CINXE.COM
Connecteur logique — Wikipédia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="fr" dir="ltr"> <head> <meta charset="UTF-8"> <title>Connecteur logique — Wikipédia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )frwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","janvier","février","mars","avril","mai","juin","juillet","août","septembre","octobre","novembre","décembre"],"wgRequestId":"088cc960-004a-45e1-a5b6-ae286617a919","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Connecteur_logique","wgTitle":"Connecteur logique","wgCurRevisionId":216924038,"wgRevisionId":216924038,"wgArticleId":13024935,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Article avec une section vide ou incomplète","Portail:Logique/Articles liés","Projet:Mathématiques/Articles","Portail:Sciences/Articles liés","Portail:Informatique théorique/Articles liés","Portail:Informatique/Articles liés","Connecteur logique"],"wgPageViewLanguage":"fr","wgPageContentLanguage":"fr","wgPageContentModel":"wikitext","wgRelevantPageName":"Connecteur_logique","wgRelevantArticleId":13024935,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"fr","pageLanguageDir":"ltr","pageVariantFallbacks":"fr"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q211790","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled": false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ArchiveLinks","ext.gadget.Wdsearch","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging", "ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=fr&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=fr&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=fr&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Connecteur logique — Wikipédia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//fr.m.wikipedia.org/wiki/Connecteur_logique"> <link rel="alternate" type="application/x-wiki" title="Modifier" href="/w/index.php?title=Connecteur_logique&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipédia (fr)"> <link rel="EditURI" type="application/rsd+xml" href="//fr.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://fr.wikipedia.org/wiki/Connecteur_logique"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.fr"> <link rel="alternate" type="application/atom+xml" title="Flux Atom de Wikipédia" href="/w/index.php?title=Sp%C3%A9cial:Modifications_r%C3%A9centes&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Connecteur_logique rootpage-Connecteur_logique skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Aller au contenu</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principal" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principal</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principal</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">masquer</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Accueil_principal" title="Accueil général [z]" accesskey="z"><span>Accueil</span></a></li><li id="n-thema" class="mw-list-item"><a href="/wiki/Portail:Accueil"><span>Portails thématiques</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Page_au_hasard" title="Affiche un article au hasard [x]" accesskey="x"><span>Article au hasard</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Contact"><span>Contact</span></a></li> </ul> </div> </div> <div id="p-Contribuer" class="vector-menu mw-portlet mw-portlet-Contribuer" > <div class="vector-menu-heading"> Contribuer </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-aboutwp" class="mw-list-item"><a href="/wiki/Aide:D%C3%A9buter"><span>Débuter sur Wikipédia</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Aide:Accueil" title="Accès à l’aide"><span>Aide</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Accueil_de_la_communaut%C3%A9" title="À propos du projet, ce que vous pouvez faire, où trouver les informations"><span>Communauté</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Modifications_r%C3%A9centes" title="Liste des modifications récentes sur le wiki [r]" accesskey="r"><span>Modifications récentes</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikip%C3%A9dia:Accueil_principal" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipédia" src="/static/images/mobile/copyright/wikipedia-wordmark-fr.svg" style="width: 7.4375em; height: 1.125em;"> <img class="mw-logo-tagline" alt="l'encyclopédie libre" src="/static/images/mobile/copyright/wikipedia-tagline-fr.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Sp%C3%A9cial:Recherche" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Rechercher sur Wikipédia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Rechercher</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Rechercher sur Wikipédia" aria-label="Rechercher sur Wikipédia" autocapitalize="sentences" title="Rechercher sur Wikipédia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Spécial:Recherche"> </div> <button class="cdx-button cdx-search-input__end-button">Rechercher</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Outils personnels"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Apparence"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Modifier l'apparence de la taille, de la largeur et de la couleur de la police de la page" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Apparence" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Apparence</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_fr.wikipedia.org&uselang=fr" class=""><span>Faire un don</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Sp%C3%A9cial:Cr%C3%A9er_un_compte&returnto=Connecteur+logique" title="Nous vous encourageons à créer un compte utilisateur et vous connecter ; ce n’est cependant pas obligatoire." class=""><span>Créer un compte</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Sp%C3%A9cial:Connexion&returnto=Connecteur+logique" title="Nous vous encourageons à vous connecter ; ce n’est cependant pas obligatoire. [o]" accesskey="o" class=""><span>Se connecter</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Plus d’options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Outils personnels" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Outils personnels</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu utilisateur" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_fr.wikipedia.org&uselang=fr"><span>Faire un don</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Cr%C3%A9er_un_compte&returnto=Connecteur+logique" title="Nous vous encourageons à créer un compte utilisateur et vous connecter ; ce n’est cependant pas obligatoire."><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Créer un compte</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Connexion&returnto=Connecteur+logique" title="Nous vous encourageons à vous connecter ; ce n’est cependant pas obligatoire. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Se connecter</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages pour les contributeurs déconnectés <a href="/wiki/Aide:Premiers_pas" aria-label="En savoir plus sur la contribution"><span>en savoir plus</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Mes_contributions" title="Une liste des modifications effectuées depuis cette adresse IP [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Mes_discussions" title="La page de discussion pour les contributions depuis cette adresse IP [n]" accesskey="n"><span>Discussion</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Sommaire" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Sommaire</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">masquer</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Début</div> </a> </li> <li id="toc-Syntaxe" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Syntaxe"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Syntaxe</span> </div> </a> <ul id="toc-Syntaxe-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sémantique" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sémantique"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Sémantique</span> </div> </a> <button aria-controls="toc-Sémantique-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Afficher / masquer la sous-section Sémantique</span> </button> <ul id="toc-Sémantique-sublist" class="vector-toc-list"> <li id="toc-Logique_classique" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Logique_classique"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Logique classique</span> </div> </a> <ul id="toc-Logique_classique-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Logiques_non_classiques" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Logiques_non_classiques"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Logiques non classiques</span> </div> </a> <ul id="toc-Logiques_non_classiques-sublist" class="vector-toc-list"> <li id="toc-Logique_intuitionniste" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Logique_intuitionniste"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1</span> <span>Logique intuitionniste</span> </div> </a> <ul id="toc-Logique_intuitionniste-sublist" class="vector-toc-list"> <li id="toc-Un_exemple" class="vector-toc-list-item vector-toc-level-4"> <a class="vector-toc-link" href="#Un_exemple"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1.1</span> <span>Un exemple</span> </div> </a> <ul id="toc-Un_exemple-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Logiques_modales" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Logiques_modales"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.2</span> <span>Logiques modales</span> </div> </a> <ul id="toc-Logiques_modales-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Systèmes_complets_de_connecteurs" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Systèmes_complets_de_connecteurs"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Systèmes complets de connecteurs</span> </div> </a> <ul id="toc-Systèmes_complets_de_connecteurs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes_et_références" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes_et_références"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Notes et références</span> </div> </a> <ul id="toc-Notes_et_références-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Sommaire" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Basculer la table des matières" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Basculer la table des matières</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Connecteur logique</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Aller à un article dans une autre langue. Disponible en 39 langues." > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-39" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">39 langues</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B1%D8%A7%D8%A8%D8%B7%D8%A9_%D9%85%D9%86%D8%B7%D9%82%D9%8A%D8%A9" title="رابطة منطقية – arabe" lang="ar" hreflang="ar" data-title="رابطة منطقية" data-language-autonym="العربية" data-language-local-name="arabe" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/M%C9%99ntiqi_%C9%99m%C9%99liyyat" title="Məntiqi əməliyyat – azerbaïdjanais" lang="az" hreflang="az" data-title="Məntiqi əməliyyat" data-language-autonym="Azərbaycanca" data-language-local-name="azerbaïdjanais" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%86%D0%B8%D1%8F" title="Логическа операция – bulgare" lang="bg" hreflang="bg" data-title="Логическа операция" data-language-autonym="Български" data-language-local-name="bulgare" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Connectiva_l%C3%B2gica" title="Connectiva lògica – catalan" lang="ca" hreflang="ca" data-title="Connectiva lògica" data-language-autonym="Català" data-language-local-name="catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Logisk_operator" title="Logisk operator – danois" lang="da" hreflang="da" data-title="Logisk operator" data-language-autonym="Dansk" data-language-local-name="danois" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Logische_Verkn%C3%BCpfung" title="Logische