CINXE.COM

Search results for: torsional scanner

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: torsional scanner</title> <meta name="description" content="Search results for: torsional scanner"> <meta name="keywords" content="torsional scanner"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="torsional scanner" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="torsional scanner"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 220</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: torsional scanner</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Magnet Position Variation of the Electromagnetic Actuation System in a Torsional Scanner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loke%20Kean%20Koay">Loke Kean Koay</a>, <a href="https://publications.waset.org/abstracts/search?q=Mani%20Maran%20Ratnam"> Mani Maran Ratnam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mechanically-resonant torsional spring scanner was developed in a recent study. Various methods were developed to improve the angular displacement of the scanner while maintaining the scanner frequency. However, the effects of rotor magnet radial position on scanner characteristics were not well investigated. In this study, the relationships between the magnet position and the scanner characteristics such as natural frequency, angular displacement and stress level were studied. A finite element model was created and an average deviation of 3.18% was found between the simulation and experimental results, qualifying the simulation results as a guide for further investigations. Three magnet positions on the transverse oscillating suspended plate were investigated by finite element analysis (FEA) and one of the positions were selected as the design position. The magnet position with the longest distance from the twist axis of the mirror was selected since it attains minimum stress level while exceeding the minimum critical flicker frequency and delivering the targeted angular displacement to the scanner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=torsional%20scanner" title="torsional scanner">torsional scanner</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20optimization" title=" design optimization"> design optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20design" title=" computer-aided design"> computer-aided design</a>, <a href="https://publications.waset.org/abstracts/search?q=magnet%20position%20variation" title=" magnet position variation"> magnet position variation</a> </p> <a href="https://publications.waset.org/abstracts/10094/magnet-position-variation-of-the-electromagnetic-actuation-system-in-a-torsional-scanner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Investigation for the Mechanism of Lateral-Torsional Coupled Vibration of the Propulsion Shaft in a Ship</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyungsuk%20Han">Hyungsuk Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Soohong%20Jeon"> Soohong Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Chungwon%20Lee"> Chungwon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=YongHoon%20Kim"> YongHoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a rubber mount and flexible coupling are installed on the main engine, high torsional vibration can occur. The root cause of this high torsional vibration can be attributed to the lateral-torsional coupled vibration of the shaft system. Therefore, the lateral-torsional coupled vibration is investigated numerically after approximating the shaft system to a three-degrees-of-freedom Jeffcott rotor. To verify that the high torsional vibration is caused by the lateral-torsional coupled vibration, a test unit that can simulate this lateral-torsional coupled vibration occurring in the propulsion shaft is developed. Performing a vibration test with the test unit, it can be experimentally verified that the high torsional vibration occurring in the propulsion shaft of the particular ship was caused by the lateral-torsional coupled vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeffcott%20rotor" title="Jeffcott rotor">Jeffcott rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20coupled%20vibration" title=" lateral-torsional coupled vibration"> lateral-torsional coupled vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=propulsion%20shaft" title=" propulsion shaft"> propulsion shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/107458/investigation-for-the-mechanism-of-lateral-torsional-coupled-vibration-of-the-propulsion-shaft-in-a-ship" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> Torsional Rigidities of Reinforced Concrete Beams Subjected to Elastic Lateral Torsional Buckling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilker%20Kalkan">Ilker Kalkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Saruhan%20Kartal"> Saruhan Kartal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete (RC) beams rarely undergo lateral-torsional buckling (LTB), since these beams possess large lateral bending and torsional rigidities owing to their stocky cross-sections, unlike steel beams. However, the problem of LTB is becoming more and more pronounced in the last decades as the span lengths of concrete beams increase and the cross-sections become more slender with the use of pre-stressed concrete. The buckling moment of a beam mainly depends on its lateral bending rigidity and torsional rigidity. The nonhomogeneous and elastic-inelastic nature of RC complicates estimation of the buckling moments of concrete beams. Furthermore, the lateral bending and torsional rigidities of RC beams and the buckling moments are affected from different forms of concrete cracking, including flexural, torsional and restrained shrinkage cracking. The present study pertains to the effects of concrete cracking on the torsional rigidities of RC beams prone to elastic LTB. A series of tests on rather slender RC beams indicated that torsional cracking does not initiate until buckling in elastic LTB, while flexural cracking associated with lateral bending takes place even at the initial stages of loading. Hence, the present study clearly indicated that the un-cracked torsional rigidity needs to be used for estimating the buckling moments of RC beams liable to elastic LTB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateral%20stability" title="lateral stability">lateral stability</a>, <a href="https://publications.waset.org/abstracts/search?q=post-cracking%20torsional%20rigidity" title=" post-cracking torsional rigidity"> post-cracking torsional rigidity</a>, <a href="https://publications.waset.org/abstracts/search?q=uncracked%20torsional%20rigidity" title=" uncracked torsional rigidity"> uncracked torsional rigidity</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20moment" title=" critical moment"> critical moment</a> </p> <a href="https://publications.waset.org/abstracts/72558/torsional-rigidities-of-reinforced-concrete-beams-subjected-to-elastic-lateral-torsional-buckling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Utilization of Fins to Improve the Response of Pile under Torsional Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waseim%20Ragab%20Azzam%20Ahmed%20Mohamed%20Nasr">Waseim Ragab Azzam Ahmed Mohamed Nasr</a>, <a href="https://publications.waset.org/abstracts/search?q=Aalaa%20Ibrahim%20Khater"> Aalaa Ibrahim Khater</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Torsional loads from offshore wind turbines, waves, wind, earthquakes, ship collisions in the maritime environment, and electrical transmission towers might affect the pile foundations. Torsional loads can also be caused by the axial load from the sustaining structures. The paper introduces the finned pile, an alternative method of pile modification. The effects of torsional loads were investigated through a series of experimental tests aimed at improving the torsional capacity of a single pile in the sand (where sand was utilized in a state of medium density (Dr = 50%), with or without fins. In these tests, the fins' length, width, form, and number were varied to see how these attributes affected the