CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–14 of 14 results for author: <span class="mathjax">Froemter, R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Froemter%2C+R">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Froemter, R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Froemter%2C+R&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Froemter, R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00539">arXiv:2407.00539</a> <span> [<a href="https://arxiv.org/pdf/2407.00539">pdf</a>, <a href="https://arxiv.org/format/2407.00539">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> The role of magnetic dipolar interactions in skyrmion lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jefremovas%2C+E+M">Elizabeth M Jefremovas</a>, <a href="/search/cond-mat?searchtype=author&query=Leutner%2C+K">Kilian Leutner</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+M+G">Miriam G Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Marqu%C3%A9s-March%C3%A1n%2C+J">Jorge Marqu茅s-March谩n</a>, <a href="/search/cond-mat?searchtype=author&query=Winkler%2C+T+B">Thomas B Winkler</a>, <a href="/search/cond-mat?searchtype=author&query=Asenjo%2C+A">Agustina Asenjo</a>, <a href="/search/cond-mat?searchtype=author&query=Fr%C3%B6mter%2C+R">Robert Fr枚mter</a>, <a href="/search/cond-mat?searchtype=author&query=Sinova%2C+J">Jairo Sinova</a>, <a href="/search/cond-mat?searchtype=author&query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00539v1-abstract-short" style="display: inline;"> Magnetic skyrmions are promising candidates for information and storage technologies. In the last years, magnetic multilayer systems have been tuned to enable room-temperature skyrmions, stable even in the absence of external magnetic field. There are several models describing the properties of an isolated skyrmion in a homogeneous background for single repetition multilayer stack, however, the de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00539v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00539v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00539v1-abstract-full" style="display: none;"> Magnetic skyrmions are promising candidates for information and storage technologies. In the last years, magnetic multilayer systems have been tuned to enable room-temperature skyrmions, stable even in the absence of external magnetic field. There are several models describing the properties of an isolated skyrmion in a homogeneous background for single repetition multilayer stack, however, the description on how the equilibrium skyrmion size in lattices scales with increasing the number of repetitions of the stack remains unaddressed. This question is essential for fundamental and practical perspectives, as the behaviour of an ensemble of skyrmions differs from the isolated case. Based on a multilayer stack hosting a skyrmion lattice, we have carried out a series of imaging experiments scaling up the dipolar interaction by repeating $n$ times the multilayer unit, from $n =1$ up to $n=30$. We have developed an analytical description for the skyrmion radius in the whole multilayer regime, $i.e.$, from thin to thick film limits. Furthermore, we provide insight on how nucleation by an externally applied field can give rise to a lattice with more skyrmions (thus, overfilled) than the predicted by the calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00539v1-abstract-full').style.display = 'none'; document.getElementById('2407.00539v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04793">arXiv:2401.04793</a> <span> [<a href="https://arxiv.org/pdf/2401.04793">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> 2024 Roadmap on Magnetic Microscopy Techniques and Their Applications in Materials Science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Christensen%2C+D+V">D. V. Christensen</a>, <a href="/search/cond-mat?searchtype=author&query=Staub%2C+U">U. Staub</a>, <a href="/search/cond-mat?searchtype=author&query=Devidas%2C+T+R">T. R. Devidas</a>, <a href="/search/cond-mat?searchtype=author&query=Kalisky%2C+B">B. Kalisky</a>, <a href="/search/cond-mat?searchtype=author&query=Nowack%2C+K+C">K. C. Nowack</a>, <a href="/search/cond-mat?searchtype=author&query=Webb%2C+J+L">J. L. Webb</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+U+L">U. L. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Huck%2C+A">A. Huck</a>, <a href="/search/cond-mat?searchtype=author&query=Broadway%2C+D+A">D. A. Broadway</a>, <a href="/search/cond-mat?searchtype=author&query=Wagner%2C+K">K. Wagner</a>, <a href="/search/cond-mat?searchtype=author&query=Maletinsky%2C+P">P. Maletinsky</a>, <a href="/search/cond-mat?searchtype=author&query=van+der+Sar%2C+T">T. van der Sar</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+C+R">C. R. Du</a>, <a href="/search/cond-mat?searchtype=author&query=Yacoby%2C+A">A. Yacoby</a>, <a href="/search/cond-mat?searchtype=author&query=Collomb%2C+D">D. Collomb</a>, <a href="/search/cond-mat?searchtype=author&query=Bending%2C+S">S. Bending</a>, <a href="/search/cond-mat?searchtype=author&query=Oral%2C+A">A. Oral</a>, <a href="/search/cond-mat?searchtype=author&query=Hug%2C+H+J">H. J. Hug</a>, <a href="/search/cond-mat?searchtype=author&query=Mandru%2C+A+-">A. -O. Mandru</a>, <a href="/search/cond-mat?searchtype=author&query=Neu%2C+V">V. Neu</a>, <a href="/search/cond-mat?searchtype=author&query=Schumacher%2C+H+W">H. W. Schumacher</a>, <a href="/search/cond-mat?searchtype=author&query=Sievers%2C+S">S. Sievers</a>, <a href="/search/cond-mat?searchtype=author&query=Saito%2C+H">H. Saito</a>, <a