CINXE.COM

Search results for: electrochemical biosensor

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: electrochemical biosensor</title> <meta name="description" content="Search results for: electrochemical biosensor"> <meta name="keywords" content="electrochemical biosensor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="electrochemical biosensor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="electrochemical biosensor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 839</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: electrochemical biosensor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">839</span> An Electrochemical DNA Biosensor Based on Oracet Blue as a Label for Detection of Helicobacter pylori </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeedeh%20Hajihosseini">Saeedeh Hajihosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Aghili"> Zahra Aghili</a>, <a href="https://publications.waset.org/abstracts/search?q=Navid%20Nasirizadeh"> Navid Nasirizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An innovative method of a DNA electrochemical biosensor based on Oracet Blue (OB) as an electroactive label and gold electrode (AuE) for detection of Helicobacter pylori, was offered. A single–stranded DNA probe with a thiol modification was covalently immobilized on the surface of the AuE by forming an Au–S bond. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of reduction of the OB binding to double– stranded DNA (ds–DNA). Our results showed that OB–based DNA biosensor has a decent potential for detection of single–base mismatch in target DNA. Selectivity of the proposed DNA biosensor was further confirmed in the presence of non–complementary and complementary DNA strands. Under optimum conditions, the electrochemical signal had a linear relationship with the concentration of the target DNA ranging from 0.3 nmol L-1 to 240.0 nmol L-1, and the detection limit was 0.17 nmol L-1, whit a promising reproducibility and repeatability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20biosensor" title="DNA biosensor">DNA biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=oracet%20blue" title=" oracet blue"> oracet blue</a>, <a href="https://publications.waset.org/abstracts/search?q=Helicobacter%20pylori" title=" Helicobacter pylori"> Helicobacter pylori</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode%20%28AuE%29" title=" electrode (AuE)"> electrode (AuE)</a> </p> <a href="https://publications.waset.org/abstracts/53867/an-electrochemical-dna-biosensor-based-on-oracet-blue-as-a-label-for-detection-of-helicobacter-pylori" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">838</span> Construction and Performance of Nanocomposite-Based Electrochemical Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianfang%20Wang">Jianfang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xianzhe%20Chen"> Xianzhe Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuoliang%20Liu"> Zhuoliang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-An%20Tao"> Cheng-An Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yujiao%20Li"> Yujiao Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organophosphorus (OPs) pesticide used as insecticides are widely used in agricultural pest control, household and storage deworming. The detection of pesticides needs more simple and efficient methods. One of the best ways is to make electrochemical biosensors. In this paper, an electrochemical enzyme biosensor based on acetylcholine esterase (AChE) was constructed, and its sensing properties and sensing mechanisms were studied. Reduced graphene oxide-polydopamine complexes (RGO-PDA), gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were prepared firstly and composited with AChE and chitosan (CS), then fixed on the glassy carbon electrode (GCE) surface to construct the biosensor GCE/RGO-PDA-AuNPs-AgNPs-AChE-CS by one-pot method. The results show that graphene oxide (GO) can be reduced by dopamine (DA) and dispersed well in RGO-PDA complexes. And the composites have a synergistic catalysis effect and can improve the surface resistance of GCE. The biosensor selectively can detect acetylcholine (ACh) and OPs pesticide with good linear range and high sensitivity. The performance of the biosensor is affected by the ratio and adding ways of AChE and the adding of AuNPs and AChE. And the biosensor can achieve a detection limit of 2.4 ng/L for methyl parathion and a wide linear detection range of 0.02 ng/L ~ 80 ng/L, and has excellent stability, good anti-interference ability, and excellent preservation performance, indicating that the sensor has practical value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetylcholine%20esterase" title="acetylcholine esterase">acetylcholine esterase</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20biosensor" title=" electrochemical biosensor"> electrochemical biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=organophosphates" title=" organophosphates"> organophosphates</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a> </p> <a href="https://publications.waset.org/abstracts/116820/construction-and-performance-of-nanocomposite-based-electrochemical-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">837</span> Biosensors for Parathion Based on Au-Pd Nanoparticles Modified Electrodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tian-Fang%20Kang">Tian-Fang Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao-Nan%20Ge"> Chao-Nan Ge</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Li"> Rui Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An electrochemical biosensor for the determination of organophosphorus pesticides was developed based on electrochemical co-deposition of Au and Pd nanoparticles on glassy carbon electrode (GCE). Energy disperse spectroscopy (EDS) analysis was used for characterization of the surface structure. Scanning electron micrograph (SEM) demonstrates that the films are uniform and the nanoclusters are homogeneously distributed on the GCE surface. Acetylcholinesterase (AChE) was immobilized on the Au and Pd nanoparticle modified electrode (Au-Pd/GCE) by cross-linking with glutaraldehyde. The electrochemical behavior of thiocholine at the biosensor (AChE/Au-Pd/GCE) was studied. The biosensors exhibited substantial electrocatalytic effect on the oxidation of thiocholine. The peak current of linear scan voltammetry (LSV) of thiocholine at the biosensor is proportional to the concentration of acetylthiocholine chloride (ATCl) over the range of 2.5 × 10-6 to 2.5 × 10-4 M in 0.1 M phosphate buffer solution (pH 7.0). The percent inhibition of acetylcholinesterase was proportional to the logarithm of parathion concentration in the range of 4.0 × 10-9 to 1.0 × 10-6 M. The detection limit of parathion was 2.6 × 10-9 M. The proposed method exhibited high sensitivity and good reproducibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetylcholinesterase" title="acetylcholinesterase">acetylcholinesterase</a>, <a href="https://publications.waset.org/abstracts/search?q=Au-Pd%20nanoparticles" title=" Au-Pd nanoparticles"> Au-Pd nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20biosensors" title=" electrochemical biosensors"> electrochemical biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=parathion" title=" parathion "> parathion </a> </p> <a href="https://publications.waset.org/abstracts/17756/biosensors-for-parathion-based-on-au-pd-nanoparticles-modified-electrodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">836</span> Hydrothermal Synthesis of Mesoporous Carbon Nanospheres and Their Electrochemical Properties for Glucose Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akbar%20Kazemi%20Asl">Ali Akbar Kazemi Asl</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Rahsepar"> Mansour Rahsepar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesoporous carbon nanospheres (MCNs) with uniform particle size distribution having an average of 290 nm and large specific surface area (274.4 m²/g) were synthesized by a one-step hydrothermal method followed by the calcination process and then utilized as an enzyme-free glucose biosensor. Morphology, crystal structure, and porous nature of the synthesized nanospheres were characterized by scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis, respectively. Also, the electrochemical performance of the MCNs@GCE electrode for the measurement of glucose concentration in alkaline media was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and chronoamperometry (CA). MCNs@GCE electrode shows good sensing performance, including a rapid glucose oxidation response within 3.1 s, a wide linear range of 0.026-12 mM, a sensitivity of 212.34 μA.mM⁻¹.cm⁻², and a detection limit of 25.7 μM with excellent selectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20carbon" title=" mesoporous carbon"> mesoporous carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=non-enzymatic" title=" non-enzymatic"> non-enzymatic</a> </p> <a href="https://publications.waset.org/abstracts/142299/hydrothermal-synthesis-of-mesoporous-carbon-nanospheres-and-their-electrochemical-properties-for-glucose-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">835</span> Standardization of a Methodology for Quantification of Antimicrobials Used for the Treatment of Multi-Resistant Bacteria Using Two Types of Biosensors and Production of Anti-Antimicrobial Antibodies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Garzon%20V.">Garzon V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Bustos%20R."