Verknüpfung – allemand" lang="de" hreflang="de" data-title="Logische Verknüpfung" data-language-autonym="Deutsch" data-language-local-name="allemand" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9B%CE%BF%CE%B3%CE%B9%CE%BA%CE%AD%CF%82_%CF%83%CF%85%CE%BD%CE%B1%CF%81%CF%84%CE%AE%CF%83%CE%B5%CE%B9%CF%82" title="Λογικές συναρτήσεις – grec" lang="el" hreflang="el" data-title="Λογικές συναρτήσεις" data-language-autonym="Ελληνικά" data-language-local-name="grec" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/Conet%C3%AEv_l%C3%B2gic" title="Conetîv lògic – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Conetîv lògic" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Logical_connective" title="Logical connective – anglais" lang="en" hreflang="en" data-title="Logical connective" data-language-autonym="English" data-language-local-name="anglais" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Conectiva_l%C3%B3gica" title="Conectiva lógica – espagnol" lang="es" hreflang="es" data-title="Conectiva lógica" data-language-autonym="Español" data-language-local-name="espagnol" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Konnektor_(keeleteadus)" title="Konnektor (keeleteadus) – estonien" lang="et" hreflang="et" data-title="Konnektor (keeleteadus)" data-language-autonym="Eesti" data-language-local-name="estonien" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Lokailu_logiko" title="Lokailu logiko – basque" lang="eu" hreflang="eu" data-title="Lokailu logiko" data-language-autonym="Euskara" data-language-local-name="basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B1%D8%A7%D8%A8%D8%B7_%D9%85%D9%86%D8%B7%D9%82%DB%8C" title="رابط منطقی – persan" lang="fa" hreflang="fa" data-title="رابط منطقی" data-language-autonym="فارسی" data-language-local-name="persan" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A7%D7%A9%D7%A8_%D7%9C%D7%95%D7%92%D7%99" title="קשר לוגי – hébreu" lang="he" hreflang="he" data-title="קשר לוגי" data-language-autonym="עברית" data-language-local-name="hébreu" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Logikai_m%C5%B1velet" title="Logikai művelet – hongrois" lang="hu" hreflang="hu" data-title="Logikai művelet" data-language-autonym="Magyar" data-language-local-name="hongrois" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8F%D6%80%D5%A1%D5%B4%D5%A1%D5%A2%D5%A1%D5%B6%D5%A1%D5%AF%D5%A1%D5%B6_%D5%A3%D5%B8%D6%80%D5%AE%D5%B8%D5%B2%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Տրամաբանական գործողություն – arménien" lang="hy" hreflang="hy" data-title="Տրամաբանական գործողություն" data-language-autonym="Հայերեն" data-language-local-name="arménien" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Operator_logika" title="Operator logika – indonésien" lang="id" hreflang="id" data-title="Operator logika" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonésien" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/R%C3%B6ka%C3%B0ger%C3%B0" title="Rökaðgerð – islandais" lang="is" hreflang="is" data-title="Rökaðgerð" data-language-autonym="Íslenska" data-language-local-name="islandais" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Connettivo_logico" title="Connettivo logico – italien" lang="it" hreflang="it" data-title="Connettivo logico" data-language-autonym="Italiano" data-language-local-name="italien" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%AB%96%E7%90%86%E6%BC%94%E7%AE%97" title="論理演算 – japonais" lang="ja" hreflang="ja" data-title="論理演算" data-language-autonym="日本語" data-language-local-name="japonais" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D0%BF%D0%BE%D0%B7%D0%B8%D1%86%D0%B8%D1%8F%D0%BB%D1%8B%D2%9B_%D3%A9%D0%B7%D0%B0%D1%80%D0%B0_%D2%9B%D0%B0%D1%82%D1%8B%D0%BD%D0%B0%D1%81" title="Пропозициялық өзара қатынас – kazakh" lang="kk" hreflang="kk" data-title="Пропозициялық өзара қатынас" data-language-autonym="Қазақша" data-language-local-name="kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%85%BC%EB%A6%AC_%EC%97%B0%EC%82%B0" title="논리 연산 – coréen" lang="ko" hreflang="ko" data-title="논리 연산" data-language-autonym="한국어" data-language-local-name="coréen" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B8%D1%87%D0%BA%D0%B0_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%86%D0%B8%D1%98%D0%B0" title="Логичка операција – macédonien" lang="mk" hreflang="mk" data-title="Логичка операција" data-language-autonym="Македонски" data-language-local-name="macédonien" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Pengoperasi_logik" title="Pengoperasi logik – malais" lang="ms" hreflang="ms" data-title="Pengoperasi logik" data-language-autonym="Bahasa Melayu" data-language-local-name="malais" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Logisk_konstant" title="Logisk konstant – norvégien nynorsk" lang="nn" hreflang="nn" data-title="Logisk konstant" data-language-autonym="Norsk nynorsk" data-language-local-name="norvégien nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Funktor_zdaniotw%C3%B3rczy" title="Funktor zdaniotwórczy – polonais" lang="pl" hreflang="pl" data-title="Funktor zdaniotwórczy" data-language-autonym="Polski" data-language-local-name="polonais" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Conectivo_l%C3%B3gico" title="Conectivo lógico – portugais" lang="pt" hreflang="pt" data-title="Conectivo lógico" data-language-autonym="Português" data-language-local-name="portugais" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Conector_logic" title="Conector logic – roumain" lang="ro" hreflang="ro" data-title="Conector logic" data-language-autonym="Română" data-language-local-name="roumain" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%86%D0%B8%D1%8F" title="Логическая операция – russe" lang="ru" hreflang="ru" data-title="Логическая операция" data-language-autonym="Русский" data-language-local-name="russe" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/V%C3%BDrokov%C3%A1_spojka" title="Výroková spojka – slovaque" lang="sk" hreflang="sk" data-title="Výroková spojka" data-language-autonym="Slovenčina" data-language-local-name="slovaque" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Logisk_operator" title="Logisk operator – suédois" lang="sv" hreflang="sv" data-title="Logisk operator" data-language-autonym="Svenska" data-language-local-name="suédois" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%8F%E0%AE%B0%E0%AE%A3_%E0%AE%87%E0%AE%A3%E0%AF%88%E0%AE%AA%E0%AF%8D%E0%AE%AA%E0%AE%BF" title="ஏரண இணைப்பி – tamoul" lang="ta" hreflang="ta" data-title="ஏரண இணைப்பி" data-language-autonym="தமிழ்" data-language-local-name="tamoul" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%90%D0%BC%D0%B0%D0%BB%D2%B3%D0%BE%D0%B8_%D0%BC%D0%B0%D0%BD%D1%82%D0%B8%D2%9B%D3%A3" title="Амалҳои мантиқӣ – tadjik" lang="tg" hreflang="tg" data-title="Амалҳои мантиқӣ" data-language-autonym="Тоҷикӣ" data-language-local-name="tadjik" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%95%E0%B8%B1%E0%B8%A7%E0%B8%94%E0%B8%B3%E0%B9%80%E0%B8%99%E0%B8%B4%E0%B8%99%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%95%E0%B8%A3%E0%B8%A3%E0%B8%81%E0%B8%B0" title="ตัวดำเนินการตรรกะ – thaï" lang="th" hreflang="th" data-title="ตัวดำเนินการตรรกะ" data-language-autonym="ไทย" data-language-local-name="thaï" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Mant%C4%B1k_ba%C4%9Flac%C4%B1" title="Mantık bağlacı – turc" lang="tr" hreflang="tr" data-title="Mantık bağlacı" data-language-autonym="Türkçe" data-language-local-name="turc" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D1%96%D1%87%D0%BD%D0%B8%D0%B9_%D1%81%D0%BF%D0%BE%D0%BB%D1%83%D1%87%D0%BD%D0%B8%D0%BA" title="Логічний сполучник – ukrainien" lang="uk" hreflang="uk" data-title="Логічний сполучник" data-language-autonym="Українська" data-language-local-name="ukrainien" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%D9%86%D8%B7%D9%82%DB%8C_%D8%B9%D8%A7%D9%85%D9%84" title="منطقی عامل – ourdou" lang="ur" hreflang="ur" data-title="منطقی عامل" data-language-autonym="اردو" data-language-local-name="ourdou" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%80%BB%E8%BE%91%E8%BF%90%E7%AE%97%E7%AC%A6" title="逻辑运算符 – chinois" lang="zh" hreflang="zh" data-title="逻辑运算符" data-language-autonym="中文" data-language-local-name="chinois" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%82%8F%E8%BC%AF%E9%80%A3%E6%8E%A5%E8%A9%9E" title="邏輯連接詞 – cantonais" lang="yue" hreflang="yue" data-title="邏輯連接詞" data-language-autonym="粵語" data-language-local-name="cantonais" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q211790#sitelinks-wikipedia" title="Modifier les liens interlangues" class="wbc-editpage">Modifier les liens</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Espaces de noms"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Connecteur_logique" title="Voir le contenu de la page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussion:Connecteur_logique" rel="discussion" title="Discussion au sujet de cette page de contenu [t]" accesskey="t"><span>Discussion</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Modifier la variante de langue" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">français</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Affichages"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Connecteur_logique"><span>Lire</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Connecteur_logique&veaction=edit" title="Modifier cette page [v]" accesskey="v"><span>Modifier</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Connecteur_logique&action=edit" title="Modifier le wikicode de cette page [e]" accesskey="e"><span>Modifier le code</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Connecteur_logique&action=history" title="Historique des versions de cette page [h]" accesskey="h"><span>Voir l’historique</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Outils de la page"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Outils" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Outils</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Outils</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">masquer</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Plus d’options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Connecteur_logique"><span>Lire</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Connecteur_logique&veaction=edit" title="Modifier cette page [v]" accesskey="v"><span>Modifier</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Connecteur_logique&action=edit" title="Modifier le wikicode de cette page [e]" accesskey="e"><span>Modifier le code</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Connecteur_logique&action=history"><span>Voir l’historique</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Général </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Pages_li%C3%A9es/Connecteur_logique" title="Liste des pages liées qui pointent sur celle-ci [j]" accesskey="j"><span>Pages liées</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Suivi_des_liens/Connecteur_logique" rel="nofollow" title="Liste des modifications récentes des pages appelées par celle-ci [k]" accesskey="k"><span>Suivi des pages liées</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Aide:Importer_un_fichier" title="Téléverser des fichiers [u]" accesskey="u"><span>Téléverser un fichier</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Pages_sp%C3%A9ciales" title="Liste de toutes les pages spéciales [q]" accesskey="q"><span>Pages spéciales</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Connecteur_logique&oldid=216924038" title="Adresse permanente de cette version de cette page"><span>Lien permanent</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Connecteur_logique&action=info" title="Davantage d’informations sur cette page"><span>Informations sur la page</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Citer&page=Connecteur_logique&id=216924038&wpFormIdentifier=titleform" title="Informations sur la manière de citer cette page"><span>Citer cette page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:UrlShortener&url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FConnecteur_logique"><span>Obtenir l'URL raccourcie</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:QrCode&url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FConnecteur_logique"><span>Télécharger le code QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Imprimer / exporter </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Livre&bookcmd=book_creator&referer=Connecteur+logique"><span>Créer un livre</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:DownloadAsPdf&page=Connecteur_logique&action=show-download-screen"><span>Télécharger comme PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Connecteur_logique&printable=yes" title="Version imprimable de cette page [p]" accesskey="p"><span>Version imprimable</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Dans d’autres projets </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Logical_connectives" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://fr.wikiversity.org/wiki/Propositions_et_op%C3%A9ration_%C3%A9l%C3%A9mentaire" hreflang="fr"><span>Wikiversité</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q211790" title="Lien vers l’élément dans le dépôt de données connecté [g]" accesskey="g"><span>Élément Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Outils de la page"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Apparence"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Apparence</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">masquer</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Un article de Wikipédia, l'encyclopédie libre.