href="/search/cond-mat?searchtype=author&query=Khajetoorians%2C+A+A">A. A. Khajetoorians</a>, <a href="/search/cond-mat?searchtype=author&query=Hauptmann%2C+N">N. Hauptmann</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04793v1-abstract-short" style="display: inline;"> Considering the growing interest in magnetic materials for unconventional computing, data storage, and sensor applications, there is active research not only on material synthesis but also characterisation of their properties. In addition to structural and integral magnetic characterisations, imaging of magnetization patterns, current distributions and magnetic fields at nano- and microscale is of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04793v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04793v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04793v1-abstract-full" style="display: none;"> Considering the growing interest in magnetic materials for unconventional computing, data storage, and sensor applications, there is active research not only on material synthesis but also characterisation of their properties. In addition to structural and integral magnetic characterisations, imaging of magnetization patterns, current distributions and magnetic fields at nano- and microscale is of major importance to understand the material responses and qualify them for specific applications. In this roadmap, we aim to cover a broad portfolio of techniques to perform nano- and microscale magnetic imaging using SQUIDs, spin center and Hall effect magnetometries, scanning probe microscopies, x-ray- and electron-based methods as well as magnetooptics and nanoMRI. The roadmap is aimed as a single access point of information for experts in the field as well as the young generation of students outlining prospects of the development of magnetic imaging technologies for the upcoming decade with a focus on physics, materials science, and chemistry of planar, 3D and geometrically curved objects of different material classes including 2D materials, complex oxides, semi-metals, multiferroics, skyrmions, antiferromagnets, frustrated magnets, magnetic molecules/nanoparticles, ionic conductors, superconductors, spintronic and spinorbitronic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04793v1-abstract-full').style.display = 'none'; document.getElementById('2401.04793v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.02654">arXiv:2312.02654</a> <span> [<a href="https://arxiv.org/pdf/2312.02654">pdf</a>, <a href="https://arxiv.org/format/2312.02654">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> THz-Driven Coherent Magnetization Dynamics in a Labyrinth Domain State </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Riepp%2C+M">M Riepp</a>, <a href="/search/cond-mat?searchtype=author&query=Philippi-Kobs%2C+A">A Philippi-Kobs</a>, <a href="/search/cond-mat?searchtype=author&query=Mueller%2C+L">L Mueller</a>, <a href="/search/cond-mat?searchtype=author&query=Froemter%2C+R">R Froemter</a>, <a href="/search/cond-mat?searchtype=author&query=Roseker%2C+W">W Roseker</a>, <a href="/search/cond-mat?searchtype=author&query=Rysov%2C+R">R Rysov</a>, <a href="/search/cond-mat?searchtype=author&query=Walther%2C+M">M Walther</a>, <a href="/search/cond-mat?searchtype=author&query=Bagschik%2C+K">K Bagschik</a>, <a href="/search/cond-mat?searchtype=author&query=Hennes%2C+M">M Hennes</a>, <a href="/search/cond-mat?searchtype=author&query=Gupta%2C+D">D Gupta</a>, <a href="/search/cond-mat?searchtype=author&query=Marotzke%2C+S">S Marotzke</a>, <a href="/search/cond-mat?searchtype=author&query=Bajt%2C+S">S Bajt</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+R">R Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Golz%2C+T">T Golz</a>, <a href="/search/cond-mat?searchtype=author&query=Stojanovic%2C+N">N Stojanovic</a>, <a href="/search/cond-mat?searchtype=author&query=Boeglin%2C+C">C Boeglin</a>, <a href="/search/cond-mat?searchtype=author&query=Gruebel%2C+G">G Gruebel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.02654v1-abstract-short" style="display: inline;"> Terahertz (THz) light pulses can be used for an ultrafast coherent manipulation of the magnetization. Driving the magnetization at THz frequencies is currently the fastest way of writing magnetic information in ferromagnets. Using time-resolved resonant magnetic scattering, we gain new insights to the THz-driven coherent magnetization dynamics on nanometer length scales. We observe ultrafast demag… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02654v1-abstract-full').style.display = 'inline'; document.getElementById('2312.02654v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.02654v1-abstract-full" style="display: none;"> Terahertz (THz) light pulses can be used for an ultrafast coherent manipulation of the magnetization. Driving the magnetization at THz frequencies is currently the fastest way of writing magnetic information in ferromagnets. Using time-resolved resonant magnetic scattering, we gain new insights to the THz-driven coherent magnetization dynamics on nanometer length scales. We observe ultrafast demagnetization and coherent magnetization oscillations that are governed by a time-dependent damping. This damping is determined by the interplay of lattice heating and magnetic anisotropy reduction revealing an upper speed limit for THz-induced magnetization switching. We show that in the presence of nanometer-sized magnetic domains, the ultrafast magnetization oscillations are associated with a correlated beating of the domain walls. The overall