> Bustos R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvador%20J.%20P."> Salvador J. P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20M.%20P."> Marco M. P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinacho%20D.%20G."> Pinacho D. G.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacterial resistance to antimicrobial treatment has increased significantly in recent years, making it a public health problem. Large numbers of bacteria are resistant to all or nearly all known antimicrobials, creating the need for the development of new types of antimicrobials or the use of “last line” antimicrobial drug therapies for the treatment of multi-resistant bacteria. Some of the chemical groups of antimicrobials most used for the treatment of infections caused by multiresistant bacteria in the clinic are Glycopeptide (Vancomycin), Polymyxin (Colistin), Lipopeptide (Daptomycin) and Carbapenem (Meropenem). Molecules that require therapeutic drug monitoring (TDM). Due to the above, a methodology based on nanobiotechnology based on an optical and electrochemical biosensor is being developed, which allows the evaluation of the plasmatic levels of some antimicrobials such as glycopeptide, polymyxin, lipopeptide and carbapenem quickly, at a low cost, with a high specificity and sensitivity and that can be implemented in the future in public and private health hospitals. For this, the project was divided into five steps i) Design of specific anti-drug antibodies, produced in rabbits for each of the types of antimicrobials, evaluating the results by means of an immunoassay analysis (ELISA); ii) quantification by means of an electrochemical biosensor that allows quantification with high sensitivity and selectivity of the reference antimicrobials; iii) Comparison of antimicrobial quantification with an optical type biosensor; iv) Validation of the methodologies used with biosensor by means of an immunoassay. Finding as a result that it is possible to quantify antibiotics by means of the optical and electrochemical biosensor at concentrations on average of 1,000ng/mL, the antibodies being sensitive and specific for each of the antibiotic molecules, results that were compared with immunoassays and HPLC chromatography. Thus, contributing to the safe use of these drugs commonly used in clinical practice and new antimicrobial drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title="antibiotics">antibiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20biosensor" title=" electrochemical biosensor"> electrochemical biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20biosensor" title=" optical biosensor"> optical biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutic%20drug%20monitoring" title=" therapeutic drug monitoring"> therapeutic drug monitoring</a> </p> <a href="https://publications.waset.org/abstracts/163528/standardization-of-a-methodology-for-quantification-of-antimicrobials-used-for-the-treatment-of-multi-resistant-bacteria-using-two-types-of-biosensors-and-production-of-anti-antimicrobial-antibodies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">834</span> Peptide Aptasensor for Electrochemical Detection of Rheumatoid Arthritis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shah%20Abbas">Shah Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rheumatoid arthritis is a systemic, inflammatory autoimmune disease, affecting an overall 1% of the global population. Despite being tremendous efforts by scientists, early diagnosis of RA still has not been achieved. In the current study, a Graphene oxide (GO) based electrochemical sensor has been developed for early diagnosis of RA through Cyclic voltammetry. Chitosan (CHI), a CPnatural polymer has also been incorporated along with GO in order to enhance the biocompatibility and functionalization potential of the biosensor. CCPs are known antigens for Anti Citrullinated Peptide Antibodies (ACPAs) which can be detected in serum even 14 years before the appearance of symptoms, thus they are believed to be an ideal target for the early diagnosis of RA. This study has yielded some promising results regarding the binding and detection of ACPAs through changes in the electrochemical properties of biosensing material. The cyclic voltammogram of this biosensor reflects the binding of ACPAs to the biosensor surface, due to its shifts observed in the current flow (cathodic current) as compared to the when no ACPAs bind as it is absent in RA negative patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheumatoid%20arthritis" title="rheumatoid arthritis">rheumatoid arthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide%20sensor" title=" peptide sensor"> peptide sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=anti%20citrullinated%20peptide%20antibodies" title=" anti citrullinated peptide antibodies"> anti citrullinated peptide antibodies</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title=" cyclic voltammetry"> cyclic voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/125129/peptide-aptasensor-for-electrochemical-detection-of-rheumatoid-arthritis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">833</span> Localized Detection of ᴅ-Serine by Using an Enzymatic Amperometric Biosensor and Scanning Electrochemical Microscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Polcari">David Polcari</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20C.%20Perry"> Samuel C. Perry</a>, <a href="https://publications.waset.org/abstracts/search?q=Loredano%20Pollegioni"> Loredano Pollegioni</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Geissler"> Matthias Geissler</a>, <a href="https://publications.waset.org/abstracts/search?q=Janine%20Mauzeroll"> Janine Mauzeroll</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ᴅ-serine acts as an endogenous co-agonist for N-methyl-ᴅ-aspartate receptors in neuronal synapses. This makes it a key component in the development and function of a healthy brain, especially given its role in several neurodegenerative diseases such as Alzheimer’s disease and dementia. Despite such clear research motivations, the primary site and mechanism of ᴅ-serine release is still currently unclear. For this reason, we are developing a biosensor for the detection of ᴅ-serine utilizing a microelectrode in combination with a ᴅ-amino acid oxidase enzyme, which produces stoichiometric quantities of hydrogen peroxide in response to ᴅ-serine. For the fabrication of a biosensor with good selectivity, we use a permselective poly(meta-phenylenediamine) film to ensure only the target molecule is reacted, according to the size exclusion principle. In this work, we investigated the effect of the electrodeposition conditions used on the biosensor’s response time and selectivity. Careful optimization of the fabrication process allowed for enhanced biosensor response time. This allowed for the real time sensing of ᴅ-serine in a bulk solution, and also provided in means to map the efflux of ᴅ-serine in real time. This was done using scanning electrochemical microscopy (SECM) with the optimized biosensor to measure localized release of ᴅ-serine from an agar filled glass capillary sealed in an epoxy puck, which acted as a model system. The SECM area scan simultaneously provided information regarding the rate of ᴅ-serine flux from the model substrate, as well as the size of the substrate itself. This SECM methodology, which provides high spatial and temporal resolution, could be useful to investigate the primary site and mechanism of ᴅ-serine release in other biological samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%E1%B4%85-serine" title="ᴅ-serine">ᴅ-serine</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20biosensor" title=" enzymatic biosensor"> enzymatic biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=microelectrode" title=" microelectrode"> microelectrode</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electrochemical%20microscopy" title=" scanning electrochemical microscopy"> scanning electrochemical microscopy</a> </p> <a