CINXE.COM

Search results for: meteorological and hydrological service of Croatia

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: meteorological and hydrological service of Croatia</title> <meta name="description" content="Search results for: meteorological and hydrological service of Croatia"> <meta name="keywords" content="meteorological and hydrological service of Croatia"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="meteorological and hydrological service of Croatia" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="meteorological and hydrological service of Croatia"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4287</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: meteorological and hydrological service of Croatia</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4287</span> The Agroclimatic Atlas of Croatia for the Periods 1981-2010 and 1991-2020</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vi%C5%A1njica%20Vu%C4%8Deti%C4%87">Višnjica Vučetić</a>, <a href="https://publications.waset.org/abstracts/search?q=Mislav%20Ani%C4%87"> Mislav Anić</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Ba%C5%A1i%C4%87"> Jelena Bašić</a>, <a href="https://publications.waset.org/abstracts/search?q=Petra%20Svili%C4%8Di%C4%87"> Petra Sviličić</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Toma%C5%A1evi%C4%87"> Ivana Tomašević</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Agroclimatic Atlas of Croatia (Atlas) for the periods 1981–2010 and 1991–2020 is monograph of six chapters in digital form. Detailed descriptions of particular agroclimatological data are given in separate chapters as follows: agroclimatic indices based on air temperature (degree days, Huglin heliothermal index), soil temperature, water balance components (precipitation, potential evapotranspiration, actual evapotranspiration, soil moisture content, runoff, recharge and soil moisture loss) and fire weather indices. The last chapter is a description of the digital methods for the spatial interpolations (R and GIS). The Atlas comprises textual description of the relevant climate characteristic, maps of the spatial distribution of climatological elements at 109 stations (26 stations for soil temperature) and tables of the 30-year mean monthly, seasonal and annual values of climatological parameters at 24 stations. The Atlas was published in 2021, on the seventieth anniversary of the agrometeorology development at the Meteorological and Hydrological Service of Croatia. It is intended to support improvement of sustainable system of agricultural production and forest protection from fire and as a rich source of information for agronomic and forestry experts, but also for the decision-making bodies to use it for the development of strategic plans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agrometeorology" title="agrometeorology">agrometeorology</a>, <a href="https://publications.waset.org/abstracts/search?q=agroclimatic%20indices" title=" agroclimatic indices"> agroclimatic indices</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20temperature" title=" soil temperature"> soil temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20balance%20components" title=" water balance components"> water balance components</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20weather%20index" title=" fire weather index"> fire weather index</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20and%20hydrological%20service%20of%20Croatia" title=" meteorological and hydrological service of Croatia"> meteorological and hydrological service of Croatia</a> </p> <a href="https://publications.waset.org/abstracts/145349/the-agroclimatic-atlas-of-croatia-for-the-periods-1981-2010-and-1991-2020" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4286</span> Geospatial Analysis of Hydrological Response to Forest Fires in Small Mediterranean Catchments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bojana%20Horvat">Bojana Horvat</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Karleusa"> Barbara Karleusa</a>, <a href="https://publications.waset.org/abstracts/search?q=Goran%20Volf"> Goran Volf</a>, <a href="https://publications.waset.org/abstracts/search?q=Nevenka%20Ozanic"> Nevenka Ozanic</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivica%20Kisic"> Ivica Kisic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forest fire is a major threat in many regions in Croatia, especially in coastal areas. Although they are often caused by natural processes, the most common cause is the human factor, intentional or unintentional. Forest fires drastically transform landscapes and influence natural processes. The main goal of the presented research is to analyse and quantify the impact of the forest fire on hydrological processes and propose the model that best describes changes in hydrological patterns in the analysed catchments. Keeping in mind the spatial component of the processes, geospatial analysis is performed to gain better insight into the spatial variability of the hydrological response to disastrous events. In that respect, two catchments that experienced severe forest fire were delineated, and various hydrological and meteorological data were collected both attribute and spatial. The major drawback is certainly the lack of hydrological data, common in small torrential karstic streams; hence modelling results should be validated with the data collected in the catchment that has similar characteristics and established hydrological monitoring. The event chosen for the modelling is the forest fire that occurred in July 2019 and burned nearly 10% of the analysed area. Surface (land use/land cover) conditions before and after the event were derived from the two Sentinel-2 images. The mapping of the burnt area is based on a comparison of the Normalized Burn Index (NBR) computed from both images. To estimate and compare hydrological behaviour before and after the event, curve number (CN) values are assigned to the land use/land cover classes derived from the satellite images. Hydrological modelling resulted in surface runoff generation and hence prediction of hydrological responses in the catchments to a forest fire event. The research was supported by the Croatian Science Foundation through the project 'Influence of Open Fires on Water and Soil Quality' (IP-2018-01-1645). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Croatia" title="Croatia">Croatia</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20fire" title=" forest fire"> forest fire</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20analysis" title=" geospatial analysis"> geospatial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20response" title=" hydrological response"> hydrological response</a> </p> <a href="https://publications.waset.org/abstracts/113971/geospatial-analysis-of-hydrological-response-to-forest-fires-in-small-mediterranean-catchments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4285</span> Water Balance Components under Climate Change in Croatia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Ba%C5%A1i%C4%87">Jelena Bašić</a>, <a href="https://publications.waset.org/abstracts/search?q=Vi%C5%A1njica%20Vu%C4%8Deti%C4%87"> Višnjica Vučetić</a>, <a href="https://publications.waset.org/abstracts/search?q=Mislav%20Ani%C4%87"> Mislav Anić</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomislav%20Ba%C5%A1i%C4%87"> Tomislav Bašić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lack of precipitation combined with high temperatures causes great damage to the agriculture and economy in Croatia. Therefore, it is important to understand water circulation and balance. We decided to gain a better insight into the spatial distribution of water balance components (WBC) and their long-term changes in Croatia. WBC are precipitation (P), potential evapotranspiration (PET), actual evapotranspiration (ET), soil moisture content (S), runoff (RO), recharge (R), and soil moisture loss (L). Since measurements of the mentioned components in Croatia are very rare, the Palmer model has been applied to estimate them. We refined method by setting into the account the corrective factor to include influence effects of the wind as well as a maximum soil capacity for specific soil types. We will present one hundred years’ time series of PET and ET showing the trends at few meteorological stations and a comparison of components of two climatological periods. The meteorological data from 109 stations have been used for the spatial distribution map of the WBC of Croatia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=croatia" title="croatia">croatia</a>, <a href="https://publications.waset.org/abstracts/search?q=long-term%20trends" title=" long-term trends"> long-term trends</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20palmer%20method" title=" the palmer method"> the palmer method</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20balance%20components" title=" water balance components"> water balance