maximum torsional capacity of the piles. We have noticed the torsion-rotation reaction. The findings demonstrated that the fins improve the maximum torsional capacity of the piles. It was demonstrated that a length of 0.6 times the embedded pile's length and a width equivalent to the pile's diameter constitute the optimal fin geometry. For the conventional pile and the finned pile, the maximum torsional capacities were determined to be 4.12 N.m. and 7.36 N.m., respectively. When subjected to torsional loads, the fins' presence enhanced the piles' maximum torsional capacity by almost 79%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clean%20sand" title="clean sand">clean sand</a>, <a href="https://publications.waset.org/abstracts/search?q=finned%20piles" title=" finned piles"> finned piles</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20tests" title=" model tests"> model tests</a>, <a href="https://publications.waset.org/abstracts/search?q=torsional%20load" title=" torsional load"> torsional load</a> </p> <a href="https://publications.waset.org/abstracts/180827/utilization-of-fins-to-improve-the-response-of-pile-under-torsional-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Research on the Torsional Vibration of a Power-Split Hybrid Powertrain Equipped with a Dual Mass Flywheel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaolin%20Tang">Xiaolin Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yang"> Wei Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoan%20Chen"> Xiaoan Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research described in this paper was aimed at exploring the torsional vibration characteristics of a power-split hybrid powertrain equipped with a dual mass flywheel. The dynamic equations of governing torsional vibration for this hybrid driveline are presented, and the multi-body dynamic model for the powertrain is established with the software of ADAMS. Accordingly, different parameters of dual mass flywheel are investigated by forced vibration to reduce the torsional vibration of hybrid drive train. The analysis shows that the implementation of a dual mass flywheel is an effective way to decrease the torsional vibration of the hybrid powertrain. At last, the optimal combination of parameters yielding the lowest vibration is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20mass%20flywheel" title="dual mass flywheel">dual mass flywheel</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20electric%20vehicle" title=" hybrid electric vehicle"> hybrid electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=torsional%20vibration" title=" torsional vibration"> torsional vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=powertrain" title=" powertrain"> powertrain</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a> </p> <a href="https://publications.waset.org/abstracts/47396/research-on-the-torsional-vibration-of-a-power-split-hybrid-powertrain-equipped-with-a-dual-mass-flywheel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> On the Evaluation of Critical Lateral-Torsional Buckling Loads of Monosymmetric Beam-Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Yilmaz">T. Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kirac"> N. Kirac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beam-column elements are defined as structural members subjected to a combination of axial and bending forces. Lateral torsional buckling is one of the major failure modes in which beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting. This study presents a compact closed-form equation that it can be used for calculating critical lateral torsional-buckling load of beam-columns with monosymmetric sections in the presence of a known axial load. Lateral-torsional buckling behavior of beam-columns subjected to constant axial force and various transverse load cases are investigated by using Ritz method in order to establish proposed equation. Lateral-torsional buckling loads calculated by presented formula are compared to finite element model results. ABAQUS software is utilized to generate finite element models of beam-columns. It is found out that lateral-torsional buckling load of beam-columns with monosymmetric sections can be determined by proposed equation and can be safely used in design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20buckling" title="lateral-torsional buckling">lateral-torsional buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=beam-column" title=" beam-column"> beam-column</a>, <a href="https://publications.waset.org/abstracts/search?q=monosymmetric%20section" title=" monosymmetric section"> monosymmetric section</a> </p> <a href="https://publications.waset.org/abstracts/51595/on-the-evaluation-of-critical-lateral-torsional-buckling-loads-of-monosymmetric-beam-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Compressive and Torsional Strength of Self-Compacting Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moosa%20Mazloom">Moosa Mazloom</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Mehrvand"> Morteza Mehrvand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this study was to investigate the effects of silica fume and super plasticizer dosages on compressive and torsional properties of SCC. This work concentrated on concrete mixes having water/binder ratios of 0.45 and 0.35, which contained constant total binder contents of 400 kg/m3 and 500 kg/m3, respectively. The percentages of silica fume that replaced cement were 0 % and 10 %. The super plasticizer dosages utilized in the mixtures were 0.4%, 0.8%, 1.2 % and 1.6 % of the weight of cement. Prism dimensions used in this test were 10 × 10 × 40 cm3. The results of this research indicated that torsional strength of SCC prisms can be calculated using the equations presented in Canadian and American concrete building codes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20concrete" title="self-compacting concrete">self-compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20prism" title=" rectangular prism"> rectangular prism</a>, <a href="https://publications.waset.org/abstracts/search?q=torsional%20strength" title=" torsional strength"> torsional strength</a> </p> <a href="https://publications.waset.org/abstracts/29748/compressive-and-torsional-strength-of-self-compacting-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> Basic Study of Mammographic Image Magnification System with Eye-Detector and Simple EEG Scanner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aika%20Umemuro">Aika Umemuro</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitsuru%20Sato"> Mitsuru Sato</a>, <a href="https://publications.waset.org/abstracts/search?q=Mizuki%20Narita"> Mizuki Narita</a>, <a href="https://publications.waset.org/abstracts/search?q=Saya%20Hori"> Saya Hori</a>, <a href="https://publications.waset.org/abstracts/search?q=Saya%20Sakurai"> Saya Sakurai</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomomi%20Nakayama"> Tomomi Nakayama</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayano%20Nakazawa"> Ayano Nakazawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshihiro%20Ogura"> Toshihiro Ogura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mammography requires the detection of very small calcifications, and physicians search for microcalcifications by magnifying the images as they read them. The mouse is necessary to zoom in on the images, but this can be tiring and distracting when many images are read in a single day. Therefore, an image magnification system combining an eye-detector and a simple electroencephalograph (EEG) scanner was devised, and its operability was evaluated. Two experiments were conducted in this study: the measurement of eye-detection error using an eye-detector and the measurement of the time required for image magnification using a simple EEG scanner. Eye-detector validation showed that the mean distance of eye-detection error ranged from 0.64 cm to 2.17 cm, with an overall mean of 1.24 ± 0.81 cm for the observers. The results showed that the eye detection error was small enough for the magnified area of the mammographic image. The average time required for point magnification in the verification of the simple EEG scanner ranged from 5.85 to 16.73 seconds, and individual differences were observed. The reason for this may be that the size of the simple EEG scanner used was not adjustable, so it did not fit well for some subjects. The use of a simple EEG scanner with size adjustment would solve this problem. Therefore, the image magnification system using the eye-detector and the simple EEG scanner is useful. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EEG%20scanner" title="EEG scanner">EEG scanner</a>, <a href="https://publications.waset.org/abstracts/search?q=eye-detector" title=" eye-detector"> eye-detector</a>, <a href="https://publications.waset.org/abstracts/search?q=mammography" title=" mammography"> mammography</a>, <a href="https://publications.waset.org/abstracts/search?q=observers" title=" observers"> observers</a> </p> <a href="https://publications.waset.org/abstracts/155822/basic-study-of-mammographic-image-magnification-system-with-eye-detector-and-simple-eeg-scanner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">212</span> An Approximate Lateral-Torsional Buckling Mode Function for Cantilever I-Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ozbasaran">H. Ozbasaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lateral torsional buckling is a global stability loss which should be considered in the design of slender structural members under flexure about their strong axis. It is possible to compute the load which causes lateral torsional buckling of a beam by finite element analysis, however, closed form equations are needed in engineering practice. Such equations can be obtained by using energy method. Unfortunately, this method has a vital drawback. In lateral torsional buckling applications of energy method, a proper function for the critical lateral torsional buckling mode should be chosen which can be thought as the variation of twisting angle along the buckled beam. The accuracy of the results depends on how close is the chosen function to the exact mode. Since critical lateral torsional buckling mode of the cantilever I-beams varies due to material properties, section properties, and loading case, the hardest step is to determine a proper mode function. This paper presents an approximate function for critical lateral torsional buckling mode of doubly symmetric cantilever I-beams. Coefficient matrices are calculated for the concentrated load at the free end, uniformly distributed load and constant moment along the beam cases. Critical lateral torsional buckling modes obtained by presented function and exact solutions are compared. It is found that the modes obtained by presented function coincide with differential equation solutions for considered loading cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling%20mode" title="buckling mode">buckling mode</a>, <a href="https://publications.waset.org/abstracts/search?q=cantilever" title=" cantilever"> cantilever</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20buckling" title=" lateral-torsional buckling"> lateral-torsional buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=I-beam" title=" I-beam"> I-beam</a> </p> <a href="https://publications.waset.org/abstracts/34077/an-approximate-lateral-torsional-buckling-mode-function-for-cantilever-i-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">211</span> Prediction of the Torsional Vibration Characteristics of a Rotor-Shaft System Using Its Scale Model and Scaling Laws</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia-Jang%20Wu">Jia-Jang Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the scaling laws that provide the criteria of geometry and dynamic similitude between the full-size rotor-shaft system and its scale model, and can be used to predict the torsional vibration characteristics of the full-size rotor-shaft system by manipulating the corresponding data of its scale model. The scaling factors, which play fundamental roles in predicting the geometry and dynamic relationships between the full-size rotor-shaft system and its scale model, for torsional free vibration problems between scale and full-size rotor-shaft systems are firstly obtained from the equation of motion of torsional free vibration. Then, the scaling factor of external force (i.e., torque) required for the torsional forced vibration problems is determined based on the Newton’s second law. Numerical results show that the torsional free and forced vibration characteristics of a full-size rotor-shaft system can be accurately predicted from those of its scale models by using the foregoing scaling factors. For this reason, it is believed that the presented approach will be significant for investigating the relevant phenomenon in the scale model tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=torsional%20vibration" title="torsional vibration">torsional vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=full-size%20model" title=" full-size model"> full-size model</a>, <a href="https://publications.waset.org/abstracts/search?q=scale%20model" title=" scale model"> scale model</a>, <a href="https://publications.waset.org/abstracts/search?q=scaling%20laws" title=" scaling laws"> scaling laws</a> </p> <a href="https://publications.waset.org/abstracts/13992/prediction-of-the-torsional-vibration-characteristics-of-a-rotor-shaft-system-using-its-scale-model-and-scaling-laws" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">210</span> A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ozbasaran">H. Ozbasaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> IPN and IPE sections, which are commonly used European I shapes, are widely used in steel structures as cantilever beams to support overhangs. A considerable number of studies exist on calculating lateral torsional buckling load of I sections. However, most of them provide series solutions or complex closed-form equations. In this paper, a simple equation is presented to calculate lateral torsional buckling load of IPN and IPE section cantilever beams. First, differential equation of lateral torsional buckling is solved numerically for various loading cases. Then a parametric study is conducted on results to present an equation for lateral torsional buckling load of European IPN and IPE beams. Finally, results obtained by presented equation are compared to differential equation solutions and finite element model results. ABAQUS software is utilized to generate finite element models of beams. It is seen that the results obtained from presented equation coincide with differential equation solutions and ABAQUS software results. It can be suggested that presented formula can be safely used to calculate critical lateral torsional buckling load of European IPN and IPE section cantilevers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cantilever" title="cantilever">cantilever</a>, <a href="https://publications.waset.org/abstracts/search?q=IPN" title=" IPN"> IPN</a>, <a href="https://publications.waset.org/abstracts/search?q=IPE" title=" IPE"> IPE</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20torsional%20buckling" title=" lateral torsional buckling"> lateral torsional buckling</a> </p> <a href="https://publications.waset.org/abstracts/8135/a-parametric-study-on-lateral-torsional-buckling-of-european-ipn-and-ipe-cantilevers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">209</span> Interaction of Local, Flexural-Torsional, and Flexural Buckling in Cold-Formed Steel Lipped-Angle Compression Members</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Kalam%20Aswathy">K. C. Kalam Aswathy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Anil%20Kumar"> M. V. Anil Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The possible failure modes of cold-formed steel (CFS) lipped angle (LA) compression members are yielding, local, flexural-torsional, or flexural buckling, and any possible interaction between these buckling modes. In general, the strength estimated by current design guidelines is conservative for these members when flexural-torsional buckling (FTB) is the first global buckling mode, as the post-buckling strength of this mode is not accounted for in the global buckling strength equations. The initial part of this paper reports the results of an experimental and numerical study of CFS-LA members undergoing independent FTB. The modifications are suggested to global buckling strength equations based on these results. Subsequently, the reduction in the ultimate strength from strength corresponding to independent buckling modes for LA members undergoing interaction between buckling modes such as local-flexural torsional, flexural-flexural torsional, local-flexural, and local-flexural torsional-flexural are studied systematically using finite element analysis results. A simple and more accurate interaction equation that accounts for the above interactions between buckling modes in CFS-LA compression members is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling%20interactions" title="buckling interactions">buckling interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=cold-formed%20steel" title=" cold-formed steel"> cold-formed steel</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural-torsional%20buckling" title=" flexural-torsional buckling"> flexural-torsional buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=lipped%20angle" title=" lipped angle"> lipped angle</a> </p> <a href="https://publications.waset.org/abstracts/172729/interaction-of-local-flexural-torsional-and-flexural-buckling-in-cold-formed-steel-lipped-angle-compression-members" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">208</span> Development of 3D Laser Scanner for Robot Navigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Emre%20%C3%96zt%C3%BCrk">Ali Emre Öztürk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Ercelebi"> Ergun Ercelebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous robotic systems needs an equipment like a human eye for their movement. Robotic camera systems, distance sensors and 3D laser scanners have been used in the literature. In this study a 3D laser scanner has been produced for those autonomous robotic systems. In general 3D laser scanners are using 2 dimension laser range finders that are moving on one-axis (1D) to generate the model. In this study, the model has been obtained by a one-dimensional laser range finder that is moving in two –axis (2D) and because of this the laser scanner has been produced cheaper. Furthermore for the laser scanner a motor driver, an embedded system control board has been used and at the same time a user interface card has been used to make the communication between those cards and computer. Due to this laser scanner, the density of the objects, the distance between the objects and the necessary path ways for the robot can be calculated. The data collected by the laser scanner system is converted in to cartesian coordinates to be modeled in AutoCAD program. This study shows also the synchronization between the computer user interface, AutoCAD and the embedded systems. As a result it makes the solution cheaper for such systems. The scanning results are enough for an autonomous robot but the scan cycle time should be developed. This study makes also contribution for further studies between the hardware and software needs since it has a powerful performance and a low cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20laser%20scanner" title="3D laser scanner">3D laser scanner</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20system" title=" embedded system"> embedded system</a>, <a href="https://publications.waset.org/abstracts/search?q=1D%20laser%20range%20finder" title=" 1D laser range finder"> 1D laser range finder</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20model" title=" 3D model"> 3D model</a> </p> <a href="https://publications.waset.org/abstracts/3355/development-of-3d-laser-scanner-for-robot-navigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">207</span> Design, Analysis and Optimization of Space Frame for BAJA SAE Chassis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Malviya">Manoj Malviya</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Shinde"> Shubham Shinde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study focuses on the determination of torsional stiffness of a space frame chassis and comparison of elements used in the Finite Element Analysis of frame. The study also discusses various concepts and design aspects of a space frame chassis with the emphasis on their applicability in BAJA SAE vehicles. Torsional stiffness is a very important factor that determines the chassis strength, vehicle control, and handling. Therefore, it is very important to determine the torsional stiffness of the vehicle before designing an optimum chassis so that it should not fail during extreme conditions. This study determines the torsional stiffness of frame with respect to suspension shocks, roll-stiffness and anti-roll bar rates. A spring model is developed to study the effects of suspension parameters. The engine greatly contributes to torsional stiffness, and therefore, its effects on torsional stiffness need to be considered. Deflections in the tire have not been considered in the present study. The proper element shape should be selected to analyze the effects of various loadings on chassis while implementing finite element methods. The study compares the accuracy of results and computational time for different element types. Shape functions of these elements are also discussed. Modelling methodology is discussed for the multibody analysis of chassis integrated with suspension arms and engine. Proper boundary conditions are presented so as to replicate the real life conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20frame%20chassis" title="space frame chassis">space frame chassis</a>, <a href="https://publications.waset.org/abstracts/search?q=torsional%20stiffness" title=" torsional stiffness"> torsional stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-body%20analysis%20of%20chassis" title=" multi-body analysis of chassis"> multi-body analysis of chassis</a>, <a href="https://publications.waset.org/abstracts/search?q=element%20selection" title=" element selection"> element selection</a> </p> <a href="https://publications.waset.org/abstracts/69167/design-analysis-and-optimization-of-space-frame-for-baja-sae-chassis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">206</span> A Study on Improvement of the Electromagnetic Vibration of a Polygon Mirror Scanner Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongmin%20You">Yongmin You</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric machines for office automation device such as printer and scanner have been required the low noise and vibration performance. Many researches about the low noise and vibration of polygon mirror scanner motor have been also progressed. The noise and vibration of polygon mirror scanner motor can be classified by aerodynamic, structural and electromagnetic. Electromagnetic noise and vibration can be occurred by high cogging torque and nonsinusoidal back EMF. To improve the cogging torque and back EMF characteristic, we apply unequal air-gap. To analyze characteristic of a polygon mirror scanner motor, two dimensional finite element method is used. To minimize the cogging torque of a polygon mirror motor, Kriging based on latin hypercube sampling (LHS) is utilized. Compared to the initial model, the torque ripple of the optimized unequal air-gap model was reduced by 23.4 % while maintaining the back EMF and average torque. To verify the optimal design results, the experiment was performed. We measured the vibration in motors at 23,600 rpm which is the rated velocity. The radial and axial gravitational acceleration of the optimal model were declined more than seven times and three times, respectively. From these results, a shape optimized unequal polygon mirror scanner motor has shown the usefulness of an improvement in the torque ripple and electromagnetic vibration characteristic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polygon%20mirror%20scanner%20motor" title="polygon