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="fr" dir="ltr"><div class="bandeau-container metadata homonymie hatnote"><div class="bandeau-cell bandeau-icone" style="display:table-cell;padding-right:0.5em"><span class="noviewer" typeof="mw:File"><a href="/wiki/Aide:Homonymie" title="Aide:Homonymie"><img alt="Page d’aide sur l’homonymie" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Logo_disambig.svg/20px-Logo_disambig.svg.png" decoding="async" width="20" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Logo_disambig.svg/30px-Logo_disambig.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Logo_disambig.svg/40px-Logo_disambig.svg.png 2x" data-file-width="512" data-file-height="375" /></a></span></div><div class="bandeau-cell" style="display:table-cell;padding-right:0.5em"> <p>Pour l’article homonyme, voir <a href="/wiki/Connecteur_logique_(linguistique)" title="Connecteur logique (linguistique)">Connecteur logique (linguistique)</a>. </p> </div></div> <p>En <a href="/wiki/Logique" title="Logique">logique</a>, un <b>connecteur logique</b> est un <a href="/wiki/Op%C3%A9rateur_(symbole)" title="Opérateur (symbole)">opérateur</a> <a href="/wiki/Bool%C3%A9en" title="Booléen">booléen</a> utilisé dans le calcul des propositions. </p><p>Comme dans toute approche logique, il faut distinguer un aspect <a href="/wiki/Logique_math%C3%A9matique#Syntaxe_et_sémantique" title="Logique mathématique">syntaxique</a> et un aspect <a href="/wiki/Logique_math%C3%A9matique#Syntaxe_et_sémantique" title="Logique mathématique">sémantique</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Syntaxe">Syntaxe</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Connecteur_logique&veaction=edit&section=1" title="Modifier la section : Syntaxe" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Connecteur_logique&action=edit&section=1" title="Modifier le code source de la section : Syntaxe"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>D'un point de vue syntaxique, les connecteurs sont des <a href="/wiki/Op%C3%A9rateur_(symbole)" title="Opérateur (symbole)">opérateurs</a> dans un <a href="/wiki/Langage_formel" title="Langage formel">langage formel</a> pour lesquels un certain nombre de <a href="/wiki/D%C3%A9duction_logique" title="Déduction logique">règles</a> définissent leur usage<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite_crochet">[</span>1<span class="cite_crochet">]</span></a></sup>, au besoin complétées par une sémantique. </p> <div class="mw-heading mw-heading2"><h2 id="Sémantique"><span id="S.C3.A9mantique"></span>Sémantique</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Connecteur_logique&veaction=edit&section=2" title="Modifier la section : Sémantique" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Connecteur_logique&action=edit&section=2" title="Modifier le code source de la section : Sémantique"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Logique_classique">Logique classique</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Connecteur_logique&veaction=edit&section=3" title="Modifier la section : Logique classique" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Connecteur_logique&action=edit&section=3" title="Modifier le code source de la section : Logique classique"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Si l'on se place dans la <a href="/wiki/Logique_classique" title="Logique classique">logique classique</a>, l'interprétation des variables se fait dans les <a href="/wiki/Bool%C3%A9en" title="Booléen">booléens</a> ou dans une extension <a href="/wiki/Logique_polyvalente" title="Logique polyvalente">multivalente</a><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite_crochet">[</span>2<span class="cite_crochet">]</span></a></sup> de ceux-ci. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fichier:Logical_connectives_table.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Logical_connectives_table.svg/220px-Logical_connectives_table.svg.png" decoding="async" width="220" height="286" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Logical_connectives_table.svg/330px-Logical_connectives_table.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/91/Logical_connectives_table.svg/440px-Logical_connectives_table.svg.png 2x" data-file-width="547" data-file-height="710" /></a><figcaption>Table des connecteurs logiques. <i>(organisés par valeur de vérité)</i></figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fichier:Logical_connectives_Hasse_diagram.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Logical_connectives_Hasse_diagram.svg/220px-Logical_connectives_Hasse_diagram.svg.png" decoding="async" width="220" height="311" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Logical_connectives_Hasse_diagram.svg/330px-Logical_connectives_Hasse_diagram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Logical_connectives_Hasse_diagram.svg/440px-Logical_connectives_Hasse_diagram.svg.png 2x" data-file-width="744" data-file-height="1052" /></a><figcaption>Connecteurs logiques organisés en un <a href="/wiki/Diagramme_de_Hasse" title="Diagramme de Hasse">diagramme de Hasse</a>.</figcaption></figure> <p>Dans le cas de la logique bivalente <a href="/wiki/Logique_classique" title="Logique classique">classique</a> le tableau suivant recense les seize <a href="/wiki/Fonction_bool%C3%A9enne" title="Fonction booléenne">fonctions booléennes</a> associées aux entrées P et Q, ces entrées sont les variables ou prémisses des formules. </p> <table class="wikitable" style="text-align:center"> <tbody><tr> <th scope="col">Fonction booléenne </th> <th scope="col">Notations </th> <th scope="col">Formules équivalentes </th> <th scope="col"><a href="/wiki/Table_de_v%C3%A9rit%C3%A9" title="Table de vérité">Table de vérité</a> </th> <th scope="col"><a href="/wiki/Diagramme_de_Venn" title="Diagramme de Venn">Diagramme de Venn</a> </th></tr> <tr> <th style="text-align: left"><a href="/wiki/Calcul_des_propositions" title="Calcul des propositions">Proposition</a> P </th> <td><i>P</i> </td> <td> </td> <td> <table class="wikitable" style="background:none; text-align: center; border: 0px;"> <tbody><tr> <td rowspan="2" colspan="2" style="border: 0px;">  </td> <td colspan="2" style="border: 0px;"><b>Q</b> </td></tr> <tr> <td style="padding: 4pt; border: 0px;">0 </td> <td style="padding: 4pt; border: 0px;">1 </td></tr> <tr> <td rowspan="2" style="vertical-align: middle; border:0px;"><b>P</b> </td> <td style="border: 0px;">0   </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td></tr> <tr> <td style="padding: 4pt; border:0px;">1   </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td></tr></tbody></table> </td> <td><span typeof="mw:File"><a href="/wiki/Fichier:Venn0101.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/Venn0101.svg/100px-Venn0101.svg.png" decoding="async" width="100" height="74" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/Venn0101.svg/150px-Venn0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/10/Venn0101.svg/200px-Venn0101.svg.png 2x" data-file-width="380" data-file-height="280" /></a></span> </td></tr> <tr> <th style="text-align: left"><a href="/wiki/Calcul_des_propositions" title="Calcul des propositions">Proposition</a> <i>Q</i> </th> <td><i>Q</i> </td> <td> </td> <td> <table style="background:none; text-align: center; border: 0px;" class="wikitable"> <tbody><tr> <td style="border: 0px;" rowspan="2" colspan="2">  </td> <td style="border: 0px;" colspan="2"><b>Q</b> </td></tr> <tr> <td style="padding: 4pt; border: 0px;">0 </td> <td style="padding: 4pt; border: 0px;">1 </td></tr> <tr> <td style="vertical-align: middle; border:0px;" rowspan="2"><b>P</b> </td> <td style="border: 0px;">0   </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td></tr> <tr> <td style="padding: 4pt; border:0px;">1   </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td></tr></tbody></table> </td> <td><span typeof="mw:File"><a href="/wiki/Fichier:Venn0011.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/76/Venn0011.svg/100px-Venn0011.svg.png" decoding="async" width="100" height="74" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/76/Venn0011.svg/150px-Venn0011.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/76/Venn0011.svg/200px-Venn0011.svg.png 2x" data-file-width="380" data-file-height="280" /></a></span> </td></tr> <tr> <th style="text-align: left"><a href="/wiki/N%C3%A9gation_logique" title="Négation logique">Négation</a> de P </th> <td>¬<i>P</i><br />~<i>P</i> </td> <td> </td> <td> <table style="background:none; text-align: center; border: 0px;" class="wikitable"> <tbody><tr> <td style="border: 0px;" rowspan="2" colspan="2">  </td> <td style="border: 0px;" colspan="2"><b>Q</b> </td></tr> <tr> <td style="padding: 4pt; border: 0px;">0 </td> <td style="padding: 4pt; border: 0px;">1 </td></tr> <tr> <td style="vertical-align: middle; border:0px;" rowspan="2"><b>P</b> </td> <td style="border: 0px;">0   </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td></tr> <tr> <td style="padding: 4pt; border:0px;">1   </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td></tr></tbody></table> </td> <td><span typeof="mw:File"><a href="/wiki/Fichier:Venn1010.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Venn1010.svg/100px-Venn1010.svg.png" decoding="async" width="100" height="74" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Venn1010.svg/150px-Venn1010.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Venn1010.svg/200px-Venn1010.svg.png 2x" data-file-width="380" data-file-height="280" /></a></span> </td></tr> <tr> <th style="text-align: left"><a href="/wiki/N%C3%A9gation_logique" title="Négation logique">Négation</a> de <i>Q</i> </th> <td>¬<i>Q</i><br />~<i>Q</i> </td> <td> </td> <td> <table style="background:none; text-align: center; border: 0px;" class="wikitable"> <tbody><tr> <td style="border: 0px;" rowspan="2" colspan="2">  </td> <td style="border: 0px;" colspan="2"><b>Q</b> </td></tr> <tr> <td style="padding: 4pt; border: 0px;">0 </td> <td style="padding: 4pt; border: 0px;">1 </td></tr> <tr> <td style="vertical-align: middle; border:0px;" rowspan="2"><b>P</b> </td> <td style="border: 0px;">0   </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td></tr> <tr> <td style="padding: 4pt; border:0px;">1   </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td></tr></tbody></table> </td> <td><span typeof="mw:File"><a href="/wiki/Fichier:Venn1100.