domain structure thereby remains largely unaffected which highlights the applicability of THz-induced switching on the nanoscale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02654v1-abstract-full').style.display = 'none'; document.getElementById('2312.02654v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures and 54 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14853">arXiv:2303.14853</a> <span> [<a href="https://arxiv.org/pdf/2303.14853">pdf</a>, <a href="https://arxiv.org/format/2303.14853">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-45375-z">10.1038/s41467-024-45375-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Homochiral antiferromagnetic merons, antimerons and bimerons realized in synthetic antiferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Bhukta%2C+M">Mona Bhukta</a>, <a href="/search/cond-mat?searchtype=author&query=Dohi%2C+T">Takaaki Dohi</a>, <a href="/search/cond-mat?searchtype=author&query=Bharadwaj%2C+V+K">Venkata Krishna Bharadwaj</a>, <a href="/search/cond-mat?searchtype=author&query=Zarzuela%2C+R">Ricardo Zarzuela</a>, <a href="/search/cond-mat?searchtype=author&query=Syskaki%2C+M">Maria-Andromachi Syskaki</a>, <a href="/search/cond-mat?searchtype=author&query=Foerster%2C+M">Michael Foerster</a>, <a href="/search/cond-mat?searchtype=author&query=Ni%C3%B1o%2C+M+A">Miguel Angel Ni帽o</a>, <a href="/search/cond-mat?searchtype=author&query=Sinova%2C+J">Jairo Sinova</a>, <a href="/search/cond-mat?searchtype=author&query=Fr%C3%B6mter%2C+R">Robert Fr枚mter</a>, <a href="/search/cond-mat?searchtype=author&query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14853v1-abstract-short" style="display: inline;"> The ever-growing demand for device miniaturization and energy efficiency in data storage and computing technology has prompted a shift towards antiferromagnetic (AFM) topological spin textures as information carriers, owing to their negligible stray fields, leading to possible high device density and potentially ultrafast dynamics. We realize, in this work, such chiral in-plane (IP) topological an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14853v1-abstract-full').style.display = 'inline'; document.getElementById('2303.14853v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14853v1-abstract-full" style="display: none;"> The ever-growing demand for device miniaturization and energy efficiency in data storage and computing technology has prompted a shift towards antiferromagnetic (AFM) topological spin textures as information carriers, owing to their negligible stray fields, leading to possible high device density and potentially ultrafast dynamics. We realize, in this work, such chiral in-plane (IP) topological antiferromagnetic spin textures, namely merons, antimerons, and bimerons in synthetic antiferromagnets by concurrently engineering the effective perpendicular magnetic anisotropy, the interlayer exchange coupling, and the magnetic compensation ratio. We demonstrate by three-dimensional vector imaging of the N茅el order parameter, the topology of those spin textures and reveal globally a well-defined chirality, which is a crucial requirement for controlled current-induced dynamics. Our analysis reveals that the interplay between interlayer exchange and interlayer magnetic dipolar interactions plays a key role in significantly reducing the critical strength of the Dzyaloshinskii-Moriya interaction required to stabilize topological spin textures, such as AFM merons, making synthetic antiferromagnets a promising platform for next-generation spintronics applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14853v1-abstract-full').style.display = 'none'; document.getElementById('2303.14853v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 1641 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01450">arXiv:2209.01450</a> <span> [<a href="https://arxiv.org/pdf/2209.01450">pdf</a>, <a href="https://arxiv.org/format/2209.01450">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Controlling 3D spin textures by manipulating sign and amplitude of interlayer DMI with electrical current </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kammerbauer%2C+F">Fabian Kammerbauer</a>, <a href="/search/cond-mat?searchtype=author&query=Choi%2C+W">Won-Young Choi</a>, <a href="/search/cond-mat?searchtype=author&query=Freimuth%2C+F">Frank Freimuth</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+K">Kyujoon Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Fr%C3%B6mter%2C+R">Robert Fr枚mter</a>, <a href="/search/cond-mat?searchtype=author&query=Han%2C+D">Dong-Soo Han</a>, <a href="/search/cond-mat?searchtype=author&query=Swagten%2C+H+J+M">Henk J. M. Swagten</a>, <a href="/search/cond-mat?searchtype=author&query=Mokrousov%2C+Y">Yuriy Mokrousov</a>, <a href="/search/cond-mat?searchtype=author&query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01450v1-abstract-short" style="display: inline;"> The recently discovered interlayer Dzyaloshinskii-Moriya interaction (IL-DMI) in multilayers with perpendicular magnetic anisotropy favors the canting of spins in the in-plane direction and could thus enable new exciting spin textures such as Hopfions in continuous multilayer films. A key requirement is to control the IL-DMI and so in this study, the influence of an electric current on the IL-DMI… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01450v1-abstract-full').style.display = 'inline'; document.getElementById('2209.01450v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01450v1-abstract-full" style="display: none;"> The recently