href="https://publications.waset.org/abstracts/72424/localized-detection-of-serine-by-using-an-enzymatic-amperometric-biosensor-and-scanning-electrochemical-microscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">832</span> Highly Specific DNA-Aptamer-Based Electrochemical Biosensor for Mercury (II) and Lead (II) Ions Detection in Water Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Abu-Ali">H. Abu-Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nabok"> A. Nabok</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Smith"> T. Smith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aptamers are single-strand of DNA or RNA nucleotides sequence which is designed in vitro using selection process known as SELEX (systematic evolution of ligands by exponential enrichment) were developed for the selective detection of many toxic materials. In this work, we have developed an electrochemical biosensor for highly selective and sensitive detection of Hg2+ and Pb2+ using a specific aptamer probe (SAP) labelled with ferrocene (or methylene blue) in (5′) end and the thiol group at its (3′) termini, respectively. The SAP has a specific coil structure that matching with G-G for Pb2+ and T-T for Hg2+ interaction binding nucleotides ions, respectively. Aptamers were immobilized onto surface of screen-printed gold electrodes via SH groups; then the cyclic voltammograms were recorded in binding buffer with the addition of the above metal salts in different concentrations. The resulted values of anode current increase upon binding heavy metal ions to aptamers and analyte due to the presence of electrochemically active probe, i.e. ferrocene or methylene blue group. The correlation between the anodic current values and the concentrations of Hg2+ and Pb2+ ions has been established in this work. To the best of our knowledge, this is the first example of using a specific DNA aptamers for electrochemical detection of heavy metals. Each increase in concentration of 0.1 μM results in an increase in the anode current value by simple DC electrochemical test i.e (Cyclic Voltammetry), thus providing an easy way of determining Hg2+ and Pb2+concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aptamer" title="aptamer">aptamer</a>, <a href="https://publications.waset.org/abstracts/search?q=based" title=" based"> based</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=highly" title=" highly"> highly</a>, <a href="https://publications.waset.org/abstracts/search?q=specific" title=" specific"> specific</a> </p> <a href="https://publications.waset.org/abstracts/86012/highly-specific-dna-aptamer-based-electrochemical-biosensor-for-mercury-ii-and-lead-ii-ions-detection-in-water-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">831</span> Impedance Based Biosensor for Agricultural Pathogen Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rhea%20Patel">Rhea Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhuri%20Vinchurkar"> Madhuri Vinchurkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajul%20Patkar"> Rajul Patkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopal%20Pranjale"> Gopal Pranjale</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Shojaei%20Baghini"> Maryam Shojaei Baghini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the major limitations on food resources worldwide is the deterioration of plant products due to pathogenic infections. Early screening of plants for pathogenic infections can serve as a boon in the Agricultural sector. The standard microbiology techniques has not kept pace with the rapid enumeration and automated methods for bacteria detection. Electrochemical Impedance Spectroscopy (EIS) serves as a label free bio sensing technique to monitor pathogens in real time. The changes in the electrical impedance of a growing bacterial culture can be monitored to detect activity of microorganisms. In this study, we demonstrate development of a gold interdigitated electrode (gold IDE) based impedance biosensor to detect bacterial cells in real on-field crop samples. To calibrate our impedance measurement system, nutrient broth suspended Escherichia coli cells were used. We extended this calibrated protocol to identify the agricultural pathogens in real potato tuber samples. Distinct difference was seen in the impedance recorded for the healthy and infected potato samples. Our results support the potential application of this Impedance based biosensor in Agricultural pathogen detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20impedance%20spectroscopy" title=" electrochemical impedance spectroscopy"> electrochemical impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=microelectrode" title=" microelectrode"> microelectrode</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogen%20detection" title=" pathogen detection"> pathogen detection</a> </p> <a href="https://publications.waset.org/abstracts/129796/impedance-based-biosensor-for-agricultural-pathogen-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">830</span> Electrochemical Biosensor for Rutin Detection with Multiwall Carbon Nanotubes and Cerium Dioxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Rathinaraj%20Benjamin">Stephen Rathinaraj Benjamin</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Colmati%20Junior"> Flavio Colmati Junior</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Izabel%20Florindo%20Guedes"> Maria Izabel Florindo Guedes</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosa%20Amalia%20Fireman%20Dutra"> Rosa Amalia Fireman Dutra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new enzymatic electrochemical biosensor based on multiwall carbon nanotubes and cerium oxide nanoparticles for the detection of rutin has been developed. The cerium oxide nanoparticles /HRP/ multiwall carbon nanotubes/ carbon paste electrode (HRP/ CeO2/MWCNTs/CPE) was prepared by ensuing addition of MWCNTs and HRP on the CPE, followed by the mixing with cerium oxide nanoparticles. Surface physical characteristics of the modified electrode and the electrochemical properties of the composite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), cylic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The HRP/ CeO2/MWCNTs/CPE showed good selectivity, stability and reproducibility, which was further applied to detect rutin tablet and capsule samples with satisfactory results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cerium%20dioxide%20nanoparticles" title="cerium dioxide nanoparticles">cerium dioxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=horseradish%20peroxidase" title=" horseradish peroxidase"> horseradish peroxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=multiwall%20carbon%20nanotubes" title=" multiwall carbon nanotubes"> multiwall carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=rutin" title=" rutin"> rutin</a> </p> <a href="https://publications.waset.org/abstracts/68623/electrochemical-biosensor-for-rutin-detection-with-multiwall-carbon-nanotubes-and-cerium-dioxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">829</span> Modified Poly (Pyrrole) Film-Based Biosensors for Phenol Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Korkut">S. Korkut</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Kilic"> M. S. Kilic</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Erhan"> E. Erhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to detect and quantify the phenolic contents of a wastewater with biosensors, two working electrodes based on modified Poly (Pyrrole) films were fabricated. Enzyme horseradish peroxidase was used as biomolecule of the prepared electrodes. Various phenolics were tested at the biosensor. Phenol detection was realized by electrochemical reduction of quinones produced by enzymatic activity. Analytical parameters were calculated and the results were compared with each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol%20biosensor" title=" phenol biosensor"> phenol biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%28glutaraldehyde%29" title=" poly (glutaraldehyde)"> poly (glutaraldehyde)</a> </p> <a href="https://publications.waset.org/abstracts/22105/modified-poly-pyrrole-film-based-biosensors-for-phenol-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">828</span> Multi-Walled Carbon Nanotubes Doped Poly (3,4 Ethylenedioxythiophene) Composites Based Electrochemical Nano-Biosensor for Organophosphate Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navpreet%20Kaur">Navpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Himkusha%20Thakur"> Himkusha Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nirmal%20Prabhakar"> Nirmal Prabhakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most publicized and controversial issue in crop production is the use of agrichemicals- also known as pesticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. Therefore, detection