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/Venn1100.svg/100px-Venn1100.svg.png" decoding="async" width="100" height="74" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/Venn1100.svg/150px-Venn1100.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/31/Venn1100.svg/200px-Venn1100.svg.png 2x" data-file-width="380" data-file-height="280" /></a></span> </td></tr> <tr> <th> </th> <th> </th> <th> </th> <th> </th> <th> </th></tr> <tr> <th style="text-align: left"><a href="/wiki/Disjonction_logique" title="Disjonction logique">Disjonction</a><br />(OU) </th> <td><i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∨<!-- ∨ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab47f6b1f589aedcf14638df1d63049d233d851a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \lor }"></span> <i>Q</i><br /><i>P</i> <sub>∨</sub> <i>Q</i><br /><i>P</i> OR <i>Q</i> </td> <td><i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leftarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">←<!-- ← --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leftarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c0fb4bce772117bbaf55b7ca1539ceff9ae218c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \leftarrow }"></span> ¬<i>Q</i> <br /> ¬<i>P</i> → <i>Q</i> <br /> ¬<i>P</i> ↑ ¬<i>Q</i> </td> <td> <table style="background:none; text-align: center; border: 0px;" class="wikitable"> <tbody><tr> <td style="border: 0px;" rowspan="2" colspan="2">  </td> <td style="border: 0px;" colspan="2"><b>Q</b> </td></tr> <tr> <td style="padding: 4pt; border: 0px;">0 </td> <td style="padding: 4pt; border: 0px;">1 </td></tr> <tr> <td style="vertical-align: middle; border:0px;" rowspan="2"><b>P</b> </td> <td style="border: 0px;">0   </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td></tr> <tr> <td style="padding: 4pt; border:0px;">1   </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td></tr></tbody></table> </td> <td><span typeof="mw:File"><a href="/wiki/Fichier:Venn0111.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/100px-Venn0111.svg.png" decoding="async" width="100" height="74" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/150px-Venn0111.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/200px-Venn0111.svg.png 2x" data-file-width="380" data-file-height="280" /></a></span> </td></tr> <tr> <th style="text-align: left"><a href="/wiki/Conjonction_logique" title="Conjonction logique">Conjonction</a> <br />(ET) </th> <td><i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \wedge }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \wedge }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1caa4004cb216ef2930bb12fe805a76870caed94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \wedge }"></span> <i>Q</i><br /><i>P</i> & <i>Q</i><br /><i>P</i> <b>·</b> <i>Q</i><br /><i>P</i> AND <i>Q</i> </td> <td><i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \not \rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>↛</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \not \rightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb95f3f5a9898c871045935a253d1d23e0e2644b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.137ex; margin-bottom: -0.308ex; width:2.324ex; height:1.509ex;" alt="{\displaystyle \not \rightarrow }"></span>¬<i>Q</i> <br /> ¬<i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \not \leftarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>↚</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \not \leftarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4acf12661d69611db01ff7f036bf8c5b5dfec902" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.137ex; margin-bottom: -0.308ex; width:2.324ex; height:1.509ex;" alt="{\displaystyle \not \leftarrow }"></span> <i>Q</i> <br /> ¬<i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \downarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">↓<!-- ↓ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \downarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4618f22b0f780805eb94bb407578d9bc9487947a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.162ex; height:2.509ex;" alt="{\displaystyle \downarrow }"></span> ¬<i>Q</i> </td> <td> <table style="background:none; text-align: center; border: 0px;" class="wikitable"> <tbody><tr> <td style="border: 0px;" rowspan="2" colspan="2">  </td> <td style="border: 0px;" colspan="2"><b>Q</b> </td></tr> <tr> <td style="padding: 4pt; border: 0px;">0 </td> <td style="padding: 4pt; border: 0px;">1 </td></tr> <tr> <td style="vertical-align: middle; border:0px;" rowspan="2"><b>P</b> </td> <td style="border: 0px;">0   </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td></tr> <tr> <td style="padding: 4pt; border:0px;">1   </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td></tr></tbody></table> </td> <td><span typeof="mw:File"><a href="/wiki/Fichier:Venn0001.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/100px-Venn0001.svg.png" decoding="async" width="100" height="73" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/150px-Venn0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/200px-Venn0001.svg.png 2x" data-file-width="410" data-file-height="299" /></a></span> </td></tr> <tr> <th style="text-align: left"><a href="/wiki/Fonction_NON-OU" title="Fonction NON-OU">Disjonction réciproque</a><br />(NON-OU) </th> <td><i>P</i> ↓ <i>Q</i><br /><i>P</i> NOR <i>Q</i> </td> <td><i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \not \leftarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>↚</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \not \leftarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4acf12661d69611db01ff7f036bf8c5b5dfec902" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.137ex; margin-bottom: -0.308ex; width:2.324ex; height:1.509ex;" alt="{\displaystyle \not \leftarrow }"></span> ¬<i>Q</i> <br /> ¬<i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \not \rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>↛</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \not \rightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb95f3f5a9898c871045935a253d1d23e0e2644b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.137ex; margin-bottom: -0.308ex; width:2.324ex; height:1.509ex;" alt="{\displaystyle \not \rightarrow }"></span> <i>Q</i> <br /> ¬<i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \wedge }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \wedge }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1caa4004cb216ef2930bb12fe805a76870caed94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \wedge }"></span> ¬<i>Q</i> </td> <td> <table style="background:none; text-align: center; border: 0px;" class="wikitable"> <tbody><tr> <td style="border: 0px;" rowspan="2" colspan="2">  </td> <td style="border: 0px;" colspan="2"><b>Q</b> </td></tr> <tr> <td style="padding: 4pt; border: 0px;">0 </td> <td style="padding: 4pt; border: 0px;">1 </td></tr> <tr> <td style="vertical-align: middle; border:0px;" rowspan="2"><b>P</b> </td> <td style="border: 0px;">0   </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td></tr> <tr> <td style="padding: 4pt; border:0px;">1   </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td></tr></tbody></table> </td> <td><span typeof="mw:File"><a href="/wiki/Fichier:Venn1000.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Venn1000.svg/100px-Venn1000.svg.png" decoding="async" width="100" height="74" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Venn1000.svg/150px-Venn1000.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Venn1000.svg/200px-Venn1000.svg.png 2x" data-file-width="380" data-file-height="280" /></a></span> </td></tr> <tr> <th style="text-align: left"><a href="/wiki/Fonction_NON-ET" title="Fonction NON-ET">NON-ET</a> </th> <td><i>P</i> ↑ <i>Q</i><br /><i>P</i> | <i>Q</i> <br /><i>P</i> NAND <i>Q</i> </td> <td><i>P</i> → ¬<i>Q</i> <br /> ¬<i>P</i> ← <i>Q</i><br />¬<i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∨<!-- ∨ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab47f6b1f589aedcf14638df1d63049d233d851a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \lor }"></span> ¬<i>Q</i> </td> <td> <table style="background:none; text-align: center; border: 0px;" class="wikitable"> <tbody><tr> <td style="border: 0px;" rowspan="2" colspan="2">  </td> <td style="border: 0px;" colspan="2"><b>Q</b> </td></tr> <tr> <td style="padding: 4pt; border: 0px;">0 </td> <td style="padding: 4pt; border: 0px;">1 </td></tr> <tr> <td style="vertical-align: middle; border:0px;" rowspan="2"><b>P</b> </td> <td style="border: 0px;">0   </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td></tr> <tr> <td style="padding: 4pt; border:0px;">1   </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td></tr></tbody></table> </td> <td><span typeof="mw:File"><a href="/wiki/Fichier:Venn1110.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Venn1110.svg/100px-Venn1110.svg.png" decoding="async" width="100" height="73" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Venn1110.svg/150px-Venn1110.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Venn1110.svg/200px-Venn1110.svg.png 2x" data-file-width="410" data-file-height="299" /></a></span> </td></tr> <tr> <th> </th> <th> </th> <th> </th> <th> </th> <th> </th></tr> <tr> <th style="text-align: left"><a href="/wiki/Contradiction" title="Contradiction">Contradiction</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">⊥<!-- ⊥ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f282c7bc331cc3bfcf1c57f1452cc23c022f58de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \bot }"></span>FALSE </td> <td><i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \wedge }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \wedge }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1caa4004cb216ef2930bb12fe805a76870caed94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \wedge }"></span> ¬<i>P</i> </td> <td> <table style="background:none; text-align: center; border: 0px;" class="wikitable"> <tbody><tr> <td style="border: 0px;" rowspan="2" colspan="2">  </td> <td style="border: 0px;" colspan="2"><b>Q</b> </td></tr> <tr> <td style="padding: 4pt; border: 0px;">0 </td> <td style="padding: 4pt; border: 0px;">1 </td></tr> <tr> <td style="vertical-align: middle; border:0px;" rowspan="2"><b>P</b> </td> <td style="border: 0px;">0   </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td></tr> <tr> <td style="padding: 4pt; border:0px;">1   </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td></tr></tbody></table> </td> <td><span typeof="mw:File"><a href="/wiki/Fichier:Venn0000.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Venn0000.svg/100px-Venn0000.svg.png" decoding="async" width="100" height="74" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Venn0000.svg/150px-Venn0000.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/91/Venn0000.svg/200px-Venn0000.svg.png 2x" data-file-width="380" data-file-height="280" /></a></span> </td></tr> <tr> <th style="text-align: left"><a href="/wiki/Tautologie_(logique)" title="Tautologie (logique)">Tautologie</a> </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \top }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">⊤<!-- ⊤ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \top }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf12e436fef2365e76fcb1034a51179d8328bb33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \top }"></span>TRUE </td> <td><i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vee }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∨<!