mirror scanner motor">polygon mirror scanner motor</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20design" title=" optimal design"> optimal design</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a> </p> <a href="https://publications.waset.org/abstracts/64401/a-study-on-improvement-of-the-electromagnetic-vibration-of-a-polygon-mirror-scanner-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> The Effect of Torsional Angle on Reversible Electron Transfer in Donor: Acceptor Frameworks Using Bis(Imino)Pyridines as Proxy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Brisbin">Ryan Brisbin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Harb"> Hassan Harb</a>, <a href="https://publications.waset.org/abstracts/search?q=Justin%20Debow"> Justin Debow</a>, <a href="https://publications.waset.org/abstracts/search?q=Hrant%20Hratchian"> Hrant Hratchian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Baxter"> Ryan Baxter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Donor-Acceptor (DA) frameworks are crucial parts of any technology requiring charge transport. This type of behavior is ubiquitous across technologies from semi conductors to solar panels. Currently, most DA systems involve metallic components, but progressive research is being pursued to design fully organic DA systems to be used as both organic semi-conductors and light emitting diodes. These systems are currently comprised of conductive polymers and salts. However, little is known about the effect of various physical aspects (size, torsional angle, electron density) have on the act of reversible charge transfer. Herein, the effect of torsional angle on reductive stability in bis(imino)pyridines is analyzed using a combination of single crystal analysis and electro-chemical peak current ratios from cyclic voltammetry. The computed free energies of reduction and electron attachment points were also investigated through density functional theory and natural ionization orbital theory to gain greater understanding of the global effect torsional angles have on electron transfer in bis(imino)pyridines. Findings indicated that torsional angles are a multi-variable parameter affected by both local steric constraints and resonant electronic contributions. Local steric impacted torsional angles demonstrated a negligible effect on electrochemical reversibility, while resonant affected torsional angles were observed to significantly alter the electrochemical reversibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title="cyclic voltammetry">cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=bis%28imino%29pyridines" title=" bis(imino)pyridines"> bis(imino)pyridines</a>, <a href="https://publications.waset.org/abstracts/search?q=structure-activity%20relationship" title=" structure-activity relationship"> structure-activity relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=torsional%20angles" title=" torsional angles"> torsional angles</a> </p> <a href="https://publications.waset.org/abstracts/133994/the-effect-of-torsional-angle-on-reversible-electron-transfer-in-donor-acceptor-frameworks-using-bisiminopyridines-as-proxy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> Evaluation of Uniformity for Gafchromic Sheets for Film Dosimetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fayzan%20Ahmed">Fayzan Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Bin%20Saeed"> Saad Bin Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Qadir%20Jangda"> Abdul Qadir Jangda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gafchromic™ sheet are extensively used for the QA of intensity modulated radiation therapy and other in-vivo dosimetry. Intra-sheet Non-uniformity of scanner as well as film causes undesirable fluctuations which are reflected in dosimetry The aim of this study is to define a systematic and robust method to investigate the intra-sheet uniformity of the unexposed Gafchromic Sheets and the region of interest (ROI) of the scanner. Sheets of lot No#: A05151201 were scanned before and after the expiry period with the EPSON™ XL10000 scanner in the transmission mode, landscape orientation and 72 dpi resolution. ROI of (8’x 10’ inches) equal to the sheet dimension in the center of the scanner is used to acquire images with full transmission, block transmission and with sheets in place. 500 virtual grids, created in MATALB® are imported as a macros in ImageJ (1.49m Wayne Rasband) to analyze the images. In order to remove the edge effects, the outer 86 grids are excluded from the analysis. The standard deviation of the block transmission and full transmission are 0.38% and 0.66% confirming a higher uniformity of the scanner. Expired and non-expired sheets have standard deviations of 2.18% and 1.29%, show that uniformity decreases after expiry. The results are promising and indicates a good potential of this method to be used as a uniformity check for scanner and unexposed Gafchromic sheets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IMRT" title="IMRT">IMRT</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20dosimetry" title=" film dosimetry"> film dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20grids" title=" virtual grids"> virtual grids</a>, <a href="https://publications.waset.org/abstracts/search?q=uniformity" title=" uniformity"> uniformity</a> </p> <a href="https://publications.waset.org/abstracts/24242/evaluation-of-uniformity-for-gafchromic-sheets-for-film-dosimetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> A Simple Method for Evaluation of Uniformity for Gafchromic Sheets for Film Dosimetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fayzan%20Ahmed">Fayzan Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Bin%20Saeed"> Saad Bin Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Qadir%20Jangda"> Abdul Qadir Jangda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gafchromic™ sheet are extensively used for the QA of intensity modulated radiation therapy and other in-vivo dosimetry. Intra-sheet Non-uniformity of scanner as well as film causes undesirable fluctuations which are reflected in dosimetry The aim of this study is to define a systematic and robust method to investigate the intra-sheet uniformity of the unexposed Gafchromic Sheets and the region of interest (ROI) of the scanner. Sheets of lot No#: A05151201 were scanned before and after the expiry period with the EPSON™ XL10000 scanner in the transmission mode, landscape orientation, and 72 dpi resolution. ROI of (8’x 10’ inches) equal to the sheet dimension in the center of the scanner is used to acquire images with full transmission, block transmission and with sheets in place. 500 virtual grids, created in MATALB® are imported as a macros in ImageJ (1.49m Wayne Rasband) to analyze the images. In order to remove the edge effects, the outer 86 grids are excluded from the analysis. The standard deviation of the block transmission and full transmission are 0.38% and 0.66% confirming a higher uniformity of the scanner. Expired and non-expired sheets have standard deviations of 2.18% and 1.29%, show that uniformity decreases after expiry. The results are promising and indicate a good potential of this method to be used as a uniformity check for scanner and unexposed Gafchromic sheets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IMRT" title="IMRT">IMRT</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20dosimetry" title=" film dosimetry"> film dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20grids" title=" virtual grids"> virtual grids</a>, <a href="https://publications.waset.org/abstracts/search?q=uniformity" title=" uniformity"> uniformity</a> </p> <a href="https://publications.waset.org/abstracts/24115/a-simple-method-for-evaluation-of-uniformity-for-gafchromic-sheets-for-film-dosimetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> Time Efficient Color Coding for Structured-Light 3D Scanner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Hao%20Huang">Po-Hao Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Ju%20Chiang"> Pei-Ju Chiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The structured light 