of OPs is very necessary for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared PEDOT-MWCNT/FTO and AChE/PEDOT-MWCNT/FTO nano-biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Electrochemical studies were done using Cyclic Voltammetry (CV) or Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared nano-biosensor is observed to be 30 days and seven times, respectively. The application of the developed nano-biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed nano-biosensor made them reliable, sensitive and a low cost process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PEDOT-MWCNT" title="PEDOT-MWCNT">PEDOT-MWCNT</a>, <a href="https://publications.waset.org/abstracts/search?q=malathion" title=" malathion"> malathion</a>, <a href="https://publications.waset.org/abstracts/search?q=organophosphates" title=" organophosphates"> organophosphates</a>, <a href="https://publications.waset.org/abstracts/search?q=acetylcholinesterase" title=" acetylcholinesterase"> acetylcholinesterase</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-biosensor" title=" nano-biosensor"> nano-biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=oxime%20%282-PAM%29" title=" oxime (2-PAM)"> oxime (2-PAM)</a> </p> <a href="https://publications.waset.org/abstracts/42617/multi-walled-carbon-nanotubes-doped-poly-34-ethylenedioxythiophene-composites-based-electrochemical-nano-biosensor-for-organophosphate-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">827</span> Comparative Electrochemical Studies of Enzyme-Based and Enzyme-less Graphene Oxide-Based Nanocomposite as Glucose Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chetna%20Tyagi.%20G.%20B.%20V.%20S.%20Lakshmi">Chetna Tyagi. G. B. V. S. Lakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ambuj%20Tripathi"> Ambuj Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Avasthi"> D. K. Avasthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene oxide provides a good host matrix for preparing nanocomposites due to the different functional groups attached to its edges and planes. Being biocompatible, it is used in therapeutic applications. As enzyme-based biosensor requires complicated enzyme purification procedure, high fabrication cost and special storage conditions, we need enzyme-less biosensors for use even in a harsh environment like high temperature, varying pH, etc. In this work, we have prepared both enzyme-based and enzyme-less graphene oxide-based biosensors for glucose detection using glucose-oxidase as enzyme and gold nanoparticles, respectively. These samples were characterized using X-ray diffraction, UV-visible spectroscopy, scanning electron microscopy, and transmission electron microscopy to confirm the successful synthesis of the working electrodes. Electrochemical measurements were performed for both the working electrodes using a 3-electrode electrochemical cell. Cyclic voltammetry curves showed the homogeneous transfer of electron on the electrodes in the scan range between -0.2V to 0.6V. The sensing measurements were performed using differential pulse voltammetry for the glucose concentration varying from 0.01 mM to 20 mM, and sensing was improved towards glucose in the presence of gold nanoparticles. Gold nanoparticles in graphene oxide nanocomposite played an important role in sensing glucose in the absence of enzyme, glucose oxidase, as evident from these measurements. The selectivity was tested by measuring the current response of the working electrode towards glucose in the presence of the other common interfering agents like cholesterol, ascorbic acid, citric acid, and urea. The enzyme-less working electrode also showed storage stability for up to 15 weeks, making it a suitable glucose biosensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title="electrochemical">electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme-less" title=" enzyme-less"> enzyme-less</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/123186/comparative-electrochemical-studies-of-enzyme-based-and-enzyme-less-graphene-oxide-based-nanocomposite-as-glucose-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">826</span> Electrochemical Biosensor Based on Chitosan-Gold Nanoparticles, Carbon Nanotubes for Detection of Ovarian Cancer Biomarker</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parvin%20Samadi%20Pakchin">Parvin Samadi Pakchin</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Saber"> Reza Saber</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Ghanbari"> Hossein Ghanbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yadollah%20Omidi"> Yadollah Omidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ovarian cancer is one of the leading cause of mortality among the gynecological malignancies, and it remains the one of the most prevalent cancer in females worldwide. Tumor markers are biochemical molecules in blood or tissues which can indicates cancers occurrence in the human body. So, the sensitive and specific detection of cancer markers typically recruited for diagnosing and evaluating cancers. Recently extensive research efforts are underway to achieve a simple, inexpensive and accurate device for detection of cancer biomarkers. Compared with conventional immunoassay techniques, electrochemical immunosensors are of great interest, because they are specific, simple, inexpensive, easy to handling and miniaturization. Moreover, in the past decade nanotechnology has played a crucial role in the development of biosensors. In this study, a signal-off electrochemical immunosensor for the detection of CA125 antigen has been developed using chitosan-gold nanoparticles (CS-AuNP) and multi-wall carbon nanotubes (MWCNT) composites. Toluidine blue (TB) is used as redox probe which is immobilized on the electrode surface. CS-AuNP is synthesized by a simple one step method that HAuCl4 is reduced by NH2 groups of chitosan. The CS-AuNP-MWCNT modified electrode has shown excellent electrochemical performance compared with bare Au electrode. MWCNTs and AuNPs increased electrochemical conductivity and accelerate electrons transfer between solution and electrode surface while excessive amine groups on chitosan lead to the effective loading of the biological material (CA125 antibody) and TB on the electrode surface. The electrochemical, immobilization and sensing properties CS-AuNP-MWCNT-TB modified electrodes are characterized by cyclic voltammetry, electrochemical impedance spectroscopy, differential pulse voltammetry and square wave voltammetry with Fe(CN)63−/4−as an electrochemical redox indicator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=signal-off%20electrochemical%20biosensor" title="signal-off electrochemical biosensor">signal-off electrochemical biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=CA125" title=" CA125"> CA125</a>, <a href="https://publications.waset.org/abstracts/search?q=ovarian%20cancer" title=" ovarian cancer"> ovarian cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan-gold%20nanoparticles" title=" chitosan-gold nanoparticles"> chitosan-gold nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/79114/electrochemical-biosensor-based-on-chitosan-gold-nanoparticles-carbon-nanotubes-for-detection-of-ovarian-cancer-biomarker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">825</span> Electrochemical Detection of the Chemotherapy Agent Methotrexate in vitro from Physiological Fluids Using Functionalized Carbon Nanotube past Electrodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shekher%20Kummari">Shekher Kummari</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sunil%20Kumar"> V. Sunil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Vengatajalabathy%20Gobi"> K. Vengatajalabathy Gobi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple, cost-effective, reusable and reagent-free electrochemical biosensor is developed with functionalized multiwall carbon nanotube paste electrode (f-CNTPE) for the sensitive and selective determination of the important chemotherapeutic drug methotrexate (MTX), which is widely used for the treatment of various cancer and autoimmune diseases. The electrochemical response of the fabricated electrode towards the detection of MTX is examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). CV studies have shown that f-CNTPE electrode system exhibited an excellent electrocatalytic activity towards the oxidation of MTX in phosphate buffer (0.2 M) compared with a conventional carbon paste electrode (CPE). The oxidation peak current is enhanced by nearly two times in magnitude. Applying the DPV method under optimized conditions, a linear calibration plot is achieved over a wide range of concentration from 4.0×10⁻⁷ M to 5.5×10⁻⁶ M with the detection limit 1.6×10⁻⁷ M. further, by applying the SWV method a parabolic calibration plot