-- ∨ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vee }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b76220c6805c9b465d6efbc7686c624f49f3023" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \vee }"></span> ¬<i>P</i> </td> <td> <table style="background:none; text-align: center; border: 0px;" class="wikitable"> <tbody><tr> <td style="border: 0px;" rowspan="2" colspan="2">  </td> <td style="border: 0px;" colspan="2"><b>Q</b> </td></tr> <tr> <td style="padding: 4pt; border: 0px;">0 </td> <td style="padding: 4pt; border: 0px;">1 </td></tr> <tr> <td style="vertical-align: middle; border:0px;" rowspan="2"><b>P</b> </td> <td style="border: 0px;">0   </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td></tr> <tr> <td style="padding: 4pt; border:0px;">1   </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td></tr></tbody></table> </td> <td><span typeof="mw:File"><a href="/wiki/Fichier:Venn1111.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/ca/Venn1111.svg/100px-Venn1111.svg.png" decoding="async" width="100" height="74" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/ca/Venn1111.svg/150px-Venn1111.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/ca/Venn1111.svg/200px-Venn1111.svg.png 2x" data-file-width="380" data-file-height="280" /></a></span> </td></tr> <tr> <th> </th> <th> </th> <th> </th> <th> </th> <th> </th></tr> <tr> <th style="text-align: left"><a href="/wiki/Implication_(logique)" title="Implication (logique)">Implication</a> </th> <td><i>P</i> → <i>Q</i> <br /> <i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \supset }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊃<!-- ⊃ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \supset }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27bfe0828a2ed4c9c6b70987a85c02a1f005843c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:1.843ex;" alt="{\displaystyle \supset }"></span> <i>Q</i> </td> <td><i>P</i> ↑ ¬<i>Q</i> <br /> ¬<i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∨<!-- ∨ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab47f6b1f589aedcf14638df1d63049d233d851a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \lor }"></span> <i>Q</i> <br /> ¬<i>P</i> ← ¬<i>Q</i> </td> <td> <table style="background:none; text-align: center; border: 0px;" class="wikitable"> <tbody><tr> <td style="border: 0px;" rowspan="2" colspan="2">  </td> <td style="border: 0px;" colspan="2"><b>Q</b> </td></tr> <tr> <td style="padding: 4pt; border: 0px;">0 </td> <td style="padding: 4pt; border: 0px;">1 </td></tr> <tr> <td style="vertical-align: middle; border:0px;" rowspan="2"><b>P</b> </td> <td style="border: 0px;">0   </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td></tr> <tr> <td style="padding: 4pt; border:0px;">1   </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td></tr></tbody></table> </td> <td><span typeof="mw:File"><a href="/wiki/Fichier:Venn1011.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Venn1011.svg/100px-Venn1011.svg.png" decoding="async" width="100" height="74" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Venn1011.svg/150px-Venn1011.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Venn1011.svg/200px-Venn1011.svg.png 2x" data-file-width="380" data-file-height="280" /></a></span> </td></tr> <tr> <th style="text-align: left"><a href="/wiki/Implication_r%C3%A9ciproque" title="Implication réciproque">Implication réciproque</a> </th> <td><i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leftarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">←<!-- ← --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leftarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c0fb4bce772117bbaf55b7ca1539ceff9ae218c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \leftarrow }"></span> <i>Q</i> <br /> <i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \subset }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊂<!-- ⊂ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \subset }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f51f0eeff0c2a9dcb9c856f87ca0359e701ef01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:1.843ex;" alt="{\displaystyle \subset }"></span> <i>Q</i> </td> <td><i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∨<!-- ∨ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab47f6b1f589aedcf14638df1d63049d233d851a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \lor }"></span> ¬<i>Q</i> <br /> ¬<i>P</i> ↑ <i>Q</i> <br /> ¬<i>P</i> → ¬<i>Q</i> </td> <td> <table style="background:none; text-align: center; border: 0px;" class="wikitable"> <tbody><tr> <td style="border: 0px;" rowspan="2" colspan="2">  </td> <td style="border: 0px;" colspan="2"><b>Q</b> </td></tr> <tr> <td style="padding: 4pt; border: 0px;">0 </td> <td style="padding: 4pt; border: 0px;">1 </td></tr> <tr> <td style="vertical-align: middle; border:0px;" rowspan="2"><b>P</b> </td> <td style="border: 0px;">0   </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td></tr> <tr> <td style="padding: 4pt; border:0px;">1   </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td></tr></tbody></table> </td> <td><span typeof="mw:File"><a href="/wiki/Fichier:Venn1101.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/35/Venn1101.svg/100px-Venn1101.svg.png" decoding="async" width="100" height="74" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/35/Venn1101.svg/150px-Venn1101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/35/Venn1101.svg/200px-Venn1101.svg.png 2x" data-file-width="380" data-file-height="280" /></a></span> </td></tr> <tr> <th style="text-align: left"><a href="/wiki/Non-implication" title="Non-implication">Non-implication</a> </th> <td><i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \not \rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>↛</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \not \rightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb95f3f5a9898c871045935a253d1d23e0e2644b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.137ex; margin-bottom: -0.308ex; width:2.324ex; height:1.509ex;" alt="{\displaystyle \not \rightarrow }"></span> <i>Q</i> <br /> <i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \not \supset }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊅</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \not \supset }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0066ef658b08a8a21cf267a4e5bec61bc03fcb73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.809ex; height:2.676ex;" alt="{\displaystyle \not \supset }"></span> <i>Q</i> </td> <td><i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \wedge }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \wedge }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1caa4004cb216ef2930bb12fe805a76870caed94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \wedge }"></span> ¬<i>Q</i> <br /> ¬<i>P</i> ↓ <i>Q</i> <br /> ¬<i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \not \leftarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>↚</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \not \leftarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4acf12661d69611db01ff7f036bf8c5b5dfec902" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.137ex; margin-bottom: -0.308ex; width:2.324ex; height:1.509ex;" alt="{\displaystyle \not \leftarrow }"></span> ¬<i>Q</i> </td> <td> <table style="background:none; text-align: center; border: 0px;" class="wikitable"> <tbody><tr> <td style="border: 0px;" rowspan="2" colspan="2">  </td> <td style="border: 0px;" colspan="2"><b>Q</b> </td></tr> <tr> <td style="padding: 4pt; border: 0px;">0 </td> <td style="padding: 4pt; border: 0px;">1 </td></tr> <tr> <td style="vertical-align: middle; border:0px;" rowspan="2"><b>P</b> </td> <td style="border: 0px;">0   </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td></tr> <tr> <td style="padding: 4pt; border:0px;">1   </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td></tr></tbody></table> </td> <td><span typeof="mw:File"><a href="/wiki/Fichier:Venn0100.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Venn0100.svg/100px-Venn0100.svg.png" decoding="async" width="100" height="74" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Venn0100.svg/150px-Venn0100.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Venn0100.svg/200px-Venn0100.svg.png 2x" data-file-width="380" data-file-height="280" /></a></span> </td></tr> <tr> <th style="text-align: left"><a href="/wiki/Non-implication_r%C3%A9ciproque" title="Non-implication réciproque">Non-implication réciproque</a> </th> <td><i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \not \leftarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>↚</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \not \leftarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4acf12661d69611db01ff7f036bf8c5b5dfec902" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.137ex; margin-bottom: -0.308ex; width:2.324ex; height:1.509ex;" alt="{\displaystyle \not \leftarrow }"></span> <i>Q</i> <br /> <i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \not \subset }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊄</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \not \subset }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b8e16e392d3856efb6355f906bf3d7b35f7f2ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.809ex; height:2.676ex;" alt="{\displaystyle \not \subset }"></span> <i>Q</i> </td> <td><i>P</i> ↓ ¬<i>Q</i> <br /> ¬<i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \wedge }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \wedge }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1caa4004cb216ef2930bb12fe805a76870caed94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \wedge }"></span> <i>Q</i> <br /> ¬<i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \not \rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>↛</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \not \rightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb95f3f5a9898c871045935a253d1d23e0e2644b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.137ex; margin-bottom: -0.308ex; width:2.324ex; height:1.509ex;" alt="{\displaystyle \not \rightarrow }"></span> ¬<i>Q</i> </td> <td> <table style="background:none; text-align: center; border: 0px;" class="wikitable"> <tbody><tr> <td style="border: 0px;" rowspan="2" colspan="2">  </td> <td style="border: 0px;" colspan="2"><b>Q</b> </td></tr> <tr> <td style="padding: 4pt; border: 0px;">0 </td> <td style="padding: 4pt; border: 0px;">1 </td></tr> <tr> <td style="vertical-align: middle; border:0px;" rowspan="2"><b>P</b> </td> <td style="border: 0px;">0   </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td></tr> <tr> <td style="padding: 4pt; border:0px;">1   </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td></tr></tbody></table> </td> <td><span typeof="mw:File"><a href="/wiki/Fichier:Venn0010.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Venn0010.svg/100px-Venn0010.svg.png" decoding="async" width="100" height="74" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Venn0010.svg/150px-Venn0010.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Venn0010.svg/200px-Venn0010.svg.png 2x" data-file-width="380" data-file-height="280" /></a></span> </td></tr> <tr> <th> </th> <th> </th> <th> </th> <th> </th> <th> </th></tr> <tr> <th style="text-align: left"><a href="/wiki/%C3%89quivalence_logique" title="Équivalence logique">Équivalence</a> </th> <td><i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">↔<!-- ↔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/046b918c43e05caf6624fe9b676c69ec9cd6b892" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \leftrightarrow }"></span> <i>Q</i> <br /> <i>P</i> ≡ <i>Q</i><br /> <i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \odot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊙<!