components</a> </p> <a href="https://publications.waset.org/abstracts/145346/water-balance-components-under-climate-change-in-croatia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4284</span> Geographic Information Systems and Remotely Sensed Data for the Hydrological Modelling of Mazowe Dam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ellen%20Nhedzi%20Gozo">Ellen Nhedzi Gozo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unavailability of adequate hydro-meteorological data has always limited the analysis and understanding of hydrological behaviour of several dam catchments including Mazowe Dam in Zimbabwe. The problem of insufficient data for Mazowe Dam catchment analysis was solved by extracting catchment characteristics and aerial hydro-meteorological data from ASTER, LANDSAT, Shuttle Radar Topographic Mission SRTM remote sensing (RS) images using ILWIS, ArcGIS and ERDAS Imagine geographic information systems (GIS) software. Available observed hydrological as well as meteorological data complemented the use of the remotely sensed information. Ground truth land cover was mapped using a Garmin Etrex global positioning system (GPS) system. This information was then used to validate land cover classification detail that was obtained from remote sensing images. A bathymetry survey was conducted using a SONAR system connected to GPS. Hydrological modelling using the HBV model was then performed to simulate the hydrological process of the catchment in an effort to verify the reliability of the derived parameters. The model output shows a high Nash-Sutcliffe Coefficient that is close to 1 indicating that the parameters derived from remote sensing and GIS can be applied with confidence in the analysis of Mazowe Dam catchment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20systems" title="geographic information systems">geographic information systems</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20modelling" title=" hydrological modelling"> hydrological modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources%20management" title=" water resources management"> water resources management</a> </p> <a href="https://publications.waset.org/abstracts/46387/geographic-information-systems-and-remotely-sensed-data-for-the-hydrological-modelling-of-mazowe-dam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4283</span> Variability of Hydrological Modeling of the Blue Nile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeer%20Samy">Abeer Samy</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20C.%20Saavedra%20Valeriano"> Oliver C. Saavedra Valeriano</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20Negm"> Abdelazim Negm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blue%20Nile%20Basin" title="Blue Nile Basin">Blue Nile Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20modeling" title=" hydrological modeling"> hydrological modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a> </p> <a href="https://publications.waset.org/abstracts/25736/variability-of-hydrological-modeling-of-the-blue-nile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4282</span> Potential Impacts of Climate Change on Hydrological Droughts in the Limpopo River Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nokwethaba%20Makhanya">Nokwethaba Makhanya</a>, <a href="https://publications.waset.org/abstracts/search?q=Babatunde%20J.%20Abiodun"> Babatunde J. Abiodun</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Wolski"> Piotr Wolski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change possibly intensifies hydrological droughts and reduces water availability in river basins. Despite this, most research on climate change effects in southern Africa has focused exclusively on meteorological droughts. This thesis projects the potential impact of climate change on the future characteristics of hydrological droughts in the Limpopo River Basin (LRB). The study uses regional climate model (RCM) measurements (from the Coordinated Regional Climate Downscaling Experiment, CORDEX) and a combination of hydrological simulations (using the Soil and Water Assessment Tool Plus model, SWAT+) to predict the impacts at four global warming levels (GWLs: 1.5℃, 2.0℃, 2.5℃, and 3.0℃) under the RCP8.5 future climate scenario. The SWAT+ model was calibrated and validated with a streamflow dataset observed over the basin, and the sensitivity of model parameters was investigated. The performance of the SWAT+LRB model was verified using the Nash-Sutcliffe efficiency (NSE), Percent Bias (PBIAS), Root Mean Square Error (RMSE), and coefficient of determination (R²). The Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Precipitation Index (SPI) have been used to detect meteorological droughts. The Soil Water Index (SSI) has been used to define agricultural drought, while the Water Yield Drought Index (WYLDI), the Surface Run-off Index (SRI), and the Streamflow Index (SFI) have been used to characterise hydrological drought. The performance of the SWAT+ model simulations over LRB is sensitive to the parameters CN2 (initial SCS runoff curve number for moisture condition II) and ESCO (soil evaporation compensation factor). The best simulation generally performed better during the calibration period than the validation period. In calibration and validation periods, NSE is ≤ 0.8, while PBIAS is ≥ ﹣80.3%, RMSE ≥ 11.2 m³/s, and R² ≤ 0.9. The simulations project a future increase in temperature and potential evapotranspiration over the basin, but they do not project a significant future trend in precipitation and hydrological variables. However, the spatial distribution of precipitation reveals a projected increase in precipitation in the southern part of the basin and a decline in the northern part of the basin, with the region of reduced precipitation projected to increase with GWLs. A decrease in all hydrological variables is projected over most parts of the basin, especially over the eastern part of the basin. The simulations predict meteorological droughts (i.e., SPEI and SPI), agricultural droughts (i.e., SSI), and hydrological droughts (i.e., WYLDI, SRI) would become more intense and severe across the basin. SPEI-drought has a greater magnitude of increase than SPI-drought, and agricultural and hydrological droughts have a magnitude of increase between the two. As a result, this research suggests that future hydrological droughts over the LRB could be more severe than the SPI-drought projection predicts but less severe than the SPEI-drought projection. This research can be used to mitigate the effects of potential climate change on basin hydrological drought. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=CORDEX" title=" CORDEX"> CORDEX</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20modelling" title=" hydrological modelling"> hydrological modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Limpopo%20River%20Basin" title=" Limpopo River Basin"> Limpopo River Basin</a> </p> <a href="https://publications.waset.org/abstracts/157605/potential-impacts-of-climate-change-on-hydrological-droughts-in-the-limpopo-river-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4281</span> An Extensive Review of Drought Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shamsulhaq%20Amin">Shamsulhaq Amin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drought can arise from several hydrometeorological phenomena that result in insufficient precipitation, soil moisture, and surface and groundwater flow, leading to conditions that are considerably drier than the usual water content or availability. Drought is often assessed using indices that are associated with meteorological, agricultural, and hydrological phenomena. In order to effectively handle drought disasters, it is essential to accurately determine the kind, intensity, and extent of the drought using drought characterization. This information is critical for managing the drought before, during, and after the rehabilitation process. Over a hundred drought assessments have been created in literature to evaluate drought disasters, encompassing a range of factors and variables. Some models utilise solely hydrometeorological drivers, while others employ remote sensing technology, and some incorporate a combination of both. Comprehending the entire notion of drought and taking into account drought indices along with their calculation processes are crucial for researchers in this discipline. Examining several drought metrics in different studies requires additional time and concentration. Hence, it is crucial to conduct a thorough examination of approaches used in drought indices in order to identify the most straightforward approach to avoid any discrepancies in numerous scientific studies. In case of practical application in real-world, categorizing indices relative to their usage in meteorological, agricultural, and hydrological phenomena might help researchers maximize their efficiency. Users have the ability to explore different indexes at the same time, allowing