение тела на вращающейся Земле с отклонением к востоку, <a href="/c/maiatnik-fuko-5028d1" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->маятник Фуко<!--]--><!--]--><!----></a>), задачи описания движения <a href="/c/liotchik-kosmonavt-bba5eb" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->космонавта<!--]--><!--]--><!----></a> относительно космической станции и др. На эффектах относительного движения основан предложенный <a href="/c/uatt-dzheims-e8197f" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Дж. Уаттом<!--]--><!--]--><!----></a> <a href="/c/tsentrobezhnaia-sila-ffdd3a" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->центробежный<!--]--><!--]--><!----></a> регулятор угловой скорости вращения, используемый в технике.</p><h2 id="h2_dinamika_tvyordogo_tela">Динамика твёрдого тела</h2><p>В этом разделе динамики рассматриваются движения, в которых тело нельзя считать материальной точкой. Простейшая задача такого типа – задача о вращении абсолютно твёрдого тела вокруг неподвижной оси <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">{L}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">L</span></span></span></span></span></span><!----></span>. В этом случае тело имеет одну <a href="/c/stepeni-svobody-958e77" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->степень свободы<!--]--><!--]--><!----></a>, его положение определяется одной обобщённой координатой – углом поворота <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>φ</mi></mrow><annotation encoding="application/x-tex"> \varphi </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">φ</span></span></span></span></span><!----></span>. Производная <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>φ</mi></mrow><annotation encoding="application/x-tex"> \varphi </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">φ</span></span></span></span></span><!----></span> по времени называется <a href="/c/uglovaia-skorost-9586b2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->угловой скоростью<!--]--><!--]--><!----></a> <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ω</mi></mrow><annotation encoding="application/x-tex"> \omega </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span></span></span></span></span><!----></span>. В рассматриваемой задаче роль уравнения (1) играет уравнение вращения твёрдого тела: <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="bold-italic">I</mi><mi>ε</mi></msub><mo>=</mo><mi mathvariant="bold-italic">M</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{I}_{ε}=\boldsymbol{M}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8361em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.07778em;">I</span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">ε</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.11424em;">M</span></span></span></span></span></span></span><!----></span>, где <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ε</mi></mrow><annotation encoding="application/x-tex"> \varepsilon </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">ε</span></span></span></span></span><!----></span> – <a href="/c/uglovoe-uskorenie-93d07c" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->угловое ускорение<!--]--><!--]--><!----></a> тела, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">I</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{I}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.07778em;">I</span></span></span></span></span></span></span><!----></span> – <a href="/c/moment-inertsii-tela-9ca691" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->момент инерции<!--]--><!--]--><!----></a> тела, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">M</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{M}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.11424em;">M</span></span></span></span></span></span></span><!----></span> – <a href="/c/vrashchaiushchii-moment-cf93d0" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->вращающий момент<!--]--><!--]--><!----></a> (момент сил, приложенных к телу) относительно оси <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">{L}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">L</span></span></span></span></span></span><!----></span>. Если <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">M</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\boldsymbol{M} = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.11424em;">M</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span><!----></span>, то тело совершает вращение с постоянной угловой скоростью (угловое ускорение равно нулю).</p><p>Эта задача применяется при моделировании вращающихся элементов машин (<a href="/c/rotor-743f14" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->роторов<!--]--><!--]--><!----></a>, <a href="/c/makhovik-79657d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->маховиков<!--]--><!--]--><!----></a> и т. п.). В технических приложениях динамики твёрдого тела важно учитывать также силы реакции опор, на которых закреплена ось <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">{L}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">L</span></span></span></span></span></span><!----></span>. Величина этих сил растёт пропорционально квадрату угловой скорости. Для машин с высокооборотными маховиками реакции настолько велики, что способны вызвать <a href="/c/deformatsiia-92bf2c" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->деформацию<!--]--><!--]--><!----></a> опор или оси и <a href="/c/vibratsiia-961b67" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->вибрацию<!--]--><!--]--><!----></a> машины. Для уменьшения вибраций (например, в автомобильном колесе) производится изменение распределения масс маховика – его балансировка, что достигается приближением центра масс к оси вращения (статическая балансировка) или приближением т. н. главной оси инерции тела к оси вращения (динамическая балансировка).</p><p>Более сложная типовая задача этого раздела динамики – вращение твёрдого тела вокруг неподвижной точки <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>O</mi></mrow><annotation encoding="application/x-tex">{O}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">O</span></span></span></span></span></span><!----></span>. Для решения таких задач Л. Эйлер ввёл систему <a href="/c/dekartova-sistema-koordinat-4de670" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->декартовых координат<!--]--><!--]--><!----></a> <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>O</mi><mrow><mi>x</mi><mi>y</mi><mi>z</mi></mrow></mrow><annotation encoding="application/x-tex">{O}{xyz}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">O</span></span><span class="mord"><span class="mord mathnormal">x</span><span class="mord mathnormal" style="margin-right:0.04398em;">yz</span></span></span></span></span></span><!----></span>, связанную с вращающимся телом. В данной задаче тело имеет 3 степени свободы, а его положение в выбранной системе координат часто определяют 3 углами (<a href="/c/ugly-eilera-2d95dd" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->углами Эйлера<!--]--><!--]--><!----></a>): углом <a href="/c/nutatsiia-3badf8" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->нутации<!--]--><!--]--><!----></a>, углом <a href="/c/pretsessiia-361a1c" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->прецессии<!--]--><!--]--><!----></a> и углом собственного вращения. Производные по времени от углов Эйлера связаны с проекциями вектора мгновенной угловой скорости вращения тела кинематическими уравнениями Эйлера. Направив оси <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">{x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord"><span class="mord mathnormal">x</span></span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">{y}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi></mrow><annotation encoding="application/x-tex">{z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span></span></span></span></span></span><!----></span> по <a href="/c/glavnye-osi-inertsii-0e45be" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->главным осям инерции<!--]--><!--]--><!----></a> тела, Эйлер придал системе динамических уравнений вращения тела компактный и симметричный вид:</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>I</mi><mi>x</mi></msub><mi>d</mi><msub><mi>ω</mi><mi>x</mi></msub><mi mathvariant="normal">/</mi><mi>d</mi><mi>t</mi><mo>+</mo><mo stretchy="false">(</mo><msub><mi>I</mi><mi>z</mi></msub><mo>−</mo><msub><mi>I</mi><mi>y</mi></msub><mo stretchy="false">)</mo><msub><mi>ω</mi><mi>y</mi></msub><msub><mi>ω</mi><mi>z</mi></msub><mo>=</mo><msub><mi>M</mi><mi>x</mi></msub><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">{I}_{x}dω_{x}/dt+(I_{z}−I_{y})ω_{y}ω_{z}=M_{x},</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">d</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0361em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span></span></span></span></span><!----></span><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>I</mi><mi>y</mi></msub><mi>d</mi><msub><mi>ω</mi><mi>y</mi></msub><mi mathvariant="normal">/</mi><mi>d</mi><mi>t</mi><mo>+</mo><mo stretchy="false">(</mo><msub><mi>I</mi><mi>x</mi></msub><mo>−</mo><msub><mi>I</mi><mi>z</mi></msub><mo stretchy="false">)</mo><msub><mi>ω</mi><mi>z</mi></msub><msub><mi>ω</mi><mi>x</mi></msub><mo>=</mo><msub><mi>M</mi><mi>y</mi></msub><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">I_{y}dω_{y}/dt+(I_{x}−I_{z})ω_{z}ω_{x}=M_{y},</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0361em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mord mathnormal">d</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.9694em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mpunct">,</span></span></span></span></span><!----></span><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>I</mi><mi>z</mi></msub><mi>d</mi><msub><mi>ω</mi><mi>z</mi></msub><mi mathvariant="normal">/</mi><mi>d</mi><mi>t</mi><mo>+</mo><mo stretchy="false">(</mo><msub><mi>I</mi><mi>y</mi></msub><mo>−</mo><msub><mi>I</mi><mi>x</mi></msub><mo stretchy="false">)</mo><msub><mi>ω</mi><mi>x</mi></msub><msub><mi>ω</mi><mi>y</mi></msub><mo>=</mo><msub><mi>M</mi><mi>z</mi></msub><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">I_{z}dω_{z}/dt+(I_{y}−I_{x})ω_{x}ω_{y}=M_{z}.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">d</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">/</span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0361em;vertical-align:-0.2861em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0361em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">.</span></span></span></span></span><!----></span>Здесь <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>I</mi><mi>x</mi></msub></mrow><annotation encoding="application/x-tex">I_{x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>I</mi><mi>y</mi></msub></mrow><annotation encoding="application/x-tex">I_{y}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9694em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>I</mi><mi>z</mi></msub></mrow><annotation encoding="application/x-tex">I_{z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> – главные моменты инерции тела относительно осей <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>O</mi><mi>x</mi></msub></mrow><annotation encoding="application/x-tex">O_{x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">O</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>O</mi><mi>y</mi></msub></mrow><annotation encoding="application/x-tex">O_{y}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9694em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">O</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>O</mi><mi>z</mi></msub></mrow><annotation encoding="application/x-tex">O_{z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">O</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>; <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>M</mi><mi>x</mi></msub></mrow><annotation encoding="application/x-tex">M_{x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>M</mi><mi>y</mi></msub></mrow><annotation encoding="application/x-tex">M_{y}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9694em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>M</mi><mi>z</mi></msub></mrow><annotation encoding="application/x-tex">M_{z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.109em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> – моменты сил, приложенных к телу, относительно тех же осей; <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>ω</mi><mi>x</mi></msub></mrow><annotation encoding="application/x-tex">ω_{x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>ω</mi><mi>y</mi></msub></mrow><annotation encoding="application/x-tex">ω_{y}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7167em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>ω</mi><mi>z</mi></msub></mrow><annotation encoding="application/x-tex">ω_{z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">ω</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> – проекции вектора мгновенной угловой скорости. Так как вращающие моменты могут зависеть от времени, углов Эйлера и угловых скоростей, решения этих уравнений известны лишь при частных предположениях о действующих силах и расположении масс в теле.</p><p>Задача о движении свободного твёрдого тела, имеющего 6 степеней свободы, обсуждается в связи с проблемами моделирования поступательно-вращательного движения небесных тел, <a href="/c/raketa-f5791c" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->ракет<!--]--><!--]--><!----></a>, снарядов и других объектов. Для решения таких задач часто выбирается система координат, связанная с центром масс тела и движущаяся поступательно. Относительно такой системы координат рассматривается вращательное движение тела с применением методов динамики твёрдого тела.</p><p>Помимо установления общих методов изучения движения под действием сил в динамике рассматриваются также специальные задачи: динамика гироскопических систем (см. <a href="/c/giroskop-648dcc" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->гироскоп<!--]--><!--]--><!----></a>), теория <a href="/c/kolebaniia-ef7a5d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->колебаний<!--]--><!--]--><!----></a> механических систем, теория <a href="/c/ustoichivost-dvizheniia-1687f7" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->устойчивости движения<!--]--><!--]--><!----></a>, <a href="/c/mekhanika-tel-peremennoi-massy-fd1254" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->механика тел переменной массы<!--]--><!--]--><!----></a>, <a href="/c/teoriia-udara-194d8a" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->теория удара<!--]--><!--]--><!----></a> и др. В результате применения моделей динамики к изучению движения конкретных объектов возник ряд самостоятельных дисциплин: <a href="/c/nebesnaia-mekhanika-5830f4" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->небесная механика<!--]--><!--]--><!----></a>, <a href="/c/dinamika-mekhanizmov-i-mashin-5b0308" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->динамика механизмов и машин<!--]--><!--]--><!----></a>, <a href="/c/dinamika-poliota-ed2069" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->динамика полёта<!--]--><!--]--><!----></a> <a href="/c/letatel-nyi-apparat-ed614a" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->летательных аппаратов<!--]--><!--]--><!----></a>, динамика транспортных средств и др. С помощью законов динамики изучается также движение сплошной среды – упруго и пластически деформируемых тел, а также жидкостей и газов (см. <a href="/c/uprugost-7e7de2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->упругость<!--]--><!--]--><!----></a>, <a href="/c/plastichnost-784fa2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->пластичность<!--]--><!--]--><!----></a>, <a href="/c/gidrodinamika-31c37b" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->гидродинамика<!--]--><!--]--><!----></a>, <a href="/c/dinamika-razrezhennykh-gazov-7f45b2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->динамика разреженных газов<!--]--><!--]--><!----></a>, <a href="/c/aerodinamika-c63b82" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->аэродинамика<!--]--><!--]--><!----></a>, <a href="/c/gazovaia-dinamika-f54512" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->газовая динамика<!--]--><!--]--><!----></a>).</p><span itemscope itemprop="author" itemtype="https://schema.org/Person" class="-text-caption-2-italic tw-justify-end tw-mt-4 tw-mb-10 author _note-exclude"><a href="/a/va-samsonov-ea4e75" class=""><span itemprop="name">Самсонов Виталий Александрович</span></a></span></section></section><!--]--></div><span class="bre-inline-menu _article-meta" style=""><meta itemprop="description" content="Дина́мика, раздел механики, посвящённый изучению изменения характеристик движения материальных тел под действием приложенных к ним сил. Динамика –..."><span><span class="bre-inline-menu__item _article-meta max-md:tw-block"><!--[-->Опубликовано <!--]--><span itemprop="datePublished">6 июня 2023 г. в 16:24 (GMT+3). </span></span><span class="bre-inline-menu__item _article-meta max-md:tw-block"> Последнее обновление <span itemprop="dateModified">27 марта 2024 г. в 16:19 (GMT+3).</span></span></span><span class="-flex-divider"></span><span class="bre-inline-menu__item tw-items-start"><button type="button" class="b-button tw-gap-2 b-button--link -text-button-text tw-rounded-lg tw-cursor-pointer" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[-->Связаться с редакцией<!--]--></span></button></span></span></div></div><div class="bre-tags-wrap"><!--[--><span data-v-063d9480><a href="/l/razdely-mekhaniki-0bcf7d" class="bre-article-tag bre-article-tag__link _default _no-border" data-v-063d9480>#Разделы механики</a><!----></span><!--]--></div></div><aside class="bre-article-page__sidebar -show-on-desktop-s" style=""><!