3D scanner is commonly used for measuring the 3D shape of an object. Through projecting designed light patterns on the object, deformed patterns can be obtained and used for the geometric shape reconstruction. At present, Gray code is the most reliable and commonly used light pattern in the structured light 3D scanner. However, the trade-off between scanning efficiency and accuracy is a long-standing and challenging problem. The design of light patterns plays a significant role in the scanning efficiency and accuracy. Thereby, we proposed a novel encoding method integrating color information and Gray-code to improve the scanning efficiency. We will demonstrate that with the proposed method, the scanning time can be reduced to approximate half of the one needed by Gray-code without reduction of precision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gray-code" title="gray-code">gray-code</a>, <a href="https://publications.waset.org/abstracts/search?q=structured%20light%20scanner" title=" structured light scanner"> structured light scanner</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20shape%20acquisition" title=" 3D shape acquisition"> 3D shape acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20reconstruction" title=" 3D reconstruction"> 3D reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/33773/time-efficient-color-coding-for-structured-light-3d-scanner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">201</span> Analysis of Electromechanical Torsional Vibration in Large-Power AC Drive System Based on Virtual Inertia Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Wang">Jin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunyi%20Zhu"> Chunyi Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chongjian%20Li"> Chongjian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Dapeng%20Zheng"> Dapeng Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A method based on virtual inertia for suppressing electromechanical torsional vibration of a large-power AC drive system is presented in this paper. The main drive system of the rolling mill is the research object, and a two-inertia elastic model is established to study the mechanism of electromechanical torsional vibration. The improvement is made based on the control of the load observer. The virtual inertia control ratio K is added to the speed forward channel, and the feedback loop adds 1-K to design virtual inertia control. The control method combines the advantages of the positive and negative feedback control of the load observer, can achieve the purpose of controlling the moment of inertia of the motor from the perspective of electrical control, and effectively suppress oscillation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromechanical%20torsional%20vibration" title="electromechanical torsional vibration">electromechanical torsional vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=large-power%20AC%20drive%20system" title=" large-power AC drive system"> large-power AC drive system</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20observer" title=" load observer"> load observer</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20design" title=" simulation design"> simulation design</a> </p> <a href="https://publications.waset.org/abstracts/130893/analysis-of-electromechanical-torsional-vibration-in-large-power-ac-drive-system-based-on-virtual-inertia-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">200</span> Influence of Corrugation and Loosely Bonded Interface on the Propagation of Torsional Wave Propagation in a Viscoelastic Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amrita%20Das">Amrita Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Kumar%20Singh"> Abhishek Kumar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper calibrates the efficacy of corrugated and loosely bonded common interface of a viscoelastic layer and a dry sandy Gibson half-space on the propagation of torsional surface wave. Using suitable boundary conditions, the dispersion relation for the concerned problem is deduced in complex form. Numerical computation of the real part of the obtained dispersion relation gives the dispersion curve whereas the imaginary part bestows the damping curves. The use of Whittaker’s function and Bessel’s functions are among the major concerns of the paper. The investigation of the influence of the affecting parameters viz. heterogeneities, sandiness, Biot’s gravity parameter, initial stresses, loosely bonded interface, corrugation and internal friction on the phase velocity as well as damped velocity of torsional wave, through numerical discussion and graphical illustration, is among the major highlights of the current study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugation" title="corrugation">corrugation</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20sandy%20Gibson%20half-space" title=" dry sandy Gibson half-space"> dry sandy Gibson half-space</a>, <a href="https://publications.waset.org/abstracts/search?q=loosely%20bonded%20interface" title=" loosely bonded interface"> loosely bonded interface</a>, <a href="https://publications.waset.org/abstracts/search?q=torsional%20wave" title=" torsional wave"> torsional wave</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20layer" title=" viscoelastic layer"> viscoelastic layer</a> </p> <a href="https://publications.waset.org/abstracts/60385/influence-of-corrugation-and-loosely-bonded-interface-on-the-propagation-of-torsional-wave-propagation-in-a-viscoelastic-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">199</span> 3D Point Cloud Model Color Adjustment by Combining Terrestrial Laser Scanner and Close Range Photogrammetry Datasets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Pepe">M. Pepe</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ackermann"> S. Ackermann</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Fregonese"> L. Fregonese</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Achille"> C. Achille</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D models obtained with advanced survey techniques such as close-range photogrammetry and laser scanner are nowadays particularly appreciated in Cultural Heritage and Archaeology fields. In order to produce high quality models representing archaeological evidences and anthropological artifacts, the appearance of the model (i.e. color) beyond the geometric accuracy, is not a negligible aspect. The integration of the close-range photogrammetry survey techniques with the laser scanner is still a topic of study and research. By combining point cloud data sets of the same object generated with both technologies, or with the same technology but registered in different moment and/or natural light condition, could construct a final point cloud with accentuated color dissimilarities. In this paper, a methodology to uniform the different data sets, to improve the chromatic quality and to highlight further details by balancing the point color will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20models" title="color models">color models</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20heritage" title=" cultural heritage"> cultural heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20scanner" title=" laser scanner"> laser scanner</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetry" title=" photogrammetry"> photogrammetry</a> </p> <a href="https://publications.waset.org/abstracts/54399/3d-point-cloud-model-color-adjustment-by-combining-terrestrial-laser-scanner-and-close-range-photogrammetry-datasets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">198</span> Lateral Torsional Buckling of an Eccentrically Loaded Channel Section Beam </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Dahmani">L. Dahmani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Drizi"> S. Drizi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Djemai"> M. Djemai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Boudjemia"> A. Boudjemia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Mechiche"> M. O. Mechiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Channel sections are widely used in practice as beams. However, design rules for eccentrically loaded (not through shear center) beams with channel cross- sections are not available in Eurocode 3. This paper compares the ultimate loads based on the adjusted design rules for lateral torsional buckling of eccentrically loaded channel beams in bending to the ultimate loads obtained with Finite Element (FE) simulations on the basis of a parameter study. Based on the proposed design rule, this study has led to a new design rule which conforms to Eurocode 3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode%203" title=" Eurocode 3"> Eurocode 3</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20torsional%20buckling" title=" lateral torsional buckling"> lateral torsional buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20channel%20beam" title=" steel channel beam"> steel channel beam</a> </p> <a href="https://publications.waset.org/abstracts/22007/lateral-torsional-buckling-of-an-eccentrically-loaded-channel-section-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">197</span> Structural Behavior of Non-Prismatic Mono-Symmetric Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nandini%20B.