discovered interlayer Dzyaloshinskii-Moriya interaction (IL-DMI) in multilayers with perpendicular magnetic anisotropy favors the canting of spins in the in-plane direction and could thus enable new exciting spin textures such as Hopfions in continuous multilayer films. A key requirement is to control the IL-DMI and so in this study, the influence of an electric current on the IL-DMI is investigated by out-of-plane hysteresis loops of the anomalous Hall effect under applied in-plane magnetic fields. The direction of the in-plane field is varied to obtain a full azimuthal dependence, which allows us to quantify the effect on the IL-DMI. We observe a shift in the azimuthal dependence of the IL-DMI with increasing current, which can be understood from the additional in-plane symmetry breaking introduced by the current flow. Using an empirical model of two superimposed cosine functions we demonstrate the presence of a current-induced term that linearly increases the IL-DMI in the direction of current flow. With this, a new easily accessible possibility to manipulate 3D spin textures by current is realized. As most spintronic devices employ spin-transfer or spin-orbit torques to manipulate spin textures, the foundation to implement current-induced IL-DMI into thin-film devices is broadly available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01450v1-abstract-full').style.display = 'none'; document.getElementById('2209.01450v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.08813">arXiv:2008.08813</a> <span> [<a href="https://arxiv.org/pdf/2008.08813">pdf</a>, <a href="https://arxiv.org/format/2008.08813">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.5.034006">10.1103/PhysRevMaterials.5.034006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Polarization amplification by spin-doping in nanomagnetic/graphene hybrid systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Anlauf%2C+T">Tim Anlauf</a>, <a href="/search/cond-mat?searchtype=author&query=Prada%2C+M">Marta Prada</a>, <a href="/search/cond-mat?searchtype=author&query=Freercks%2C+S">Stefan Freercks</a>, <a href="/search/cond-mat?searchtype=author&query=Bosnjak%2C+B">Bojan Bosnjak</a>, <a href="/search/cond-mat?searchtype=author&query=Fr%C3%B6mter%2C+R">Robert Fr枚mter</a>, <a href="/search/cond-mat?searchtype=author&query=Sichau%2C+J">Jonas Sichau</a>, <a href="/search/cond-mat?searchtype=author&query=Oepen%2C+H+P">Hans Peter Oepen</a>, <a href="/search/cond-mat?searchtype=author&query=Tiemann%2C+L">Lars Tiemann</a>, <a href="/search/cond-mat?searchtype=author&query=Blick%2C+R+H">Robert H. Blick</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.08813v2-abstract-short" style="display: inline;"> The generation of non-equilibrium electron spin polarization, spin transport, and spin detection are fundamental in many quantum devices. We demonstrate that a lattice of magnetic nanodots enhances the electron spin polarization in monolayer graphene via carrier exchange. We probed the spin polarization through a resistively-detected variant of electron spin resonance (ESR) and observed resonance… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.08813v2-abstract-full').style.display = 'inline'; document.getElementById('2008.08813v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.08813v2-abstract-full" style="display: none;"> The generation of non-equilibrium electron spin polarization, spin transport, and spin detection are fundamental in many quantum devices. We demonstrate that a lattice of magnetic nanodots enhances the electron spin polarization in monolayer graphene via carrier exchange. We probed the spin polarization through a resistively-detected variant of electron spin resonance (ESR) and observed resonance amplification mediated by the presence of the nanodots. Each nanodot locally injects a surplus of spin-polarized carriers into the graphene, and the ensemble of all "spin hot spots" generates a non-equilibrium electron spin polarization in the graphene layer at macroscopic lengths. This occurs whenever the interdot distance is comparable or smaller than the spin diffusion length. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.08813v2-abstract-full').style.display = 'none'; document.getElementById('2008.08813v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Title of original submission "A nanomagnetic polarization amplifier for graphene" was changed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 5, 034006 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.08909">arXiv:1909.08909</a> <span> [<a href="https://arxiv.org/pdf/1909.08909">pdf</a>, <a href="https://arxiv.org/format/1909.08909">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.207203">10.1103/PhysRevLett.124.207203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic chirality controlled by the interlayer exchange interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Meijer%2C+M+J">Mari毛lle J. Meijer</a>, <a href="/search/cond-mat?searchtype=author&query=Lucassen%2C+J">Juriaan Lucassen</a>, <a href="/search/cond-mat?searchtype=author&query=Kloodt-Twesten%2C+F">Fabian Kloodt-Twesten</a>, <a href="/search/cond-mat?searchtype=author&query=Fr%C3%B6mter%2C+R">Robert Fr枚mter</a>, <a href="/search/cond-mat?searchtype=author&query=Kurnosikov%2C+O">Oleg Kurnosikov</a>, <a href="/search/cond-mat?searchtype=author&query=Duine%2C+R+A">Rembert A. Duine</a>, <a href="/search/cond-mat?searchtype=author&query=Swagten%2C+H+J+M">Henk J. M. Swagten</a>, <a href="/search/cond-mat?searchtype=author&query=Koopmans%2C+B">Bert Koopmans</a>, <a