them to compare the convenience of use and evaluate the benefits and drawbacks of each. Moreover, certain indices exhibit interdependence, which enhances comprehension of their connections and assists in making informed decisions about their suitability in various scenarios. This study provides a comprehensive assessment of various drought indices, analysing their types and computation methodologies in a detailed and systematic manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought%20classification" title="drought classification">drought classification</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20severity" title=" drought severity"> drought severity</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20indices" title=" drought indices"> drought indices</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological" title=" hydrological"> hydrological</a> </p> <a href="https://publications.waset.org/abstracts/185898/an-extensive-review-of-drought-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4280</span> Satellite-Based Drought Monitoring in Korea: Methodologies and Merits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joo-Heon%20Lee">Joo-Heon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seo-Yeon%20Park"> Seo-Yeon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanyang%20Sur"> Chanyang Sur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho-Won%20Jang"> Ho-Won Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Satellite-based remote sensing technique has been widely used in the area of drought and environmental monitoring to overcome the weakness of in-situ based monitoring. There are many advantages of remote sensing for drought watch in terms of data accessibility, monitoring resolution and types of available hydro-meteorological data including environmental areas. This study was focused on the applicability of drought monitoring based on satellite imageries by applying to the historical drought events, which had a huge impact on meteorological, agricultural, and hydrological drought. Satellite-based drought indices, the Standardized Precipitation Index (SPI) using Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM); Vegetation Health Index (VHI) using MODIS based Land Surface Temperature (LST), and Normalized Difference Vegetation Index (NDVI); and Scaled Drought Condition Index (SDCI) were evaluated to assess its capability to analyze the complex topography of the Korean peninsula. While the VHI was accurate when capturing moderate drought conditions in agricultural drought-damaged areas, the SDCI was relatively well monitored in hydrological drought-damaged areas. In addition, this study found correlations among various drought indices and applicability using Receiver Operating Characteristic (ROC) method, which will expand our understanding of the relationships between hydro-meteorological variables and drought events at global scale. The results of this research are expected to assist decision makers in taking timely and appropriate action in order to save millions of lives in drought-damaged areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought%20monitoring" title="drought monitoring">drought monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=moderate%20resolution%20imaging%20spectroradiometer%20%28MODIS%29" title=" moderate resolution imaging spectroradiometer (MODIS)"> moderate resolution imaging spectroradiometer (MODIS)</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver%20operating%20characteristic%20%28ROC%29" title=" receiver operating characteristic (ROC)"> receiver operating characteristic (ROC)</a> </p> <a href="https://publications.waset.org/abstracts/71898/satellite-based-drought-monitoring-in-korea-methodologies-and-merits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4279</span> Hydrological Evaluation of Satellite Precipitation Products Using IHACRES Rainfall-Runoff Model over a Basin in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Zakeri%20Niri">Mahmoud Zakeri Niri</a>, <a href="https://publications.waset.org/abstracts/search?q=Saber%20Moazami"> Saber Moazami</a>, <a href="https://publications.waset.org/abstracts/search?q=Arman%20Abdollahipour"> Arman Abdollahipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Ghalkhani"> Hossein Ghalkhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to hydrological evaluation of four widely-used satellite precipitation products named PERSIANN, TMPA-3B42V7, TMPA-3B42RT, and CMORPH over Zarinehrood basin in Iran. For this aim, at first, daily streamflow of Sarough-cahy river of Zarinehrood basin was simulated using IHACRES rainfall-runoff model with daily rain gauge and temperature as input data from 1988 to 2008. Then, the model was calibrated in two different periods through comparison the simulated discharge with the observed one at hydrometric stations. Moreover, in order to evaluate the performance of satellite precipitation products in streamflow simulation, the calibrated model was validated using daily satellite rainfall estimates from the period of 2003 to 2008. The obtained results indicated that TMPA-3B42V7 with CC of 0.69, RMSE of 5.93 mm/day, MAE of 4.76 mm/day, and RBias of -5.39% performs better simulation of streamflow than those PERSIANN and CMORPH over the study area. It is noteworthy that in Iran, the availability of ground measuring station data is very limited because of the sparse density of hydro-meteorological networks. On the other hand, large spatial and temporal variability of precipitations and lack of a reliable and extensive observing system are the most important challenges to rainfall analysis, flood prediction, and other hydrological applications in this country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrological%20evaluation" title="hydrological evaluation">hydrological evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=IHACRES" title=" IHACRES"> IHACRES</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20precipitation%20product" title=" satellite precipitation product"> satellite precipitation product</a>, <a href="https://publications.waset.org/abstracts/search?q=streamflow%20simulation" title=" streamflow simulation"> streamflow simulation</a> </p> <a href="https://publications.waset.org/abstracts/40319/hydrological-evaluation-of-satellite-precipitation-products-using-ihacres-rainfall-runoff-model-over-a-basin-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4278</span> Impact of Air Pollution and Climate on the Incidence of Emergency Interventions in Slavonski Brod</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renata%20Josipovic">Renata Josipovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Ante%20Cvitkovic"> Ante Cvitkovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particulate matter belongs to pollutants that can lead to respiratory problems or premature death due to exposure (long-term, short-term) to these substances, all depending on the severity of the effects. The importance of the study is to determine whether the existing climatic conditions in the period from January 1st to August 31st, 2018 increased the number of emergency interventions in Slavonski Brod with regard to pollutants hydrogen sulfide and particles less than 10 µm (PM10) and less than 2.5 µm (PM2.5). Analytical data of the concentration of pollutants are collected from the Croatian Meteorological and Hydrological Service, which monitors the operation of two meteorological stations in Slavonski Brod, as well as climatic conditions. Statistics data of emergency interventions were collected from the Emergency Medicine Department of Slavonski Brod. All data were compared (air pollution, emergency interventions) according to climatic conditions (air humidity and air temperature) and statistically processed. Statistical significance, although weak positive correlation PM2.5 (correlation coefficient 0.147; p = 0.036), determined PM10 (correlation coefficient 0.122; p = 0.048), hydrogen sulfide (correlation coefficient 0.141; p = 0.035) with max. temperature (correlation coefficient 0.202; p = 0.002) with number of interventions. The association between mean air humidity was significant but negative (correlation coefficient - 0.172; p = 0.007). The values of the influence of air pressure are not determined. As the problem of air pollution is very complex, coordinated action at many levels is needed to reduce air pollution in Slavonski Brod and consequences that can affect human health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emergency%20interventions" title="emergency interventions">emergency interventions</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20health" title=" human health"> human health</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20sulfide" title=" hydrogen sulfide"> hydrogen sulfide</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a> </p> <a href="https://publications.waset.org/abstracts/120981/impact-of-air-pollution-and-climate-on-the-incidence-of-emergency-interventions-in-slavonski-brod" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4277</span> Usage