-- ⊙ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \odot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e89e009eb8a8839c82aa5c76c15e9f2d67006276" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \odot }"></span> <i>Q</i> <br /> <i>P</i> XNOR <i>Q</i><br /> <i>P</i> IFF <i>Q</i> </td> <td><i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \not \leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>↮</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \not \leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/363ed81fd02da85c658dde9f17737c13b7263e49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.137ex; margin-bottom: -0.308ex; width:2.324ex; height:1.509ex;" alt="{\displaystyle \not \leftrightarrow }"></span> ¬<i>Q</i> <br /> ¬<i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \not \leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>↮</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \not \leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/363ed81fd02da85c658dde9f17737c13b7263e49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.137ex; margin-bottom: -0.308ex; width:2.324ex; height:1.509ex;" alt="{\displaystyle \not \leftrightarrow }"></span> <i>Q</i> <br /> ¬<i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">↔<!-- ↔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/046b918c43e05caf6624fe9b676c69ec9cd6b892" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \leftrightarrow }"></span> ¬<i>Q</i> </td> <td> <table style="background:none; text-align: center; border: 0px;" class="wikitable"> <tbody><tr> <td style="border: 0px;" rowspan="2" colspan="2">  </td> <td style="border: 0px;" colspan="2"><b>Q</b> </td></tr> <tr> <td style="padding: 4pt; border: 0px;">0 </td> <td style="padding: 4pt; border: 0px;">1 </td></tr> <tr> <td style="vertical-align: middle; border:0px;" rowspan="2"><b>P</b> </td> <td style="border: 0px;">0   </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td></tr> <tr> <td style="padding: 4pt; border:0px;">1   </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td></tr></tbody></table> </td> <td><span typeof="mw:File"><a href="/wiki/Fichier:Venn1001.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Venn1001.svg/100px-Venn1001.svg.png" decoding="async" width="100" height="73" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Venn1001.svg/150px-Venn1001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/47/Venn1001.svg/200px-Venn1001.svg.png 2x" data-file-width="410" data-file-height="299" /></a></span> </td></tr> <tr> <th style="text-align: left"><a href="/wiki/Fonction_OU_exclusif" title="Fonction OU exclusif">Disjonction exclusive</a><br />(OU exclusif) </th> <td><i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \not \leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>↮</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \not \leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/363ed81fd02da85c658dde9f17737c13b7263e49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.137ex; margin-bottom: -0.308ex; width:2.324ex; height:1.509ex;" alt="{\displaystyle \not \leftrightarrow }"></span> <i>Q</i> <br /> <i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \not \equiv }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>≢</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \not \equiv }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d130bfc3eff6deb5c732a636f866cd9e373c197" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.809ex; height:2.676ex;" alt="{\displaystyle \not \equiv }"></span> <i>Q</i> <br /> <i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oplus }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊕<!-- ⊕ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oplus }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \oplus }"></span> <i>Q</i><br /><i>P</i> XOR <i>Q</i> </td> <td><i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">↔<!-- ↔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/046b918c43e05caf6624fe9b676c69ec9cd6b892" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \leftrightarrow }"></span> ¬<i>Q</i> <br /> ¬<i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">↔<!-- ↔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/046b918c43e05caf6624fe9b676c69ec9cd6b892" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \leftrightarrow }"></span> <i>Q</i> <br /> ¬<i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \not \leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>↮</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \not \leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/363ed81fd02da85c658dde9f17737c13b7263e49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.137ex; margin-bottom: -0.308ex; width:2.324ex; height:1.509ex;" alt="{\displaystyle \not \leftrightarrow }"></span> ¬<i>Q</i> </td> <td> <table class="wikitable" style="background:none; text-align: center; border: 0px;"> <tbody><tr> <td rowspan="2" colspan="2" style="border: 0px;">  </td> <td colspan="2" style="border: 0px;"><b>Q</b> </td></tr> <tr> <td style="padding: 4pt; border: 0px;">0 </td> <td style="padding: 4pt; border: 0px;">1 </td></tr> <tr> <td rowspan="2" style="vertical-align: middle; border:0px;"><b>P</b> </td> <td style="border: 0px;">0   </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td></tr> <tr> <td style="padding: 4pt; border:0px;">1   </td> <td style="border: 1px solid black; padding: 0.75em; background-color: #ffaaaa;">1 </td> <td style="border: 1px solid black; padding: 0.75em;">0 </td></tr></tbody></table> </td> <td><span typeof="mw:File"><a href="/wiki/Fichier:Venn0110.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/46/Venn0110.svg/100px-Venn0110.svg.png" decoding="async" width="100" height="73" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/46/Venn0110.svg/150px-Venn0110.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/46/Venn0110.svg/200px-Venn0110.svg.png 2x" data-file-width="410" data-file-height="299" /></a></span> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Logiques_non_classiques">Logiques non classiques</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Connecteur_logique&veaction=edit&section=4" title="Modifier la section : Logiques non classiques" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Connecteur_logique&action=edit&section=4" title="Modifier le code source de la section : Logiques non classiques"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Logique_intuitionniste">Logique intuitionniste</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Connecteur_logique&veaction=edit&section=5" title="Modifier la section : Logique intuitionniste" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Connecteur_logique&action=edit&section=5" title="Modifier le code source de la section : Logique intuitionniste"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="bandeau-container bandeau-section metadata bandeau-niveau-information"><div class="bandeau-cell bandeau-icone-css loupe">Article détaillé : <a href="/wiki/S%C3%A9mantique_de_Kripke" title="Sémantique de Kripke">sémantique de Kripke</a>.</div></div> <p>Une sémantique possible de la <a href="/wiki/Logique_intuitionniste" title="Logique intuitionniste">logique intuitionniste</a> se fait dans les <a href="/wiki/S%C3%A9mantique_de_Kripke" title="Sémantique de Kripke">modèles de Kripke</a>. Grosso modo, un modèle de Kripke est un graphe étiqueté, dont les nœuds sont appelés des « mondes », les étiquettes sont des formules et la relation sous-jacente <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span> est dite <i>relation d'accessibilité</i>. Dans ces graphes, la sémantique d'une formule <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> dont le connecteur principal est <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> est un modèle de Kripke avec un monde étiqueté par la formule <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span>. La sémantique de la formule est définie à partir des sémantiques des composants de la formule. Si la formule <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> est <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi ~c~\theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mtext> </mtext> <mi>c</mi> <mtext> </mtext> <mi>θ<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi ~c~\theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff6a93a57bb0a9228decd9a7c97606f091746903" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.772ex; height:2.509ex;" alt="{\displaystyle \psi ~c~\theta }"></span>, la sémantique de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> se fera à partir des sémantiques de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span>. Dire que dans le modèle de Kripke <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {M}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cc2abebd45ec020509a0ec548b67c9a2cb7cecd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.791ex; height:2.176ex;" alt="{\displaystyle {\mathcal {M}}}"></span>, la formule <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> étiquette le monde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span>, s'écrit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}},w\models \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mo>,</mo> <mi>w</mi> <mo>⊨<!-- ⊨ --></mo> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {M}},w\models \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d66d8b09b0c5f19e49e4fb540c4146baefc01ac2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.179ex; height:2.843ex;" alt="{\displaystyle {\mathcal {M}},w\models \phi }"></span>. Dans ce cas <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {M}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cc2abebd45ec020509a0ec548b67c9a2cb7cecd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.791ex; height:2.176ex;" alt="{\displaystyle {\mathcal {M}}}"></span> <i>est un modèle de</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span>. </p> <div class="mw-heading mw-heading5"><h5 id="Un_exemple">Un exemple</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Connecteur_logique&veaction=edit&section=6" title="Modifier la section : Un exemple" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Connecteur_logique&action=edit&section=6" title="Modifier le code source de la section : Un exemple"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Par exemple, supposons que la formule soit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\Rightarrow q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\Rightarrow q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66a1178759137a460fdf9377cd24ee749dac8de9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.942ex; height:2.176ex;" alt="{\displaystyle p\Rightarrow q}"></span>. Son connecteur principal est <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇒<!-- ⇒ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Rightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Rightarrow }"></span>. La définition de la sémantique de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\Rightarrow q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\Rightarrow q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66a1178759137a460fdf9377cd24ee749dac8de9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.942ex; height:2.176ex;" alt="{\displaystyle p\Rightarrow q}"></span> fonctionne ainsi : pour pouvoir dire que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}},w\models p\Rightarrow q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mo>,</mo> <mi>w</mi> <mo>⊨<!-- ⊨ --></mo> <mi>p</mi> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {M}},w\models p\Rightarrow q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/564a52f6d2e53f9745bce1c35b8c40b6fead9324" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.647ex; height:2.843ex;" alt="{\displaystyle {\mathcal {M}},w\models p\Rightarrow q}"></span>, il faut que, dans le modèle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {M}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cc2abebd45ec020509a0ec548b67c9a2cb7cecd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.791ex; height:2.176ex;" alt="{\displaystyle {\mathcal {M}}}"></span>, pour tout monde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>w</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98af407af5c02e29010c7563af95f8986026679c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.349ex; height:2.509ex;" alt="{\displaystyle w'}"></span>, accessible à partir de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span>, autrement dit tel que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle wRw'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mi>R</mi> <msup> <mi>w</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle wRw'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c30412e4c988b8f022b202c72082d4df8343e4b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.777ex; height:2.509ex;" alt="{\displaystyle wRw'}"></span>, on ait : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}},w'\models p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mo>,</mo> <msup> <mi>w</mi> <mo>′</mo> </msup> <mo>⊨<!