----><nav class="bre-article-loc lg:tw-sticky"><div class="bre-article-loc-button"><span class="bre-article-loc-title">Содержание</span><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M6 9l6 6 6-6" stroke="currentColor" stroke-width="1.5" stroke-linecap="round"/></svg> </span><div class="bre-article-loc-short">Динамика материальной точки</div></div><!----></nav><div class="bre-article-page__sidebar-wrapper"><div class="article-sidebar"><div class="article-sidebar-button -show-on-tablet -hide-on-desktop-s"><span class="article-sidebar-title">Информация</span><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M6 9l6 6 6-6" stroke="currentColor" stroke-width="1.5" stroke-linecap="round"/></svg> </span><!--[--><div class="article-sidebar-text -show-on-tablet -hide-on-desktop-s"></div><!--]--></div><div class="article-sidebar-wrapper -hide-on-tablet"><!----><!----><!----><span class="bre-media-image article-sidebar-image _note-exclude _clean" data-width="100%" data-display="block"><span class="bre-media-figure _note-exclude _clean" itemscope itemtype="https://schema.org/ImageObject" itemprop="image"><!--[--><span class="bre-media-image-container _placeholder"><meta itemprop="name" content="Физика"><meta itemprop="caption" content="Физика. Научно-образовательный портал «Большая российская энциклопедия»"><!----><!----><span class="tw-flex tw-w-full" style=""><img src="https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=120" onerror="this.setAttribute('data-error', 1)" alt="Физика" data-nuxt-img sizes="320px" srcset="https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=Jf8Ovt6NK1CJRMEXmLmu9w&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=9FmjZNIS1_JG-eBy3nkCow&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=W0YAxakNej-ihBYTmKOUhA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=bU5vxPnJKBxMhvgLEjl-uA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=CO7eqX0CglCAJmsuCYDJxQ&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=SNrDJXfJeDUaOjs9TGABPA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=A65s2m2zZF6hgTDDppMoDA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1920 1920w" title="Физика" class="" itemprop="contentUrl"></span><!----></span><!--]--><!----></span><!----><!----></span><div class="article-sidebar-meta"><dl class="tw-mt-0"><!--[--><!--[--><dt>Области знаний:</dt><dd>Классическая механика Ньютона</dd><!--]--><!--]--><!----></dl></div></div></div></div></aside></div><!----></article></div><!--]--></div><!----><!--]--><div></div></main><footer class="bre-footer" itemscope itemprop="hasPart" itemtype="https://schema.org/WPFooter"><meta itemprop="copyrightNotice" content="&copy;&nbsp;АНО БРЭ, 2022&nbsp;&mdash;&nbsp;2024. Все права защищены."><div class="bre-footer__inner" itemprop="hasPart" itemscope itemtype="https://schema.org/SiteNavigationElement"><!--[--><div class="_menu bre-footer-section"><ul class="bre-inline-menu _footer-link-groups"><!--[--><li class="_footer-links bre-inline-menu__item"><ul class="bre-inline-menu _footer-links"><!--[--><li class="_button bre-inline-menu__item"><a href="/p/about-project" class="" itemprop="url"><!----><span>О портале</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/author" class="" itemprop="url"><!----><span>Стать автором</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/partners" class="" itemprop="url"><!----><span>Партнёры</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/copyright-holders" class="" itemprop="url"><!----><span>Правообладателям</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/contacts" class="" itemprop="url"><!----><span>Контакты</span></a></li><li class="_button _full-width bre-inline-menu__item"><a href="https://old.bigenc.ru/" rel="noopener noreferrer nofollow" target="_blank" itemprop="url"><!----><span>Старая версия сайта</span></a></li><!--]--></ul></li><li class="bre-inline-menu__item"><ul class="bre-inline-menu"><!--[--><li class="bre-inline-menu__item"><a href="https://t.me/bigenc" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="Telegram"><svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24"> <path fill="currentColor" d="m2.319 11.552 4.147 1.555 1.605 5.189a.49.49 0 0 0 .562.336.487.487 0 0 0 .214-.102l2.312-1.893a.686.686 0 0 1 .84-.024l4.17 3.043a.486.486 0 0 0 .766-.297L19.99 4.59a.494.494 0 0 0-.397-.584.49.49 0 0 0-.258.025l-17.022 6.6a.491.491 0 0 0 .006.92Zm5.493.728 8.107-5.02c.145-.088.294.11.17.227l-6.69 6.25a1.39 1.39 0 0 0-.43.832l-.228 1.698c-.03.227-.346.25-.41.03l-.875-3.096a.823.823 0 0 1 .356-.921Z"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://vk.com/bigenc_ru" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="ВКонтакте"><svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24"> <path fill="currentColor" d="M21.969 6.82c.17.425-.353 1.418-1.567 2.978-.17.213-.389.496-.656.85-.559.663-.875 1.1-.947 1.313-.122.284-.073.555.145.815.122.142.401.426.838.851h.037v.036c.996.874 1.664 1.62 2.004 2.234l.073.141.073.267v.336l-.255.266-.62.124-2.66.071c-.17.024-.37 0-.601-.07a2.607 2.607 0 0 1-.528-.213l-.22-.142a4.162 4.162 0 0 1-.728-.639 28.415 28.415 0 0 1-.71-.78 3.62 3.62 0 0 0-.638-.585c-.219-.153-.413-.206-.583-.16a.18.18 0 0 0-.091.036 1.473 1.473 0 0 0-.183.16 1.148 1.148 0 0 0-.218.301 2.19 2.19 0 0 0-.164.514c-.049.225-.073.49-.073.798a.939.939 0 0 1-.036.266 1.154 1.154 0 0 1-.073.195l-.037.036c-.146.141-.34.212-.583.212h-1.166a4.34 4.34 0 0 1-1.548-.141 5.719 5.719 0 0 1-1.367-.55c-.389-.225-.74-.45-1.057-.674a6.361 6.361 0 0 1-.729-.585l-.255-.248a1.58 1.58 0 0 1-.291-.284c-.122-.141-.37-.449-.747-.922a23.006 23.006 0 0 1-1.111-1.524A29.008 29.008 0 0 1 3.42 9.957 34.16 34.16 0 0 1 2.073 7.21.8.8 0 0 1 2 6.926c0-.071.012-.13.036-.177l.037-.036c.097-.142.291-.213.583-.213h2.879a.49.49 0 0 1 .218.054l.182.088.037.036c.121.07.206.177.255.319.146.33.31.68.492 1.046s.322.644.419.833l.146.284c.218.402.419.75.6 1.046.183.295.347.526.493.691.146.166.291.296.437.39.146.095.267.142.365.142.097 0 .194-.012.291-.036l.036-.053.128-.23.146-.461.09-.816V8.557a6.15 6.15 0 0 0-.108-.727 2.135 2.135 0 0 0-.146-.479l-.037-.106c-.17-.236-.473-.39-.91-.461-.074 0-.05-.083.072-.248a1.55 1.55 0 0 1 .401-.284c.364-.189 1.19-.272 2.478-.248.559 0 1.032.047 1.421.142.121.023.23.065.328.124.097.059.17.142.219.248.048.106.085.213.109.32.024.106.036.26.036.46v.55a5.784 5.784 0 0 0-.036.709v.85c0 .072-.006.214-.018.426a9.251 9.251 0 0 0-.018.497c0 .118.012.254.036.408.024.153.067.283.128.39a.55.55 0 0 0 .4.283c.061.012.152-.023.274-.106a2.55 2.55 0 0 0 .4-.355c.146-.153.328-.384.547-.691.219-.307.45-.662.692-1.064a18.64 18.64 0 0 0 1.13-2.305c.024-.047.055-.1.091-.16.037-.058.08-.1.128-.123h.036l.037-.036.145-.035h.219l2.988-.036c.267-.023.492-.011.674.036.182.047.286.106.31.177l.073.106Z"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://dzen.ru/bigenc" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="Дзен"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <defs> <mask id="inner-star"> <circle cx="12" cy="12" r="9" fill="#fff"/> <path d="M21 12.0964V11.9036C17.0143 11.775 15.195 11.6786 13.7357 10.2643C12.3214 8.805 12.2186 6.98571 12.0964 3H11.9036C11.775 6.98571 11.6786 8.805 10.2643 10.2643C8.805 11.6786 6.98571 11.7814 3 11.9036V12.0964C6.98571 12.225 8.805 12.3214 10.2643 13.7357C11.6786 15.195 11.7814 17.0143 11.9036 21H12.0964C12.225 17.0143 12.3214 15.195 13.7357 13.7357C15.195 12.3214 17.0143 12.2186 21 12.0964Z" fill="#000"/> </mask> </defs> <circle cx="12" cy="12" r="9" fill="currentColor" mask="url(#inner-star)"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://ok.ru/group/70000000707835" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="Одноклассники"><svg viewBox="0 0 200 200" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M100.1 99.2C109.8 99.2 118.6 95.2 124.9 88.9C131.2 82.6 135.2 73.8 135.2 64.1C135.2 54.4 131.2 45.6 124.9 39.3C118.6 33 109.8 29 100.1 29C90.4 29 81.6 33 75.3 39.3C69 45.5 65 54.3 65 64.1C65 73.9 69 82.6 75.3 88.9C81.6 95.2 90.5 99.2 100.1 99.2ZM88.9 52.7C91.8 49.8 95.8 48 100.2 48C104.7 48 108.6 49.8 111.5 52.7C114.4 55.6 116.2 59.6 116.2 64C116.2 68.5 114.4 72.4 111.5 75.3C108.6 78.2 104.6 80 100.2 80C95.7 80 91.8 78.2 88.9 75.3C86 72.4 84.2 68.4 84.2 64C84.2 59.6 86.1 55.6 88.9 52.7Z" fill="currentColor"/> <path d="M147.5 113.4L137.2 99.3C136.6 98.5 135.4 98.4 134.7 99.1C125 107.4 113 112.8 100.1 112.8C87.2 112.8 75.3 107.4 65.5 99.1C64.8 98.5 63.6 98.6 63 99.3L52.7 113.4C52.2 114.1 52.3 115 52.9 115.6C61.6 122.6 71.7 127.4 82.2 129.9L60.4 168.3C59.8 169.4 60.6 170.8 61.8 170.8H83.1C83.8 170.8 84.4 170.4 84.6 169.7L99.8 135.7L115 169.7C115.2 170.3 115.8 170.8 116.5 170.8H137.8C139.1 170.8 139.8 169.5 139.2 168.3L117.4 129.9C127.9 127.4 138 122.8 146.7 115.6C148 115 148.1 114.1 147.5 113.4Z" fill="currentColor"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://www.youtube.com/channel/UCY4SUgcT8rBt4EgK9CAg6Ng" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="YouTube"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M21.1623 4.21363C22.1781 4.48683 22.9706 5.28671 23.2453 6.30818C23.9638 9.22233 23.917 14.7319 23.2604 17.6916C22.9887 18.713 22.1932 19.5099 21.1774 19.7861C18.3094 20.4995 5.46414 20.4114 2.76226 19.7861C1.74641 19.5129 0.953955 18.713 0.679238 17.6916C0.0015019 14.914 0.0482943 9.04019 0.664143 6.32335C0.935842 5.30188 1.73131 4.50505 2.74716 4.22881C6.58112 3.42438 19.7977 3.68392 21.1623 4.21363ZM9.69057 8.44824L15.8491 11.9999L9.69057 15.5515V8.44824Z" fill="currentColor"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://rutube.ru/channel/29677486/" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="RUTUBE"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M3 6.45205C3 4.54554 4.54554 3 6.45205 3H17.5479C19.4545 3 21 4.54554 21 6.45205V17.5479C21 19.4545 19.4545 21 17.5479 21H6.45205C4.54554 21 3 19.4545 3 17.5479V6.45205ZM14.8657 7.43835H6.20547V16.8082H8.6159V13.7598H13.2346L15.342 16.8082H18.0411L15.7173 13.7458C16.439 13.6335 16.9586 13.3665 17.2761 12.9451C17.5936 12.5237 17.7524 11.8494 17.7524 10.9503V10.2479C17.7524 9.71409 17.6947 9.29268 17.5936 8.96955C17.4926 8.64646 17.3194 8.3655 17.0741 8.11265C16.8142 7.87383 16.5256 7.70526 16.1792 7.59288C15.8328 7.49454 15.3997 7.43835 14.8657 7.43835ZM14.476 11.6948H8.6159V9.50336H14.476C14.808 9.50336 15.0389 9.55957 15.1544 9.65789C15.2698 9.75622 15.342 9.93886 15.342 10.2058V10.9925C15.342 11.2734 15.2698 11.456 15.1544 11.5543C15.0389 11.6527 14.808 11.6948 14.476 11.6948ZM19.274 6.57535C19.274 7.18816 18.7771 7.68494 18.1646 7.68494C17.5516 7.68494 17.0548 7.18816 17.0548 6.57535C17.0548 5.96254 17.5516 5.46576 18.1646 5.46576C18.7771 5.46576 19.274 5.96254 19.274 6.57535Z" fill="currentColor"/> </svg> </span><!----></a></li><!--]--></ul></li><!--]--></ul></div><div class="_border bre-footer-section"><ul class="bre-inline-menu"><!--[--><li class="_footer-text bre-inline-menu__item"><span><!----><span>Научно-образовательный портал «Большая российская энциклопедия»<br />Создан при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций Российской Федерации.<br />Свидетельство о регистрации СМИ ЭЛ № ФС77-84198, выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) 15 ноября 2022 года.<br>ISSN: 2949-2076</span></span></li><li class="_footer-text bre-inline-menu__item"><span><!----><span>Учредитель: Автономная некоммерческая организация «Национальный научно-образовательный центр «Большая российская энциклопедия» <br /> Главный редактор: Кравец С. Л. <br />Телефон редакции: <a href="tel:+74959179000">+7 (495) 917 90 00</a> <br />Эл. почта редакции: <a href="mailto:secretar@greatbook.ru">secretar@greatbook.ru</a></span></span></li><li class="_half-width bre-inline-menu__item"><ul class="bre-inline-menu"><!--[--><li class="tw-h-12 tw-mt-3 bre-inline-menu__item"><span><span class="nuxt-icon tw-text-gray-2 tw-text-[60px] _no-icon-margin" title="АНО «БРЭ»"><svg viewBox="0 0 60 48" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M25.577.226C14.027 1.426 4.087 8.42.903 17.586c-1.187 3.417-1.206 8.83-.045 12.525 4.42 14.064 24.29 21.772 41.012 15.91 4.81-1.686 7.426-3.253 11.082-6.64 9.507-8.81 9.383-22.047-.29-31.086C45.986 2.058 36.151-.872 25.576.226zm12.902 3.345c1.283.355 3.172 1.009 4.198 1.452l1.866.806-2.498.863c-2.472.855-2.529.854-5.365-.107-3.749-1.27-9.587-1.36-14.153-.22-2.764.692-3.65.744-5.015.298-.91-.298-1.657-.717-1.657-.93 0-.435 4.797-2.101 7.962-2.765 2.75-.577 11.74-.207 14.662.603zM16.498 7.354c1.654.685 1.69.756 1.736 3.35.051 2.917.542 5.21.962 4.494.147-.251.406-1.213.574-2.138.169-.924.839-2.208 1.49-2.854 1.145-1.134 2.687-1.289 5.207-.523.928.282.818 10.774-.116 11.128-.385.147-.7.475-.7.73 0 .284 1.353.395 3.494.288 3.904-.195 5.13-.936 5.627-3.4.42-2.078-1.08-3.728-3.748-4.125l-2.108-.313v-2.05c0-2.032.015-2.051 1.617-2.051 1.196 0 1.764.27 2.187 1.04l.57 1.039.28-1.155c.768-3.16 5.399-.393 7.647 4.569 1.253 2.765 2.241 6.748 1.786 7.198-.136.136-5.723.237-12.415.226-9.379-.016-12.595-.173-14.033-.686-1.026-.366-1.918-.67-1.982-.673-.065-.004-.117.409-.117.917 0 .877-.311.924-6.085.924H2.285l.316-1.733c.84-4.62 3.604-9.246 7.303-12.224 3.61-2.905 4.04-3.034 6.594-1.978zm31.704.637c4.444 3.03 8.238 8.665 8.977 13.334l.311 1.964H48.171l-.258-2.821c-.33-3.602-2.508-8.06-5.049-10.334-1.046-.936-1.816-1.789-1.71-1.894.31-.306 3.796-1.516 4.471-1.552.339-.018 1.498.568 2.577 1.303zm-15.32.018c.815.318.741.406-.584.697-1.994.438-8.188-.192-6.88-.7 1.21-.47 6.259-.468 7.463.003zm-1.45 8.003c1.79 1.593 1.82 3.79.064 4.582-1.793.81-2.58-.147-2.58-3.137 0-2.827.585-3.163 2.516-1.445zm-17.73 10.05c-.164 1.016-.152 1.848.026 1.848s1.017-.728 1.864-1.618l1.54-1.617H43.459l-.306 1.964c-.824 5.29-2.498 8.885-4.907 10.53-.976.667-1.813.75-5.132.505l-3.964-.292-.132-5.43c-.129-5.327-.112-5.429.897-5.429 1.575 0 2.733 1.32 2.733 3.115 0 1.338-.219 1.668-1.4 2.11-1.494.558-1.867 1.244-.676 1.244 2.64 0 4.921-3.225 3.992-5.646-.584-1.52-1.303-1.747-5.542-1.747-2.972 0-3.418.095-2.744.583.696.504.787 1.301.672 5.882l-.133 5.298-2.262.374c-2.662.442-3.293.074-4.047-2.355-1.024-3.302-.923-3.132-1.405-2.376-.239.374-.438 1.837-.442 3.252l-.007 2.572-2.547 1.046c-1.475.605-2.943.921-3.486.75-1.374-.431-6.27-5.358-7.66-7.707-1.317-2.227-2.856-7.512-2.4-8.243.166-.266 2.655-.462 5.864-.462H14l-.299 1.848zm43.493.335c-.525 3.8-2.78 7.8-6.359 11.283-1.79 1.742-3.553 3.167-3.916 3.167-.364 0-1.837-.446-3.273-.99l-2.612-.99 2.245-2.36c2.681-2.82 4.187-5.74 4.564-8.85.438-3.62.174-3.444 5.144-3.444h4.51l-.303 2.184zM34.867 39.034c-1.24.715-5.09 1.044-8.004.684-4.526-.56-2.874-1.182 3.103-1.168 4.098.01 5.484.147 4.9.484zm7.727 1.625c1.2.405 2.182.91 2.182 1.122 0 .54-4.773 2.26-8.396 3.028-3.871.82-9.19.82-13.061 0-3.535-.749-8.397-2.485-8.397-2.997 0-.195.81-.62 1.801-.944 1.592-.52 1.955-.489 3.13.273 1.141.74 2.277.86 8.11.86 5.997 0 7.028-.116 8.883-1 2.592-1.235 3.025-1.26 5.748-.342z" fill="currentColor"/></svg> </span><!----></span></li><li class="tw-h-12 tw-mt-3 bre-inline-menu__item"><span><span class="nuxt-icon tw-text-gray-2 tw-text-5xl _no-icon-margin" title="Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации"><svg viewBox="0 0 48 48" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M23.723.258c.06.157 0 .258-.15.258a.254.254 0 0 0-.248.258c0 .142.118.258.263.258.144 0 .216.078.159.172-.058.095.056.172.253.172.196 0 .31-.077.253-.172-.058-.094.014-.172.159-.172.149 0 .263-.146.263-.338 0-.232-.08-.308-.255-.24-.183.072-.226.022-.151-.177.077-.203.005-.277-.27-.277-.262 0-.344.077-.276.258zm-.11 1.57c-.21.214-.128.712.134.815.414.162.781-.076.726-.471-.05-.362-.62-.59-.86-.344zm-.086 1.303c-.277.283-.254 1.342.058 2.608.405 1.644.432 1.654.764.283.508-2.103.396-3.097-.35-3.097a.767.767 0 0 0-.472.206zm-1.65.296c-.984.45-1.211 1.079-.825 2.284.161.502.398 1.124.526 1.382.218.44.284.463 1.032.363.44-.059.823-.127.853-.152.08-.067-.675-3.928-.796-4.07-.056-.066-.412.02-.79.193zm3.392-.113c-.143.439-.788 3.943-.734 3.989.03.025.415.094.855.153.747.1.814.076 1.032-.363.127-.258.364-.88.525-1.382.432-1.348.155-1.927-1.17-2.44-.323-.125-.457-.114-.509.043zM10.175 4.2c-.473.491-.977.824-1.428.944-.977.26-1.39.573-.612.463.325-.046.932-.13 1.35-.186.418-.056 1.193-.33 1.723-.611.53-.28 1.214-.511 1.519-.514.552-.006.55-.008-.288-.429-.464-.233-1-.424-1.189-.425-.19 0-.673.34-1.075.758zm25.301-.313c-.741.39-.747.4-.25.407.28.004.963.233 1.519.508.974.484 1.306.572 2.95.783.912.117.64-.153-.443-.44-.45-.12-.954-.454-1.427-.945-.842-.874-1.193-.921-2.349-.313zm-18.727.71c-.182.21-.193.3-.04.352.112.038.161.14.109.227-.053.086.015.157.15.157.293 0 .477-.415.342-.774-.123-.326-.251-.317-.56.038zm13.94-.038c-.095.254.023.774.176.774.043 0 .193-.116.332-.258.225-.23.225-.287 0-.516-.14-.142-.289-.258-.332-.258-.043 0-.122.116-.175.258zm-18.352.043c-.01.071-.006.361.008.645.015.284-.092.855-.236 1.27-.665 1.913-.131 2.904 1.849 3.431l.675.18-.498-.376c-.83-.627-1.274-1.18-1.274-1.584 0-.21.19-.82.421-1.356.548-1.26.563-2.088.043-2.23-.524-.143-.967-.134-.988.02zm22.253-.014c-.43.12-.378 1.028.127 2.191.232.535.422 1.153.422 1.373 0 .42-.442.973-1.275 1.597l-.497.372.59-.13c1.968-.433 2.597-1.564 1.933-3.475-.144-.414-.239-1.024-.211-1.355.045-.535.004-.605-.372-.629a2.652 2.652 0 0 0-.717.056zM3.422 5.958c-.489.633-.737 1.705-.609 2.632.205 1.48.872 2.56 2.75 4.454.968.977 1.799 1.737 1.845 1.69.212-.216-.4-1.476-1.08-2.223-.728-.8-1.653-2.533-1.539-2.882.031-.095.54.524 1.13 1.377.59.852 1.132 1.512 1.204 1.467.072-.046.177-.272.234-.504.08-.325-.126-.783-.912-2.023-.56-.88-1.327-2.24-1.706-3.021-.38-.78-.753-1.42-.83-1.42-.075 0-.295.204-.487.453zm13.32-.109c0 .26.088.352.296.312.162-.032.295-.172.295-.312 0-.139-.133-.279-.295-.31-.208-.042-.296.051-.296.31zm13.924-.172c-.141.233.05.517.348.517.134 0 .243-.155.243-.345 0-.356-.407-.474-.59-.172zm12.595 1.248c-.38.78-1.147 2.14-1.706 3.021-.787 1.24-.993 1.697-.913 2.023.057.232.163.459.235.504.072.045.613-.615 1.204-1.467.59-.853 1.098-1.472 1.13-1.377.113.349-.812 2.082-1.54 2.882-.68.747-1.292 2.007-1.08 