of Visual Tools for Light Exploring with Children in the Geographical Istria Region Kindergartens in Republic of Croatia and Republic of Slovenia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Urianni%20Merlin">Urianni Merlin</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%90eni%20Zuliani%20Bla%C5%A1kovi%C4%87"> Đeni Zuliani Blašković</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by the Reggio Pedagogy approach that explores light from physical, mathematical, artistic, and natural perspectives, emphasizes the value of visual tools in light exploring that opens up a wide area of experiential discovery and knowledge, especially if used in kindergartens with children. While there is some literature evidence of visual tool usage for light exploring in kindergartens in the Republic of Slovenia, in the Republic of Croatia there are few researches, and those published are focused at shadow exploring, exploring of physical characteristics and teatrical play of light and shadow. The objectives of this research are to assess how much visual tools are used for light exploring by preschool teachers from geographical Istria kindergartens as part of the activities offered to children and if the usage of the visual tool for light exploring it’s different regarding the work environment (Slovenian and Croatian Istria kindergartens; city vs. village kindergartens; preschool teachers age and length of service). One hundred one preschool teachers from Croatian Istria Region and 70 preschool teachers from Slovenian Istria Region responded to a self-made questionnaire regarding visual tool usage habits in their work. As predicted, results show significant differences in visual tool usage regarding preschool teachers' work environment, length of service, and age. Preschool teachers from Slovenian Istria that work in kindergartens located in the city that have from 15 to 19 years of service and are more than 30 years of age use significantly more visual tools for light exploring. The results highlight the differences in visual tools usage for light exploring in the small Istria peninsula that can be attributed to different University art curricula in Slovenia and Croatia or lifelong education offered in Slovenia that is more open to Italian reggio pedagogy influence and are further used by older preschool teachers with more service experience. Considering the small number of researches, this research significantly contributes to science and motivates preschool teachers and scientists to implement the use of light tools in the preschool and university curriculum, especially in Croatia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activities%20with%20light" title="activities with light">activities with light</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20exploring" title=" light exploring"> light exploring</a>, <a href="https://publications.waset.org/abstracts/search?q=preschool%20children" title=" preschool children"> preschool children</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20tools" title=" visual tools"> visual tools</a> </p> <a href="https://publications.waset.org/abstracts/160179/usage-of-visual-tools-for-light-exploring-with-children-in-the-geographical-istria-region-kindergartens-in-republic-of-croatia-and-republic-of-slovenia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4276</span> The Effect of Catastrophic Losses on Insurance Cycle: Case of Croatia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Drago%20Jakov%C4%8Devi%C4%87">Drago Jakovčević</a>, <a href="https://publications.waset.org/abstracts/search?q=Maja%20Mihelja%20%C5%BDaja"> Maja Mihelja Žaja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides an analysis of the insurance cycle in the Republic of Croatia and whether they are affected by catastrophic losses on a global level. In general, it is considered that insurance cycles are particularly pronounced in periods of financial crisis, but are also affected by the growing number of catastrophic losses. They cause the change of insurance cycle and premium growth and intensification and narrowing of the coverage conditions, so these variables move in the same direction and these phenomena point to a new cycle. The main goal of this paper is to determine the existence of insurance cycle in the Republic of Croatia and investigate whether catastrophic losses have an influence on insurance cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catastrophic%20loss" title="catastrophic loss">catastrophic loss</a>, <a href="https://publications.waset.org/abstracts/search?q=insurance%20cycle" title=" insurance cycle"> insurance cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=premium" title=" premium"> premium</a>, <a href="https://publications.waset.org/abstracts/search?q=Republic%20of%20Croatia" title=" Republic of Croatia"> Republic of Croatia</a> </p> <a href="https://publications.waset.org/abstracts/7784/the-effect-of-catastrophic-losses-on-insurance-cycle-case-of-croatia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4275</span> Evaluation of Turbulence Prediction over Washington, D.C.: Comparison of DCNet Observations and North American Mesoscale Model Outputs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nebila%20Lichiheb">Nebila Lichiheb</a>, <a href="https://publications.waset.org/abstracts/search?q=LaToya%20Myles"> LaToya Myles</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Pendergrass"> William Pendergrass</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruce%20Hicks"> Bruce Hicks</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawson%20Cagle"> Dawson Cagle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atmospheric transport of hazardous materials in urban areas is increasingly under investigation due to the potential impact on human health and the environment. In response to health and safety concerns, several dispersion models have been developed to analyze and predict the dispersion of hazardous contaminants. The models of interest usually rely on meteorological information obtained from the meteorological models of NOAA’s National Weather Service (NWS). However, due to the complexity of the urban environment, NWS forecasts provide an inadequate basis for dispersion computation in urban areas. A dense meteorological network in Washington, DC, called DCNet, has been operated by NOAA since 2003 to support the development of urban monitoring methodologies and provide the driving meteorological observations for atmospheric transport and dispersion models. This study focuses on the comparison of wind observations from the DCNet station on the U.S. Department of Commerce Herbert C. Hoover Building against the North American Mesoscale (NAM) model outputs for the period 2017-2019. The goal is to develop a simple methodology for modifying NAM outputs so that the dispersion requirements of the city and its urban area can be satisfied. This methodology will allow us to quantify the prediction errors of the NAM model and propose adjustments of key variables controlling dispersion model calculation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meteorological%20data" title="meteorological data">meteorological data</a>, <a href="https://publications.waset.org/abstracts/search?q=Washington%20D.C." title=" Washington D.C."> Washington D.C.</a>, <a href="https://publications.waset.org/abstracts/search?q=DCNet%20data" title=" DCNet data"> DCNet data</a>, <a href="https://publications.waset.org/abstracts/search?q=NAM%20model" title=" NAM model"> NAM model</a> </p> <a href="https://publications.waset.org/abstracts/140950/evaluation-of-turbulence-prediction-over-washington-dc-comparison-of-dcnet-observations-and-north-american-mesoscale-model-outputs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4274</span> Numerical Modelling of the Influence of Meteorological Forcing on Water-Level in the Head Bay of Bengal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linta%20Rose">Linta Rose</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasad%20K.