-- ⊨ --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {M}},w'\models p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b90a68171bb47c9306405f14a5092696e3999b0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.648ex; height:3.009ex;" alt="{\displaystyle {\mathcal {M}},w'\models p}"></span> implique <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}},w'\models q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mo>,</mo> <msup> <mi>w</mi> <mo>′</mo> </msup> <mo>⊨<!-- ⊨ --></mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {M}},w'\models q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59136e86e6ac6cd798b360805700950f453cd107" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.548ex; height:3.009ex;" alt="{\displaystyle {\mathcal {M}},w'\models q}"></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Logiques_modales">Logiques modales</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Connecteur_logique&veaction=edit&section=7" title="Modifier la section : Logiques modales" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Connecteur_logique&action=edit&section=7" title="Modifier le code source de la section : Logiques modales"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="bandeau-container bandeau-section metadata bandeau-niveau-information"><div class="bandeau-cell bandeau-icone"><span class="mw-valign-text-top noviewer" typeof="mw:File"><a href="/wiki/Fichier:Fairytale_warning.png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Fairytale_warning.png/17px-Fairytale_warning.png" decoding="async" width="17" height="17" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Fairytale_warning.png/26px-Fairytale_warning.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Fairytale_warning.png/34px-Fairytale_warning.png 2x" data-file-width="64" data-file-height="64" /></a></span></div><div class="bandeau-cell">Cette section est vide, insuffisamment détaillée ou incomplète. <a href="/wiki/Sp%C3%A9cial:EditPage/Connecteur_logique" title="Spécial:EditPage/Connecteur logique">Votre aide</a> est la bienvenue ! <a href="/wiki/Aide:Comment_modifier_une_page" title="Aide:Comment modifier une page">Comment faire ?</a></div></div> <p>Il faut dans ce cadre expliquer comment les connecteurs se comportent vis-à-vis des modalités. </p> <div class="mw-heading mw-heading2"><h2 id="Systèmes_complets_de_connecteurs"><span id="Syst.C3.A8mes_complets_de_connecteurs"></span>Systèmes complets de connecteurs</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Connecteur_logique&veaction=edit&section=8" title="Modifier la section : Systèmes complets de connecteurs" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Connecteur_logique&action=edit&section=8" title="Modifier le code source de la section : Systèmes complets de connecteurs"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En <a href="/wiki/Logique_classique" title="Logique classique">logique classique</a>, avec le <a href="/wiki/Principe_du_tiers_exclu" title="Principe du tiers exclu">tiers exclu</a>, la sémantique est donnée (via le <a href="/wiki/Th%C3%A9or%C3%A8me_de_compl%C3%A9tude_du_calcul_propositionnel" class="mw-redirect" title="Théorème de complétude du calcul propositionnel">théorème de complétude du calcul propositionnel</a>) par les <a href="/wiki/Table_de_v%C3%A9rit%C3%A9" title="Table de vérité">tables de vérité</a>. </p><p>Une logique p-valente possède <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{(p^{n})}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{(p^{n})}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32fbd065ba97e660d0b2c983c666d81bfde5aa4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:4.562ex; height:3.176ex;" alt="{\displaystyle p^{(p^{n})}}"></span> connecteurs n-aires. Cela correspond aux nombres de formules distinctes (c'est-à-dire deux à deux non équivalentes) que l'on peut écrire avec n propositions atomiques distinctes (p<sub>1</sub>, p<sub>2</sub>, ... p<sub>n</sub>) dans une logique p-valente. </p><p>La logique bivalente usuelle a donc <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{(2^{n})}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{(2^{n})}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c85ace2cf51267ac1a21bb49e6d32307f7ef2d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.461ex; height:2.843ex;" alt="{\displaystyle 2^{(2^{n})}}"></span> connecteurs n-aires. </p><p>Ces logiques ont donc une infinité de connecteurs, pris indépendamment de leur <a href="/wiki/Arit%C3%A9" title="Arité">arité</a>. </p><p>On appelle « système complet de connecteur » un ensemble de connecteurs d'une logique qui suffit à définir tous les autres<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite_crochet">[</span>3<span class="cite_crochet">]</span></a></sup>. </p><p>Pour la logique propositionnel classique, les connecteurs usuels que sont la négation, la conjonction, la disjonction, l'implication et l'équivalence forment ensemble un système complet de connecteurs. </p><p>On démontre, via les notions de <a href="/wiki/Forme_normale_conjonctive" title="Forme normale conjonctive">forme normale conjonctive</a> et <a href="/wiki/Forme_normale_disjonctive" title="Forme normale disjonctive">forme normale disjonctive</a>, que {négation, conjonction, disjonction}, ensemble de connecteurs au plus binaires, est un système complet de connecteurs pour la logique propositionnelle classique. Pour exemple : <i>P</i> ⇒ <i>Q</i> équivaut à ¬<i>P</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∨<!-- ∨ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab47f6b1f589aedcf14638df1d63049d233d851a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \lor }"></span> <i>Q</i> (lire <i>non(P) ou Q</i>). </p><p>La généralisation à des logiques classiques p-valentes a été faite par <a href="/wiki/Emil_Post" title="Emil Post">Emil Post</a> en 1921 dans <i>Introduction à une théorie générale des propositions élémentaires</i>. Il montre qu'avec un connecteur unaire qui fait une <a href="/wiki/Permutation_circulaire" title="Permutation circulaire">permutation circulaire</a> sur les p valeurs de vérité (qui peuvent être notées 0, 1, 2, ... p-1) et qu'avec deux connecteurs binaires, l'un prenant le <i>max</i> de deux valeurs de vérité et l'autre le <i>min</i> de deux valeurs de vérité, on peut écrire toute formule de calcul propositionnel. </p><p>Dans le cas de la logique bivalente classique, l'infinité des connecteurs peut être ramené à un seul, binaire. Parmi les 16 connecteurs binaires, deux sont des systèmes complets de connecteurs, les deux <a href="/wiki/Barre_de_Sheffer" title="Barre de Sheffer">barres de Sheffer</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Notes_et_références"><span id="Notes_et_r.C3.A9f.C3.A9rences"></span>Notes et références</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Connecteur_logique&veaction=edit&section=9" title="Modifier la section : Notes et références" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Connecteur_logique&action=edit&section=9" title="Modifier le code source de la section : Notes et références"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="references-small decimal" style=""><div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink noprint"><a href="#cite_ref-1">↑</a> </span><span class="reference-text">Par exemple la règle du <a href="/wiki/Tiers_exclu" class="mw-redirect" title="Tiers exclu">tiers exclu</a> est ou non satisfaite.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink noprint"><a href="#cite_ref-2">↑</a> </span><span class="reference-text">Une logique <a href="/wiki/Logique_polyvalente" title="Logique polyvalente">p-valente</a> possède <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{(p^{n})}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{(p^{n})}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32fbd065ba97e660d0b2c983c666d81bfde5aa4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:4.562ex; height:3.176ex;" alt="{\displaystyle p^{(p^{n})}}"></span> connecteurs n-aires.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink noprint"><a href="#cite_ref-3">↑</a> </span><span class="reference-text">La logique intuitionniste n'a pas de système complet de connecteurs.</span> </li> </ol></div> </div> <div class="navbox-container" style="clear:both;"> <table class="navbox collapsible noprint autocollapse" style=""> <tbody><tr><th class="navbox-title" colspan="3" style=""><div style="float:left; width:6em; text-align:left"><div class="noprint plainlinks nowrap tnavbar" style="padding:0; font-size:xx-small; color:var(--color-emphasized, #000000);"><a href="/wiki/Mod%C3%A8le:Palette_Connecteurs_logiques" title="Modèle:Palette Connecteurs logiques"><abbr class="abbr" title="Voir ce modèle.">v</abbr></a> · <a class="external text" href="https://fr.wikipedia.org/w/index.php?title=Mod%C3%A8le:Palette_Connecteurs_logiques&action=edit"><abbr class="abbr" title="Modifier ce modèle. Merci de prévisualiser avant de sauvegarder.">m</abbr></a></div></div><div style="font-size:110%"><a class="mw-selflink selflink">Connecteurs logiques</a></div></th> </tr> <tr> <td class="navbox-list" style="text-align:center;" colspan="2"><a href="/wiki/Tautologie_(logique)" title="Tautologie (logique)">Tautologie</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \top }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">⊤<!-- ⊤ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \top }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf12e436fef2365e76fcb1034a51179d8328bb33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \top }"></span></td> <td class="navbox-image" rowspan="5" style="vertical-align:middle;padding-left:7px"><span typeof="mw:File"><a href="/wiki/Fichier:Logical_connectives_Hasse_diagram.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Logical_connectives_Hasse_diagram.svg/80px-Logical_connectives_Hasse_diagram.svg.png" decoding="async" width="80" height="113" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Logical_connectives_Hasse_diagram.svg/120px-Logical_connectives_Hasse_diagram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Logical_connectives_Hasse_diagram.svg/160px-Logical_connectives_Hasse_diagram.svg.png 2x" data-file-width="744" data-file-height="1052" /></a></span></td> </tr> <tr> <td class="navbox-list navbox-even" style="text-align:center;" colspan="2"><div class="liste-horizontale"> <ul><li><a href="/wiki/Barre_de_Sheffer" title="Barre de Sheffer">NON-ET</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \uparrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">↑<!-- ↑ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \uparrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddb20b28c74cdaa09e1f101d426441da1996072f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.162ex; height:2.509ex;" alt="{\displaystyle \uparrow }"></span></li> <li><a href="/wiki/Implication_r%C3%A9ciproque" title="Implication réciproque">Implication réciproque</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leftarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">←<!-- ← --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leftarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c0fb4bce772117bbaf55b7ca1539ceff9ae218c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \leftarrow }"></span></li> <li><a href="/wiki/Implication_(logique)" title="Implication (logique)">Implication</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">→<!