%20Nagaraju">Nandini B. Nagaraju</a>, <a href="https://publications.waset.org/abstracts/search?q=Punya%20D.%20Gowda"> Punya D. Gowda</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Aishwarya"> S. Aishwarya</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Rohit"> Benjamin Rohit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper attempts to understand the structural behavior of non-prismatic channel beams subjected to bending through finite element (FE) analysis. The present study aims at shedding some light on how tapered channel beams behave by studying the effect of taper ratio on structural behavior. As a weight reduction is always desired in aerospace structures beams are tapered in order to obtain highest structural efficiency. FE analysis has been performed to study the effect of taper ratio on linear deflection, lateral torsional buckling, non-linear parameters, stresses and dynamic parameters. Taper ratio tends to affect the mechanics of tapered beams innocuously and adversely. Consequently, it becomes important to understand and document the mechanics of channel tapered beams. Channel beams generally have low torsional rigidity due to the off-shear loading. The effect of loading type and location of applied load have been studied for flange taper, web taper and symmetric taper for different conditions. Among these, as the taper ratio is increased, the torsional angular deflection increases but begins to decrease when the beam is web tapered and symmetrically tapered for a mid web loaded beam. But when loaded through the shear center, an increase in the torsional angular deflection can be observed with increase in taper ratio. It should be considered which parameter is tapered to obtain the highest efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=channel%20beams" title="channel beams">channel beams</a>, <a href="https://publications.waset.org/abstracts/search?q=tapered%20beams" title=" tapered beams"> tapered beams</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20torsional%20bucking" title=" lateral torsional bucking"> lateral torsional bucking</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20centre" title=" shear centre"> shear centre</a> </p> <a href="https://publications.waset.org/abstracts/82393/structural-behavior-of-non-prismatic-mono-symmetric-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">196</span> Torsional Vibration of Carbon Nanotubes via Nonlocal Gradient Theories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Arda">Mustafa Arda</a>, <a href="https://publications.waset.org/abstracts/search?q=Metin%20Aydogdu"> Metin Aydogdu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotubes (CNTs) have many possible application areas because of their superior physical properties. Nonlocal Theory, which unlike the classical theories, includes the size dependency. Nonlocal Stress and Strain Gradient approaches can be used in nanoscale static and dynamic analysis. In the present study, torsional vibration of CNTs was investigated according to nonlocal stress and strain gradient theories. Effects of the small scale parameters to the non-dimensional frequency were obtained. Results were compared with the Molecular Dynamics Simulation and Lattice Dynamics. Strain Gradient Theory has shown more weakening effect on CNT according to the Stress Gradient Theory. Combination of both theories gives more acceptable results rather than the classical and stress or strain gradient theory according to Lattice Dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=torsional%20vibration" title="torsional vibration">torsional vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal%20gradient%20theory" title=" nonlocal gradient theory"> nonlocal gradient theory</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a> </p> <a href="https://publications.waset.org/abstracts/48828/torsional-vibration-of-carbon-nanotubes-via-nonlocal-gradient-theories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">195</span> Lateral Torsional Buckling of Steel Thin-Walled Beams with Lateral Restraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Bal%C3%A1zs">Ivan Balázs</a>, <a href="https://publications.waset.org/abstracts/search?q=Jind%C5%99ich%20Melcher"> Jindřich Melcher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal thin-walled members have been widely used in building industry. Usually they are utilized as purlins, girts or ceiling beams. Due to slenderness of thin-walled cross-sections these structural members are prone to stability problems (e.g. flexural buckling, lateral torsional buckling). If buckling is not constructionally prevented their resistance is limited by buckling strength. In practice planar members of roof or wall cladding can be attached to thin-walled members. These elements reduce displacement of thin-walled members and therefore increase their buckling strength. If this effect is taken into static assessment more economical sections of thin-walled members might be utilized and certain savings of material might be achieved. This paper focuses on problem of determination of critical load of steel thin-walled beams with lateral continuous restraint which is crucial for lateral torsional buckling assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam" title="beam">beam</a>, <a href="https://publications.waset.org/abstracts/search?q=buckling" title=" buckling"> buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a> </p> <a href="https://publications.waset.org/abstracts/31094/lateral-torsional-buckling-of-steel-thin-walled-beams-with-lateral-restraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">194</span> Coupled Flexural-Lateral-Torsional of Shear Deformable Thin-Walled Beams with Asymmetric Cross-Section–Closed Form Exact Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ali%20Hjaji">Mohammed Ali Hjaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdi%20Mohareb"> Magdi Mohareb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper develops the exact solutions for coupled flexural-lateral-torsional static response of thin-walled asymmetric open members subjected to general loading. Using the principle of stationary total potential energy, the governing differential equations of equilibrium are formulated as well as the associated boundary conditions. The formulation is based on a generalized Timoshenko-Vlasov beam theory and accounts for the effects of shear deformation due to bending and warping, and captures the effects of flexural–torsional coupling due to cross-section asymmetry. Closed-form solutions are developed for cantilever and simply supported beams under various forces. In order to demonstrate the validity and the accuracy of this solution, numerical examples are presented and compared with well-established ABAQUS finite element solutions and other numerical results available in the literature. In addition, the results are compared against non-shear