was achieved starting from a very low concentration of 1.0×10⁻⁸ M, and the sensor could detect as low as 2.9×10⁻⁹ M MTX in 10 s and 10 nM were detected in steady state current-time analysis. The f-CNTPE shows very good selectivity towards the specific recognition of MTX in the presence of important biological interference. The electrochemical biosensor detects MTX in-vitro directly from pharmaceutical sample, undiluted urine and human blood serum samples at a concentration range 5.0×10⁻⁷ M with good recovery limits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amperometry" title="amperometry">amperometry</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20detection" title=" electrochemical detection"> electrochemical detection</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20blood%20serum" title=" human blood serum"> human blood serum</a>, <a href="https://publications.waset.org/abstracts/search?q=methotrexate" title=" methotrexate"> methotrexate</a>, <a href="https://publications.waset.org/abstracts/search?q=MWCNT" title=" MWCNT"> MWCNT</a>, <a href="https://publications.waset.org/abstracts/search?q=SWV" title=" SWV"> SWV</a> </p> <a href="https://publications.waset.org/abstracts/86857/electrochemical-detection-of-the-chemotherapy-agent-methotrexate-in-vitro-from-physiological-fluids-using-functionalized-carbon-nanotube-past-electrodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">824</span> Effect of III-V Nitrides on Performance of Graphene-Gold SPR Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bijaya%20Kumar%20Sahoo">Bijaya Kumar Sahoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of III-V nitride semiconductors on performance of a graphene-on-gold surface plasmon resonance (SPR) biosensor has been investigated theoretically. III-V nitrides (AlN, GaN and InN) have been grown between gold (Au) and graphene layers. The sensitivity and performance of the biosensor have been computed for with and without semiconductors. Due to superior electronic and optical properties, III-V nitrides demonstrate high sensitivity and performance over Si and Ge. The enhancement of evanescent electric field due to III-V nitrides have been computed and found highest for InN. The analysis shows that for a high-sensitive imaging biosensor the required optimal thickness of gold, InN and graphene are respectively 49 nm, 11 nm and 0.34 nm for the light of wavelength =633 nm (red He-Ne laser). This study suggests that InN would be a better choice for fabrication of new imaging SPR biosensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SPR%20biosensor" title="SPR biosensor">SPR biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=III-V%20nitrides" title=" III-V nitrides"> III-V nitrides</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement%20of%20electric%20field" title=" enhancement of electric field"> enhancement of electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20of%20graphene%20gold%20SPR%20biosensor" title=" performance of graphene gold SPR biosensor"> performance of graphene gold SPR biosensor</a> </p> <a href="https://publications.waset.org/abstracts/46349/effect-of-iii-v-nitrides-on-performance-of-graphene-gold-spr-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">823</span> A Sensitive Approach on Trace Analysis of Methylparaben in Wastewater and Cosmetic Products Using Molecularly Imprinted Polymer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soukaina%20Motia">Soukaina Motia</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20El%20Alami%20El%20Hassani"> Nadia El Alami El Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=Alassane%20Diouf"> Alassane Diouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Benachir%20Bouchikhi"> Benachir Bouchikhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nezha%20El%20Bari"> Nezha El Bari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parabens are the antimicrobial molecules largely used in cosmetic products as a preservative agent. Among them, the methylparaben (MP) is the most frequently used ingredient in cosmetic preparations. Nevertheless, their potential dangers led to the development of sensible and reliable methods for their determination in environmental samples. Firstly, a sensitive and selective molecular imprinted polymer (MIP) based on screen-printed gold electrode (Au-SPE), assembled on a polymeric layer of carboxylated poly(vinyl-chloride) (PVC-COOH), was developed. After the template removal, the obtained material was able to rebind MP and discriminate it among other interfering species such as glucose, sucrose, and citric acid. The behavior of molecular imprinted sensor was characterized by Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS) techniques. Then, the biosensor was found to have a linear detection range from 0.1 pg.mL<sup>-1</sup> to 1 ng.mL<sup>-1</sup> and a low limit of detection of 0.12 fg.mL<sup>-1</sup> and 5.18 pg.mL<sup>-1</sup> by DPV and EIS, respectively. For applications, this biosensor was employed to determine MP content in four wastewaters in Meknes city and two cosmetic products (shower gel and shampoo). The operational reproducibility and stability of this biosensor were also studied. Secondly, another MIP biosensor based on tungsten trioxide (WO<sub>3</sub>) functionalized by gold nanoparticles (Au-NPs) assembled on a polymeric layer of PVC-COOH was developed. The main goal was to increase the sensitivity of the biosensor. The developed MIP biosensor was successfully applied for the MP determination in wastewater samples and cosmetic products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmetic%20products" title="cosmetic products">cosmetic products</a>, <a href="https://publications.waset.org/abstracts/search?q=methylparaben" title=" methylparaben"> methylparaben</a>, <a href="https://publications.waset.org/abstracts/search?q=molecularly%20imprinted%20polymer" title=" molecularly imprinted polymer"> molecularly imprinted polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/65699/a-sensitive-approach-on-trace-analysis-of-methylparaben-in-wastewater-and-cosmetic-products-using-molecularly-imprinted-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">822</span> An Efficient Aptamer-Based Biosensor Developed via Irreversible Pi-Pi Functionalisation of Graphene/Zinc Oxide Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sze%20Shin%20Low">Sze Shin Low</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelle%20T.%20T.%20Tan"> Michelle T. T. Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Poi%20Sim%20Khiew"> Poi Sim Khiew</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwei-San%20Loh"> Hwei-San Loh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An efficient graphene/zinc oxide (PSE-G/ZnO) platform based on pi-pi stacking, non-covalent interactions for the development of aptamer-based biosensor was presented in this study. As a proof of concept, the DNA recognition capability of the as-developed PSE-G/ZnO enhanced aptamer-based biosensor was evaluated using Coconut Cadang-cadang viroid disease (CCCVd). The G/ZnO nanocomposite was synthesised via a simple, green and efficient approach. The pristine graphene was produced through a single step exfoliation of graphite in sonochemical alcohol-water treatment while the zinc nitrate hexahydrate was mixed with the graphene and subjected to low temperature hydrothermal growth. The developed facile, environmental friendly method provided safer synthesis procedure by eliminating the need of harsh reducing chemicals and high temperature. The as-prepared nanocomposite was characterised by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to evaluate its crystallinity, morphology and purity. Electrochemical impedance spectroscopy (EIS) was employed for the detection of CCCVd sequence with the use of potassium ferricyanide (K3[Fe(CN)6]). Recognition of the RNA analytes was achieved via the significant increase in resistivity for the double stranded DNA, as compared to single-stranded DNA. The PSE-G/ZnO enhanced aptamer-based biosensor exhibited higher sensitivity than the bare biosensor, attributing to the synergistic effect of high electrical conductivity of graphene and good electroactive property of ZnO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aptamer-based%20biosensor" title="aptamer-based biosensor">aptamer-based biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%2Fzinc%20oxide%20nanocomposite" title=" graphene/zinc oxide nanocomposite"> graphene/zinc oxide nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title=" green synthesis"> green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20printed%20carbon%20electrode" title=" screen printed carbon electrode"> screen printed carbon electrode</a> </p> <a