2.222.047.048.877-.712 1.846-1.689 2.38-2.4 3.154-4.12 2.674-5.937-.185-.698-.761-1.602-1.022-1.602-.076 0-.449.64-.828 1.42zM7.924 5.877c-.552.206-.574.402-.127 1.09.395.609.425 1.246.08 1.711-.137.184-.248.449-.248.59 0 .19.097.16.39-.12.528-.505.622-.474.622.21 0 .343.143.749.35.989l.349.406-.1-.475c-.06-.286.009-.688.173-1.011.312-.615.256-1.332-.209-2.684-.324-.943-.453-1.014-1.28-.706zm30.871.706c-.465 1.352-.52 2.069-.208 2.684.164.323.232.725.172 1.011l-.1.475.35-.406c.206-.24.35-.646.35-.99 0-.683.093-.714.621-.209.293.28.39.31.39.12 0-.141-.11-.406-.247-.59-.345-.465-.316-1.102.079-1.71.457-.704.426-.882-.194-1.102-.814-.289-.88-.25-1.213.717zm-22.156.03c-.112.296.049 1.64.265 2.227.117.315.162.264.334-.378.273-1.02.178-1.991-.2-2.065a.365.365 0 0 0-.4.216zm14.005.009c-.132.35.036 1.882.25 2.27.122.224.203.069.356-.688.11-.537.175-1.15.145-1.363-.064-.461-.601-.618-.752-.22zm-15.213.127c-.54.266-.614.788-.251 1.775.3.819.336.85.895.793.32-.032.595-.07.61-.086.014-.014-.091-.627-.235-1.36-.266-1.36-.348-1.451-1.02-1.122zm2.414.004c-.114.362-.428 2.024-.428 2.268 0 .127.237.266.527.31.48.07.554.016.84-.627.172-.387.316-.878.318-1.091.006-.703-1.073-1.442-1.257-.86zm11.397.118c-.435.444-.442 1.04-.021 1.882.29.58.385.644.844.576.587-.088.6-.162.292-1.672-.235-1.153-.542-1.37-1.115-.786zm2.307 1c-.144.733-.249 1.346-.234 1.36.014.015.285.054.602.086.544.056.593.015.905-.754.189-.465.288-.986.23-1.217-.087-.355-.707-.808-1.105-.808-.075 0-.255.6-.398 1.333zm-9.406.066c-.41.168-.413.18-.094.419.457.343 3.443.344 3.902.001.316-.237.31-.252-.148-.43-.591-.23-3.09-.223-3.66.01zm-.928.947c-.186.15-.793.495-1.35.769-1.002.492-1.007.497-.41.497.784 0 2.113-.412 2.857-.887l.59-.377-.421-.125c-.656-.194-.902-.17-1.266.123zm4.304-.123l-.422.125.59.377c.746.476 2.075.888 2.858.886l.602-.002-.9-.427c-.496-.236-1.116-.583-1.377-.773-.501-.364-.67-.387-1.351-.186zm-9.283.805c-.14.053-.365.132-.502.177-.218.072-.218.101 0 .242.531.342 3.034.11 2.683-.25-.138-.14-1.898-.276-2.181-.17zm13.797.01c-.255.045-.464.145-.464.223 0 .238.486.352 1.49.349.986-.003 1.572-.2 1.233-.414-.25-.157-1.688-.257-2.259-.158zm-14.81.807c0 .49.798 1.74 1.55 2.43.904.828 1.277.996.988.446-.264-.503-.213-.575.2-.28.551.394.865.356.638-.076-.212-.403-.049-.435.412-.08.458.353.643.314.512-.106-.11-.354-.106-.355.356-.047.462.309.466.308.374-.052-.092-.357-.082-.356.5.047.623.43 2.109.584 2.318.238.06-.098-.093-.172-.358-.172-.255 0-.798-.165-1.208-.367l-.744-.368.48-.4.48-.4-.588-.007-.588-.006.58-.317c.632-.346.96-.861.41-.646-.54.211-4.146.31-5.257.145-.705-.105-1.055-.1-1.055.018zm10.999-.06c.04.124.335.37.653.543l.58.317-.589.006-.588.006.48.4.48.401-.744.368c-.41.202-.953.367-1.207.367-.266 0-.419.074-.36.172.21.346 1.696.193 2.32-.238.582-.403.591-.404.5-.046-.093.36-.088.36.374.051.461-.308.466-.307.356.047-.131.42.054.459.511.106.46-.355.624-.323.412.08-.226.432.087.47.638.076.413-.295.465-.223.2.28-.289.55.085.382.987-.446.753-.69 1.55-1.94 1.55-2.43 0-.117-.35-.123-1.054-.018-1.11.166-4.716.066-5.256-.145-.224-.088-.295-.057-.243.103zm-11.42.515c-.153.251.405 1.128 1.001 1.576l.517.389-.294-.423a12.588 12.588 0 0 1-.637-1.068c-.366-.691-.426-.74-.587-.474zm17.818.453c-.193.367-.484.856-.646 1.089l-.295.423.517-.389c.673-.505 1.184-1.373.95-1.611-.12-.122-.285.032-.526.488zM.61 11.206c-.159.262.61 1.77 1.246 2.445.734.778 2.12 1.771 3.374 2.417.813.42.915.436 1.159.188.147-.15.239-.293.205-.318a74.556 74.556 0 0 0-.906-.584 9.907 9.907 0 0 1-1.52-1.248c-.65-.683-.657-.702-.188-.521.589.227 1.262.691 2.383 1.644.746.635 1.772 1.09 1.772.785 0-.171-2-2.117-3.088-3.004-.539-.439-1.365-.997-1.836-1.24-.912-.471-2.454-.806-2.6-.564zm45.728-.016c-1.464.295-3.226 1.487-5.419 3.666-.58.576-1.054 1.098-1.054 1.158 0 .304 1.026-.15 1.772-.785 1.12-.953 1.794-1.417 2.383-1.644.469-.18.462-.162-.19.521-.37.39-1.054.95-1.518 1.248-.464.296-.872.56-.906.584-.035.025.057.168.204.318.244.248.346.232 1.16-.188 1.253-.646 2.64-1.64 3.373-2.417.926-.982 1.595-2.716 1.011-2.621-.064.01-.431.082-.816.16zm-32.82.184c-.8.3-.994 1.35-.38 2.064.219.254.295.249.911-.062.645-.325.708-.327 1.535-.051 1.27.424 1.602.2.622-.422-.43-.273-.988-.772-1.24-1.108-.474-.634-.702-.7-1.448-.42zm3.818.077c-.378.292-.784.267-.889-.053-.048-.148.133-.213.577-.21.61.005.628.02.312.263zm14.216-.053c-.104.32-.51.345-.889.053-.316-.243-.299-.258.313-.263.444-.004.625.062.576.21zm1.481.397c-.252.336-.81.835-1.24 1.108-.98.621-.649.845.623.422.827-.276.89-.274 1.534.051.616.31.693.316.91.062.638-.741.418-1.768-.445-2.075-.763-.27-.884-.233-1.382.432zm-25.399.065c-.297.567-.205 2.075.178 2.88.31.655 2.21 2.636 2.526 2.636.215 0-.294-1.246-.574-1.406-.298-.17-1.123-1.516-1.123-1.83 0-.109.318.154.706.584.697.77.709.775.908.396.181-.345.112-.492-.68-1.442-.484-.582-1.022-1.305-1.196-1.605-.367-.633-.504-.672-.745-.213zm31.987.213c-.174.3-.713 1.023-1.198 1.605-.79.95-.86 1.097-.678 1.442.199.38.21.374.907-.396.389-.43.706-.693.706-.585 0 .316-.825 1.661-1.122 1.83-.28.16-.79 1.407-.575 1.407.317 0 2.215-1.98 2.526-2.636.383-.805.476-2.313.178-2.88-.241-.46-.377-.42-.744.213zm-25.41.486c0 .095-.114.172-.253.172-.14 0-.254-.077-.254-.172 0-.095.114-.172.254-.172.139 0 .253.077.253.172zm20 0c.057.095-.015.172-.16.172-.144 0-.262-.077-.262-.172 0-.095.071-.172.158-.172.088 0 .206.077.264.172zm-14.43.497c0 .091.322.48.717.863l.717.698.054-.635c.04-.454-.03-.698-.243-.857-.212-.158-.33-.167-.413-.032-.083.138-.213.136-.474-.006-.208-.114-.359-.127-.359-.03zm7.193.069c-.214.159-.283.402-.244.857l.054.635.718-.698c.752-.732.953-1.157.405-.858-.198.108-.37.11-.473.005-.103-.104-.27-.083-.46.058zm-8.038.304c0 .293-.052.318-.337.162-.525-.286-.4.055.285.773.561.59.634.621.747.327.264-.686.163-1.21-.273-1.412-.374-.174-.422-.157-.422.15zm9.663-.132c-.397.183-.485.739-.222 1.413.124.318.18.293.747-.335.676-.747.791-1.065.288-.79-.264.144-.336.117-.38-.142-.044-.266-.119-.29-.433-.146zm-7.097 1.126c-.04.796.019 1.088.285 1.419.331.412.336.413.593.072.4-.533.33-1.362-.168-1.965-.24-.291-.487-.53-.548-.53-.062.001-.134.452-.162 1.004zm4.285-.474c-.498.603-.569 1.432-.168 1.965.257.341.262.34.594-.072.265-.33.324-.623.284-1.42-.027-.55-.1-1.002-.162-1.002-.061 0-.308.238-.548.529zm-11.354.155c-.573.173-1.067.294-1.097.269-.03-.025-.26-.096-.513-.157-.586-.144-.484.267.14.557.77.358 1.725.244 2.184-.26.34-.374.55-.792.372-.736l-1.086.327zm1.244.142c-.25.265-.454.619-.454.786 0 .283.03.282.464-.026.6-.425 1.474-.725 2.135-.732.497-.005.507-.018.196-.258-.18-.139-.678-.253-1.108-.253-.634 0-.864.09-1.233.483zm14.304-.23c-.31.24-.3.253.196.258.662.007 1.536.307 2.135.732.452.32.464.321.464.006 0-.178-.213-.532-.474-.786-.37-.362-.638-.463-1.233-.463-.418 0-.908.114-1.088.253zm2.457-.093c0 .074.187.34.414.59.459.504 1.414.618 2.185.26.623-.29.726-.7.14-.557-.253.061-.485.133-.515.158-.03.025-.543-.096-1.14-.27-.596-.174-1.084-.256-1.084-.181zm-12.489.748c0 .77.366 1.501.751 1.501.259 0 .43-.37.43-.928 0-.348-.78-1.309-1.064-1.309-.064 0-.117.332-.117.736zm7.373-.253c-.444.473-.555.94-.35 1.482.145.386.508.337.816-.11.27-.394.37-1.854.125-1.854-.075 0-.341.217-.59.482zm-16.74.488c-.643 1 .008 2.858 1.268 3.617.577.348.664.584.167.452-.186-.05-.338-.144-.338-.209 0-.164-2.158-1.804-2.825-2.148-.57-.293-1.965-.438-2.173-.226-.215.22.51 1.366 1.183 1.868.361.27 1.074.692 1.583.938.746.36.955.402 1.07.216.227-.364.19-.419-.496-.734a6.155 6.155 0 0 1-1.14-.708c-.82-.683-.074-.502 1.09.265.575.378 1.175.689 1.334.69.206.002.169.065-.13.22-.56.288-.62.744-.178 1.353l.363.5-.39-.087a45.326 45.326 0 0 0-1.393-.264c-1.17-.206-1.775-.622-.683-.469.372.052.917.148 1.213.213.48.106.528.082.45-.226-.096-.372-1.576-.899-2.518-.897-.763.001-1.76.333-1.76.586 0 .325 1.216 1.138 1.971 1.317.9.213 2.54.197 2.952-.028.25-.136.396-.136.529 0s.062.188-.256.188c-.287 0-.597.189-.886.54l-.445.539.375.407c.252.274.564.407.951.407h.577l-.456.552c-.464.562-1.676 1.232-2.008 1.11-.1-.036.27-.29.822-.563 1.03-.51 1.392-.927.803-.927-.447 0-1.705.463-2.227.82-.233.159-.614.299-.846.31-.232.012-.875.15-1.428.306-.553.156-1.199.278-1.435.27-.777-.026.93-.689 2.388-.927.732-.12 1.367-.255 1.413-.302.045-.046-.343-.129-.862-.183-1.34-.142-3.548.262-4.717.862-.57.292-1.435 1.07-1.435 1.289 0 .262.913.51 1.89.512 1.32.003 3.558-.763 3.933-1.347.154-.24.318-.397.364-.35.047.047-.046.29-.205.537-.369.574-.252.68.73.663 1.12-.02 2.23-.502 2.244-.974.01-.364.012-.363.163.02.119.3.288.386.76.386.334 0 .75-.077.923-.172.286-.156.307-.118.224.407-.114.712.179 1.314.638 1.314.19 0 .561-.221.826-.491l.482-.49.11.447c.129.53.553 1.05.856 1.05.298 0 .914-.836.914-1.24 0-.272.106-.218.582.296.991 1.071 1.163.852 1.182-1.508.01-1.199-.05-2.021-.148-2.021-.09 0-.374.206-.632.458-.36.352-.688.477-1.401.538-1.114.094-1.79-.156-2.39-.883-.378-.458-.425-.641-.344-1.342a5.43 5.43 0 0 1 .441-1.505c.673-1.344.393-2.112-1.216-3.342-.596-.456-1.297-1.172-1.557-1.592-.26-.42-.491-.762-.513-.762-.023 0-.172.204-.333.454zm7.926.019c.156.644.644 1.477.85 1.45.364-.045.262-.855-.175-1.383-.555-.673-.828-.7-.675-.067zm10.308.067c-.433.524-.537 1.317-.184 1.4.194.047.703-.822.86-1.467.152-.633-.121-.606-.676.067zm7.763.21c-.264.426-.966 1.148-1.559 1.604-.592.455-1.188 1-1.323 1.21-.344.532-.306 1.318.1 2.132.192.38.39 1.058.442 1.505.082.7.035.884-.343 1.342-.6.727-1.276.977-2.39.883-.731-.062-1.04-.184-1.433-.568-.275-.27-.553-.435-.619-.369-.064.067-.129 1.01-.143 2.095-.024 1.86-.006 1.975.308 1.975.183 0 .588-.277.9-.615.468-.505.57-.555.57-.28 0 .403.616 1.239.914 1.239.302 0 .727-.52.856-1.05l.11-.448.481.491c.265.27.636.49.826.49.456 0 .752-.6.64-1.299l-.089-.564.536.218c.294.12.725.166.957.103.35-.095.418-.212.396-.677a1.759 1.759 0 0 0-.41-.978l-.382-.415h.526c.322 0 .71-.167 1-.43l.474-.43-.552-.516c-.303-.284-.663-.517-.801-.517s-.25-.085-.25-.19c0-.119.11-.14.295-.053.515.239 2.24.283 3.054.078.919-.233 2.051-.94 2.051-1.283 0-.296-.863-.616-1.66-.616-1.031 0-2.518.51-2.618.898-.08.308-.031.332.45.226.295-.065.84-.161 1.212-.213 1.163-.163.442.282-.773.477-.596.095-1.224.217-1.397.27-.282.088-.277.047.06-.415.45-.62.393-1.075-.17-1.365-.3-.155-.337-.218-.13-.22.158-.001.759-.312 1.333-.69 1.164-.767 1.91-.948 1.09-.265a6.155 6.155 0 0 1-1.14.708c-.683.314-.722.371-.5.727.17.275 1.581-.323 2.64-1.119.703-.529 1.428-1.663 1.207-1.888-.234-.24-1.62-.067-2.298.285-.574.298-2.453 1.734-2.707 2.068-.135.177-.675.345-.674.21 0-.069.217-.25.48-.402 1.28-.742 1.969-2.81 1.246-3.735l-.312-.4-.48.776zm-13.945.848c-.297.856-.255 1.26.192 1.842l.33.43.334-.43c.397-.512.429-1.048.099-1.698-.461-.909-.678-.941-.955-.144zm2.172-.436c-.71.83-.812 1.614-.296 2.278l.333.43.334-.43c.39-.502.443-1.482.113-2.13-.214-.42-.243-.43-.484-.148zm-24.734.003c-.348.243.62 1.431 1.618 1.983 1.108.615 3.585 1.253 5.432 1.4l1.435.116-.417-.34c-.23-.187-1.076-.497-1.88-.688-1.466-.349-3.02-.979-3.02-1.225 0-.194 1.282.087 2.574.565 2.08.77 1.095-.396-1.064-1.26-1.145-.457-1.724-.582-2.944-.635-.836-.036-1.616.002-1.734.084zm43.865.307c-.683.238-1.48.554-1.772.703-.49.251-1.107.867-1.115 1.115-.002.06.509-.082 1.135-.314 1.295-.48 2.574-.76 2.574-.564 0 .261-1.449.855-2.948 1.208-.842.198-1.719.512-1.95.698l-.418.338 1.434-.113c1.85-.146 4.327-.781 5.433-1.395.988-.547 1.97-1.744 1.617-1.972-.477-.31-2.727-.142-3.99.296zm-24.21.342c-.104.654.19 1.814.473 1.858.091.015.27-.192.395-.46.258-.547.07-1.246-.47-1.743-.28-.259-.305-.237-.398.345zm8.132-.325c-.568.663-.685 1.074-.481 1.702.224.692.375.741.633.206.309-.64.368-1.045.241-1.65-.115-.549-.133-.56-.393-.258zm-6.714.204c-.275.523-.22 1.258.135 1.806l.316.489.274-.398c.405-.59.347-1.396-.135-1.856-.405-.388-.408-.389-.59-.041zm5.087.072c-.444.482-.488 1.263-.102 1.825l.273.398.316-.489c.366-.566.413-1.409.103-1.841-.2-.28-.24-.274-.59.107zm-4.148 1.864c-.324.47-.364 1.497-.082 2.126.258.578.381.554.816-.163.407-.672.361-1.276-.15-1.959l-.306-.41-.278.405zm1.498.147c-.142.28-.257.712-.257.963 0 .434.473 1.454.675 1.454.201 0 .675-1.02.675-1.454 0-.52-.436-1.47-.675-1.47-.088 0-.276.228-.418.507zm1.724-.116c-.494.768-.527 1.268-.128 1.926.438.723.56.748.82.169.293-.656.24-1.705-.11-2.144l-.304-.384-.278.433zm-4.762.12c-.368.414-.407 1.208-.1 1.983l.206.516.41-.483c.49-.579.538-1.465.109-2.006l-.3-.377-.325.367zm6.261.026c-.401.585-.344 1.424.135 1.99l.41.483.205-.516c.32-.806.27-1.596-.125-2l-.35-.356-.274.4zm-25.371.503c-.784.158-1.4.447-1.4.656 0 .264.774.872 1.566 1.23.754.34 3.358.677 5.269.683l.675.002-.506-.416c-.35-.288-.818-.45-1.52-.527-.556-.061-1.268-.193-1.58-.292-.837-.265-.323-.493.834-.37.61.065 1.082.025 1.336-.113.543-.296.271-.419-1.674-.757-1.734-.301-1.946-.308-3-.096zm42.159.073c-.688.131-1.447.29-1.688.351-.428.11-.43.117-.1.37.253.194.594.234 1.35.161 1.221-.118 1.763.11.907.381-.313.1-1.025.23-1.581.292-.702.077-1.169.24-1.52.527l-.506.416.675-.002c3.165-.01 5.53-.526 6.454-1.411.51-.488.483-.625-.174-.904-.867-.37-2.442-.444-3.817-.181zm-22.524 1.74c-.624.936-.58 1.103.287 1.103.402 0 .77-.04.82-.09.15-.154-.044-.845-.36-1.272l-.302-.408-.445.667zm1.701-.117c-.159.274-.29.662-.29.86 0 .306.103.36.676.36.573 0 .675-.054.675-.36 0-.362-.495-1.36-.675-1.36-.053 0-.226.225-.386.5zm1.688 0c-.16.274-.29.662-.29.86 0 .306.103.36.675.36.573 0 .676-.054.676-.36 0-.362-.496-1.36-.675-1.36-.053 0-.227.225-.386.5zm1.67-.074c-.151.234-.293.602-.315.817-.037.352.04.397.76.444.579.038.802-.011.802-.175 0-.213-.786-1.512-.915-1.512-.032 0-.182.192-.333.426zm-6.104.14c-.265.702-1.728 1.048-2.363.558-.477-.368-.581-.324-.581.246 0 .582.494 1.135 1.124 1.258.45.088.672-.198.502-.65-.078-.207.066-.258.739-.258.743 0 .846-.046.938-.417.056-.23.025-.559-.07-.732-.165-.299-.178-.3-.289-.005zm7.613.094c-.235.755.026 1.06.907 1.06.774 0 .808.02.79.474-.015.409.039.465.404.414.615-.085 1.181-.692 1.181-1.266 0-.488-.002-.49-.497-.228-.879.463-1.806.28-2.394-.475l-.275-.352-.116.373zM2.312 21.689c-.75.227-1.603.729-1.603.942 0 .103.323.376.717.606.64.374.916.419 2.574.419 1.021 0 2.082-.064 2.358-.142l.503-.142-.418-.33c-.277-.219-.57-.298-.868-.234-.585.123-1.73-.095-1.536-.293.081-.083.685-.181 1.341-.218.748-.042 1.36-.178 1.637-.363.243-.163.443-.326.443-.362 0-.137-4.662-.03-5.148.117zm5.883-.02c-.6.147-1.748.826-1.748 1.035 0 .379 1.308.78 2.48.759 1.504-.026 1.86-.139 1.569-.497-.138-.17-.52-.256-1.126-.256-.569 0-.878-.066-.813-.172.057-.095.332-.172.612-.172.632 0 1.16-.277 1.16-.609 0-.278-1.155-.325-2.134-.088zm29.475.064c0 .354.512.633 1.16.633.28 0 .555.077.613.172.064.106-.245.172-.814.172-.606 0-.988.087-1.126.256-.291.358.065.47 1.57.497 1.18.02 2.48-.38 2.48-.766 0-.08-.337-.346-.748-.591-.952-.569-3.135-.829-3.135-.373zm2.87-.177c0 .313 1.036.682 2.079.74.656.038 1.26.136 1.342.22.194.198-.952.415-1.537.292-.299-.064-.59.015-.868.234l-.417.33.502.142c.276.078 1.337.142 2.358.142 1.658 0 1.934-.045 2.574-.419.395-.23.718-.507.718-.614 0-.108-.361-.384-.802-.614-.725-.378-1.047-.423-3.376-.476-1.415-.032-2.573-.022-2.573.023zm-19.747 1.41c0 .07.165.426.367.792.253.46.426.615.559.502.16-.135.978.276 1.594.802.04.034-.008.145-.108.247-.13.132-.303.104-.606-.098-.316-.21-.456-.231-.548-.08-.07.116-.004.273.153.363.396.226.347.368-.256.731-.475.286-.503.343-.253.53.154.114.28.257.28.318 0 .24-.655.09-1.075-.247-.404-.323-.445-.466-.445-1.545 0-1.114-.025-1.195-.408-1.293-.85-.218-1.022-.06-1.076.989-.099 1.905.66 2.827 2.204 2.68.486-.047 1.004-.137 1.151-.201.156-.068.43.018.656.204l.387.32-.866.648c-.476.357-.865.7-.863.763.002.063.381.367.844.675.462.308.84.618.84.688-.003.265-1.423 1.054-1.61.895-.127-.106-.313.069-.571.538-.212.383-.35.73-.31.771.04.042.43.026.865-.035.621-.087.773-.17.708-.388-.055-.188.184-.46.741-.847l.824-.57.853.57c.587.392.828.657.77.847-.065.218.085.3.708.388.435.06.82.081.854.045.053-.053-.522-1.188-.749-1.48-.035-.044-.124.021-.2.145-.105.174-.293.114-.828-.263-.38-.269-.694-.54-.698-.603-.003-.063.374-.398.838-.746.465-.348.806-.696.76-.774-.048-.077-.428-.36-.845-.63-.417-.268-.759-.544-.759-.613 0-.069.18-.245.399-.392.307-.205.504-.226.855-.09.665.258 1.823.216 2.238-.08.52-.372.926-1.589.864-2.592L28.98 24h-1.351l-.084 1.263c-.071 1.061-.148 1.315-.483 1.591-.424.35-1.036.443-1.036.157a.17.17 0 0 1 .169-.172c.193 0 .235-.513.042-.522-.07-.003-.273-.118-.45-.255-.309-.238-.31-.266-.032-.58.387-.436.034-.681-.403-.28-.22.204-.398.244-.592.133-.232-.132-.143-.25.53-.696.57-.377.847-.476.933-.335.067.111.15.166.185.121.227-.291.802-1.426.75-1.48-.035-.035-.42-.015-.855.046-.623.087-.773.17-.708.388.058.19-.18.453-.755.837l-.84.56-.838-.56c-.614-.41-.815-.64-.748-.861.064-.215-.003-.301-.238-.301-.18 0-.565-.049-.855-.108-.29-.059-.527-.05-.527.02zm15.733.647c.035.118.517.439 1.069.712.552.273.914.53.804.57-.11.04-.429-.049-.709-.196-.663-.35-.695-.343-.695.14 0 .44.432.698 1.621.971.68.157 1.586.048 1.586-.191 0-.372-1.187-1.459-1.988-1.82-.98-.441-1.792-.531-1.688-.186zm3 .116c-.868.135-.702.21 1.132.51 1.244.203 2.77.841 2.069.865-.373.012-1.082-.15-2.676-.61l-.404-.117.39.538c.75 1.033 4.062 1.797 5.44 1.255.254-.1.463-.248.463-.327 0-.22-.866-.998-1.442-1.293-1.213-.624-3.648-1.025-4.971-.82zm-28.929 2.195c-.236.364-.479.913-.539 1.218-.096.49-.065.557.257.557.955 0 2.619-1.371 2.518-2.076-.054-.374-.094-.358-.869.326-1.077.952-1.282.9-.4-.1.189-.212.26-.387.158-.387-.101 0-.3-.044-.44-.1-.17-.066-.4.122-.685.562zm24.542-.243c0 .704 1.656 2.018 2.544 2.018.324 0 .354-.066.258-.557-.159-.81-.91-1.902-1.224-1.78-.14.056-.339.1-.44.1-.101 0-.03.175.157.387.189.213.4.492.472.62.191.341-.415-.013-.839-.49-.184-.207-.468-.45-.631-.539-.244-.133-.297-.09-.297.24zm-10.962.211c-.013.256-.39.209-.478-.06-.047-.144.03-.208.206-.171.155.033.277.137.272.231zm-18.005.424c-.884.517-2.088 1.778-2.088 2.188 0 .158.258.227.844.227.612 0 .935.093 1.173.335.348.355 2.61 5.897 2.796 6.848.06.307.178.56.264.56.085 0 .155.204.155.453 0 .25.168.796.372 1.213.367.75.367.766.057 1.354-.277.524-.287.653-.084 1.067.273.56 1.271 1.543 1.708 1.684.17.056.31.243.31.418 0 .398.925 1.208 1.379 1.208.306 0 .333-.09.271-.903-.038-.497-.12-1.02-.184-1.162-.083-.185.157-.436.855-.894 1.577-1.034 2.164-1.226 3.789-1.242 1.786-.017 2.015-.172 