-- → --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53e574cc3aa5b4bf5f3f5906caf121a378eef08b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \rightarrow }"></span></li> <li><a href="/wiki/Disjonction_logique" title="Disjonction logique">OU</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∨<!-- ∨ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab47f6b1f589aedcf14638df1d63049d233d851a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \lor }"></span></li></ul> </div></td> </tr> <tr> <td class="navbox-list" style="text-align:center;" colspan="2"><div class="liste-horizontale"> <ul><li><a href="/wiki/N%C3%A9gation_logique" title="Négation logique">Négation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa78fd02085d39aa58c9e47a6d4033ce41e02fad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.204ex; margin-bottom: -0.376ex; width:1.55ex; height:1.176ex;" alt="{\displaystyle \neg }"></span></li> <li><a href="/wiki/Fonction_OU_exclusif" title="Fonction OU exclusif">XOR</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oplus }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊕<!-- ⊕ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oplus }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \oplus }"></span></li> <li><a href="/wiki/%C3%89quivalence_logique" title="Équivalence logique">Équivalence</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">↔<!-- ↔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/046b918c43e05caf6624fe9b676c69ec9cd6b892" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \leftrightarrow }"></span></li></ul> </div></td> </tr> <tr> <td class="navbox-list navbox-even" style="text-align:center;" colspan="2"><div class="liste-horizontale"> <ul><li><a href="/wiki/Fonction_NON-OU" title="Fonction NON-OU">NON-OU</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \downarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">↓<!-- ↓ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \downarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4618f22b0f780805eb94bb407578d9bc9487947a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.162ex; height:2.509ex;" alt="{\displaystyle \downarrow }"></span></li> <li><a href="/wiki/Non-implication" title="Non-implication">Non-implication</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>↛<!-- ↛ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c458d67617e028ed10948d2dbcfef80e9e060a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.137ex; margin-bottom: -0.308ex; width:2.324ex; height:1.509ex;" alt="{\displaystyle \nrightarrow }"></span></li> <li><a href="/wiki/Non-implication_r%C3%A9ciproque" title="Non-implication réciproque">Non-implication réciproque</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nleftarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>↚<!-- ↚ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nleftarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7694c9fc8eebe8a57c8156dd3c2caf022a619439" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.137ex; margin-bottom: -0.308ex; width:2.324ex; height:1.509ex;" alt="{\displaystyle \nleftarrow }"></span></li> <li><a href="/wiki/Conjonction_logique" title="Conjonction logique">ET</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span></li></ul> </div></td> </tr> <tr> <td class="navbox-list" style="text-align:center;" colspan="2"><a href="/wiki/Contradiction" title="Contradiction">Contradiction</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">⊥<!-- ⊥ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f282c7bc331cc3bfcf1c57f1452cc23c022f58de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \bot }"></span></td> </tr> </tbody></table> </div> <ul id="bandeau-portail" class="bandeau-portail"><li><span class="bandeau-portail-element"><span class="bandeau-portail-icone"><span class="noviewer skin-invert-image" typeof="mw:File"><a href="/wiki/Portail:Logique" title="Portail de la logique"><img alt="icône décorative" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Logic.svg/48px-Logic.svg.png" decoding="async" width="48" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Logic.svg/72px-Logic.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Logic.svg/96px-Logic.svg.png 2x" data-file-width="85" data-file-height="28" /></a></span></span> <span class="bandeau-portail-texte"><a href="/wiki/Portail:Logique" title="Portail:Logique">Portail de la logique</a></span> </span></li> <li><span class="bandeau-portail-element"><span class="bandeau-portail-icone"><span class="noviewer skin-invert-image" typeof="mw:File"><a href="/wiki/Portail:Informatique_th%C3%A9orique" title="Portail de l'informatique théorique"><img alt="icône décorative" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Max-cut.svg/30px-Max-cut.svg.png" decoding="async" width="30" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Max-cut.svg/45px-Max-cut.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Max-cut.svg/60px-Max-cut.svg.png 2x" data-file-width="200" data-file-height="160" /></a></span></span> <span class="bandeau-portail-texte"><a href="/wiki/Portail:Informatique_th%C3%A9orique" title="Portail:Informatique théorique">Portail de l'informatique théorique</a></span> </span></li> </ul> <!-- NewPP limit report Parsed by mw‐web.eqiad.canary‐c88f79bc4‐w4jtf Cached time: 20241126142218 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.222 seconds Real time usage: 0.473 seconds Preprocessor visited node count: 1397/1000000 Post‐expand include size: 25507/2097152 bytes Template argument size: 4643/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 0/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 4226/5000000 bytes Lua time usage: 0.026/10.000 seconds Lua memory usage: 1352639/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 172.330 1 -total 56.01% 96.516 1 Modèle:Portail 30.16% 51.976 1 Modèle:Catégorisation_badges 16.02% 27.601 1 Modèle:Voir_homonyme 15.03% 25.901 1 Modèle:Suivi_des_biographies 14.99% 25.835 1 Modèle:Méta_bandeau_de_note 13.81% 23.800 1 Modèle:Méta_bandeau 11.94% 20.573 1 Modèle:Palette 8.53% 14.698 1 Modèle:Palette_Connecteurs_logiques 6.61% 11.385 1 Modèle:Méta_palette_de_navigation --> <!-- Saved in parser cache with key frwiki:pcache:13024935:|#|:idhash:canonical and timestamp 20241126142218 and revision id 216924038. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Ce document provient de « <a dir="ltr" href="https://fr.wikipedia.org/w/index.php?title=Connecteur_logique&oldid=216924038">https://fr.wikipedia.org/w/index.php?title=Connecteur_logique&oldid=216924038</a> ».</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Cat%C3%A9gorie:Accueil" title="Catégorie:Accueil">Catégorie</a> : <ul><li><a href="/wiki/Cat%C3%A9gorie:Connecteur_logique" title="Catégorie:Connecteur logique">Connecteur logique</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Catégories cachées : <ul><li><a href="/wiki/Cat%C3%A9gorie:Article_avec_une_section_vide_ou_incompl%C3%A8te" title="Catégorie:Article avec une section vide ou incomplète">Article avec une section vide ou incomplète</a></li><li><a href="/wiki/Cat%C3%A9gorie:Portail:Logique/Articles_li%C3%A9s" title="Catégorie:Portail:Logique/Articles liés">Portail:Logique/Articles liés</a></li><li><a href="/wiki/Cat%C3%A9gorie:Projet:Math%C3%A9matiques/Articles" title="Catégorie:Projet:Mathématiques/Articles">Projet:Mathématiques/Articles</a></li><li><a href="/wiki/Cat%C3%A9gorie:Portail:Sciences/Articles_li%C3%A9s" title="Catégorie:Portail:Sciences/Articles liés">Portail:Sciences/Articles liés</a></li><li><a href="/wiki/Cat%C3%A9gorie:Portail:Informatique_th%C3%A9orique/Articles_li%C3%A9s" title="Catégorie:Portail:Informatique théorique/Articles liés">Portail:Informatique théorique/Articles liés</a></li><li><a href="/wiki/Cat%C3%A9gorie:Portail:Informatique/Articles_li%C3%A9s" title="Catégorie:Portail:Informatique/Articles liés">Portail:Informatique/Articles liés</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> La dernière modification de cette page a été faite le 19 juillet 2024 à 07:34.</li> <li id="footer-info-copyright"><span style="white-space: normal"><a href="/wiki/Wikip%C3%A9dia:Citation_et_r%C3%A9utilisation_du_contenu_de_Wikip%C3%A9dia" title="Wikipédia:Citation et réutilisation du contenu de Wikipédia">Droit d'auteur</a> : les textes sont disponibles sous <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.fr">licence Creative Commons attribution, partage dans les mêmes conditions</a> ; d’autres conditions peuvent s’appliquer. Voyez les <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/fr">conditions d’utilisation</a> pour plus de détails, ainsi que les <a href="/wiki/Wikip%C3%A9dia:Cr%C3%A9dits_graphiques" title="Wikipédia:Crédits graphiques">crédits graphiques</a>. En cas de réutilisation des textes de cette page, voyez <a href="/wiki/Sp%C3%A9cial:Citer/Connecteur_logique" title="Spécial:Citer/Connecteur logique">comment citer les auteurs et mentionner la licence</a>.<br /> Wikipedia® est une marque déposée de la <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, organisation de bienfaisance régie par le paragraphe <a href="/wiki/501c" title="501c">501(c)(3)</a> du code fiscal des États-Unis.</span><br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/fr">Politique de confidentialité</a></li> <li id="footer-places-about"><a href="/wiki/Wikip%C3%A9dia:%C3%80_propos_de_Wikip%C3%A9dia">À propos de Wikipédia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikip%C3%A9dia:Avertissements_g%C3%A9n%C3%A9raux">Avertissements</a></li> <li id="footer-places-contact"><a href="//fr.wikipedia.org/wiki/Wikipédia:Contact">Contact</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code de conduite</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Développeurs</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/fr.wikipedia.org">Statistiques</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Déclaration sur les témoins (cookies)</a></li> <li id="footer-places-mobileview"><a href="//fr.m.wikipedia.org/w/index.php?title=Connecteur_logique&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Version mobile</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.canary-67fc484f47-8hwpt","wgBackendResponseTime":170,"wgPageParseReport":{"limitreport":{"cputime":"0.222","walltime":"0.473","ppvisitednodes":{"value":1397,"limit":1000000},"postexpandincludesize":{"value":25507,"limit":2097152},"templateargumentsize":{"value":4643,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":4226,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 172.330 1 -total"," 56.01% 96.516 1 Modèle:Portail"," 30.16% 51.976 1 Modèle:Catégorisation_badges"," 16.02% 27.601 1 Modèle:Voir_homonyme"," 15.03% 25.901 1 Modèle:Suivi_des_biographies"," 14.99% 25.835 1 Modèle:Méta_bandeau_de_note"," 13.81% 23.800 1 Modèle:Méta_bandeau"," 11.94% 20.573 1 Modèle:Palette"," 8.53% 14.698 1 Modèle:Palette_Connecteurs_logiques"," 6.61% 11.385 1 Modèle:Méta_palette_de_navigation"]},"scribunto":{"limitreport-timeusage":{"value":"0.026","limit":"10.000"},"limitreport-memusage":{"value":1352639,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.canary-c88f79bc4-w4jtf","timestamp":"20241126142218","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Connecteur logique","url":"https:\/\/fr.wikipedia.org\/wiki\/Connecteur_logique","sameAs":"http:\/\/www.wikidata.org\/entity\/Q211790","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q211790","author":{"@type":"Organization","name":"Contributeurs aux projets Wikimedia"},"publisher":{"@type":"Organization","name":"Fondation Wikimedia, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2020-01-03T15:43:30Z","dateModified":"2024-07-19T06:34:03Z","headline":"symbole ou mot \u00e9tablissant une liaison entre deux \u00e9nonc\u00e9s"}</script> </body> </html>