href="/search/cond-mat?searchtype=author&query=Lavrijsen%2C+R">Reinoud Lavrijsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.08909v2-abstract-short" style="display: inline;"> Chiral magnetism, wherein there is a preferred sense of rotation of the magnetization, has become a key aspect for future spintronic applications. It determines the chiral nature of magnetic textures, such as skyrmions, domain walls or spin spirals, and a specific magnetic chirality is often required for spintronic applications. Current research focuses on identifying and controlling the interacti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.08909v2-abstract-full').style.display = 'inline'; document.getElementById('1909.08909v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.08909v2-abstract-full" style="display: none;"> Chiral magnetism, wherein there is a preferred sense of rotation of the magnetization, has become a key aspect for future spintronic applications. It determines the chiral nature of magnetic textures, such as skyrmions, domain walls or spin spirals, and a specific magnetic chirality is often required for spintronic applications. Current research focuses on identifying and controlling the interactions that define the magnetic chirality. The influence of the interfacial Dzyaloshinskii-Moriya interaction (iDMI) and, recently, the dipolar interactions have previously been reported. Here, we experimentally demonstrate that an indirect interlayer exchange interaction can be used as an additional tool to effectively manipulate the magnetic chirality. We image the chirality of magnetic domain walls in a coupled bilayer system using scanning electron microscopy with polarization analysis (SEMPA). Upon increasing the interlayer exchange coupling, we induce a transition of the magnetic chirality from clockwise rotating N茅el walls to degenerate Bloch-N茅el domain walls and we confirm our findings with micromagnetic simulations. In multi-layered systems relevant for skyrmion research a uniform magnetic chirality across the magnetic layers is often desired. Additional simulations show that this can be achieved for reduced iDMI values when exploiting the interlayer exchange interaction. This work opens up new ways to control and tailor the magnetic chirality by the interlayer exchange interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.08909v2-abstract-full').style.display = 'none'; document.getElementById('1909.08909v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Ms was off by a factor 2</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 207203 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.01898">arXiv:1904.01898</a> <span> [<a href="https://arxiv.org/pdf/1904.01898">pdf</a>, <a href="https://arxiv.org/format/1904.01898">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.157201">10.1103/PhysRevLett.123.157201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning magnetic chirality by dipolar interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lucassen%2C+J">Juriaan Lucassen</a>, <a href="/search/cond-mat?searchtype=author&query=Meijer%2C+M+J">Mari毛lle J. Meijer</a>, <a href="/search/cond-mat?searchtype=author&query=Kloodt-Twesten%2C+F">Fabian Kloodt-Twesten</a>, <a href="/search/cond-mat?searchtype=author&query=Fr%C3%B6mter%2C+R">Robert Fr枚mter</a>, <a href="/search/cond-mat?searchtype=author&query=Kurnosikov%2C+O">Oleg Kurnosikov</a>, <a href="/search/cond-mat?searchtype=author&query=Duine%2C+R+A">Rembert A. Duine</a>, <a href="/search/cond-mat?searchtype=author&query=Swagten%2C+H+J+M">Henk J. M. Swagten</a>, <a href="/search/cond-mat?searchtype=author&query=Koopmans%2C+B">Bert Koopmans</a>, <a href="/search/cond-mat?searchtype=author&query=Lavrijsen%2C+R">Reinoud Lavrijsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.01898v1-abstract-short" style="display: inline;"> Chiral magnetism has gained enormous interest in recent years because of the anticipated wealth of applications in nanoelectronics. The demonstrated stabilization of chiral magnetic domain walls and skyrmions has been attributed to the actively investigated Dzyaloshinskii-Moriya interaction. Recently, however, predictions were made that suggest dipolar interactions can also stabilize chiral domain… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.01898v1-abstract-full').style.display = 'inline'; document.getElementById('1904.01898v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.01898v1-abstract-full" style="display: none;"> Chiral magnetism has gained enormous interest in recent years because of the anticipated wealth of applications in nanoelectronics. The demonstrated stabilization of chiral magnetic domain walls and skyrmions has been attributed to the actively investigated Dzyaloshinskii-Moriya interaction. Recently, however, predictions were made that suggest dipolar interactions can also stabilize chiral domain walls and skyrmions, but direct experimental evidence has been lacking. Here we show that dipolar interactions can indeed stabilize chiral domain walls by directly imaging the magnetic domain walls using scanning electron microscopy with polarization analysis. We further show that the competition between the Dzyaloshinskii-Moriya and dipolar interactions can reverse the domain-wall chirality. Finally, we suggest that this competition can be tailored by a Ruderman-Kittel-Kasuya-Yosida interaction. Our work therefore reveals that dipolar interactions play a key role in the stabilization of chiral spin textures. This insight will open up new routes towards balancing interactions for the stabilization of chiral magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.01898v1-abstract-full').style.display = 'none'; document.getElementById('1904.01898v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 157201 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.05523">arXiv:1902.05523</a> <span> [<a href="https://arxiv.org/pdf/1902.05523">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.100402">10.1103/PhysRevB.100.100402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring the Dzyaloshinskii-Moriya interaction of the epitaxial Co/Ir(111) interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kloodt-Twesten%2C+F">Fabian Kloodt-Twesten</a>, <a href="/search/cond-mat?searchtype=author&query=Kuhrau%2C+S">Susanne Kuhrau</a>, <a href="/search/cond-mat?searchtype=author&query=Oepen%2C+H+P">Hans Peter Oepen</a>, <a href="/search/cond-mat?searchtype=author&query=Fr%C3%B6mter%2C+R">Robert Fr枚mter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.05523v3-abstract-short" style="display: inline;"> The in-plane orientation of the magnetization in the center of domain walls is measured in Co/Ir(111) as a function of Co thickness via scanning electron microscopy with polarization analysis. Uncapped, thermally evaporated cobalt on an Ir(111) single-crystal surface is imaged in situ in ultra-high vacuum. The initial pseudomorphic growth with an atomically flat interface of cobalt on iridium ensu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05523v3-abstract-full').style.display = 'inline'; document.getElementById('1902.05523v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.05523v3-abstract-full" style="display: none;"> The in-plane orientation of the magnetization in the center of domain walls is measured in Co/Ir(111) as a function of Co thickness via scanning electron microscopy with polarization analysis. Uncapped, thermally evaporated cobalt on an Ir(111) single-crystal surface is imaged in situ in ultra-high vacuum. The initial pseudomorphic growth with an atomically flat interface of cobalt on iridium ensures comparability to theoretical calculations and provides a study of an interface that is as ideal as possible. Below a cobalt thickness of 8.8 monolayers, the magnetic domain walls are purely N茅el oriented and show a clockwise sense of rotation. For larger thicknesses the plane of rotation changes and the domain walls show a significant Bloch-like contribution, allowing to calculate the strength of the Dzyaloshinskii-Moriya interaction (DMI) from energy minimization. From the angle between the plane of rotation and the domain-wall normal an interfacial DMI parameter $D_s = -(1.07 \pm 0.05)$ pJ/m is determined, which corresponds to a DMI energy per bond between two Co atoms at the interface of $d_{tot} = -(1.04 \pm 0.05)$ meV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.05523v3-abstract-full').style.display = 'none'; document.getElementById('1902.05523v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 100402 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.00387">arXiv:1708.00387</a> <span> [<a href="https://arxiv.org/pdf/1708.00387">pdf</a>, <a href="https://arxiv.org/format/1708.00387">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4998535">10.1063/1.4998535 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scanning electron microscopy with polarization analysis for multilayered chiral spin textures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lucassen%2C+J">Juriaan Lucassen</a>, <a href="/search/cond-mat?searchtype=author&query=Kloodt-Twesten%2C+F">Fabian Kloodt-Twesten</a>, <a href="/search/cond-mat?searchtype=author&query=Fr%C3%B6mter%2C+R">Robert Fr枚mter</a>, <a href="/search/cond-mat?searchtype=author&query=Oepen%2C+H+P">Hans Peter Oepen</a>, <a href="/search/cond-mat?searchtype=author&query=Duine%2C+R+A">Rembert A. Duine</a>, <a href="/search/cond-mat?searchtype=author&query=Swagten%2C+H+J+M">Henk J. M. Swagten</a>, <a href="/search/cond-mat?searchtype=author&query=Koopmans%2C+B">Bert Koopmans</a>, <a href="/search/cond-mat?searchtype=author&query=Lavrijsen%2C+R">Reinoud Lavrijsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.00387v1-abstract-short" style="display: inline;"> We show that scanning electron microscopy with polarization analysis (SEMPA) that is sensitive to both in-plane magnetization components can be used to image the out-of-plane magnetized multi-domain state in multilayered chiral spin textures. By depositing a thin layer of Fe on top of the multilayer we image the underlying out-of-plane domain state through the mapping of its stray fields in the Fe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.00387v1-abstract-full').style.display = 'inline'; document.getElementById('1708.00387v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.00387v1-abstract-full" style="display: none;"> We show that scanning electron microscopy with polarization analysis (SEMPA) that is sensitive to both in-plane magnetization components can be used to image the out-of-plane magnetized multi-domain state in multilayered chiral spin textures. By depositing a thin layer of Fe on top of the multilayer we image the underlying out-of-plane domain state through the mapping of its stray fields in the Fe. We also demonstrate that SEMPA can be used to image the domain wall chirality in these systems after milling away the capping layer and imaging the topmost magnetic layer directly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.00387v1-abstract-full').style.display = 'none'; document.getElementById('1708.00387v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.03222">arXiv:1503.03222</a> <span> [<a