%20Bhaskaran"> Prasad K. Bhaskaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water-level information along the coast is very important for disaster management, navigation, planning shoreline management, coastal engineering and protection works, port and harbour activities, and for a better understanding of near-shore ocean dynamics. The water-level variation along a coast attributes from various factors like astronomical tides, meteorological and hydrological forcing. The study area is the Head Bay of Bengal which is highly vulnerable to flooding events caused by monsoons, cyclones and sea-level rise. The study aims to explore the extent to which wind and surface pressure can influence water-level elevation, in view of the low-lying topography of the coastal zones in the region. The ADCIRC hydrodynamic model has been customized for the Head Bay of Bengal, discretized using flexible finite elements and validated against tide gauge observations. Monthly mean climatological wind and mean sea level pressure fields of ERA Interim reanalysis data was used as input forcing to simulate water-level variation in the Head Bay of Bengal, in addition to tidal forcing. The output water-level was compared against that produced using tidal forcing alone, so as to quantify the contribution of meteorological forcing to water-level. The average contribution of meteorological fields to water-level in January is 5.5% at a deep-water location and 13.3% at a coastal location. During the month of July, when the monsoon winds are strongest in this region, this increases to 10.7% and 43.1% respectively at the deep-water and coastal locations. The model output was tested by varying the input conditions of the meteorological fields in an attempt to quantify the relative significance of wind speed and wind direction on water-level. Under uniform wind conditions, the results showed a higher contribution of meteorological fields for south-west winds than north-east winds, when the wind speed was higher. A comparison of the spectral characteristics of output water-level with that generated due to tidal forcing alone showed additional modes with seasonal and annual signatures. Moreover, non-linear monthly mode was found to be weaker than during tidal simulation, all of which point out that meteorological fields do not cause much effect on the water-level at periods less than a day and that it induces non-linear interactions between existing modes of oscillations. The study signifies the role of meteorological forcing under fair weather conditions and points out that a combination of multiple forcing fields including tides, wind, atmospheric pressure, waves, precipitation and river discharge is essential for efficient and effective forecast modelling, especially during extreme weather events. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADCIRC" title="ADCIRC">ADCIRC</a>, <a href="https://publications.waset.org/abstracts/search?q=head%20Bay%20of%20Bengal" title=" head Bay of Bengal"> head Bay of Bengal</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20sea%20level%20pressure" title=" mean sea level pressure"> mean sea level pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20forcing" title=" meteorological forcing"> meteorological forcing</a>, <a href="https://publications.waset.org/abstracts/search?q=water-level" title=" water-level"> water-level</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a> </p> <a href="https://publications.waset.org/abstracts/68632/numerical-modelling-of-the-influence-of-meteorological-forcing-on-water-level-in-the-head-bay-of-bengal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4273</span> A Systematic Review of Prevalence, Gender and Age Differences in Cyberbullying Studies in Croatia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stjepka%20Popovi%C4%87">Stjepka Popović</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucija%20Vejmelka"> Lucija Vejmelka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Cyberbullying has become a prevalent issue worldwide, including in Croatia. However, a comprehensive understanding of the extent and nature of cyberbullying in the Croatian context is lacking. Objective: The objective of this systematic review is to evaluate the quality of current research conducted in Croatia on the subject of cyberbullying, identify any gaps in the research, and provide suggestions for future investigations. It examines the prevalence gender and age differences of cyberbullying in Croatia. Participants and Setting: Research is done on secondary data resources (published studies) of cyberbullying in Croatia. The participants in these studies that were included in systematic review are children and youth of all ages residing in Croatia who have been involved in cyberbullying incidents. The setting includes various environments where cyberbullying may occur, such as social media platforms and educational institutions. Methods: To identify pertinent studies on cyberbullying in Croatia, a comprehensive exploration of both international and domestic electronic databases was systematically undertaken. Relevant studies were chosen according to predefined criteria that determined inclusion and exclusion. Key findings from the selected studies were extracted and synthesized, enabling the identification of patterns in the data. Results: A total of 43 studies that fulfilled the inclusion criteria were identified in the review. The prevalence of cyberbullying victimization in Croatia ranged from 7% - 55.3%, with adolescents being the most affected group. The prevalence of cyberbullying perpetration was ranging from 3.2% - 30.3%. The most prevalent form of cyberbullying included gossiping and mocking others. Gender and age differences are highlighted. Conclusions: The outcomes of this systematic review highlight the pressing need for targeted interventions and preventative measures to address cyberbullying in Croatia. Additionally, it is crucial to conduct further research to investigate the long-term impacts and potential factors that can help mitigate cyberbullying in the context of Croatia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyberbullying" title="cyberbullying">cyberbullying</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20risky%20behavior" title=" online risky behavior"> online risky behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=Croatia" title=" Croatia"> Croatia</a>, <a href="https://publications.waset.org/abstracts/search?q=systematic%20review" title=" systematic review"> systematic review</a> </p> <a href="https://publications.waset.org/abstracts/176585/a-systematic-review-of-prevalence-gender-and-age-differences-in-cyberbullying-studies-in-croatia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4272</span> Direct Growth Rates of the Information Model for Traffic at the Service of Sustainable Development of Tourism in Dubrovacko-Neretvanska County 2014-2020</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinko%20Viducic">Vinko Viducic</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20%C5%BDanic%20Mikulicic"> Jelena Žanic Mikulicic</a>, <a href="https://publications.waset.org/abstracts/search?q=Maja%20Racic"> Maja Racic</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristina%20Sladojevic"> Kristina Sladojevic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research presented in this paper has been focused on analyzing the impact of traffic on the sustainable development of tourism in Croatia's Dubrovacko-Neretvanska County by the year 2020, based on the figures and trends reported in 2014 and using the relevant variables that characterise the synergy of traffic and tourism in, speaking from the geographic viewpoint, the most problematic county in the Republic of Croatia. The basic hypothesis has been confirmed through scientifically obtained research results, through the quantification of the model's variables and the direct growth rates of the designed model. On the basis of scientific insights into the sustainable development of traffic and tourism in Dubrovacko-Neretvanska County, it is possible to propose a new information model for traffic at the service of the sustainable development of tourism in the County for the period 2014-2020. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment%20protection" title="environment protection">environment protection</a>, <a href="https://publications.waset.org/abstracts/search?q=hotel%20industry" title=" hotel industry"> hotel industry</a>, <a href="https://publications.waset.org/abstracts/search?q=private%20sector" title=" private sector"> private sector</a>, <a href="https://publications.waset.org/abstracts/search?q=quantification" title=" quantification"> quantification</a> </p> <a href="https://publications.waset.org/abstracts/23415/direct-growth-rates-of-the-information-model-for-traffic-at-the-service-of-sustainable-development-of-tourism-in-dubrovacko-neretvanska-county-2014-2020" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4271</span> Hydrological Characterization of a Watershed for Streamflow Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oseni%20Taiwo%20Amoo">Oseni Taiwo Amoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Bloodless%20Dzwairo"> Bloodless Dzwairo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we extend the versatility and usefulness of GIS as a methodology for any river basin hydrologic characteristics analysis (HCA). The Gurara River basin located in North-Central Nigeria is presented in this study. It is an on-going research using spatial Digital Elevation Model (DEM) and Arc-Hydro tools to take inventory of the basin characteristics in order to predict water abstraction quantification on streamflow regime. One of the main concerns of hydrological modelling is the quantification of runoff from rainstorm events. In practice, the soil conservation service curve (SCS) method and the Conventional procedure called rational technique are