href="https://publications.waset.org/abstracts/29610/an-efficient-aptamer-based-biosensor-developed-via-irreversible-pi-pi-functionalisation-of-graphenezinc-oxide-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">821</span> Development of Lectin-Based Biosensor for Glycoprofiling of Clinical Samples: Focus on Prostate Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dominika%20Pihikova">Dominika Pihikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Belicky"> Stefan Belicky</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Bertok"> Tomas Bertok</a>, <a href="https://publications.waset.org/abstracts/search?q=Roman%20Sokol"> Roman Sokol</a>, <a href="https://publications.waset.org/abstracts/search?q=Petra%20Kubanikova"> Petra Kubanikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Tkac"> Jan Tkac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since aberrant glycosylation is frequently accompanied by both physiological and pathological processes in a human body (cancer, AIDS, inflammatory diseases, etc.), the analysis of tumor-associated glycan patterns have a great potential for the development of novel diagnostic approaches. Moreover, altered glycoforms may assist as a suitable tool for the specificity and sensitivity enhancement in early-stage prostate cancer diagnosis. In this paper we discuss the construction and optimization of ultrasensitive sandwich biosensor platform employing lectin as glycan-binding protein. We focus on the immunoassay development, reduction of non-specific interactions and final glycoprofiling of human serum samples including both prostate cancer (PCa) patients and healthy controls. The fabricated biosensor was measured by label-free electrochemical impedance spectroscopy (EIS) with further lectin microarray verification. Furthermore, we analyzed different biosensor interfaces with atomic force microscopy (AFM) in nanomechanical mapping mode showing a significant differences in the altitude. These preliminary results revealing an elevated content of α-2,3 linked sialic acid in PCa patients comparing with healthy controls. All these experiments are important step towards development of point-of-care devices and discovery of novel glyco-biomarkers applicable in cancer diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=glycan" title=" glycan"> glycan</a>, <a href="https://publications.waset.org/abstracts/search?q=lectin" title=" lectin"> lectin</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title=" prostate cancer"> prostate cancer</a> </p> <a href="https://publications.waset.org/abstracts/33642/development-of-lectin-based-biosensor-for-glycoprofiling-of-clinical-samples-focus-on-prostate-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">820</span> Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Crosslinked Redox Enzyme/Carbon Nanotube on a Thiol-Modified Au Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20M.%20Kafi">A. K. M. Kafi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Nina"> S. N. Nina</a>, <a href="https://publications.waset.org/abstracts/search?q=Mashitah%20M.%20Yusoff"> Mashitah M. Yusoff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we have described a new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20enzyme" title=" redox enzyme"> redox enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=thiol-modified%20Au%20surface" title=" thiol-modified Au surface"> thiol-modified Au surface</a> </p> <a href="https://publications.waset.org/abstracts/16147/direct-electrical-communication-of-redox-enzyme-based-on-3-dimensional-crosslinked-redox-enzymecarbon-nanotube-on-a-thiol-modified-au-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">819</span> Microfluidic Paper-Based Electrochemical Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Manbohi">Ahmad Manbohi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Hamid%20Ahmadi"> Seyyed Hamid Ahmadi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A low-cost paper-based microfluidic device (PAD) for the multiplex electrochemical determination of glucose, uric acid, and dopamine in biological fluids was developed. Using wax printing, PAD containing a central zone, six channels, and six detection zones was fabricated, and the electrodes were printed on detection zones using pre-made electrodes template. For each analyte, two detection zones were used. The carbon working electrode was coated with chitosan-BSA (and enzymes for glucose and uric acid). To detect glucose and uric acid, enzymatic reactions were employed. These reactions involve enzyme-catalyzed redox reactions of the analytes and produce free electrons for electrochemical measurement. Calibration curves were linear (R<sup>&sup2;</sup> &gt; 0.980) in the range of 0-80 mM for glucose, 0.09&ndash;0.9 mM for dopamine, and 0&ndash;50 mM for uric acid, respectively. Blood samples were successfully analyzed by the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20fluids" title="biological fluids">biological fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20paper-based%20electrochemical%20biosensors" title="microfluidic paper-based electrochemical biosensors">microfluidic paper-based electrochemical biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=Multiplex" title=" Multiplex"> Multiplex</a> </p> <a href="https://publications.waset.org/abstracts/77212/microfluidic-paper-based-electrochemical-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">818</span> A DNA-Based Nano-biosensor for the Rapid Detection of the Dengue Virus in Mosquito </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lilia%20M.%20Fernando">Lilia M. Fernando</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20K.%20Vasher"> Matthew K. Vasher</a>, <a href="https://publications.waset.org/abstracts/search?q=Evangelyn%20C.%20Alocilja"> Evangelyn C. Alocilja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the development of a DNA-based nanobiosensor to detect the dengue virus in mosquito using electrically active magnetic (EAM) nanoparticles as the concentrator and electrochemical transducer. The biosensor detection encompasses two sets of oligonucleotide probes that are specific to the dengue virus: the detector probe labeled with the EAM nanoparticles and the biotinylated capture probe. The DNA targets are double hybridized to the detector and the capture probes and concentrated from nonspecific DNA fragments by applying a magnetic field. Subsequently, the DNA sandwiched targets (EAM-detector probe–DNA target–capture probe-biotin) are captured on streptavidin modified screen printed carbon electrodes through the biotinylated capture probes. Detection is achieved electrochemically by measuring the oxidation–reduction signal of the EAM nanoparticles. Results indicate that the biosensor is able to detect the redox signal of the EAM nanoparticles at dengue DNA concentrations as low as 10 ng/ul. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dengue" title="dengue">dengue</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=mosquito" title=" mosquito"> mosquito</a>, <a href="https://publications.waset.org/abstracts/search?q=nanobiosensor" title=" nanobiosensor"> nanobiosensor</a> </p> <a href="https://publications.waset.org/abstracts/37690/a-dna-based-nano-biosensor-for-the-rapid-detection-of-the-dengue-virus-in-mosquito" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">817</span> DNA-Based Gold Nanoprobe Biosensor to Detect Pork Contaminant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rizka%20Ardhiyana">Rizka Ardhiyana</a>, <a href="https://publications.waset.org/abstracts/search?q=Liesbetini%20Haditjaroko"> Liesbetini Haditjaroko</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Mulijani"> Sri Mulijani</a>, <a href="https://publications.waset.org/abstracts/search?q=Reki%20Ashadi%20Wicaksono"> Reki Ashadi Wicaksono</a>, <a href="https://publications.waset.org/abstracts/search?q=Raafqi%20Ranasasmita"> Raafqi Ranasasmita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Designing a sensitive, specific and easy to use method to detect pork contamination in the food industry remains a major challenge. In the current study, we developed a sensitive thiol-bond AuNP-Probe biosensor that will change color when detecting pork DNA in the Cytochrome B region. The interaction between the biosensors and DNA sample is measured by spectrophotometer at 540 nm. The biosensor is made by reducing gold with trisodium citrate to produce gold nanoparticle with 39.05 nm diameter. The AuNP-Probe biosensor (gold nanoprobe) achieved 16.04 ng DNA/µl limit of detection and 53.48 ng DNA/µl limit of quantification. The linearity (R2) between color absorbance changes and DNA concentration is 0.9916. The biosensor has a good specificty as it does not cross-react with DNA of chicken and beef. To verify specificity towards the target sequence, PCR was tested to the target sequence and reacted to the PCR