href="https://arxiv.org/pdf/1503.03222">pdf</a>, <a href="https://arxiv.org/format/1503.03222">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.054406">10.1103/PhysRevB.92.054406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Influence of elastically pinned magnetic domain walls on magnetization reversal in multiferroic heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Casiraghi%2C+A">Arianna Casiraghi</a>, <a href="/search/cond-mat?searchtype=author&query=Dom%C3%ADnguez%2C+T+R">Teresa Rinc贸n Dom铆nguez</a>, <a href="/search/cond-mat?searchtype=author&query=R%C3%B6%C3%9Fler%2C+S">Stefan R枚脽ler</a>, <a href="/search/cond-mat?searchtype=author&query=Franke%2C+K+J+A">K茅vin J. A. Franke</a>, <a href="/search/cond-mat?searchtype=author&query=Gonz%C3%A1lez%2C+D+L">Diego L贸pez Gonz谩lez</a>, <a href="/search/cond-mat?searchtype=author&query=H%C3%A4m%C3%A4l%C3%A4inen%2C+S+J">Sampo J. H盲m盲l盲inen</a>, <a href="/search/cond-mat?searchtype=author&query=Fr%C3%B6mter%2C+R">Robert Fr枚mter</a>, <a href="/search/cond-mat?searchtype=author&query=Oepen%2C+H+P">Hans Peter Oepen</a>, <a href="/search/cond-mat?searchtype=author&query=van+Dijken%2C+S">Sebastiaan van Dijken</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.03222v1-abstract-short" style="display: inline;"> In elastically coupled multiferroic heterostructures that exhibit full domain correlations between ferroelectric and ferromagnetic sub-systems, magnetic domain walls are firmly pinned on top of ferroelectric domain boundaries. In this work we investigate the influence of pinned magnetic domain walls on the magnetization reversal process in a Co40Fe40B20 wedge film that is coupled to a ferroelectri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.03222v1-abstract-full').style.display = 'inline'; document.getElementById('1503.03222v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.03222v1-abstract-full" style="display: none;"> In elastically coupled multiferroic heterostructures that exhibit full domain correlations between ferroelectric and ferromagnetic sub-systems, magnetic domain walls are firmly pinned on top of ferroelectric domain boundaries. In this work we investigate the influence of pinned magnetic domain walls on the magnetization reversal process in a Co40Fe40B20 wedge film that is coupled to a ferroelectric BaTiO3 substrate via interface strain transfer. We show that the magnetic field direction can be used to select between two distinct magnetization reversal mechanisms, namely (1) double switching events involving alternate stripe domains at a time or (2) synchronized switching of all domains. Furthermore, scaling of the switching fields with domain width and film thickness is also found to depend on field orientation. These results are explained by considering the dissimilar energies of the two types of pinned magnetic domain walls that are formed in the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.03222v1-abstract-full').style.display = 'none'; document.getElementById('1503.03222v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 054406 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.4774">arXiv:1110.4774</a> <span> [<a href="https://arxiv.org/pdf/1110.4774">pdf</a>, <a href="https://arxiv.org/ps/1110.4774">ps</a>, <a href="https://arxiv.org/format/1110.4774">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.84.205431">10.1103/PhysRevB.84.205431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-scale magnetic study on Ni(111) and graphene on Ni(111) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Dzemiantsova%2C+L+V">L. V. Dzemiantsova</a>, <a href="/search/cond-mat?searchtype=author&query=Karolak%2C+M">M. Karolak</a>, <a href="/search/cond-mat?searchtype=author&query=Lofink%2C+F">F. Lofink</a>, <a href="/search/cond-mat?searchtype=author&query=Kubetzka%2C+A">A. Kubetzka</a>, <a href="/search/cond-mat?searchtype=author&query=Sachs%2C+B">B. Sachs</a>, <a href="/search/cond-mat?searchtype=author&query=von+Bergmann%2C+K">K. von Bergmann</a>, <a href="/search/cond-mat?searchtype=author&query=Hankemeier%2C+S">S. Hankemeier</a>, <a href="/search/cond-mat?searchtype=author&query=Wehling%2C+T+O">T. O. Wehling</a>, <a href="/search/cond-mat?searchtype=author&query=Fr%C3%B6mter%2C+R">R. Fr枚mter</a>, <a href="/search/cond-mat?searchtype=author&query=Oepen%2C+H+P">H. P. Oepen</a>, <a href="/search/cond-mat?searchtype=author&query=Lichtenstein%2C+A+I">A. I. Lichtenstein</a>, <a href="/search/cond-mat?searchtype=author&query=Wiesendanger%2C+R">R. Wiesendanger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.4774v1-abstract-short" style="display: inline;"> We have investigated the magnetism of the bare and graphene-covered (111) surface of a Ni single crystal employing three different magnetic imaging techniques and ab initio calculations, covering length scales from the nanometer regime up to several millimeters. With low temperature spinpolarized scanning tunneling microscopy (SP-STM) we find domain walls with widths of 60 - 90 nm, which can be mo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.4774v1-abstract-full').style.display = 'inline'; document.getElementById('1110.4774v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.4774v1-abstract-full" style="display: none;"> We have investigated the magnetism of the bare and graphene-covered (111) surface of a Ni single crystal employing three different magnetic imaging techniques and ab initio calculations, covering length scales from the nanometer regime up to several millimeters. With low temperature