still generally used these traditional hydrological lumped models convert statistical properties of rainfall in river basin to observed runoff and hydrograph. However, the models give little or no information about spatially dispersed information on rainfall and basin physical characteristics. Therefore, this paper synthesizes morphometric parameters in generating runoff. The expected results of the basin characteristics such as size, area, shape, slope of the watershed and stream distribution network analysis could be useful in estimating streamflow discharge. Water resources managers and irrigation farmers could utilize the tool for determining net return from available scarce water resources, where past data records are sparse for the aspect of land and climate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrological%20characteristic" title="hydrological characteristic">hydrological characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20flow" title=" stream flow"> stream flow</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff%20discharge" title=" runoff discharge"> runoff discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20and%20climate" title=" land and climate"> land and climate</a> </p> <a href="https://publications.waset.org/abstracts/65719/hydrological-characterization-of-a-watershed-for-streamflow-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4270</span> Determination of Measurement Uncertainty of the Diagnostic Meteorological Model CALMET</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nina%20Miklav%C4%8Di%C4%8D">Nina Miklavčič</a>, <a href="https://publications.waset.org/abstracts/search?q=Ur%C5%A1ka%20Kugovnik"> Urška Kugovnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Galkina"> Natalia Galkina</a>, <a href="https://publications.waset.org/abstracts/search?q=Primo%C5%BE%20Ribari%C4%8D"> Primož Ribarič</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudi%20Von%C4%8Dina"> Rudi Vončina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, the need for weather predictions is deeply rooted in the everyday life of people as well as it is in industry. The forecasts influence final decision-making processes in multiple areas, from agriculture and prevention of natural disasters to air traffic regulations and solutions on a national level for health, security, and economic problems. Namely, in Slovenia, alongside other existing forms of application, weather forecasts are adopted for the prognosis of electrical current transmission through powerlines. Meteorological parameters are one of the key factors which need to be considered in estimations of the reliable supply of electrical energy to consumers. And like for any other measured value, the knowledge about measurement uncertainty is also critical for the secure and reliable supply of energy. The estimation of measurement uncertainty grants us a more accurate interpretation of data, a better quality of the end results, and even a possibility of improvement of weather forecast models. In the article, we focused on the estimation of measurement uncertainty of the diagnostic microscale meteorological model CALMET. For the purposes of our research, we used a network of meteorological stations spread in the area of our interest, which enables a side-by-side comparison of measured meteorological values with the values calculated with the help of CALMET and the measurement uncertainty estimation as a final result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uncertancy" title="uncertancy">uncertancy</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20model" title=" meteorological model"> meteorological model</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20measurment" title=" meteorological measurment"> meteorological measurment</a>, <a href="https://publications.waset.org/abstracts/search?q=CALMET" title=" CALMET"> CALMET</a> </p> <a href="https://publications.waset.org/abstracts/171084/determination-of-measurement-uncertainty-of-the-diagnostic-meteorological-model-calmet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4269</span> Hydrological Modeling of Watersheds Using the Only Corresponding Competitor Method: The Case of M’Zab Basin, South East Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oulad%20Naoui%20Noureddine">Oulad Naoui Noureddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Cherif%20ELAmine"> Cherif ELAmine</a>, <a href="https://publications.waset.org/abstracts/search?q=Djehiche%20Abdelkader"> Djehiche Abdelkader</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water resources management includes several disciplines; the modeling of rainfall-runoff relationship is the most important discipline to prevent natural risks. There are several models to study rainfall-runoff relationship in watersheds. However, the majority of these models are not applicable in all basins of the world.&nbsp; In this study, a new stochastic method called The Only Corresponding Competitor method (OCC) was used for the hydrological modeling of M&rsquo;ZAB&nbsp;&nbsp; Watershed (South East of Algeria) to adapt a few empirical models for any hydrological regime.&nbsp; The results obtained allow to authorize a certain number of visions, in which it would be interesting to experiment with hydrological models that improve collectively or separately the data of a catchment by the OCC method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modelling" title="modelling">modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall-runoff%20relationship" title=" rainfall-runoff relationship"> rainfall-runoff relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20model" title=" empirical model"> empirical model</a>, <a href="https://publications.waset.org/abstracts/search?q=OCC" title=" OCC"> OCC</a> </p> <a href="https://publications.waset.org/abstracts/70690/hydrological-modeling-of-watersheds-using-the-only-corresponding-competitor-method-the-case-of-mzab-basin-south-east-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4268</span> The Visualization of Hydrological and Hydraulic Models Based on the Platform of Autodesk Civil 3D</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiyue%20Wang">Xiyue Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaoning%20Yan"> Shaoning Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cities in China today is faced with an increasingly serious river ecological crisis accompanying with the development of urbanization: waterlogging on account of the fragmented urban natural hydrological system; the limited ecological function of the hydrological system caused by a destruction of water system and waterfront ecological environment. Additionally, the eco-hydrological processes of rivers are affected by various environmental factors, which are more complex in the context of urban environment. Therefore, efficient hydrological monitoring and analysis tools, accurate and visual hydrological and hydraulic models are becoming more important basis for decision-makers and an important way for landscape architects to solve urban hydrological problems, formulating sustainable and forward-looking schemes. The study mainly introduces the river and flood analysis model based on the platform of Autodesk Civil 3D. Taking the Luanhe River in Qian'an City of Hebei Province as an example, the 3D models of the landform, river, embankment, shoal, pond, underground stream and other land features were initially built, with which the water transfer simulation analysis, river floodplain analysis, and river ecology analysis were carried out, ultimately the real-time visualized simulation and analysis of rivers in various hypothetical scenarios were realized. Through the establishment of digital hydrological and hydraulic model, the hydraulic data can be accurately and intuitively simulated, which provides basis for rational water system and benign urban ecological system design. Though, the hydrological and hydraulic model based on Autodesk Civil3D own its boundedness: the interaction between the model and other data and software is unfavorable; the huge amount of 3D data and the lack of basic data restrict the accuracy and application range. The hydrological and hydraulic model based on Autodesk Civil3D platform provides more possibility to access convenient and intelligent tool for urban planning and monitoring, a solid basis for further urban research and design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visualization" title="visualization">visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20and%20hydraulic%20model" title=" hydrological and hydraulic model"> hydrological and hydraulic model</a>, <a href="https://publications.waset.org/abstracts/search?q=Autodesk%20Civil%203D" title=" Autodesk Civil 3D"> Autodesk Civil 3D</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20river" title=" urban river"> urban river</a> </p> <a href="https://publications.waset.org/abstracts/64185/the-visualization-of-hydrological-and-hydraulic-models-based-on-the-platform-of-autodesk-civil-3d" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4267</span> Forecasting