product with the biosensor. The PCR DNA isolate resulted in a 2.7 fold higher absorbance compared to pork-DNA isolate alone (without PCR). The sensitivity and specificity of the method show the promising application of the thiol-bond AuNP biosensor in pork-detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20probe" title=" DNA probe"> DNA probe</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticle%20%28AuNP%29" title=" gold nanoparticle (AuNP)"> gold nanoparticle (AuNP)</a>, <a href="https://publications.waset.org/abstracts/search?q=pork%20meat" title=" pork meat"> pork meat</a>, <a href="https://publications.waset.org/abstracts/search?q=qPCR" title=" qPCR"> qPCR</a> </p> <a href="https://publications.waset.org/abstracts/72688/dna-based-gold-nanoprobe-biosensor-to-detect-pork-contaminant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">816</span> Modified Gold Screen Printed Electrode with Ruthenium Complex for Selective Detection of Porcine DNA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Aishah%20Hasbullah">Siti Aishah Hasbullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies on identification of pork content in food have grown rapidly to meet the Halal food standard in Malaysia. The used mitochondria DNA (mtDNA) approaches for the identification of pig species is thought to be the most precise marker due to the mtDNA genes are present in thousands of copies per cell, the large variability of mtDNA. The standard method commonly used for DNA detection is based on polymerase chain reaction (PCR) method combined with gel electrophoresis but has major drawback. Its major drawbacks are laborious, need longer time and toxic to handle. Therefore, the need for simplicity and fast assay of DNA is vital and has triggered us to develop DNA biosensors for porcine DNA detection. Therefore, the aim of this project is to develop electrochemical DNA biosensor based on ruthenium (II) complex, [Ru(bpy)2(p-PIP)]2+ as DNA hybridization label. The interaction of DNA and [Ru(bpy)2(p-HPIP)]2+ will be studied by electrochemical transduction using Gold Screen-Printed Electrode (GSPE) modified with gold nanoparticles (AuNPs) and succinimide acrylic microspheres. The electrochemical detection by redox active ruthenium (II) complex was measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicate that the interaction of [Ru(bpy)2(PIP)]2+ with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA. Under optimized condition, this porcine DNA biosensor incorporated modified GSPE shows good linear range towards porcine DNA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold" title="gold">gold</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20printed%20electrode" title=" screen printed electrode"> screen printed electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=ruthenium" title=" ruthenium"> ruthenium</a>, <a href="https://publications.waset.org/abstracts/search?q=porcine%20DNA" title=" porcine DNA"> porcine DNA</a> </p> <a href="https://publications.waset.org/abstracts/68407/modified-gold-screen-printed-electrode-with-ruthenium-complex-for-selective-detection-of-porcine-dna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">815</span> An Electrochemical Enzymatic Biosensor Based on Multi-Walled Carbon Nanotubes and Poly (3,4 Ethylenedioxythiophene) Nanocomposites for Organophosphate Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navpreet%20Kaur">Navpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Himkusha%20Thakur"> Himkusha Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nirmal%20Prabhakar"> Nirmal Prabhakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most controversial issue in crop production is the use of Organophosphate insecticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. OPs detection is of crucial importance for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). Substrate kinetics has been performed and studied for the determination of Michaelis Menten constant. The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared biosensor is observed to be 30 days and seven times, respectively. The application of the developed biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed biosensor made them reliable, sensitive and a low cost process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PEDOT-MWCNT" title="PEDOT-MWCNT">PEDOT-MWCNT</a>, <a href="https://publications.waset.org/abstracts/search?q=malathion" title=" malathion"> malathion</a>, <a href="https://publications.waset.org/abstracts/search?q=organophosphates" title=" organophosphates"> organophosphates</a>, <a href="https://publications.waset.org/abstracts/search?q=acetylcholinesterase" title=" acetylcholinesterase"> acetylcholinesterase</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=oxime%20%282-PAM%29" title=" oxime (2-PAM)"> oxime (2-PAM)</a> </p> <a href="https://publications.waset.org/abstracts/42622/an-electrochemical-enzymatic-biosensor-based-on-multi-walled-carbon-nanotubes-and-poly-34-ethylenedioxythiophene-nanocomposites-for-organophosphate-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">814</span> Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Cross-Linked Redox Enzyme/Nanomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20M.%20Kafi">A. K. M. Kafi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Nina"> S. N. Nina</a>, <a href="https://publications.waset.org/abstracts/search?q=Mashitah%20M.%20Yusoff"> Mashitah M. Yusoff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we have described a new 3-dimensional (3D) network of cross-linked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=redox%20enzyme" title="redox enzyme">redox enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensors" title=" biosensors"> biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20communication" title=" electrical communication"> electrical communication</a> </p> <a href="https://publications.waset.org/abstracts/24276/direct-electrical-communication-of-redox-enzyme-based-on-3-dimensional-cross-linked-redox-enzymenanomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">813</span> Eresa, Hospital General Universitario de Elche</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Kumar%20Singh">Ashish Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehak%20Gulati"> Mehak Gulati</a>, <a href="https://publications.waset.org/abstracts/search?q=Neelam%20Verma"> Neelam Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arginine majorly acts as a substrate for the enzyme nitric oxide synthase (NOS) for the production of nitric oxide, a strong vasodilator. Current study demonstrated a novel amperometric approach for estimation of arginine using nitric oxide synthase. The enzyme was co-immobilized in carbon paste electrode with NADP+, FAD and BH4 as cofactors. The detection principle of the biosensor is enzyme NOS catalyzes the conversion of arginine into nitric oxide. The developed biosensor could able to detect up to 10-9M of arginine. The oxidation peak of NO was observed at 0.65V. The developed arginine biosensor was used to monitor arginine content in fruit juices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arginine" title="arginine">arginine</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20paste%20elctrode" title=" carbon paste elctrode"> carbon paste elctrode</a>, <a href="https://publications.waset.org/abstracts/search?q=nitric%20oxide" title=" nitric oxide"> nitric oxide</a> </p> <a href="https://publications.waset.org/abstracts/28880/eresa-hospital-general-universitario-de-elche" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">812</span> A Structure-Switching Electrochemical Aptasensor for Rapid, Reagentless and Single-Step, Nanomolar Detection of C-Reactive Protein</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=William%20L.%20Whitehouse">William L. Whitehouse</a>, <a href="https://publications.waset.org/abstracts/search?q=Louisa%20H.%20Y.%20Lo"> Louisa H. Y. Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20B.%20Kinghorn"> Andrew B. Kinghorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20C.%20C.%20Shiu"> Simon C. C. Shiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Julian.%20A.