spinpolarized scanning tunneling microscopy (SP-STM) we find domain walls with widths of 60 - 90 nm, which can be moved by small perpendicular magnetic fields. Spin contrast is also achieved on the graphene-covered surface, which means that the electron density in the vacuum above graphene is substantially spin-polarized. In accordance with our ab initio calculations we find an enhanced atomic corrugation with respect to the bare surface, due to the presence of the carbon pz orbitals and as a result of the quenching of Ni surface states. The latter also leads to an inversion of spinpolarization with respect to the pristine surface. Room temperature Kerr microscopy shows a stripe like domain pattern with stripe widths of 3 - 6 渭m. Applying in-plane-fields, domain walls start to move at about 13 mT and a single domain state is achieved at 140 mT. Via scanning electron microscopy with polarization analysis (SEMPA) a second type of modulation within the stripes is found and identified as 330 nm wide V-lines. Qualitatively, the observed surface domain pattern originates from bulk domains and their quasi-domain branching is driven by stray field reduction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.4774v1-abstract-full').style.display = 'none'; document.getElementById('1110.4774v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0912.0178">arXiv:0912.0178</a> <span> [<a href="https://arxiv.org/pdf/0912.0178">pdf</a>, <a href="https://arxiv.org/ps/0912.0178">ps</a>, <a href="https://arxiv.org/format/0912.0178">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Control of magnetic vortex wall chirality, polarity and position by a magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hankemeier%2C+S">S. Hankemeier</a>, <a href="/search/cond-mat?searchtype=author&query=Kobs%2C+A">A. Kobs</a>, <a href="/search/cond-mat?searchtype=author&query=Froemter%2C+R">R. Froemter</a>, <a href="/search/cond-mat?searchtype=author&query=Oepen%2C+H+P">H. P. Oepen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0912.0178v1-abstract-short" style="display: inline;"> The seeding of vortex domain walls in V-shaped nanowires by a magnetic field has been investigated via simulations and Scanning Electron Microscopy with Polarization Analysis (SEMPA). It is found that the orientation of the magnetic field can be used to purposely tune the chirality, polarity and position of single vortex domain walls in soft magnetic nanowires. </span> <span class="abstract-full has-text-grey-dark mathjax" id="0912.0178v1-abstract-full" style="display: none;"> The seeding of vortex domain walls in V-shaped nanowires by a magnetic field has been investigated via simulations and Scanning Electron Microscopy with Polarization Analysis (SEMPA). It is found that the orientation of the magnetic field can be used to purposely tune the chirality, polarity and position of single vortex domain walls in soft magnetic nanowires. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.0178v1-abstract-full').style.display = 'none'; document.getElementById('0912.0178v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0905.3141">arXiv:0905.3141</a> <span> [<a href="https://arxiv.org/pdf/0905.3141">pdf</a>, <a href="https://arxiv.org/ps/0905.3141">ps</a>, <a href="https://arxiv.org/format/0905.3141">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.104.077201">10.1103/PhysRevLett.104.077201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proposal of a robust measurement scheme for the non-adiabatic spin torque using the displacement of magnetic vortices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Krueger%2C+B">Benjamin Krueger</a>, <a href="/search/cond-mat?searchtype=author&query=Najafi%2C+M">Massoud Najafi</a>, <a href="/search/cond-mat?searchtype=author&query=Bohlens%2C+S">Stellan Bohlens</a>, <a href="/search/cond-mat?searchtype=author&query=Froemter%2C+R">Robert Froemter</a>, <a href="/search/cond-mat?searchtype=author&query=Moeller%2C+D+P+F">Dietmar P. F. Moeller</a>, <a href="/search/cond-mat?searchtype=author&query=Pfannkuche%2C+D">Daniela Pfannkuche</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0905.3141v1-abstract-short" style="display: inline;"> The strength of the non-adiabatic spin torque is currently under strong debate, as its value differs by orders of magnitude as well in theoretical predictions as in measurements. Here, a measurement scheme is presented that allows to determine the strength of the non-adiabatic spin torque accurately and directly. Analytical and numerical calculations show that the scheme allows to separate the d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0905.3141v1-abstract-full').style.display = 'inline'; document.getElementById('0905.3141v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0905.3141v1-abstract-full" style="display: none;"> The strength of the non-adiabatic spin torque is currently under strong debate, as its value differs by orders of magnitude as well in theoretical predictions as in measurements. Here, a measurement scheme is presented that allows to determine the strength of the non-adiabatic spin torque accurately and directly. Analytical and numerical calculations show that the scheme allows to separate the displacement due to the Oersted field and is robust against uncertainties of the exact current direction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0905.3141v1-abstract-full').style.display = 'none'; document.getElementById('0905.3141v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2009. </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>