deformable beam theories in order to demonstrate the shear deformation effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20cross-section" title="asymmetric cross-section">asymmetric cross-section</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural-lateral-torsional%20response" title=" flexural-lateral-torsional response"> flexural-lateral-torsional response</a>, <a href="https://publications.waset.org/abstracts/search?q=Vlasov-Timoshenko%20beam%20theory" title=" Vlasov-Timoshenko beam theory"> Vlasov-Timoshenko beam theory</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20form%20solution" title=" closed form solution"> closed form solution</a> </p> <a href="https://publications.waset.org/abstracts/13320/coupled-flexural-lateral-torsional-of-shear-deformable-thin-walled-beams-with-asymmetric-cross-section-closed-form-exact-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">193</span> Numerical Simulations on the Torsional Behavior of Multistory Concrete Masonry Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alvaro%20Jose%20Cordova">Alvaro Jose Cordova</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsuan%20Teh%20Hu"> Hsuan Teh Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of concrete masonry constructions in developing countries has become very frequent, especially for domestic purpose. Most of them with asymmetric wall configurations in plan resulting in significant torsional actions when subjected to seismic loads. The study consisted on the finding of a material model for hollow unreinforced concrete masonry and a validation with experimental data found in literature. Numerical simulations were performed to 20 buildings with variations in wall distributions and heights. Results were analyzed by inspection and with a non-linear static method. The findings revealed that eccentricities as well as structure rigidities have a strong influence on the overall response of concrete masonry buildings. In addition, slab rotations depicted more accurate information about the torsional behavior than maximum versus average displacement ratios. The failure modes in low buildings were characterized by high tensile strains in the first floor. Whereas in tall buildings these strains were lowered significantly by higher compression stresses due to a higher self-weight. These tall buildings developed multiple plastic hinges along the height. Finally, the non-linear static analysis exposed a brittle response for all masonry assemblies. This type of behavior is undesired in any construction and the need for a material model for reinforced masonry is pointed out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20damaged%20plasticity" title="concrete damaged plasticity">concrete damaged plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20masonry" title=" concrete masonry"> concrete masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=macro-modeling" title=" macro-modeling"> macro-modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20static%20analysis" title=" nonlinear static analysis"> nonlinear static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=torsional%20capacity" title=" torsional capacity"> torsional capacity</a> </p> <a href="https://publications.waset.org/abstracts/93745/numerical-simulations-on-the-torsional-behavior-of-multistory-concrete-masonry-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">192</span> Comparisons of Surveying with Terrestrial Laser Scanner and Total Station for Volume Determination of Overburden and Coal Excavations in Large Open-Pit Mine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Keawaram">B. Keawaram</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Dumrongchai"> P. Dumrongchai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The volume of overburden and coal excavations in open-pit mine is generally determined by conventional survey such as total station. This study aimed to evaluate the accuracy of terrestrial laser scanner (TLS) used to measure overburden and coal excavations, and to compare TLS survey data sets with the data of the total station. Results revealed that, the reference points measured with the total station showed 0.2 mm precision for both horizontal and vertical coordinates. When using TLS on the same points, the standard deviations of 4.93 cm and 0.53 cm for horizontal and vertical coordinates, respectively, were achieved. For volume measurements covering the mining areas of 79,844 m<sup>2</sup>, TLS yielded the mean difference of about 1% and the surface error margin of 6 cm at the 95% confidence level when compared to the volume obtained by total station. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mine" title="mine">mine</a>, <a href="https://publications.waset.org/abstracts/search?q=survey" title=" survey"> survey</a>, <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20laser%20scanner" title=" terrestrial laser scanner"> terrestrial laser scanner</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20station" title=" total station"> total station</a> </p> <a href="https://publications.waset.org/abstracts/68291/comparisons-of-surveying-with-terrestrial-laser-scanner-and-total-station-for-volume-determination-of-overburden-and-coal-excavations-in-large-open-pit-mine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">191</span> Using T-Splines to Model Point Clouds from Terrestrial Laser Scanner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Kermarrec">G. Kermarrec</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hartmann"> J. Hartmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spline surfaces are a major representation of freeform surfaces in the computer-aided graphic industry and were recently introduced in the field of geodesy for processing point clouds from terrestrial laser scanner (TLS). The surface fitting consists of approximating a trustworthy mathematical surface to a large numbered 3D point cloud. The standard B-spline surfaces lack of local refinement due to the tensor-product construction. The consequences are oscillating geometry, particularly in the transition from low-to-high curvature parts for scattered point clouds with missing data. More economic alternatives in terms of parameters on how to handle point clouds with a huge amount of observations are the recently introduced T-splines. As long as the partition of unity is guaranteed, their computational complexity is low, and they are flexible. T-splines are implemented in a commercial package called Rhino, a 3D modeler which is widely used in computer aided design to create and animate NURBS objects. We have applied T-splines surface fitting to terrestrial laser scanner point clouds from a bridge under load and a sheet pile wall with noisy observations. We will highlight their potential for modelling details with high trustworthiness, paving the way for further applications in terms of deformation analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deformation%20analysis" title="deformation analysis">deformation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modelling" title=" surface modelling"> surface modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20laser%20scanner" title=" terrestrial laser scanner"> terrestrial laser scanner</a>, <a href="https://publications.waset.org/abstracts/search?q=T-splines" title=" T-splines"> T-splines</a> </p> <a href="https://publications.waset.org/abstracts/130510/using-t-splines-to-model-point-clouds-from-terrestrial-laser-scanner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=torsional%20scanner&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=torsional%20scanner&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=torsional%20scanner&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=torsional%20scanner&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=torsional%20scanner&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=torsional%20scanner&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=torsional%20scanner&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=torsional%20scanner&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10