%20Tanner"> Julian. A. Tanner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> C-reactive protein (CRP) is an acute-phase reactant and sensitive indicator for sepsis and other life-threatening pathologies, including systemic inflammatory response syndrome (SIRS). Currently, clinical turn-around times for established CRP detection methods take between 30 minutes to hours or even days from centralized laboratories. Here, we report the development of an electrochemical biosensor using redox probe-tagged DNA aptamers functionalized onto cheap, commercially available screen-printed electrodes. Binding-induced conformational switching of the CRP-targeting aptamer induces a specific and selective signal-ON event, which enables single-step and reagentless detection of CRP in as little as 1 minute. The aptasensor dynamic range spans 5-1000nM (R=0.97) or 5-500nM (R=0.99) in 50% diluted human serum, with a LOD of 3nM, corresponding to 2-orders of magnitude sensitivity under the clinically relevant cut-off for CRP. The sensor is stable for up to one week and can be reused numerous times, as judged from repeated real-time dosing and dose-response assays. By decoupling binding events from the signal induction mechanism, structure-switching electrochemical aptamer-based sensors (SS-EABs) provide considerable advantages over their adsorption-based counterparts. Our work expands on the retinue of such sensors reported in the literature and is the first instance of an SS-EAB for reagentless CRP detection. We hope this study can inspire further investigations into the suitability of SS-EABs for diagnostics, which will aid translational R&D toward fully realized devices aimed at point-of-care applications or for use more broadly by the public. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structure-switching" title="structure-switching">structure-switching</a>, <a href="https://publications.waset.org/abstracts/search?q=C-reactive%20protein" title=" C-reactive protein"> C-reactive protein</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=aptasensor." title=" aptasensor."> aptasensor.</a> </p> <a href="https://publications.waset.org/abstracts/182190/a-structure-switching-electrochemical-aptasensor-for-rapid-reagentless-and-single-step-nanomolar-detection-of-c-reactive-protein" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">811</span> Impedimetric Phage-Based Sensor for the Rapid Detection of Staphylococcus aureus from Nasal Swab</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Yousefniayejahr">Z. Yousefniayejahr</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bolognini"> S. Bolognini</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bonini"> A. Bonini</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Campobasso"> C. Campobasso</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Poma"> N. Poma</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Vivaldi"> F. Vivaldi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Di%20Luca"> M. Di Luca</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tavanti"> A. Tavanti</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Di%20Francesco"> F. Di Francesco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pathogenic bacteria represent a threat to healthcare systems and the food industry because their rapid detection remains challenging. Electrochemical biosensors are gaining prominence as a novel technology for the detection of pathogens due to intrinsic features such as low cost, rapid response time, and portability, which make them a valuable alternative to traditional methodologies. These sensors use biorecognition elements that are crucial for the identification of specific bacteria. In this context, bacteriophages are promising tools for their inherent high selectivity towards bacterial hosts, which is of fundamental importance when detecting bacterial pathogens in complex biological samples. In this study, we present the development of a low-cost and portable sensor based on the Zeno phage for the rapid detection of Staphylococcus aureus. Screen-printed gold electrodes functionalized with the Zeno phage were used, and electrochemical impedance spectroscopy was applied to evaluate the change of the charge transfer resistance (Rct) as a result of the interaction with S. aureus MRSA ATCC 43300. The phage-based biosensor showed a linear range from 101 to 104 CFU/mL with a 20-minute response time and a limit of detection (LOD) of 1.2 CFU/mL under physiological conditions. The biosensor’s ability to recognize various strains of staphylococci was also successfully demonstrated in the presence of clinical isolates collected from different geographic areas. Assays using S. epidermidis were also carried out to verify the species-specificity of the phage sensor. We only observed a remarkable change of the Rct in the presence of the target S. aureus bacteria, while no substantial binding to S. epidermidis occurred. This confirmed that the Zeno phage sensor only targets S. aureus species within the genus Staphylococcus. In addition, the biosensor's specificity with respect to other bacterial species, including gram-positive bacteria like Enterococcus faecium and the gram-negative bacterium Pseudomonas aeruginosa, was evaluated, and a non-significant impedimetric signal was observed. Notably, the biosensor successfully identified S. aureus bacterial cells in a complex matrix such as a nasal swab, opening the possibility of its use in a real-case scenario. We diluted different concentrations of S. aureus from 108 to 100 CFU/mL with a ratio of 1:10 in the nasal swap matrices collected from healthy donors. Three different sensors were applied to measure various concentrations of bacteria. Our sensor indicated high selectivity to detect S. aureus in biological matrices compared to time-consuming traditional methods, such as enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and radioimmunoassay (RIA), etc. With the aim to study the possibility to use this biosensor to address the challenge associated to pathogen detection, ongoing research is focused on the assessment of the biosensor’s analytical performances in different biological samples and the discovery of new phage bioreceptors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20impedance%20spectroscopy" title="electrochemical impedance spectroscopy">electrochemical impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteriophage" title=" bacteriophage"> bacteriophage</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a> </p> <a href="https://publications.waset.org/abstracts/182771/impedimetric-phage-based-sensor-for-the-rapid-detection-of-staphylococcus-aureus-from-nasal-swab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">810</span> A Contactless Capacitive Biosensor for Muscle Activity Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charn%20Loong%20Ng">Charn Loong Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamun%20Bin%20Ibne%20Reaz"> Mamun Bin Ibne Reaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As elderly population grows globally, the percentage of people diagnosed with musculoskeletal disorder (MSD) increase proportionally. Electromyography (EMG) is an important biosignal that contributes to MSD’s clinical diagnose and recovery process. Conventional conductive electrode has many disadvantages in the continuous EMG measurement application. This research has design a new surface EMG biosensor based on the parallel-plate capacitive coupling principle. The biosensor is developed by using a double-sided PCB with having one side of the PCB use to construct high input impedance circuitry while the other side of the copper (CU) plate function as biosignal sensing metal plate. The metal plate is insulated using kapton tape for contactless application. The result implicates that capacitive biosensor is capable to constantly capture EMG signal without having galvanic contact to human skin surface. However, there are noticeable noise couple into the measured signal. Post signal processing is needed in order to present a clean and significant EMG signal. A complete design of single ended, non-contact, high input impedance, front end EMG biosensor is presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contactless" title="contactless">contactless</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitive" title=" capacitive"> capacitive</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electromyography" title=" electromyography"> electromyography</a> </p> <a href="https://publications.waset.org/abstracts/29854/a-contactless-capacitive-biosensor-for-muscle-activity-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20biosensor&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20biosensor&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20biosensor&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20biosensor&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20biosensor&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20biosensor&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20biosensor&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20biosensor&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20biosensor&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20biosensor&amp;page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20biosensor&amp;page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrochemical%20biosensor&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10