1.502-1.019-.332-.547-.337-.593-.058-.518.343.091 1.222-.534 1.222-.868 0-.144-.175-.19-.525-.138-.594.09-.818-.145-.822-.86-.003-.568.546-.998 1.274-.998.304 0 .65-.139.818-.328.282-.318.262-.33-.69-.397-.832-.059-1.03-.015-1.29.285l-.306.354.176-.369c.131-.273.113-.498-.072-.875-.202-.413-.364-.512-.882-.539-.349-.018-.78-.05-.96-.071-.205-.025-.468.176-.717.546-.215.322-.392.506-.392.41 0-.096.16-.382.357-.637.347-.45.348-.47.043-.71-.64-.503-1.744.153-2.098 1.245-.3.926-.131 1.123.627.728.873-.453 1.042-.419 1.103.227.08.837.535.815 1.298-.06l.64-.736.108.55c.066.333.21.549.37.549.233 0 .232.044-.009.419-.148.23-.245.637-.215.903.036.315-.044.544-.228.656-3.535 2.149-4.644 2.385-5.283 1.126-.229-.451-.36-.523-.942-.523-.496 0-.7-.08-.767-.302-.133-.438-1.1-2.484-1.275-2.699-.186-.227-1.999-4.03-1.999-4.193 0-.065.337-.3.748-.523.646-.35 1.748-1.473 2.2-2.244.22-.375-.725-.079-1.387.434-.677.526-.712.268-.066-.489.264-.31.52-.78.568-1.044.085-.47.08-.474-.27-.178-.917.773-1.675 1.565-1.986 2.077-.378.62-.57.61-.691-.04-.067-.359.034-.498.613-.844.381-.228 1.149-.78 1.706-1.227l1.013-.813-.652.118c-.359.065-1.093.354-1.632.642-1.22.652-1.722.553-.598-.118.7-.418.775-.511.502-.62-.547-.219-.799-.166-1.693.357zm33.962-.357c-.272.109-.197.202.503.62 1.123.671.622.77-.599.118-.539-.288-1.273-.577-1.631-.641l-.652-.118 1.097.883c1.657 1.334 2.887 1.91 4.077 1.91.704 0 .986-.065.986-.227 0-.41-1.204-1.671-2.087-2.188-.895-.523-1.146-.576-1.694-.357zm-16.736.346c.051.084-.026.2-.173.258-.464.181-.63.119-.407-.154.238-.293.443-.33.58-.104zm1.783.104c.175.215.152.258-.138.258-.37 0-.6-.223-.42-.407.17-.173.331-.13.558.149zm-12.566.47c-.28.686-.335 1.467-.125 1.803.27.435 1.886-1.041 1.889-1.726 0-.218-.733.072-.964.38-.18.242-.207.222-.214-.153-.004-.237-.08-.545-.167-.686-.125-.201-.213-.12-.419.382zm2.12-.158c-.353.915-.204 2.354.245 2.354.243 0 1.087-1.033 1.087-1.33 0-.324-.493-.384-.665-.082-.14.244-.171.206-.185-.222-.01-.284-.08-.671-.156-.86-.128-.32-.151-.31-.325.14zm2.024.213c-.403.697-.438 1.077-.158 1.703.257.576.414.553.822-.12.502-.83.587-1.32.28-1.632-.238-.244-.28-.215-.442.316l-.179.584.067-.731c.037-.402.044-.731.016-.731-.029 0-.211.275-.406.611zm14.091.12l.067.73-.179-.583c-.162-.53-.203-.56-.442-.316a.694.694 0 0 0-.161.67c.14.55.743 1.52.944 1.52.09 0 .255-.31.367-.688.175-.598.16-.768-.12-1.304-.451-.864-.553-.87-.476-.03zm2.035-.356c-.057.22-.108.592-.112.829-.006.369-.031.388-.176.136-.172-.302-.665-.242-.665.081 0 .308.848 1.331 1.103 1.331.32 0 .478-.7.372-1.66-.103-.93-.37-1.296-.522-.717zm2.028-.128a2.39 2.39 0 0 0-.117.67c-.005.33-.03.341-.212.097-.23-.31-.965-.6-.964-.38.002.346.721 1.292 1.218 1.6.485.3.561.308.693.068.186-.338.003-1.64-.288-2.045-.206-.287-.225-.288-.33-.01zm3.228.403c.047.257.302.722.567 1.033.615.722.628 1.102.017.517-.517-.495-1.706-.864-1.466-.455.756 1.29 2.592 2.728 3.482 2.728.94 0-.377-2.428-2.05-3.779l-.634-.512.084.468zm-13.538.058c.05.083-.101.24-.336.348-.33.154-.485.149-.686-.022-.233-.197-.23-.241.024-.431.292-.218.836-.16.997.105zm-12.79.304c-1.026.671-1.99 2.449-1.99 3.67 0 .798.021.84.38.729.652-.202 1.45-.919 1.905-1.709.402-.698.417-.795.193-1.23l-.243-.473-.263.518c-.144.285-.384.621-.532.747-.242.204-.251.178-.091-.25.098-.264.326-.69.507-.95.282-.404.742-1.401.629-1.364-.021.007-.244.147-.495.312zm6.2.463c-.241.59-.238.679.045 1.173.427.744.625.536.625-.656 0-1.216-.29-1.441-.67-.517zM29.3 27.42c-.14.375-.001 2 .175 2.045.088.022.298-.2.466-.494.282-.492.285-.585.05-1.162-.267-.649-.536-.8-.69-.389zm6.514-.015c0 .118.19.5.423.85.431.646.814 1.508.67 1.508-.043 0-.296-.306-.562-.68l-.484-.68-.197.441c-.17.38-.136.549.24 1.204.436.758 1.61 1.78 2.045 1.78.313 0 .3-1.381-.02-2.162-.368-.899-1.243-2.07-1.707-2.286-.313-.146-.408-.14-.408.025zm-21.648.982c-.054.142-.186.547-.292.9-.207.686-.507 1.021-.507.567 0-.15.111-.545.247-.876l.247-.603-.506.304c-.79.476-1.214 2.475-.713 3.367.168.301 1.135-.683 1.526-1.553.36-.803.398-1.04.259-1.65-.1-.435-.2-.613-.261-.456zm1.825.467c-.064.388-.229.848-.366 1.023-.228.29-.24.267-.136-.278.114-.593.113-.594-.287-.324-.463.312-.625 1.468-.319 2.288l.182.487.433-.412c.882-.84 1.27-2.204.858-3.007l-.248-.483-.117.706zm15.621-.167c-.35.863.034 2.136.89 2.951l.432.412.182-.487c.309-.828.145-1.975-.327-2.293l-.409-.276.117.594c.178.908-.207.396-.459-.61l-.207-.828-.219.537zm1.935.13c-.162.876.223 1.96.96 2.712.355.36.707.616.785.567.289-.182.346-1.434.103-2.267-.177-.61-.387-.93-.751-1.15l-.506-.304.247.603c.136.331.245.74.242.909-.005.283-.024.281-.25-.024-.136-.183-.294-.59-.352-.906-.146-.794-.347-.853-.478-.14zm-8.869.023c.37.25.672.48.672.514 0 .033-.304.265-.675.516l-.675.455-.675-.455c-.372-.25-.675-.49-.675-.533 0-.074 1.206-.95 1.308-.95.027 0 .351.204.72.453zm-6.74 1.946c-.116.657-.3 1.27-.41 1.364-.11.093-.502.194-.872.224l-.673.056.573.318c.315.175.92.33 1.343.345l.77.025.052-.645c.041-.51-.007-.645-.23-.645-.262 0-.263-.022-.003-.315.465-.522.294-1.922-.233-1.922-.06 0-.203.538-.318 1.195zm11.496-.988c-.295.3-.248 1.35.077 1.715.26.293.26.315 0 .315-.375 0-.396 1.17-.023 1.315.312.122 1.756-.23 2.09-.51.195-.164.098-.22-.504-.289l-.745-.086-.229-1.333c-.233-1.36-.31-1.49-.666-1.127zm2.034 3.1c-.467.23-.473.34-.042.736.185.172.337.412.337.535 0 .123.361.397.802.61.441.212.859.416.928.452.232.121.13-1.004-.138-1.533-.206-.406-1.174-1.068-1.46-.998a6.313 6.313 0 0 0-.427.198zm6.609.07c.08.213.026.257-.235.187-.273-.073-.34-.007-.34.335 0 .341.064.405.323.32.262-.084.307-.037.234.247-.071.277-.01.352.287.352.296 0 .357-.075.286-.352-.073-.284-.028-.33.234-.246.26.084.323.02.323-.32 0-.343-.066-.409-.34-.336-.261.07-.316.026-.235-.188.078-.205.007-.279-.268-.279-.276 0-.346.074-.27.28zm-8.087.36c-.549.052-.738.168-1.001.615-.179.303-.305.629-.282.724.023.094-.054.075-.172-.043-.24-.241-2.341-.304-2.341-.07 0 .36.723.773 1.375.787.552.01.767.111 1.04.482.294.4.314.534.14.922-.168.377-.289.44-.71.378-.644-.096-.746.069-.352.565.204.257.493.39.843.39.581 0 .65.181.337.882-.108.242-.148.489-.088.55.06.06.622.168 1.25.238 1.997.224 4.315.816 5.43 1.386.96.492 1.136.53 1.615.354.295-.109.707-.198.916-.198.85 0 2.018-.971 2.914-2.426l.28-.454-.871-.107c-1.123-.137-2.498-.137-3.787 0-.93.099-1.007.137-.836.416.295.481-.121.852-.952.847-1.3-.006-3.481-.98-3.481-1.554 0-.135.627-.076 1.06.1.27.11.29.044.194-.63-.058-.413-.24-.945-.402-1.182-.162-.237-.333-.84-.38-1.339-.06-.628-.207-1.039-.477-1.332-.215-.234-.435-.411-.488-.395a9.238 9.238 0 0 1-.774.094zm.93 2.294c0 .076.106.163.236.193.195.046.197.093.016.263-.177.166-.275.093-.487-.363-.146-.314-.372-.661-.502-.771-.192-.162-.262-.108-.365.277-.07.263-.112.788-.095 1.166.033.68.155.858 1.037 1.51.412.304.412.304-.094.046-.897-.458-1.097-.703-1.097-1.347 0-.411-.15-.8-.458-1.185-.366-.457-.38-.504-.074-.235.328.288.407.3.54.086.086-.138.157-.44.158-.672.003-.402.03-.391.594.237.325.361.59.72.59.795zm-6.372-.871c-.301.187-.548.434-.548.547 0 .114-.213 0-.474-.255-.547-.535-1.214-.622-1.214-.158 0 .166.133.544.295.837.41.743 1.393 1.907 1.393 1.651 0-.116.272-.518.606-.895.41-.462.635-.908.697-1.376.104-.787.014-.829-.755-.351zm.97.119c0 .253-.09.718-.203 1.034-.176.497-.163.612.105.872.22.213.33.24.384.09.042-.115.262-.489.49-.83l.412-.62-.383-.494c-.485-.627-.804-.648-.804-.052zm-4.108.025c-.366.412-.356.49.142 1.093.233.281.422.622.422.756 0 .322.242.312.513-.021.179-.219.167-.373-.063-.866-.155-.33-.28-.752-.28-.938 0-.425-.368-.437-.734-.024zm-6.358.179c-.408.222-.614.473-.673.817-.06.35-.198.512-.465.551-.5.073-.479.3.06.66.363.242.529.26.95.097l.51-.196-.097.61c-.084.529-.059.594.19.485.158-.069.579-.143.936-.165.986-.061 1.522-.562 1.662-1.55.078-.555.045-.97-.1-1.251l-.217-.422-.363.52c-.2.285-.434.701-.522.924-.117.298-.162.326-.17.104-.02-.55-.798-.348-1.16.301-.152.274-.192.287-.196.064-.002-.154.11-.376.248-.494.257-.217.361-1.376.124-1.376-.07 0-.394.144-.717.32zm16.981-.195c-.346.353.355 1.96 1.02 2.34.367.21 1.035-.007 1.243-.404.149-.283.127-.342-.13-.342a.719.719 0 0 1-.715-.703c0-.404-1.173-1.141-1.418-.89zm5.026.12c-.565.252-1.298 1.131-1.497 1.798-.122.41-.12.41.933.306.58-.058 1.074-.127 1.096-.153.128-.146.258-2.196.138-2.19-.078.003-.38.111-.67.24zm.949.012c0 .143.15.258.337.258.188 0 .338-.115.338-.258 0-.144-.15-.258-.337-.258-.188 0-.338.114-.338.258zm.881.859c.026.614.123 1.12.216 1.125.093.005.613.052 1.156.105.975.096.986.092.867-.308-.204-.682-.94-1.547-1.534-1.8-.31-.131-.605-.24-.657-.24-.052 0-.073.503-.047 1.118zm-.881.001c0 .143.15.258.337.258.188 0 .338-.115.338-.258 0-.143-.15-.258-.337-.258-.188 0-.338.115-.338.258zm.032.903c.031.166.169.301.306.301.136 0 .274-.135.305-.3.04-.212-.051-.302-.306-.302-.254 0-.345.09-.305.301zm-15.732.307c-.23.24-.564.569-.743.731-.865.787-1.11 1.074-1.11 1.303 0 .21.128.2.795-.058 1.187-.459 1.568-.875 1.568-1.71 0-.386-.02-.702-.046-.702-.025 0-.234.196-.464.436zm2.648-.321c-.23.235-.101 1.058.234 1.492.196.254.655.533 1.055.642.39.107.803.273.92.37.155.13.21.089.21-.156 0-.19-.461-.755-1.078-1.321a121.956 121.956 0 0 1-1.154-1.066c-.04-.042-.125-.024-.187.039zm-1.795.625c-.005.655.388 1.669.648 1.669.331 0 .703-.692.792-1.475l.097-.848-.45.516c-.249.287-.482.431-.523.326a3.04 3.04 0 0 0-.317-.516c-.223-.301-.242-.277-.247.328zm13.096.213a.276.276 0 0 0 .158.365c.33.13.48-.026.353-.364-.128-.34-.383-.341-.511-.001zm.936.02c.071.377.562.43.562.062 0-.14-.14-.283-.31-.317-.226-.044-.295.026-.252.256zm.89-.098c-.174.287.217.616.45.379.195-.199.073-.566-.188-.566-.081 0-.2.084-.262.187zm.853-.015c-.141.233.05.517.348.517.133 0 .243-.155.243-.345 0-.356-.407-.474-.59-.172zm1.041-.057c-.205.21-.116.574.14.574.141 0 .254-.153.254-.345 0-.342-.18-.447-.394-.229zm-4.594.244c-.063.103-.036.267.06.364.213.217.54.034.54-.303 0-.29-.435-.334-.6-.06zm5.354.099c.033.174.173.317.311.317.362 0 .31-.5-.06-.573-.225-.044-.294.026-.25.256zm-18.173.733c-.185.187-.965.612-1.733.946-.768.334-1.752.883-2.186 1.22-.888.692-1.489.744-1.467.127.009-.26-.084-.387-.284-.387-.664 0-1.177 1.053-.833 1.71.157.298.13.446-.154.813-.438.568-.442 1.264-.008 1.825.185.24.337.56.337.712 0 .408.293.33.61-.163l.28-.436.306.511c.168.281.456.594.64.694.407.223 1.199.235 1.525.024.168-.108.38-.01.717.333.561.572 1.258.769 1.875.53.388-.15.513-.099 1.025.423.32.327.652.594.736.594.084 0 .405-.265.713-.59.48-.505.62-.566.978-.428.587.228 1.64-.096 2.053-.632.279-.36.396-.405.673-.254.792.432 1.866-.045 2.254-1 .165-.408.19-.418.259-.107.141.64.715 1.074.715.54 0-.13.151-.432.337-.673.44-.569.442-1.523.006-1.926-.251-.231-.293-.383-.17-.618.381-.724.02-1.745-.683-1.933-.258-.068-.344-.017-.323.194.088.92-.458.968-1.489.132-.395-.32-1.478-.909-2.408-1.308-.929-.4-1.768-.854-1.865-1.008-.136-.218-.197-.23-.268-.055-.051.125-.264.43-.472.677-.414.49-.442.476-1.144-.52-.204-.29-.231-.29-.552.033zm.602 2.714c-.192.644-.438 1.904-.548 2.8-.191 1.554-.21 1.606-.418 1.119-.281-.66-.164-1.408.548-3.484.315-.92.584-1.828.598-2.017.022-.308.032-.305.096.034.04.208-.084.905-.276 1.548zm2.528 2.03c.23.732.2 1.688-.064 2.057-.199.277-.24.149-.333-1.042-.059-.747-.298-2.055-.531-2.907-.234-.851-.422-1.664-.42-1.806.005-.22.82 2.015 1.348 3.698zm-4.029-2.759c-.282.328-.714.947-.962 1.377-.436.76-.758.887-.75.297.005-.379.414-.89 1.32-1.653.923-.776 1.049-.783.392-.02zm5.668.683c.37.343.549.667.549.992 0 .582-.29.634-.493.09-.08-.216-.405-.739-.72-1.161-1.087-1.456-.97-1.442.664.079zM19.78 44.17c0 .12-.07.217-.157.217-.248 0-.7-.528-.596-.698.123-.203.753.2.753.481zm8.86-.018c-.297.22-.59.174-.59-.093 0-.075.171-.214.38-.31.482-.224.64.081.21.403z" fill="currentColor"/></svg> </span><!----></span></li><!--]--></ul></li><li class="_half-width _align-end tw-h-12 tw-mt-3 bre-inline-menu__item"><span><span class="nuxt-icon tw-text-gray-2 tw-text-5xl _no-icon-margin" title="16+"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" fill="none"><circle cx="24" cy="24" r="23" stroke="currentColor" stroke-width="2"/><path fill="currentColor" d="M10.11 21.188v-1.516c.703-.031 1.195-.078 1.476-.14.448-.1.812-.298 1.094-.595.192-.203.338-.474.437-.812.057-.203.086-.354.086-.453h1.852V29h-2.282v-7.813H10.11Zm10.77 4.226c0 .61.165 1.107.493 1.492a1.57 1.57 0 0 0 1.25.578c.495 0 .883-.185 1.164-.554.286-.375.43-.86.43-1.453 0-.662-.162-1.167-.485-1.516a1.545 1.545 0 0 0-1.187-.531c-.38 0-.717.114-1.008.343-.438.339-.656.886-.656 1.641Zm3.133-4.89c0-.183-.07-.383-.21-.602-.24-.354-.602-.531-1.086-.531-.724 0-1.24.406-1.547 1.218-.167.448-.282 1.11-.344 1.985.276-.328.596-.568.96-.719a3.243 3.243 0 0 1 1.25-.227c1.006 0 1.829.342 2.47 1.024.645.682.968 1.555.968 2.617 0 1.057-.315 1.99-.945 2.797-.63.807-1.61 1.21-2.937 1.21-1.427 0-2.48-.595-3.157-1.788-.526-.932-.789-2.136-.789-3.61 0-.864.037-1.567.11-2.109.13-.963.382-1.766.757-2.406a3.89 3.89 0 0 1 1.266-1.32c.526-.334 1.154-.5 1.883-.5 1.052 0 1.89.27 2.515.812.625.537.977 1.253 1.055 2.148h-2.219Zm3.85 5.257v-2.039h3.203V20.54h2.055v3.203h3.203v2.04H33.12V29h-2.055v-3.219h-3.203Z"/></svg> </span><!----></span></li><!--]--></ul></div><div class="bre-footer-section"><ul class="bre-inline-menu _min-gap-x _no-gap-y"><!--[--><li class="_footer-copyright bre-inline-menu__item"><span><!----><span>© АНО БРЭ, 2022 — 2024. Все права защищены.</span></span></li><li class="-hide-on-tablet _stretch-width -text-caption-1 text-decoration-underline tw-text-gray-2 tw-cursor-pointer bre-inline-menu__item"><span data-v-tippy><!--[--><!--[-->Условия использования информации.<!--]--><!--]--><span style="display:none;" class=""><span>Вся информация, размещенная на данном портале, предназначена только для использования в личных целях и не подлежит дальнейшему воспроизведению.<br />Медиаконтент (иллюстрации, фотографии, видео, аудиоматериалы, карты, скан образы) может быть использован только с разрешения правообладателей.</span></span></span></li><li class="-show-on-tablet _stretch-width -text-caption-1 text-decoration-underline tw-text-gray-2 tw-cursor-pointer bre-inline-menu__item"><span data-v-tippy><!--[--><!--[-->Условия использования информации.<!--]--><!--]--><span style="display:none;" class=""><span>Вся информация, размещенная на данном портале, предназначена только для использования в личных целях и не подлежит дальнейшему воспроизведению.<br />Медиаконтент (иллюстрации, фотографии, видео, аудиоматериалы, карты, скан образы) может быть использован только с разрешения правообладателей.</span></span></span></li><!--]--></ul></div><!--]--></div></footer><span></span></div></div><!----><!--]--></div><script type="application/json" id="__NUXT_DATA__" data-ssr="true">[["Reactive",1],{"data":2,"state":3,"once":4,"_errors":5,"serverRendered":6,"path":7,"pinia":8},{},{"$sreferer":-1},["Set"],{},true,"/c/dinamika-c3b94d",{"preview":9,"auth-token":11,"search":14,"page-loading":19,"search-suggestions":20,"filters":23,"component-header":25,"collection":26,"article":27,"article-media-slider":1567,"modal":1575,"article-notes":1576,"article-loc":1577,"article-sidebar":1578,"author":1579,"article-metrics":1580,"collection-articles-favorite":1581,"article-collections":1582,"article-versions":1583,"error-form":1595,"text-selection":1596},{"get_":10,"getError":10,"getPending":6},null,{"post_":10,"postError":10,"postPending":6,"savedRoutePath":10,"isAuthorized":12,"firstNameLetter":13,"fullName":13,"userId":13,"processingRefresh":12,"showAuthModal":10},false,"",{"searchQuery":13,"savedList":15,"limit":16,"offset":17,"loading":12,"isSearchOpened":12,"page":18},[],10,0,1,{"loading":12},{"get_":10,"getError":10,"getPending":6,"headerSearchQuery":13,"pageSearchQuery":13,"selectedSuggestionIndex":21,"focusOn":22},-1,"header",{"get_":10,"getError":10,"getPending":6,"loading":12,"isExtendedSearchOpened":12,"chosenFilters":24},{},{"showCategories":12,"isFixed":12},{"get_":10,"getError":10,"getPending":6,"put_":-1,"putError":10,"putPending":6,"delete_":-1,"deleteError":10,"deletePending":6},{"get_":28,"getError":10,"getPending":12,"headers":1559,"timeline":1565,"isFullScreen":12,"getCache":1566},{"article":29,"components":1554},{"content":30,"createdAt":1532,"id":1533,"lastVersionId":1534,"meta":1535,"sections":10,"slug":1548,"tags":1549,"updatedAt":1536},{"article":31,"biblioRecord":1499,"category":1500,"categorySlug":1501,"sidebar":1502,"title":1531},[32],{"content":33,"type":1498},[34],{"attrs":35,"content":37,"marks":10,"text":13,"type":1498},{"section_id":36},"4739d05d-f513-422d-b905-2c63e3bf768d",[38,170,197,204,239,301,344,359,400,432,455,490,618,624,681,696,711,725,731,775,838,844,943,949,1076,1127,1219,1330,1345,1490],{"attrs":39,"content":40,"marks":10,"text":13,"type":169},{"textAlign":10},[41,49,51,63,65,74,76,85,87,95,97,106,108,117,119,127,129,137,139,147,149,157,159,167],{"attrs":10,"content":10,"marks":42,"text":47,"type":48},[43],{"attrs":44,"content":10,"marks":10,"text":13,"type":46},{"version":45},"1","bold","Дина́мика","text",{"attrs":10,"content":10,"marks":10,"text":50,"type":48}," (от греч. δύναμις – возможность, сила), раздел ",{"attrs":10,"content":10,"marks":52,"text":62,"type":48},[53],{"attrs":54,"content":10,"marks":10,"text":13,"type":61},{"content_id":55,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":58,"link_type":45,"navigation_value":10,"target":13,"version":45},"abd75795-6449-40a1-ae73-cdb726c8250b","#","2",{"slug":59,"type":60},"mekhanika-abd757","article","a","механики",{"attrs":10,"content":10,"marks":10,"text":64,"type":48},", посвящённый изучению изменения характеристик движения материальных тел под действием приложенных к ним ",{"attrs":10,"content":10,"marks":66,"text":73,"type":48},[67],{"attrs":68,"content":10,"marks":10,"text":13,"type":61},{"content_id":69,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":70,"link_type":72,"navigation_value":10,"target":13,"version":45},"77a176db-ea98-45ed-a1c0-cd054fdcdbb7",{"slug":71,"type":60},"sila-77a176","51","сил",{"attrs":10,"content":10,"marks":10,"text":75,"type":48},". Основы динамики свободной ",{"attrs":10,"content":10,"marks":77,"text":84,"type":48},[78],{"attrs":79,"content":10,"marks":10,"text":13,"type":61},{"content_id":80,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":81,"link_type":83,"navigation_value":10,"target":13,"version":45},"a6ca99be-367b-4fb0-9950-3ac9d2c437fc",{"slug":82,"type":60},"material-naia-tochka-a6ca99","25","материальной точки",{"attrs":10,"content":10,"marks":10,"text":86,"type":48}," заложены в начале 17 в. ",{"attrs":10,"content":10,"marks":88,"text":94,"type":48},[89],{"attrs":90,"content":10,"marks":10,"text":13,"type":61},{"content_id":91,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":92,"link_type":83,"navigation_value":10,"target":13,"version":45},"0b909562-c63e-4468-b904-55c08413b195",{"slug":93,"type":60},"galilei-galileo-0b9095","Г. Галилеем",{"attrs":10,"content":10,"marks":10,"text":96,"type":48},", который рассмотрел падение тел под действием ",{"attrs":10,"content":10,"marks":98,"text":105,"type":48},[99],{"attrs":100,"content":10,"marks":10,"text":13,"type":61},{"content_id":101,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":102,"link_type":104,"navigation_value":10,"target":13,"version":45},"c50b1b69-d921-412a-86c8-f5cd649cc607",{"slug":103,"type":60},"sila-tiazhesti-c50b1b","53","силы тяжести",{"attrs":10,"content":10,"marks":10,"text":107,"type":48}," и сформулировал ",{"attrs":10,"content":10,"marks":109,"text":116,"type":48},[110],{"attrs":111,"content":10,"marks":10,"text":13,"type":61},{"content_id":112,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":113,"link_type":115,"navigation_value":10,"target":13,"version":45},"6b6b01eb-0bac-4f37-9630-0ab3597dad21",{"slug":114,"type":60},"zakon-inertsii-6b6b01","9","закон инерции",{"attrs":10,"content":10,"marks":10,"text":118,"type":48},". В 1687 г. ",{"attrs":10,"content":10,"marks":120,"text":126,"type":48},[121],{"attrs":122,"content":10,"marks":10,"text":13,"type":61},{"content_id":123,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":124,"link_type":83,"navigation_value":10,"target":13,"version":45},"0f3dbee9-9266-4546-90fd-9eb3f14537cf",{"slug":125,"type":60},"n-iuton-isaak-0f3dbe","И. Ньютон",{"attrs":10,"content":10,"marks":10,"text":128,"type":48}," дал чёткую формулировку трёх основных ",{"attrs":10,"content":10,"marks":130,"text":136,"type":48},[131],{"attrs":132,"content":10,"marks":10,"text":13,"type":61},{"content_id":133,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":134,"link_type":115,"navigation_value":10,"target":13,"version":45},"84aa9227-9d79-45ce-92aa-0f52de74b6e8",{"slug":135,"type":60},"zakony-mekhaniki-n-iutona-84aa92","законов динамики",{"attrs":10,"content":10,"marks":10,"text":138,"type":48},". В 18 в. существенный вклад в постановку и решение общих задач динамики внесли ",{"attrs":10,"content":10,"marks":140,"text":146,"type":48},[141],{"attrs":142,"content":10,"marks":10,"text":13,"type":61},{"content_id":143,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":144,"link_type":83,"navigation_value":10,"target":13,"version":45},"0e881f69-6bbe-4d57-bdd1-5e987f67d1a5",{"slug":145,"type":60},"eiler-leonard-0e881f","Л. Эйлер",{"attrs":10,"content":10,"marks":10,"text":148,"type":48},", ",{"attrs":10,"content":10,"marks":150,"text":156,"type":48},[151],{"attrs":152,"content":10,"marks":10,"text":13,"type":61},{"content_id":153,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":154,"link_type":83,"navigation_value":10,"target":13,"version":45},"22730ebb-07ba-4afd-941e-44bd629d9d2f",{"slug":155,"type":60},"dalamber-zhan-leron-22730e","Ж. Л. Д’ Аламбер",{"attrs":10,"content":10,"marks":10,"text":158,"type":48}," и ",{"attrs":10,"content":10,"marks":160,"text":166,"type":48},[161],{"attrs":162,"content":10,"marks":10,"text":13,"type":61},{"content_id":163,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":164,"link_type":83,"navigation_value":10,"target":13,"version":45},"f66cf76a-088b-489f-8102-ad71d477a4a0",{"slug":165,"type":60},"lagranzh-zhozef-lui-f66cf7","Ж.-Л. Лагранж",{"attrs":10,"content":10,"marks":10,"text":168,"type":48},".","paragraph",{"attrs":171,"content":172,"marks":10,"text":13,"type":169},{"textAlign":10},[173,175,184,186,195],{"attrs":10,"content":10,"marks":10,"text":174,"type":48},"Динамика – важная составляющая математического естествознания, сформировавшая правила и приёмы построения механико-математических моделей ",{"attrs":10,"content":10,"marks":176,"text":183,"type":48},[177],{"attrs":178,"content":10,"marks":10,"text":13,"type":61},{"content_id":179,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":180,"link_type":182,"navigation_value":10,"target":13,"version":45},"6727b414-ab55-4712-9ef1-cb8d001bfe73",{"slug":181,"type":60},"mekhanicheskoe-dvizhenie-6727b4","26","механического движения",{"attrs":10,"content":10,"marks":10,"text":185,"type":48},". Для описания движения объектов реального мира применяют различные модели, в которых объекты принимают за материальную точку, ",{"attrs":10,"content":10,"marks":187,"text":194,"type":48},[188],{"attrs":189,"content":10,"marks":10,"text":13,"type":61},{"content_id":190,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":191,"link_type":193,"navigation_value":10,"target":13,"version":45},"e5875e8f-d653-444b-a504-1e5df2d0f0cd",{"slug":192,"type":60},"tviordoe-telo-e5875e","114","твёрдое тело",{"attrs":10,"content":10,"marks":10,"text":196,"type":48}," и т. п.",{"attrs":198,"content":200,"marks":10,"text":13,"type":203},{"textAlign":10,"version":45,"id":199},"h2_dinamika_material'noi_tochki",[201],{"attrs":10,"content":10,"marks":10,"text":202,"type":48},"Динамика материальной точки","h2",{"attrs":205,"content":206,"marks":10,"text":13,"type":169},{"textAlign":10},[207,209,217,219,227,229,237],{"attrs":10,"content":10,"marks":10,"text":208,"type":48},"Динамика, основанная на положениях Галилея и Ньютона, называется классической, или ньютоновской. Она описывает движение объектов, размерами которых можно пренебречь (материальных точек), со скоростями, много меньшими ",{"attrs":10,"content":10,"marks":210,"text":216,"type":48},[211],{"attrs":212,"content":10,"marks":10,"text":13,"type":61},{"content_id":213,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":214,"link_type":193,"navigation_value":10,"target":13,"version":45},"a676e296-81a9-425b-b47d-da8c7b9d964a",{"slug":215,"type":60},"skorost-sveta-a676e2","скорости света",{"attrs":10,"content":10,"marks":10,"text":218,"type":48}," (движение микрочастиц рассматривается в ",{"attrs":10,"content":10,"marks":220,"text":226,"type":48},[221],{"attrs":222,"content":10,"marks":10,"text":13,"type":61},{"content_id":223,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":224,"link_type":193,"navigation_value":10,"target":13,"version":45},"6d0792f0-a9d7-4abc-bcbb-52a7d3e0914b",{"slug":225,"type":60},"kvantovaia-mekhanika-6d0792","квантовой механике",{"attrs":10,"content":10,"marks":10,"text":228,"type":48},", движение со скоростями, близкими к скорости света, – в ",{"attrs":10,"content":10,"marks":230,"text":236,"type":48},[231],{"attrs":232,"content":10,"marks":10,"text":13,"type":61},{"content_id":233,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":234,"link_type":193,"navigation_value":10,"target":13,"version":45},"50571e7a-c067-430c-9296-cbf640c29fa9",{"slug":235,"type":60},"reliativistskaia-mekhanika-50571e","релятивистской механике",{"attrs":10,"content":10,"marks":10,"text":238,"type":48},"). В классической динамике аксиоматически вводятся понятия неподвижного пространства и абсолютного времени, одинакового во всех точках пространства и не зависящего от выбора конкретной системы координат.",{"attrs":240,"content":241,"marks":10,"text":13,"type":169},{"textAlign":10},[242,244,250,252,260,262,268,270,281,283,289,291,299],{"attrs":10,"content":10,"marks":10,"text":243,"type":48},"Классическая динамика базируется на трёх основных законах – ",{"attrs":10,"content":10,"marks":245,"text":249,"type":48},[246],{"attrs":247,"content":10,"marks":10,"text":13,"type":61},{"content_id":133,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":248,"link_type":83,"navigation_value":10,"target":13,"version":45},{"slug":135,"type":60},"законах механики Ньютона",{"attrs":10,"content":10,"marks":10,"text":251,"type":48},". Первый из них, называемый также законом инерции, вводит понятие ",{"attrs":10,"content":10,"marks":253,"text":259,"type":48},[254],{"attrs":255,"content":10,"marks":10,"text":13,"type":61},{"content_id":256,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":257,"link_type":115,"navigation_value":10,"target":13,"version":45},"bd89b31c-7b45-4823-9c9d-7ac2677f3d15",{"slug":258,"type":60},"inertsial-naia-sistema-otschiota-bd89b3","инерциальной системы отсчёта",{"attrs":10,"content":10,"marks":10,"text":261,"type":48},", в которой материальная точка покоится или движется прямолинейно и равномерно, если на неё не действуют другие тела или влияние этих тел скомпенсировано. Меру механического действия одного тела на другое называют ",{"attrs":10,"content":10,"marks":263,"text":267,"type":48},[264],{"attrs":265,"content":10,"marks":10,"text":13,"type":61},{"content_id":69,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":266,"link_type":115,"navigation_value":10,"target":13,"version":45},{"slug":71,"type":60},"силой",{"attrs":10,"content":10,"marks":10,"text":269,"type":48},". Второй закон устанавливает, что действие силы ",{"attrs":271,"content":10,"marks":274,"text":13,"type":280},{"display":272,"displayMode":13,"src":273,"title":13},"inline","{F}",[275,277],{"attrs":276,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":278,"content":10,"marks":10,"text":13,"type":279},{"version":45},"italic","formula",{"attrs":10,"content":10,"marks":10,"text":282,"type":48}," на материальную точку массой ",{"attrs":284,"content":10,"marks":286,"text":13,"type":280},{"display":272,"displayMode":13,"src":285,"title":13},"{m}",[287],{"attrs":288,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":290,"type":48}," вызывает ускорение ",{"attrs":292,"content":10,"marks":294,"text":13,"type":280},{"display":272,"displayMode":13,"src":293,"title":13},"{w}",[295,297],{"attrs":296,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":298,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":300,"type":48}," точки, определяемое равенством",{"attrs":302,"content":303,"marks":10,"text":13,"type":169},{"textAlign":10},[304,313,315,323,325,333,335,342],{"attrs":305,"content":10,"marks":308,"text":13,"type":280},{"display":306,"displayMode":13,"src":307,"title":13},"block","{w=F/m}.\\quad (1)",[309,311],{"attrs":310,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":312,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":314,"type":48},"Третий закон динамики устанавливает, что при взаимодействии двух материальных точек возникает пара сил, равных по величине и противоположных по направлению (см. ",{"attrs":10,"content":10,"marks":316,"text":322,"type":48},[317],{"attrs":318,"content":10,"marks":10,"text":13,"type":61},{"content_id":319,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":320,"link_type":115,"navigation_value":10,"target":13,"version":45},"3f828f04-2ace-4bd5-b0f1-d115ecca236c",{"slug":321,"type":60},"zakon-deistviia-i-protivodeistviia-3f828f","закон действия и противодействия",{"attrs":10,"content":10,"marks":10,"text":324,"type":48},"). Если к телу приложено несколько сил, то в соответствии с принципом независимости действия сил каждая из них сообщает телу такое же ",{"attrs":10,"content":10,"marks":326,"text":332,"type":48},[327],{"attrs":328,"content":10,"marks":10,"text":13,"type":61},{"content_id":329,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":330,"link_type":115,"navigation_value":10,"target":13,"version":45},"37472ddb-430a-404c-8a9c-a6c392d546fe",{"slug":331,"type":60},"uskorenie-37472d","ускорение",{"attrs":10,"content":10,"marks":10,"text":334,"type":48},", какое она сообщила бы, если бы действовала одна. Поэтому в качестве ",{"attrs":336,"content":10,"marks":337,"text":13,"type":280},{"display":272,"displayMode":13,"src":273,"title":13},[338,340],{"attrs":339,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":341,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":343,"type":48}," в уравнении (1)",{"attrs":345,"content":346,"marks":10,"text":13,"type":169},{"textAlign":10},[347,349,357],{"attrs":10,"content":10,"marks":10,"text":348,"type":48},"рассматривается ",{"attrs":10,"content":10,"marks":350,"text":356,"type":48},[351],{"attrs":352,"content":10,"marks":10,"text":13,"type":61},{"content_id":353,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":354,"link_type":193,"navigation_value":10,"target":13,"version":45},"b38de4f0-2d56-4f6e-94e6-8938a24e8f95",{"slug":355,"type":60},"ravnodeistvuiushchaia-b38de4","равнодействующая",{"attrs":10,"content":10,"marks":10,"text":358,"type":48}," сил, действующих на тело.",{"attrs":360,"content":361,"marks":10,"text":13,"type":169},{"textAlign":10},[362,364,371,373,379,381,389,390,398],{"attrs":10,"content":10,"marks":10,"text":363,"type":48},"Динамика решает 2 класса задач: прямые и обратные. Прямая задача динамики состоит в определении движения точки, происходящего под действием заданных сил. Сила ",{"attrs":365,"content":10,"marks":366,"text":13,"type":280},{"display":272,"displayMode":13,"src":273,"title":13},[367,369],{"attrs":368,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":370,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":372,"type":48}," считается заданной, если известна её зависимость от времени ",{"attrs":374,"content":10,"marks":376,"text":13,"type":280},{"display":272,"displayMode":13,"src":375,"title":13},"{t}",[377],{"attrs":378,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":380,"type":48}," и векторов ",{"attrs":382,"content":10,"marks":384,"text":13,"type":280},{"display":272,"displayMode":13,"src":383,"title":13},"\\boldsymbol{r}",[385,387],{"attrs":386,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":388,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":158,"type":48},{"attrs":391,"content":10,"marks":393,"text":13,"type":280},{"display":272,"displayMode":13,"src":392,"title":13},"\\boldsymbol{v}",[394,396],{"attrs":395,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":397,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":399,"type":48},", определяющих положение и скорость материальной точки:",{"attrs":401,"content":402,"marks":10,"text":13,"type":169},{"textAlign":10},[403,411,413,421,423,430],{"attrs":404,"content":10,"marks":406,"text":13,"type":280},{"display":306,"displayMode":13,"src":405,"title":13},"{F=F(\\boldsymbol{r},\\boldsymbol{v},t)}.\\quad (2)",[407,409],{"attrs":408,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":410,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":412,"type":48},"В этом случае равенство (1) превращается в ",{"attrs":10,"content":10,"marks":414,"text":420,"type":48},[415],{"attrs":416,"content":10,"marks":10,"text":13,"type":61},{"content_id":417,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":418,"link_type":193,"navigation_value":10,"target":13,"version":45},"7e57fcdb-ef43-41d9-8ade-ff86cdfa53c5",{"slug":419,"type":60},"differentsial-noe-uravnenie-7e57fc","дифференциальное уравнение",{"attrs":10,"content":10,"marks":10,"text":422,"type":48}," движения точки. Его решение описывает зависимость вектора ",{"attrs":424,"content":10,"marks":425,"text":13,"type":280},{"display":272,"displayMode":13,"src":383,"title":13},[426,428],{"attrs":427,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":429,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":431,"type":48}," от времени и начальных условий:",{"attrs":433,"content":434,"marks":10,"text":13,"type":169},{"textAlign":10},[435,443,445,453],{"attrs":436,"content":10,"marks":438,"text":13,"type":280},{"display":306,"displayMode":13,"src":437,"title":13},"\\boldsymbol{r}=\\boldsymbol{r}(t,\\boldsymbol{r}_{0},\\boldsymbol{v}_{0}).