of Scaffolding Work Comfort Parameters Based on Data from Meteorological Stations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Szer">I. Szer</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Szer"> J. Szer</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pie%C5%84ko"> M. Pieńko</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Robak"> A. Robak</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Jami%C5%84ska-Gadomska"> P. Jamińska-Gadomska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Work at height, such as construction works on scaffoldings, is associated with a considerable risk. Scaffolding workers are usually exposed to changing weather conditions what can additionally increase the risk of dangerous situations. Therefore, it is very important to foresee the risk of adverse conditions to which the worker may be exposed. The data from meteorological stations may be used to asses this risk. However, the dependency between weather conditions on a scaffolding and in the vicinity of meteorological station, should be determined. The paper presents an analysis of two selected environmental parameters which have influence on the behavior of workers &ndash; air temperature and wind speed. Measurements of these parameters were made between April and November of 2016 on ten scaffoldings located in different parts of Poland. They were compared with the results taken from the meteorological stations located closest to the studied scaffolding. The results gathered from the construction sites and meteorological stations were not the same, but statistical analyses have shown that they were correlated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scaffolding" title="scaffolding">scaffolding</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20and%20safety%20at%20work" title=" health and safety at work"> health and safety at work</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20velocity" title=" wind velocity"> wind velocity</a> </p> <a href="https://publications.waset.org/abstracts/73582/forecasting-of-scaffolding-work-comfort-parameters-based-on-data-from-meteorological-stations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4266</span> Evaluation of E-Government Service Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Manh%20Hien">Nguyen Manh Hien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Service quality is the highest requirement from users, especially for the service in electronic government. During the past decades, it has become a major area of academic investigation. Considering this issue, there are many researches that evaluated the dimensions and e-service contexts. This study also identified the dimensions of service quality but focused on a new conceptual and provides a new methodological in developing measurement scales of e-service quality such as information quality, service quality and organization quality. Finally, the study will suggest a key factor to evaluate e-government service quality better. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dimensionality" title="dimensionality">dimensionality</a>, <a href="https://publications.waset.org/abstracts/search?q=e-government" title=" e-government"> e-government</a>, <a href="https://publications.waset.org/abstracts/search?q=e-service" title=" e-service"> e-service</a>, <a href="https://publications.waset.org/abstracts/search?q=e-service%20quality" title=" e-service quality"> e-service quality</a> </p> <a href="https://publications.waset.org/abstracts/2685/evaluation-of-e-government-service-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4265</span> Assessment of Mountain Hydrological Processes in the Gumera Catchment, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tewele%20Gebretsadkan%20Haile">Tewele Gebretsadkan Haile</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mountain terrains are essential to regional water resources by regulating hydrological processes that use downstream water supplies. Nevertheless, limited observed earth data in complex topography poses challenges for water resources regulation. That's why satellite product is implemented in this study. This study evaluates hydrological processes on mountain catchment of Gumera, Ethiopia using HBV-light model with satellite precipitation products (CHIRPS) for the temporal scale of 1996 to 2010 and area coverage of 1289 km2. The catchment is characterized by cultivation dominant and elevation ranges from 1788 to 3606 m above sea level. Three meteorological stations have been used for downscaling of the satellite data and one stream flow for calibration and validation. The result shows total annual water balance showed that precipitation 1410 mm, simulated 828 mm surface runoff compared to 1042 mm observed stream flow with actual evapotranspiration estimate 586mm and 1495mm potential evapotranspiration. The temperature range is 9°C in winter to 21°C. The catchment contributes 74% as quack runoff to the total runoff and 26% as lower groundwater storage, which sustains stream flow during low periods. The model uncertainty was measured using different metrics such as coefficient of determination, model efficiency, efficiency for log(Q) and flow weighted efficiency 0.76, 0.74, 0.66 and 0.70 respectively. The research result highlights that HBV model captures the mountain hydrology simulation and the result indicates quack runoff due to the traditional agricultural system, slope factor of the topography and adaptation measure for water resource management is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mountain%20hydrology" title="mountain hydrology">mountain hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=CHIRPS" title=" CHIRPS"> CHIRPS</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumera" title=" Gumera"> Gumera</a>, <a href="https://publications.waset.org/abstracts/search?q=HBV%20model" title=" HBV model"> HBV model</a> </p> <a href="https://publications.waset.org/abstracts/193453/assessment-of-mountain-hydrological-processes-in-the-gumera-catchment-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">12</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4264</span> Quantification of the Gumera Catchment&#039;s Mountain Hydrological Processes in Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tewele%20Gebretsadkan%20Haile">Tewele Gebretsadkan Haile</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mountain terrains are essential to regional water resources by regulating hydrological processes that use downstream water supplies. Nevertheless, limited observed earth data in complex topography poses challenges for water resources regulation. That's why satellite product is implemented in this study. This study evaluates hydrological processes on mountain catchment of Gumera, Ethiopia using HBV-light model with satellite precipitation products (CHIRPS) for the temporal scale of 1996 to 2010 and area coverage of 1289 km2. The catchment is characterized by cultivation dominant and elevation ranges from 1788 to 3606 m above sea level. Three meteorological stations have been used for downscaling of the satellite data and one stream flow for calibration and validation. The result shows total annual water balance showed that precipitation 1410 mm, simulated 828 mm surface runoff compared to 1042 mm observed stream flow with actual evapotranspiration estimate 586mm and 1495mm potential evapotranspiration. The temperature range is 9°C in winter to 21°C. The catchment contributes 74% as quack runoff to the total runoff and 26% as lower groundwater storage, which sustains stream flow during low periods. The model uncertainty was measured using different metrics such as coefficient of determination, model efficiency, efficiency for log(Q) and flow weighted efficiency 0.76, 0.74, 0.66 and 0.70 respectively. The research result highlights that HBV model captures the mountain hydrology simulation and the result indicates quack runoff due to the traditional agricultural system, slope factor of the topography and adaptation measure for water resource management is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mountain%20hydrology" title="mountain hydrology">mountain hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=CHIRPS" title=" CHIRPS"> CHIRPS</a>, <a href="https://publications.waset.org/abstracts/search?q=HBV%20model" title=" HBV model"> HBV model</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumera" title=" Gumera"> Gumera</a> </p> <a href="https://publications.waset.org/abstracts/194007/quantification-of-the-gumera-catchments-mountain-hydrological-processes-in-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4263</span> Hydrologic Balance and Surface Water Resources of the Cheliff-Zahrez Basin </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehaiguene%20Madjid">Mehaiguene Madjid</a>, <a href="https://publications.waset.org/abstracts/search?q=Touhari%20Fadhila"> Touhari Fadhila</a>, <a