\\quad (3)",[439,441],{"attrs":440,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":442,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":444,"type":48},"Примером подобной задачи может служить задача по определению ",{"attrs":10,"content":10,"marks":446,"text":452,"type":48},[447],{"attrs":448,"content":10,"marks":10,"text":13,"type":61},{"content_id":449,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":450,"link_type":193,"navigation_value":10,"target":13,"version":45},"079f31c0-a165-42e4-bd54-ee63efc2a127",{"slug":451,"type":60},"traektoriia-079f31","траектории",{"attrs":10,"content":10,"marks":10,"text":454,"type":48}," движения снаряда по его начальной скорости (силы тяжести и сопротивление воздуха считаются известными).",{"attrs":456,"content":457,"marks":10,"text":13,"type":169},{"textAlign":10},[458,460,468,470,478,480,488],{"attrs":10,"content":10,"marks":10,"text":459,"type":48},"Обратная задача динамики состоит в определении силы, обеспечивающей заданное движение: по семейству законов движения, описываемых выражением (3), требуется восстановить зависимость силы (2) от перечисленных аргументов. Классическим примером решения этой задачи является открытие И. Ньютоном ",{"attrs":10,"content":10,"marks":461,"text":467,"type":48},[462],{"attrs":463,"content":10,"marks":10,"text":13,"type":61},{"content_id":464,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":465,"link_type":115,"navigation_value":10,"target":13,"version":45},"ac9aa242-a69e-4b3b-9e00-61d5d760e8f7",{"slug":466,"type":60},"zakon-vsemirnogo-tiagoteniia-ac9aa2","закона всемирного тяготения",{"attrs":10,"content":10,"marks":10,"text":469,"type":48},". Рассматривая ",{"attrs":10,"content":10,"marks":471,"text":477,"type":48},[472],{"attrs":473,"content":10,"marks":10,"text":13,"type":61},{"content_id":474,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":475,"link_type":193,"navigation_value":10,"target":13,"version":45},"be033d58-d54a-47ef-ae1f-6b5c8e781027",{"slug":476,"type":60},"zakony-keplera-be033d","законы движения планет Кеплера",{"attrs":10,"content":10,"marks":10,"text":479,"type":48},", Ньютон пришёл к выводу, что эти движения происходят под действием силы, обратно пропорциональной квадрату расстояния от ",{"attrs":10,"content":10,"marks":481,"text":487,"type":48},[482],{"attrs":483,"content":10,"marks":10,"text":13,"type":61},{"content_id":484,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":485,"link_type":193,"navigation_value":10,"target":13,"version":45},"6df72e9b-bf15-4496-a583-5ba32674c8bb",{"slug":486,"type":60},"solntse-6df72e","Солнца",{"attrs":10,"content":10,"marks":10,"text":489,"type":48}," до планеты и не зависящей ни от времени, ни от скоростей движения планет.",{"attrs":491,"content":492,"marks":10,"text":13,"type":169},{"textAlign":10},[493,495,503,505,513,514,522,524,532,534,542,543,551,556,562,564,572,574,582,584,592,594,600,601,607,609,617],{"attrs":10,"content":10,"marks":10,"text":494,"type":48},"В ряде задач динамики удобно использовать различные динамические меры движения точки: ",{"attrs":10,"content":10,"marks":496,"text":502,"type":48},[497],{"attrs":498,"content":10,"marks":10,"text":13,"type":61},{"content_id":499,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":500,"link_type":115,"navigation_value":10,"target":13,"version":45},"c287b244-4cac-4a6e-943d-96246c91d9e2",{"slug":501,"type":60},"impul-s-c287b2","импульс",{"attrs":10,"content":10,"marks":10,"text":504,"type":48}," (количество движения) ",{"attrs":506,"content":10,"marks":508,"text":13,"type":280},{"display":272,"displayMode":13,"src":507,"title":13},"{\\boldsymbol{K}=m\\boldsymbol{v}}",[509,511],{"attrs":510,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":512,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":10,"content":10,"marks":515,"text":521,"type":48},[516],{"attrs":517,"content":10,"marks":10,"text":13,"type":61},{"content_id":518,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":519,"link_type":115,"navigation_value":10,"target":13,"version":45},"f669a3e3-8fbf-468f-a02b-a61cd8ec97df",{"slug":520,"type":60},"moment-impul-sa-f669a3","момент импульса",{"attrs":10,"content":10,"marks":10,"text":523,"type":48}," (",{"attrs":10,"content":10,"marks":525,"text":531,"type":48},[526],{"attrs":527,"content":10,"marks":10,"text":13,"type":61},{"content_id":528,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":529,"link_type":115,"navigation_value":10,"target":13,"version":45},"1e6be659-f001-4f6f-9247-9748fe9f26ed",{"slug":530,"type":60},"kineticheskii-moment-1e6be6","кинетический момент",{"attrs":10,"content":10,"marks":10,"text":533,"type":48},") относительно начала координат ",{"attrs":535,"content":10,"marks":537,"text":13,"type":280},{"display":272,"displayMode":13,"src":536,"title":13},"\\boldsymbol{G}=\\boldsymbol{r}×m\\boldsymbol{v}",[538,540],{"attrs":539,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":541,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":10,"content":10,"marks":544,"text":550,"type":48},[545],{"attrs":546,"content":10,"marks":10,"text":13,"type":61},{"content_id":547,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":548,"link_type":193,"navigation_value":10,"target":13,"version":45},"06ee5a9c-f63b-4da6-a617-65764cf0dfaf",{"slug":549,"type":60},"kineticheskaia-energiia-06ee5a","кинетическую энергию",{"attrs":10,"content":10,"marks":552,"text":555,"type":48},[553],{"attrs":554,"content":10,"marks":10,"text":13,"type":279},{"version":45}," ",{"attrs":557,"content":10,"marks":559,"text":13,"type":280},{"display":272,"displayMode":13,"src":558,"title":13},"\\text{T}=mv^{2}/2",[560],{"attrs":561,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":563,"type":48},". При помощи этих мер уравнение (1) можно записать в виде закона изменения импульса ",{"attrs":565,"content":10,"marks":567,"text":13,"type":280},{"display":272,"displayMode":13,"src":566,"title":13},"d\\boldsymbol{K}/dt=\\boldsymbol{F}",[568,570],{"attrs":569,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":571,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":573,"type":48},", или закона изменения момента импульса ",{"attrs":575,"content":10,"marks":577,"text":13,"type":280},{"display":272,"displayMode":13,"src":576,"title":13},"d\\boldsymbol{G}/dt=\\boldsymbol{r}×\\boldsymbol{F}=\\boldsymbol{M}",[578,580],{"attrs":579,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":581,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":583,"type":48},", где ",{"attrs":585,"content":10,"marks":587,"text":13,"type":280},{"display":272,"displayMode":13,"src":586,"title":13},"\\boldsymbol{M}",[588,590],{"attrs":589,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":591,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":593,"type":48}," – момент силы относительно начала координат, или закона изменения энергии ",{"attrs":595,"content":10,"marks":597,"text":13,"type":280},{"display":272,"displayMode":13,"src":596,"title":13},"{dT/dt=Fv=N}",[598],{"attrs":599,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":583,"type":48},{"attrs":602,"content":10,"marks":604,"text":13,"type":280},{"display":272,"displayMode":13,"src":603,"title":13},"{N}",[605],{"attrs":606,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":608,"type":48},"– мощность силы ",{"attrs":610,"content":10,"marks":612,"text":13,"type":280},{"display":272,"displayMode":13,"src":611,"title":13},"\\boldsymbol{F}",[613,615],{"attrs":614,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":616,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":168,"type":48},{"attrs":619,"content":621,"marks":10,"text":13,"type":203},{"textAlign":10,"version":45,"id":620},"h2_dinamika_sistemы_svoбodnыh_tochek",[622],{"attrs":10,"content":10,"marks":10,"text":623,"type":48},"Динамика системы свободных точек",{"attrs":625,"content":626,"marks":10,"text":13,"type":169},{"textAlign":10},[627,629,635,637,645,646,651,653,661,663,671,673,679],{"attrs":10,"content":10,"marks":10,"text":628,"type":48},"Движение системы свободных материальных точек с массами ",{"attrs":630,"content":10,"marks":632,"text":13,"type":280},{"display":272,"displayMode":13,"src":631,"title":13},"m_{i}",[633],{"attrs":634,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":636,"type":48}," можно описать совокупностью уравнений вида (1), вводя суммарные меры движения: импульс системы точек ",{"attrs":638,"content":10,"marks":640,"text":13,"type":280},{"display":272,"displayMode":13,"src":639,"title":13},"\\boldsymbol{K}=\\sum\\limits_{i}m_{i}\\boldsymbol{v}_{i}=m\\boldsymbol{v}_{c}",[641,643],{"attrs":642,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":644,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":583,"type":48},{"attrs":647,"content":10,"marks":648,"text":13,"type":280},{"display":272,"displayMode":13,"src":285,"title":13},[649],{"attrs":650,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":652,"type":48}," – общая масса системы, ",{"attrs":654,"content":10,"marks":656,"text":13,"type":280},{"display":272,"displayMode":13,"src":655,"title":13},"\\boldsymbol{v}_{c}",[657,659],{"attrs":658,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":660,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":662,"type":48}," – скорость центра масс системы; главный кинетический момент системы ",{"attrs":664,"content":10,"marks":666,"text":13,"type":280},{"display":272,"displayMode":13,"src":665,"title":13},"\\boldsymbol{G}=\\sum\\limits_{i}\\boldsymbol{r}_{i}×m_{i}\\boldsymbol{v}_{i}",[667,669],{"attrs":668,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":670,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":672,"type":48},"; кинетическую энергию ",{"attrs":674,"content":10,"marks":676,"text":13,"type":280},{"display":272,"displayMode":13,"src":675,"title":13},"T=\\frac{1}{2}\\sum\\limits_{i}m_{i}\\boldsymbol{v}^2_{i}",[677],{"attrs":678,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":680,"type":48},". Соотношения между суммарными мерами движения и силами, приложенными к точкам, называются общими теоремами динамики. К этим теоремам относятся следующие:",{"attrs":682,"content":683,"marks":10,"text":13,"type":169},{"textAlign":10},[684,686,694],{"attrs":10,"content":10,"marks":10,"text":685,"type":48},"1. Теорема об изменении импульса системы: изменение импульса системы за любой промежуток времени равняется геометрической сумме импульсов, действующих на систему внешних сил. Следствиями этой теоремы являются ",{"attrs":10,"content":10,"marks":687,"text":693,"type":48},[688],{"attrs":689,"content":10,"marks":10,"text":13,"type":61},{"content_id":690,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":691,"link_type":115,"navigation_value":10,"target":13,"version":45},"d06b11ef-5e31-479b-ac03-1db430ef7908",{"slug":692,"type":60},"zakon-sokhraneniia-impul-sa-d06b11","закон сохранения импульса",{"attrs":10,"content":10,"marks":10,"text":695,"type":48}," системы и теорема о движении центра масс системы.",{"attrs":697,"content":698,"marks":10,"text":13,"type":169},{"textAlign":10},[699,701,709],{"attrs":10,"content":10,"marks":10,"text":700,"type":48},"2. Теорема об изменении главного кинетического момента системы: ",{"attrs":10,"content":10,"marks":702,"text":708,"type":48},[703],{"attrs":704,"content":10,"marks":10,"text":13,"type":61},{"content_id":705,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":706,"link_type":193,"navigation_value":10,"target":13,"version":45},"68fd9020-e8a0-4696-9e1d-b30708b6dd1e",{"slug":707,"type":60},"proizvodnaia-68fd90","производная",{"attrs":10,"content":10,"marks":10,"text":710,"type":48}," по времени от главного кинетического момента системы относительно любого неподвижного центра (или оси) равна сумме моментов действующих внешних сил относительно того же центра (или оси). Следствием данной теоремы является закон сохранения главного кинетического момента системы при равенстве нулю суммы моментов внешних сил.",{"attrs":712,"content":713,"marks":10,"text":13,"type":169},{"textAlign":10},[714,716,724],{"attrs":10,"content":10,"marks":10,"text":715,"type":48},"3. Теорема об изменении кинетической энергии системы: изменение кинетической энергии системы при любом её перемещении равняется сумме работ всех приложенных сил на том же перемещении. Для случая, когда все приложенные силы потенциальны, из теоремы вытекает ",{"attrs":10,"content":10,"marks":717,"text":723,"type":48},[718],{"attrs":719,"content":10,"marks":10,"text":13,"type":61},{"content_id":720,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":721,"link_type":115,"navigation_value":10,"target":13,"version":45},"c12c59d8-b804-4829-a7e8-8780c8e6df26",{"slug":722,"type":60},"zakon-sokhraneniia-energii-c12c59","закон сохранения механической энергии",{"attrs":10,"content":10,"marks":10,"text":168,"type":48},{"attrs":726,"content":728,"marks":10,"text":13,"type":203},{"textAlign":10,"version":45,"id":727},"h2_dinamika_sistem_so_svyazyami",[729],{"attrs":10,"content":10,"marks":10,"text":730,"type":48},"Динамика систем со связями",{"attrs":732,"content":733,"marks":10,"text":13,"type":169},{"textAlign":10},[734,736,744,746,754,755,763,765,773],{"attrs":10,"content":10,"marks":10,"text":735,"type":48},"В моделях, описывающих различные движения, происходящие в природе и технике, объекты рассматриваются как системы материальных точек и твёрдых тел, соединённых ",{"attrs":10,"content":10,"marks":737,"text":743,"type":48},[738],{"attrs":739,"content":10,"marks":10,"text":13,"type":61},{"content_id":740,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":741,"link_type":104,"navigation_value":10,"target":13,"version":45},"30fcc2ed-c985-4190-a440-b92cf6ae8c7c",{"slug":742,"type":60},"mekhanicheskie-sviazi-30fcc2","механическими связями",{"attrs":10,"content":10,"marks":10,"text":745,"type":48},". В этих случаях в задачу динамики входит определение не только закона движения системы связанных точек и тел, но и сил реакции связей. Последние добавляются в уравнение (1), записываемое для каждой точки системы. Для систем с т. н. идеальными связями (для которых сумма элементарных работ всех реакций при любом возможном перемещении системы равна нулю) Ж. Д’Аламбер и Ж. Лагранж разработали общие методы составления уравнений движения, не содержащих реакций связей (см. ",{"attrs":10,"content":10,"marks":747,"text":753,"type":48},[748],{"attrs":749,"content":10,"marks":10,"text":13,"type":61},{"content_id":750,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":751,"link_type":104,"navigation_value":10,"target":13,"version":45},"8e46a83d-ba1f-4fcc-8c40-a172db66cf7b",{"slug":752,"type":60},"printsip-dalambera-8e46a8","принцип Д’Аламбера",{"attrs":10,"content":10,"marks":10,"text":158,"type":48},{"attrs":10,"content":10,"marks":756,"text":762,"type":48},[757],{"attrs":758,"content":10,"marks":10,"text":13,"type":61},{"content_id":759,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":760,"link_type":104,"navigation_value":10,"target":13,"version":45},"e0c68686-315d-4afa-9757-7261cc0de99e",{"slug":761,"type":60},"printsip-dalambera-lagranzha-e0c686","принцип Д’Аламбера– Лагранжа",{"attrs":10,"content":10,"marks":10,"text":764,"type":48},"). Эти методы приводят к несколько иной формулировке общих теорем динамики (добавляются условия, налагаемые на связи), а ",{"attrs":10,"content":10,"marks":766,"text":772,"type":48},[767],{"attrs":768,"content":10,"marks":10,"text":13,"type":61},{"content_id":769,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":770,"link_type":104,"navigation_value":10,"target":13,"version":45},"5e4f6132-bc44-4ab4-b3d0-7621f7ba320b",{"slug":771,"type":60},"zakony-sokhraneniia-5e4f61","законы сохранения",{"attrs":10,"content":10,"marks":10,"text":774,"type":48}," динамических мер приобретают математически строгую форму интегралов уравнений движения.",{"attrs":776,"content":777,"marks":10,"text":13,"type":169},{"textAlign":10},[778,780,788,790,798,800,808,809,817,818,826,828,836],{"attrs":10,"content":10,"marks":10,"text":779,"type":48},"Кинетическая энергия – скалярная величина, обладающая определённой универсальностью. Ж. Лагранж ввёл понятие ",{"attrs":10,"content":10,"marks":781,"text":787,"type":48},[782],{"attrs":783,"content":10,"marks":10,"text":13,"type":61},{"content_id":784,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":785,"link_type":104,"navigation_value":10,"target":13,"version":45},"a8a0986f-fc2d-4676-9481-a6e50441212a",{"slug":786,"type":60},"obobshchionnye-koordinaty-a8a098","обобщённых координат",{"attrs":10,"content":10,"marks":10,"text":789,"type":48}," и записал кинетическую энергию в виде функции от обобщённых скоростей и обобщённых координат. Используя эту функцию, Лагранж вывел новую форму уравнений движения механических ",{"attrs":10,"content":10,"marks":791,"text":797,"type":48},[792],{"attrs":793,"content":10,"marks":10,"text":13,"type":61},{"content_id":794,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":795,"link_type":104,"navigation_value":10,"target":13,"version":45},"aa1f75cb-2794-4f96-b120-6bb2d18551a0",{"slug":796,"type":60},"golonomnye-sistemy-aa1f75","голономных систем",{"attrs":10,"content":10,"marks":10,"text":799,"type":48}," (см. ",{"attrs":10,"content":10,"marks":801,"text":807,"type":48},[802],{"attrs":803,"content":10,"marks":10,"text":13,"type":61},{"content_id":804,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":805,"link_type":104,"navigation_value":10,"target":13,"version":45},"d8b58636-78aa-4ed4-bbdd-8110afa88346",{"slug":806,"type":60},"uravneniia-lagranzha-d8b586","уравнения Лагранжа",{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":10,"content":10,"marks":810,"text":816,"type":48},[811],{"attrs":812,"content":10,"marks":10,"text":13,"type":61},{"content_id":813,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":814,"link_type":104,"navigation_value":10,"target":13,"version":45},"8a716e29-1640-4d20-8930-58aa4951a393",{"slug":815,"type":60},"uravneniia-gamil-tona-8a716e","уравнения Гамильтона",{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":10,"content":10,"marks":819,"text":825,"type":48},[820],{"attrs":821,"content":10,"marks":10,"text":13,"type":61},{"content_id":822,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":823,"link_type":104,"navigation_value":10,"target":13,"version":45},"7eccf829-9605-4721-be7a-59a2111b5540",{"slug":824,"type":60},"variatsionnye-printsipy-mekhaniki-7eccf8","вариационные принципы механики",{"attrs":10,"content":10,"marks":10,"text":827,"type":48},"). Изучением свойств этих уравнений и их решений занимается ",{"attrs":10,"content":10,"marks":829,"text":835,"type":48},[830],{"attrs":831,"content":10,"marks":10,"text":13,"type":61},{"content_id":832,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":833,"link_type":83,"navigation_value":10,"target":13,"version":45},"6d57cc37-c305-4d76-a00f-635b061f4af1",{"slug":834,"type":60},"analiticheskaia-mekhanika-6d57cc","аналитическая механика",{"attrs":10,"content":10,"marks":10,"text":837,"type":48},", методы которой нашли широкое применение в различных областях физики.",{"attrs":839,"content":841,"marks":10,"text":13,"type":203},{"textAlign":10,"version":45,"id":840},"h2_dinamika_otnositel'nogo_dvizheniya",[842],{"attrs":10,"content":10,"marks":10,"text":843,"type":48},"Динамика относительного движения",{"attrs":845,"content":846,"marks":10,"text":13,"type":169},{"textAlign":10},[847,849,856,858,866,867,875,876,884,885,893,894,902,904,912,914,922,924,932,933,941],{"attrs":10,"content":10,"marks":10,"text":848,"type":48},"Многие задачи механики сводятся к изучению движения одного объекта относительно другого, с которым нельзя связать инерциальную систему координат (например, движение тела относительно вращающейся Земли). В этом случае уравнение относительного движения материальной точки можно свести к виду (1), если к числу сил ",{"attrs":850,"content":10,"marks":851,"text":13,"type":280},{"display":272,"displayMode":13,"src":273,"title":13},[852,854],{"attrs":853,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":855,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":857,"type":48}," добавить силы инерции: переносную ",{"attrs":859,"content":10,"marks":861,"text":13,"type":280},{"display":272,"displayMode":13,"src":860,"title":13},"{F}_{e}=−m\\boldsymbol{w}_{e}",[862,864],{"attrs":863,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":865,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":158,"type":48},{"attrs":10,"content":10,"marks":868,"text":874,"type":48},[869],{"attrs":870,"content":10,"marks":10,"text":13,"type":61},{"content_id":871,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":872,"link_type":104,"navigation_value":10,"target":13,"version":45},"fa00d24c-c5a5-499e-a843-5cf22328e3d6",{"slug":873,"type":60},"sila-koriolisa-fa00d2","кориолисову",{"attrs":10,"content":10,"marks":10,"text":555,"type":48},{"attrs":877,"content":10,"marks":879,"text":13,"type":280},{"display":272,"displayMode":13,"src":878,"title":13},"{F}_{c} =−m\\boldsymbol{w}_{c}",[880,882],{"attrs":881,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":883,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":583,"type":48},{"attrs":886,"content":10,"marks":888,"text":13,"type":280},{"display":272,"displayMode":13,"src":887,"title":13},"\\boldsymbol{w}_{e}",[889,891],{"attrs":890,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":892,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":895,"content":10,"marks":897,"text":13,"type":280},{"display":272,"displayMode":13,"src":896,"title":13},"\\boldsymbol{w}_{c}",[898,900],{"attrs":899,"content":10,"marks":10,"text":13,"type":46},{"version":45},{"attrs":901,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":903,"type":48}," – соответственно переносное и кориолисово ускорения. Примерами задач динамики относительного движения могут служить задачи экспериментального доказательства вращения Земли (падение тела на вращающейся Земле с отклонением к востоку, ",{"attrs":10,"content":10,"marks":905,"text":911,"type":48},[906],{"attrs":907,"content":10,"marks":10,"text":13,"type":61},{"content_id":908,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":909,"link_type":104,"navigation_value":10,"target":13,"version":45},"5028d11c-1404-42f8-80b2-d80283c3fc0b",{"slug":910,"type":60},"maiatnik-fuko-5028d1","маятник Фуко",{"attrs":10,"content":10,"marks":10,"text":913,"type":48},"), задачи описания движения ",{"attrs":10,"content":10,"marks":915,"text":921,"type":48},[916],{"attrs":917,"content":10,"marks":10,"text":13,"type":61},{"content_id":918,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":919,"link_type":193,"navigation_value":10,"target":13,"version":45},"bba5eb2c-d5c1-4b64-88e3-681afe836cf3",{"slug":920,"type":60},"liotchik-kosmonavt-bba5eb","космонавта",{"attrs":10,"content":10,"marks":10,"text":923,"type":48}," относительно космической станции и др. На эффектах относительного движения основан предложенный ",{"attrs":10,"content":10,"marks":925,"text":931,"type":48},[926],{"attrs":927,"content":10,"marks":10,"text":13,"type":61},{"content_id":928,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":929,"link_type":83,"navigation_value":10,"target":13,"version":45},"e8197f03-51c1-4640-a05b-577754551a98",{"slug":930,"type":60},"uatt-dzheims-e8197f","Дж. Уаттом",{"attrs":10,"content":10,"marks":10,"text":555,"type":48},{"attrs":10,"content":10,"marks":934,"text":940,"type":48},[935],{"attrs":936,"content":10,"marks":10,"text":13,"type":61},{"content_id":937,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":938,"link_type":193,"navigation_value":10,"target":13,"version":45},"ffdd3ab0-724d-4d52-8978-c7f9fd38142b",{"slug":939,"type":60},"tsentrobezhnaia-sila-ffdd3a","центробежный",{"attrs":10,"content":10,"marks":10,"text":942,"type":48}," регулятор угловой скорости вращения, используемый в технике.",{"attrs":944,"content":946,"marks":10,"text":13,"type":203},{"textAlign":10,"version":45,"id":945},"h2_dinamika_tvyordogo_tela",[947],{"attrs":10,"content":10,"marks":10,"text":948,"type":48},"Динамика твёрдого тела",{"attrs":950,"content":951,"marks":10,"text":13,"type":169},{"textAlign":10},[952,954,960,962,970,972,978,980,985,987,995,996,1002,1004,1010,1011,1017,1019,1027,1029,1035,1036,1044,1045,1050,1051,1059,1061,1066,1068,1074],{"attrs":10,"content":10,"marks":10,"text":953,"type":48},"В этом разделе динамики рассматриваются движения, в которых тело нельзя считать материальной точкой. Простейшая задача такого типа – задача о вращении абсолютно твёрдого тела вокруг неподвижной оси ",{"attrs":955,"content":10,"marks":957,"text":13,"type":280},{"display":272,"displayMode":13,"src":956,"title":13},"{L}",[958],{"attrs":959,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":961,"type":48},". В этом случае тело имеет одну ",{"attrs":10,"content":10,"marks":963,"text":969,"type":48},[964],{"attrs":965,"content":10,"marks":10,"text":13,"type":61},{"content_id":966,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":967,"link_type":193,"navigation_value":10,"target":13,"version":45},"958e77ff-a917-4612-849c-106b3646db66",{"slug":968,"type":60},"stepeni-svobody-958e77","степень свободы",{"attrs":10,"content":10,"marks":10,"text":971,"type":48},", его положение определяется одной обобщённой координатой – углом поворота ",{"attrs":973,"content":10,"marks":975,"text":13,"type":280},{"display":272,"displayMode":13,"src":974,"title":13}," \\varphi ",[976],{"attrs":977,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":979,"type":48},". Производная ",{"attrs":981,"content":10,"marks":982,"text":13,"type":280},{"display":272,"displayMode":13,"src":974,"title":13},[983],{"attrs":984,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":986,"type":48}," по времени называется ",{"attrs":10,"content":10,"marks":988,"text":994,"type":48},[989],{"attrs":990,"content":10,"marks":10,"text":13,"type":61},{"content_id":991,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":992,"link_type":193,"navigation_value":10,"target":13,"version":45},"9586b2aa-b3ff-433a-97e6-e908bd771c20",{"slug":993,"type":60},"uglovaia-skorost-9586b2","угловой скоростью",{"attrs":10,"content":10,"marks":10,"text":555,"type":48},{"attrs":997,"content":10,"marks":999,"text":13,"type":280},{"display":272,"displayMode":13,"src":998,"title":13}," \\omega ",[1000],{"attrs":1001,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":1003,"type":48},". В рассматриваемой задаче роль уравнения (1) играет уравнение вращения твёрдого тела: ",{"attrs":1005,"content":10,"marks":1007,"text":13,"type":280},{"display":272,"displayMode":13,"src":1006,"title":13},"\\boldsymbol{I}_{ε}=\\boldsymbol{M}",[1008],{"attrs":1009,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":583,"type":48},{"attrs":1012,"content":10,"marks":1014,"text":13,"type":280},{"display":272,"displayMode":13,"src":1013,"title":13}," \\varepsilon ",[1015],{"attrs":1016,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":1018,"type":48}," – ",{"attrs":10,"content":10,"marks":1020,"text":1026,"type":48},[1021],{"attrs":1022,"content":10,"marks":10,"text":13,"type":61},{"content_id":1023,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1024,"link_type":193,"navigation_value":10,"target":13,"version":45},"93d07c1a-2539-4922-9d1c-00d2ebe202d8",{"slug":1025,"type":60},"uglovoe-uskorenie-93d07c","угловое ускорение",{"attrs":10,"content":10,"marks":10,"text":1028,"type":48}," тела, ",{"attrs":1030,"content":10,"marks":1032,"text":13,"type":280},{"display":272,"displayMode":13,"src":1031,"title":13},"\\boldsymbol{I}",[1033],{"attrs":1034,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":1018,"type":48},{"attrs":10,"content":10,"marks":1037,"text":1043,"type":48},[1038],{"attrs":1039,"content":10,"marks":10,"text":13,"type":61},{"content_id":1040,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1041,"link_type":193,"navigation_value":10,"target":13,"version":45},"9ca6913b-0429-41d8-8024-ebf4b8668751",{"slug":1042,"type":60},"moment-inertsii-tela-9ca691","момент инерции",{"attrs":10,"content":10,"marks":10,"text":1028,"type":48},{"attrs":1046,"content":10,"marks":1047,"text":13,"type":280},{"display":272,"displayMode":13,"src":586,"title":13},[1048],{"attrs":1049,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":1018,"type":48},{"attrs":10,"content":10,"marks":1052,"text":1058,"type":48},[1053],{"attrs":1054,"content":10,"marks":10,"text":13,"type":61},{"content_id":1055,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1056,"link_type":193,"navigation_value":10,"target":13,"version":45},"cf93d064-985d-43eb-80e3-fd2cdc51295b",{"slug":1057,"type":60},"vrashchaiushchii-moment-cf93d0","вращающий момент",{"attrs":10,"content":10,"marks":10,"text":1060,"type":48}," (момент сил, приложенных к телу) относительно оси ",{"attrs":1062,"content":10,"marks":1063,"text":13,"type":280},{"display":272,"displayMode":13,"src":956,"title":13},[1064],{"attrs":1065,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":1067,"type":48},". Если ",{"attrs":1069,"content":10,"marks":1071,"text":13,"type":280},{"display":272,"displayMode":13,"src":1070,"title":13},"\\boldsymbol{M} = 0",[1072],{"attrs":1073,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":1075,"type":48},", то тело совершает вращение с постоянной угловой скоростью (угловое ускорение равно нулю).",{"attrs":1077,"content":1078,"marks":10,"text":13,"type":169},{"textAlign":10},[1079,1081,1089,1090,1098,1100,1105,1107,1115,1117,1125],{"attrs":10,"content":10,"marks":10,"text":1080,"type":48},"Эта задача применяется при моделировании вращающихся элементов машин (",{"attrs":10,"content":10,"marks":1082,"text":1088,"type":48},[1083],{"attrs":1084,"content":10,"marks":10,"text":13,"type":61},{"content_id":1085,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1086,"link_type":193,"navigation_value":10,"target":13,"version":45},"743f142a-3a2a-4b76-85af-6b553b960e47",{"slug":1087,"type":60},"rotor-743f14","роторов",{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":10,"content":10,"marks":1091,"text":1097,"type":48},[1092],{"attrs":1093,"content":10,"marks":10,"text":13,"type":61},{"content_id":1094,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1095,"link_type":193,"navigation_value":10,"target":13,"version":45},"79657de8-84ff-4afb-af4f-ccfee1ee6145",{"slug":1096,"type":60},"makhovik-79657d","маховиков",{"attrs":10,"content":10,"marks":10,"text":1099,"type":48}," и т. п.). В технических приложениях динамики твёрдого тела важно учитывать также силы реакции опор, на которых закреплена ось ",{"attrs":1101,"content":10,"marks":1102,"text":13,"type":280},{"display":272,"displayMode":13,"src":956,"title":13},[1103],{"attrs":1104,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":1106,"type":48},". Величина этих сил растёт пропорционально квадрату угловой скорости. Для машин с высокооборотными маховиками реакции настолько велики, что способны вызвать ",{"attrs":10,"content":10,"marks":1108,"text":1114,"type":48},[1109],{"attrs":1110,"content":10,"marks":10,"text":13,"type":61},{"content_id":1111,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1112,"link_type":193,"navigation_value":10,"target":13,"version":45},"92bf2c5b-beea-4945-bd35-1a5954e8b20a",{"slug":1113,"type":60},"deformatsiia-92bf2c","деформацию",{"attrs":10,"content":10,"marks":10,"text":1116,"type":48}," опор или оси и ",{"attrs":10,"content":10,"marks":1118,"text":1124,"type":48},[1119],{"attrs":1120,"content":10,"marks":10,"text":13,"type":61},{"content_id":1121,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1122,"link_type":193,"navigation_value":10,"target":13,"version":45},"961b6788-c998-4dec-bda1-372af62e829f",{"slug":1123,"type":60},"vibratsiia-961b67","вибрацию",{"attrs":10,"content":10,"marks":10,"text":1126,"type":48}," машины. Для уменьшения вибраций (например, в автомобильном колесе) производится изменение распределения масс маховика – его балансировка, что достигается приближением центра масс к оси вращения (статическая балансировка) или приближением т. н. главной оси инерции тела к оси вращения (динамическая балансировка).",{"attrs":1128,"content":1129,"marks":10,"text":13,"type":169},{"textAlign":10},[1130,1132,1138,1140,1148,1149,1155,1157,1165,1167,1175,1177,1185,1187,1193,1194,1200,1201,1207,1209,1217],{"attrs":10,"content":10,"marks":10,"text":1131,"type":48},"Более сложная типовая задача этого раздела динамики – вращение твёрдого тела вокруг неподвижной точки ",{"attrs":1133,"content":10,"marks":1135,"text":13,"type":280},{"display":272,"displayMode":13,"src":1134,"title":13},"{O}",[1136],{"attrs":1137,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":1139,"type":48},". Для решения таких задач Л. Эйлер ввёл систему ",{"attrs":10,"content":10,"marks":1141,"text":1147,"type":48},[1142],{"attrs":1143,"content":10,"marks":10,"text":13,"type":61},{"content_id":1144,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1145,"link_type":104,"navigation_value":10,"target":13,"version":45},"4de6702f-1ec8-463c-8f5d-f14682204ade",{"slug":1146,"type":60},"dekartova-sistema-koordinat-4de670","декартовых координат",{"attrs":10,"content":10,"marks":10,"text":555,"type":48},{"attrs":1150,"content":10,"marks":1152,"text":13,"type":280},{"display":272,"displayMode":13,"src":1151,"title":13},"{O}{xyz}",[1153],{"attrs":1154,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":1156,"type":48},", связанную с вращающимся телом. В данной задаче тело имеет 3 степени свободы, а его положение в выбранной системе координат часто определяют 3 углами (",{"attrs":10,"content":10,"marks":1158,"text":1164,"type":48},[1159],{"attrs":1160,"content":10,"marks":10,"text":13,"type":61},{"content_id":1161,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1162,"link_type":104,"navigation_value":10,"target":13,"version":45},"2d95ddbd-4b56-4daf-bc59-17c494826c5e",{"slug":1163,"type":60},"ugly-eilera-2d95dd","углами Эйлера",{"attrs":10,"content":10,"marks":10,"text":1166,"type":48},"): углом ",{"attrs":10,"content":10,"marks":1168,"text":1174,"type":48},[1169],{"attrs":1170,"content":10,"marks":10,"text":13,"type":61},{"content_id":1171,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1172,"link_type":193,"navigation_value":10,"target":13,"version":45},"3badf8b3-662f-48d5-9b83-18b14de5d980",{"slug":1173,"type":60},"nutatsiia-3badf8","нутации",{"attrs":10,"content":10,"marks":10,"text":1176,"type":48},", углом ",{"attrs":10,"content":10,"marks":1178,"text":1184,"type":48},[1179],{"attrs":1180,"content":10,"marks":10,"text":13,"type":61},{"content_id":1181,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1182,"link_type":193,"navigation_value":10,"target":13,"version":45},"361a1c66-ba4c-4f77-acb3-b150a208544d",{"slug":1183,"type":60},"pretsessiia-361a1c","прецессии",{"attrs":10,"content":10,"marks":10,"text":1186,"type":48}," и углом собственного вращения. Производные по времени от углов Эйлера связаны с проекциями вектора мгновенной угловой скорости вращения тела кинематическими уравнениями Эйлера. Направив оси ",{"attrs":1188,"content":10,"marks":1190,"text":13,"type":280},{"display":272,"displayMode":13,"src":1189,"title":13},"{x}",[1191],{"attrs":1192,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":1195,"content":10,"marks":1197,"text":13,"type":280},{"display":272,"displayMode":13,"src":1196,"title":13},"{y}",[1198],{"attrs":1199,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":1202,"content":10,"marks":1204,"text":13,"type":280},{"display":272,"displayMode":13,"src":1203,"title":13},"{z}",[1205],{"attrs":1206,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":1208,"type":48}," по ",{"attrs":10,"content":10,"marks":1210,"text":1216,"type":48},[1211],{"attrs":1212,"content":10,"marks":10,"text":13,"type":61},{"content_id":1213,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1214,"link_type":193,"navigation_value":10,"target":13,"version":45},"0e45be62-38b8-4974-a227-7a0ed7701e7e",{"slug":1215,"type":60},"glavnye-osi-inertsii-0e45be","главным осям инерции",{"attrs":10,"content":10,"marks":10,"text":1218,"type":48}," тела, Эйлер придал системе динамических уравнений вращения тела компактный и симметричный вид:",{"attrs":1220,"content":1221,"marks":10,"text":13,"type":169},{"textAlign":10},[1222,1228,1234,1240,1242,1248,1249,1255,1256,1262,1264,1270,1271,1277,1278,1284,1286,1292,1293,1299,1300,1306,1308,1314,1315,1321,1322,1328],{"attrs":1223,"content":10,"marks":1225,"text":13,"type":280},{"display":306,"displayMode":13,"src":1224,"title":13},"{I}_{x}dω_{x}/dt+(I_{z}−I_{y})ω_{y}ω_{z}=M_{x},",[1226],{"attrs":1227,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":1229,"content":10,"marks":1231,"text":13,"type":280},{"display":306,"displayMode":13,"src":1230,"title":13},"I_{y}dω_{y}/dt+(I_{x}−I_{z})ω_{z}ω_{x}=M_{y},",[1232],{"attrs":1233,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":1235,"content":10,"marks":1237,"text":13,"type":280},{"display":306,"displayMode":13,"src":1236,"title":13},"I_{z}dω_{z}/dt+(I_{y}−I_{x})ω_{x}ω_{y}=M_{z}.",[1238],{"attrs":1239,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":1241,"type":48},"Здесь ",{"attrs":1243,"content":10,"marks":1245,"text":13,"type":280},{"display":272,"displayMode":13,"src":1244,"title":13},"I_{x}",[1246],{"attrs":1247,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":1250,"content":10,"marks":1252,"text":13,"type":280},{"display":272,"displayMode":13,"src":1251,"title":13},"I_{y}",[1253],{"attrs":1254,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":1257,"content":10,"marks":1259,"text":13,"type":280},{"display":272,"displayMode":13,"src":1258,"title":13},"I_{z}",[1260],{"attrs":1261,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":1263,"type":48}," – главные моменты инерции тела относительно осей ",{"attrs":1265,"content":10,"marks":1267,"text":13,"type":280},{"display":272,"displayMode":13,"src":1266,"title":13},"O_{x}",[1268],{"attrs":1269,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":1272,"content":10,"marks":1274,"text":13,"type":280},{"display":272,"displayMode":13,"src":1273,"title":13},"O_{y}",[1275],{"attrs":1276,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":1279,"content":10,"marks":1281,"text":13,"type":280},{"display":272,"displayMode":13,"src":1280,"title":13},"O_{z}",[1282],{"attrs":1283,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":1285,"type":48},"; ",{"attrs":1287,"content":10,"marks":1289,"text":13,"type":280},{"display":272,"displayMode":13,"src":1288,"title":13},"M_{x}",[1290],{"attrs":1291,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":1294,"content":10,"marks":1296,"text":13,"type":280},{"display":272,"displayMode":13,"src":1295,"title":13},"M_{y}",[1297],{"attrs":1298,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":1301,"content":10,"marks":1303,"text":13,"type":280},{"display":272,"displayMode":13,"src":1302,"title":13},"M_{z}",[1304],{"attrs":1305,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":1307,"type":48}," – моменты сил, приложенных к телу, относительно тех же осей; ",{"attrs":1309,"content":10,"marks":1311,"text":13,"type":280},{"display":272,"displayMode":13,"src":1310,"title":13},"ω_{x}",[1312],{"attrs":1313,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":1316,"content":10,"marks":1318,"text":13,"type":280},{"display":272,"displayMode":13,"src":1317,"title":13},"ω_{y}",[1319],{"attrs":1320,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":1323,"content":10,"marks":1325,"text":13,"type":280},{"display":272,"displayMode":13,"src":1324,"title":13},"ω_{z}",[1326],{"attrs":1327,"content":10,"marks":10,"text":13,"type":279},{"version":45},{"attrs":10,"content":10,"marks":10,"text":1329,"type":48}," – проекции вектора мгновенной угловой скорости. Так как вращающие моменты могут зависеть от времени, углов Эйлера и угловых скоростей, решения этих уравнений известны лишь при частных предположениях о действующих силах и расположении масс в теле.",{"attrs":1331,"content":1332,"marks":10,"text":13,"type":169},{"textAlign":10},[1333,1335,1343],{"attrs":10,"content":10,"marks":10,"text":1334,"type":48},"Задача о движении свободного твёрдого тела, имеющего 6 степеней свободы, обсуждается в связи с проблемами моделирования поступательно-вращательного движения небесных тел, ",{"attrs":10,"content":10,"marks":1336,"text":1342,"type":48},[1337],{"attrs":1338,"content":10,"marks":10,"text":13,"type":61},{"content_id":1339,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1340,"link_type":193,"navigation_value":10,"target":13,"version":45},"f5791ccc-9c2e-43ff-82f3-c5842e5bdbea",{"slug":1341,"type":60},"raketa-f5791c","ракет",{"attrs":10,"content":10,"marks":10,"text":1344,"type":48},", снарядов и других объектов. Для решения таких задач часто выбирается система координат, связанная с центром масс тела и движущаяся поступательно. Относительно такой системы координат рассматривается вращательное движение тела с применением методов динамики твёрдого тела.",{"attrs":1346,"content":1347,"marks":10,"text":13,"type":169},{"textAlign":10},[1348,1350,1358,1360,1368,1370,1378,1379,1387,1388,1396,1398,1406,1407,1415,1416,1424,1425,1433,1435,1443,1444,1452,1453,1461,1462,1470,1471,1479,1480,1488],{"attrs":10,"content":10,"marks":10,"text":1349,"type":48},"Помимо установления общих методов изучения движения под действием сил в динамике рассматриваются также специальные задачи: динамика гироскопических систем (см. ",{"attrs":10,"content":10,"marks":1351,"text":1357,"type":48},[1352],{"attrs":1353,"content":10,"marks":10,"text":13,"type":61},{"content_id":1354,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1355,"link_type":182,"navigation_value":10,"target":13,"version":45},"648dcc1a-71f6-40d7-872e-94c3cafb4fb5",{"slug":1356,"type":60},"giroskop-648dcc","гироскоп",{"attrs":10,"content":10,"marks":10,"text":1359,"type":48},"), теория ",{"attrs":10,"content":10,"marks":1361,"text":1367,"type":48},[1362],{"attrs":1363,"content":10,"marks":10,"text":13,"type":61},{"content_id":1364,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1365,"link_type":182,"navigation_value":10,"target":13,"version":45},"ef7a5d24-4288-4787-bbe8-730110571f67",{"slug":1366,"type":60},"kolebaniia-ef7a5d","колебаний",{"attrs":10,"content":10,"marks":10,"text":1369,"type":48}," механических систем, теория ",{"attrs":10,"content":10,"marks":1371,"text":1377,"type":48},[1372],{"attrs":1373,"content":10,"marks":10,"text":13,"type":61},{"content_id":1374,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1375,"link_type":182,"navigation_value":10,"target":13,"version":45},"1687f7c7-d00d-4dd5-8628-aff7194eb4d2",{"slug":1376,"type":60},"ustoichivost-dvizheniia-1687f7","устойчивости движения",{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":10,"content":10,"marks":1380,"text":1386,"type":48},[1381],{"attrs":1382,"content":10,"marks":10,"text":13,"type":61},{"content_id":1383,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1384,"link_type":182,"navigation_value":10,"target":13,"version":45},"fd1254a0-4973-41ea-a524-191298ba0c54",{"slug":1385,"type":60},"mekhanika-tel-peremennoi-massy-fd1254","механика тел переменной массы",{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":10,"content":10,"marks":1389,"text":1395,"type":48},[1390],{"attrs":1391,"content":10,"marks":10,"text":13,"type":61},{"content_id":1392,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1393,"link_type":182,"navigation_value":10,"target":13,"version":45},"194d8a78-824f-42b2-b5fb-928cff696c20",{"slug":1394,"type":60},"teoriia-udara-194d8a","теория удара",{"attrs":10,"content":10,"marks":10,"text":1397,"type":48}," и др. В результате применения моделей динамики к изучению движения конкретных объектов возник ряд самостоятельных дисциплин: ",{"attrs":10,"content":10,"marks":1399,"text":1405,"type":48},[1400],{"attrs":1401,"content":10,"marks":10,"text":13,"type":61},{"content_id":1402,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1403,"link_type":115,"navigation_value":10,"target":13,"version":45},"5830f4b4-d5b8-4f90-9c7f-3651a2fdfd35",{"slug":1404,"type":60},"nebesnaia-mekhanika-5830f4","небесная механика",{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":10,"content":10,"marks":1408,"text":1414,"type":48},[1409],{"attrs":1410,"content":10,"marks":10,"text":13,"type":61},{"content_id":1411,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1412,"link_type":115,"navigation_value":10,"target":13,"version":45},"5b0308b1-ec37-4b98-ae37-f2feec8fc2ff",{"slug":1413,"type":60},"dinamika-mekhanizmov-i-mashin-5b0308","динамика механизмов и машин",{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":10,"content":10,"marks":1417,"text":1423,"type":48},[1418],{"attrs":1419,"content":10,"marks":10,"text":13,"type":61},{"content_id":1420,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1421,"link_type":115,"navigation_value":10,"target":13,"version":45},"ed20698d-daa2-41d6-bf3a-5249ba1d7e02",{"slug":1422,"type":60},"dinamika-poliota-ed2069","динамика полёта",{"attrs":10,"content":10,"marks":10,"text":555,"type":48},{"attrs":10,"content":10,"marks":1426,"text":1432,"type":48},[1427],{"attrs":1428,"content":10,"marks":10,"text":13,"type":61},{"content_id":1429,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1430,"link_type":193,"navigation_value":10,"target":13,"version":45},"ed614ad9-72fd-4bd1-8a7d-70bf134a5b44",{"slug":1431,"type":60},"letatel-nyi-apparat-ed614a","летательных аппаратов",{"attrs":10,"content":10,"marks":10,"text":1434,"type":48},", динамика транспортных средств и др. С помощью законов динамики изучается также движение сплошной среды – упруго и пластически деформируемых тел, а также жидкостей и газов (см. ",{"attrs":10,"content":10,"marks":1436,"text":1442,"type":48},[1437],{"attrs":1438,"content":10,"marks":10,"text":13,"type":61},{"content_id":1439,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1440,"link_type":193,"navigation_value":10,"target":13,"version":45},"7e7de2e2-a1aa-4eb2-a4a1-386602a377be",{"slug":1441,"type":60},"uprugost-7e7de2","упругость",{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":10,"content":10,"marks":1445,"text":1451,"type":48},[1446],{"attrs":1447,"content":10,"marks":10,"text":13,"type":61},{"content_id":1448,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1449,"link_type":193,"navigation_value":10,"target":13,"version":45},"784fa289-6483-4f15-b639-3add40067729",{"slug":1450,"type":60},"plastichnost-784fa2","пластичность",{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":10,"content":10,"marks":1454,"text":1460,"type":48},[1455],{"attrs":1456,"content":10,"marks":10,"text":13,"type":61},{"content_id":1457,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1458,"link_type":115,"navigation_value":10,"target":13,"version":45},"31c37ba2-1822-4bd1-97de-1396d4b6107f",{"slug":1459,"type":60},"gidrodinamika-31c37b","гидродинамика",{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":10,"content":10,"marks":1463,"text":1469,"type":48},[1464],{"attrs":1465,"content":10,"marks":10,"text":13,"type":61},{"content_id":1466,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1467,"link_type":115,"navigation_value":10,"target":13,"version":45},"7f45b227-8d00-4303-9c0b-0e1f2716b04b",{"slug":1468,"type":60},"dinamika-razrezhennykh-gazov-7f45b2","динамика разреженных газов",{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":10,"content":10,"marks":1472,"text":1478,"type":48},[1473],{"attrs":1474,"content":10,"marks":10,"text":13,"type":61},{"content_id":1475,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1476,"link_type":115,"navigation_value":10,"target":13,"version":45},"c63b8239-0c6b-4b8e-89b8-8903324052d8",{"slug":1477,"type":60},"aerodinamika-c63b82","аэродинамика",{"attrs":10,"content":10,"marks":10,"text":148,"type":48},{"attrs":10,"content":10,"marks":1481,"text":1487,"type":48},[1482],{"attrs":1483,"content":10,"marks":10,"text":13,"type":61},{"content_id":1484,"external":12,"graph_link":6,"href":56,"kind_id":57,"link":1485,"link_type":115,"navigation_value":10,"target":13,"version":45},"f54512fb-209a-4ebe-8761-17161fdbbcbe",{"slug":1486,"type":60},"gazovaia-dinamika-f54512","газовая динамика",{"attrs":10,"content":10,"marks":10,"text":1489,"type":48},").",{"attrs":1491,"content":10,"marks":10,"text":13,"type":1497},{"list":1492},[1493],{"slug":1494,"type":1495,"value":1496},"va-samsonov-ea4e75","portal_author","Самсонов Виталий Александрович","author","doc","Самсонов В. А. Динамика // Большая российская энциклопедия: научно-образовательный портал – URL: https://bigenc.ru/c/dinamika-c3b94d/?v=10106730. – Дата публикации: 06.06.2023. – Дата обновления: 27.03.2024","Термины","terms",{"descriptionList":1503,"image":1507},[1504],{"kind":48,"label":1505,"value":1506},"Области знаний","Классическая механика Ньютона",{"caption":1508,"element":1511},{"text":1509,"title":1510},"Физика. Научно-образовательный портал «Большая российская энциклопедия»","Физика",{"alt":1510,"areaViews":1512,"height":1527,"placeholder":6,"src":1528,"srcset":1529,"title":1510,"width":1530},[1513,1517,1522],{"alias":1514,"height":1515,"srcset":1516,"width":1515},"1/1",228,"https://i.bigenc.ru/resizer/resize?sign=c9Nd2bcHNIcBGUDDFoB4bw&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=7096IM8aEKErJTY2j52KIQ&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=WhtTw6iPRA8XGftLH-N5oQ&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=IhLiYkKd0wANEWJocBcc4A&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=Z-77oV4lExygf2LaDfv2Qg&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=aNcBsUzrP9G51Ce6GUXjrA&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=EE63Vo2oDiWIVVs4KnDydg&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=9pJcSguiuXdEmyNyZwhkyQ&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=1920 1920w,https://i.bigenc.ru/resizer/resize?sign=ImKWJht9_tEg7ELt976lYw&filename=vault/0b3987180b1d0c81b0cdfb4a1cd52476.webp&width=3840 3840w",{"alias":1518,"height":1519,"srcset":1520,"width":1521},"3/4",752,"https://i.bigenc.ru/resizer/resize?sign=qUoTUBWv7V0zJQsB97HS3g&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=eZjwfnRSt4F00M3PgYcLtw&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=Kiktsvq6W3Un8eYZ2o3u-A&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=82VktcLfheVxqPhoTRbrwg&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=_Lu2HKDnjjxdeswxDcWniA&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=Ym1FzzUIYehSsuSO5AgL2g&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=gTr_RmOEaFyDZ_lIL30Zow&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=qO_kluTGLr79oeniPQaF6A&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=1920 1920w,https://i.bigenc.ru/resizer/resize?sign=dZk1Cmo8cXTrnKowfpLcUA&filename=vault/c5c74a105abaef47ccf99436086e9089.webp&width=3840 3840w",564,{"alias":1523,"height":1524,"srcset":1525,"width":1526},"16/9",394,"https://i.bigenc.ru/resizer/resize?sign=fbrJL5DBtXzyuD39zuzLng&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=QQmcmYSPahUOPaI2cBiJJw&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=q6_COIpLGvskzib5PBFlPA&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=6LCR5nPbEWe_60e6VQ6jtg&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=wCDGPe_MW8FlERMjuk8k8g&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=D30keLkS0kJpWcFpPuLaEg&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=gg19Uiskf4XuV2ps-bnBXA&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=vDmDJKA_LeVaGTULVBfqDA&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=1920 1920w,https://i.bigenc.ru/resizer/resize?sign=7ikIK_fY-di6ts4e41gTrw&filename=vault/66a85678c523ad1457cf6ed7f695a7cc.webp&width=3840 3840w",700,1008,"https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=120","https://i.bigenc.ru/resizer/resize?sign=7JK17_fgqWlQEFIk2cRkfA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=Jf8Ovt6NK1CJRMEXmLmu9w&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=9FmjZNIS1_JG-eBy3nkCow&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=W0YAxakNej-ihBYTmKOUhA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=bU5vxPnJKBxMhvgLEjl-uA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=CO7eqX0CglCAJmsuCYDJxQ&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=SNrDJXfJeDUaOjs9TGABPA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=A65s2m2zZF6hgTDDppMoDA&filename=vault/2a7425e2f5716d70117aeb7f30155e04.webp&width=1920 1920w",1528,"Динамика (в физике)","2023-06-06T16:24:11.000Z","c3b94d91-6c21-410c-8225-96dc3a187987",10106730,{"article:modified_time":1536,"article:section":1500,"article:tag":1537,"description":1539,"keywords":1538,"og:description":1539,"og:image":1540,"og:image:alt":1541,"og:image:height":1542,"og:image:type":1543,"og:image:width":1544,"og:title":1545,"og:type":60,"og:url":1546,"title":1545,"twitter:card":1547},"2024-03-27T16:19:33.000Z",[1538],"Разделы механики","Дина́мика, раздел механики, посвящённый изучению изменения характеристик движения материальных тел под действием приложенных к ним сил. Динамика –...","https://i.bigenc.ru/resizer/resize?sign=K2mwjNK87zofppSZEffyIw&filename=vault/3cf067030012eb10bb78b0ddf25f3b6b.webp&width=1200","«Большая российская энциклопедия»","792","webp&width=1200","1200","Динамика (в физике). Большая российская энциклопедия","https://bigenc.ru/c/dinamika-c3b94d","summary_large_image","dinamika-c3b94d",[1550],{"label":1538,"link":1551},{"slug":1552,"type":1553},"razdely-mekhaniki-0bcf7d","tag",{"createdAt":1532,"tabs":1555,"title":1531,"updatedAt":1536},[60,1556,1557,1558],"annotation","references","versions",[1560,1561,1562,1563,1564],{"id":199,"title":202,"type":203},{"id":620,"title":623,"type":203},{"id":727,"title":730,"type":203},{"id":840,"title":843,"type":203},{"id":945,"title":948,"type":203},{},"/content/articles/dinamika-c3b94d",{"get_":1568,"getError":10,"getPending":12,"slideNumber":17,"getCache":1574},{"components":1569,"media":1571,"meta":1572},{"createdAt":1532,"tabs":1570,"title":1531,"updatedAt":1536},[60,1556,1557,1558],{},{"article:modified_time":1536,"article:section":1500,"article:tag":1573,"description":1539,"keywords":1538,"og:description":1539,"og:image":1540,"og:image:alt":1541,"og:image:height":1542,"og:image:type":1543,"og:image:width":1544,"og:title":1545,"og:type":60,"og:url":1546,"title":1545,"twitter:card":1547},[1538],"/content/articles/dinamika-c3b94d/media?slider=true",{"isOpened":12},{"get_":10,"getError":10,"getPending":6,"post_":-1,"postError":10,"postPending":6,"count":17,"noteActive":12,"allVersions":12,"rendered":12,"loading":12},{"isOpened":12},{"isOpened":12},{"get_":10,"getError":10,"getPending":6},{"get_":10,"getError":10,"getPending":6},{"get_":10,"getError":10,"getPending":6},{"get_":10,"getError":10,"getPending":6,"post_":-1,"postError":10,"postPending":6},{"get_":1584,"getError":10,"getPending":12,"getCache":1594},{"components":1585,"title":1531,"versions":1587},{"createdAt":1532,"tabs":1586,"title":1531,"updatedAt":1536},[60,1556,1557,1558],[1588,1591],{"createdAt":1536,"id":1589,"isCurrent":6,"title":1590},"10106730","Версия №2 (актуальная)",{"createdAt":1532,"id":1592,"title":1593},"7482966","Версия №1","/content/articles/dinamika-c3b94d/versions",{"show":12},{"text":13}]</script> <script>window.__NUXT__={};window.__NUXT__.config={public:{apiPrefix:"https://api.bigenc.ru",sVault:"",iVault:"",apiContentSubPrefix:"c.",apiUserSubPrefix:"u.",domain:"bigenc.ru",sentryDns:"https://be4279c4bfa0caa49440eefadf8abb1c@sentry.bigenc.ru/2",googleAnalytics:{id:"G-B0B7W0RKMV",allowedEnv:"production",url:"https://www.googletagmanager.com/gtag/js?id=G-B0B7W0RKMV"},mailRuCounter:{id:3400444,allowedEnv:"production",url:"https://top-fwz1.mail.ru/js/code.js"},version:"1.40.12",gnezdo:{id:2904018441,allowedEnv:"production",url:"https://news.gnezdo2.ru/gnezdo_news_tracker_new.js"},clickcloud:{id:"https://r.ccsyncuuid.net/match/1000511/",allowedEnv:"production"},yandexMetrika:{id:88885444,allowedEnv:"production",url:"https://mc.yandex.ru/metrika/tag.js",options:{defer:true,webvisor:true,clickmap:true,trackLinks:true,childIframe:true,accurateTrackBounce:true}},device:{enabled:true,defaultUserAgent:"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false},persistedState:{storage:"cookies",debug:false,cookieOptions:{}}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://s.bigenc.ru/"}}</script></body></html>