href="https://publications.waset.org/abstracts/search?q=Meddi%20Mohamed"> Meddi Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Cheliff basin offers a good hydrological example for the possibility of studying the problem which elucidated in the future, because of the unclearity in several aspects and hydraulic installation. Thus, our study of the Cheliff basin is divided into two principal parts: The spatial evaluation of the precipitation: also, the understanding of the modes of the reconstitution of the resource in water supposes a good knowledge of the structuring of the precipitation fields in the studied space. In the goal of a good knowledge of revitalizes them in water and their management integrated one judged necessary to establish a precipitation card of the Cheliff basin for a good understanding of the evolution of the resource in water in the basin and that goes will serve as basis for all study of hydraulic planning in the Cheliff basin. Then, the establishment of the precipitation card of the Cheliff basin answered a direct need of setting to the disposition of the researchers for the region and a document of reference that will be completed therefore and actualized. The hydrological study, based on the statistical hydrometric data processing will lead us to specify the hydrological terms of the assessment hydrological and to clarify the fundamental aspects of the annual flow, seasonal, extreme and thus of their variability and resources surface water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrological%20assessment" title="hydrological assessment">hydrological assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20water%20resources" title=" surface water resources"> surface water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheliff" title=" Cheliff"> Cheliff</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/36268/hydrologic-balance-and-surface-water-resources-of-the-cheliff-zahrez-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4262</span> Application of an Analytical Model to Obtain Daily Flow Duration Curves for Different Hydrological Regimes in Switzerland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Clara%20Santos">Ana Clara Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Manuela%20Portela"> Maria Manuela Portela</a>, <a href="https://publications.waset.org/abstracts/search?q=Bettina%20Schaefli"> Bettina Schaefli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work assesses the performance of an analytical model framework to generate daily flow duration curves, FDCs, based on climatic characteristics of the catchments and on their streamflow recession coefficients. According to the analytical model framework, precipitation is considered to be a stochastic process, modeled as a marked Poisson process, and recession is considered to be deterministic, with parameters that can be computed based on different models. The analytical model framework was tested for three case studies with different hydrological regimes located in Switzerland: pluvial, snow-dominated and glacier. For that purpose, five time intervals were analyzed (the four meteorological seasons and the civil year) and two developments of the model were tested: one considering a linear recession model and the other adopting a nonlinear recession model. Those developments were combined with recession coefficients obtained from two different approaches: forward and inverse estimation. The performance of the analytical framework when considering forward parameter estimation is poor in comparison with the inverse estimation for both, linear and nonlinear models. For the pluvial catchment, the inverse estimation shows exceptional good results, especially for the nonlinear model, clearing suggesting that the model has the ability to describe FDCs. For the snow-dominated and glacier catchments the seasonal results are better than the annual ones suggesting that the model can describe streamflows in those conditions and that future efforts should focus on improving and combining seasonal curves instead of considering single annual ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20streamflow%20distribution" title="analytical streamflow distribution">analytical streamflow distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20process" title=" stochastic process"> stochastic process</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20and%20non-linear%20recession" title=" linear and non-linear recession"> linear and non-linear recession</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20modelling" title=" hydrological modelling"> hydrological modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=daily%20discharges" title=" daily discharges"> daily discharges</a> </p> <a href="https://publications.waset.org/abstracts/98484/application-of-an-analytical-model-to-obtain-daily-flow-duration-curves-for-different-hydrological-regimes-in-switzerland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4261</span> Estimation of the Parameters of Muskingum Methods for the Prediction of the Flood Depth in the Moudjar River Catchment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fares%20Laouacheria">Fares Laouacheria</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Kechida"> Said Kechida</a>, <a href="https://publications.waset.org/abstracts/search?q=Moncef%20Chabi"> Moncef Chabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the study was based on the hydrological routing modelling for the continuous monitoring of the hydrological situation in the Moudjar river catchment, especially during floods with Hydrologic Engineering Center&ndash;Hydrologic Modelling Systems (HEC-HMS). The HEC-GeoHMS was used to transform data from geographic information system (GIS) to HEC-HMS for delineating and modelling the catchment river in order to estimate the runoff volume, which is used as inputs to the hydrological routing model. Two hydrological routing models were used, namely Muskingum and Muskingum routing models, for conducting this study. In this study, a comparison between the parameters of the Muskingum and Muskingum-Cunge routing models in HEC-HMS was used for modelling flood routing in the Moudjar river catchment and determining the relationship between these parameters and the physical characteristics of the river. The results indicate that the effects of input parameters such as the weighting factor &quot;X&quot; and travel time &quot;K&quot; on the output results are more significant, where the Muskingum routing model was more sensitive to input parameters than the Muskingum-Cunge routing model. This study can contribute to understand and improve the knowledge of the mechanisms of river floods, especially in ungauged river catchments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HEC-HMS" title="HEC-HMS">HEC-HMS</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20modelling" title=" hydrological modelling"> hydrological modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Muskingum%20routing%20model" title=" Muskingum routing model"> Muskingum routing model</a>, <a href="https://publications.waset.org/abstracts/search?q=Muskingum-Cunge%20routing%20model" title=" Muskingum-Cunge routing model"> Muskingum-Cunge routing model</a> </p> <a href="https://publications.waset.org/abstracts/93598/estimation-of-the-parameters-of-muskingum-methods-for-the-prediction-of-the-flood-depth-in-the-moudjar-river-catchment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4260</span> Urban Hydrology in Morocco: Navigating Challenges and Seizing Opportunities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelghani%20Qadem">Abdelghani Qadem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urbanization in Morocco has ushered in profound shifts in hydrological dynamics, presenting a spectrum of challenges and avenues for sustainable water management. This abstract delves into the nuances of urban hydrology in Morocco, spotlighting the ramifications of rapid urban expansion, the imprint of climate change, and the imperative for cohesive water management strategies. The swift urban sprawl across Morocco has engendered a surge in impermeable surfaces, reshaping the natural hydrological cycle and amplifying quandaries such as urban inundations and water scarcity. Moreover, the specter of climate change looms large, heralding alterations in precipitation regimes and a heightened frequency of extreme meteorological events, thus compounding the hydrological conundrum. However, amidst these challenges, urban hydrology in Morocco also unfolds vistas of innovation and sustainability. The integration of green infrastructure, encompassing solutions like permeable pavements and vegetated roofs, emerges as a linchpin in ameliorating the hydrological imbalances wrought by urbanization, fostering infiltration, and curbing surface runoff. Additionally, embracing the tenets of water-sensitive urban design promises to fortify water efficiency and resilience in urban landscapes. Effectively navigating urban hydrology in Morocco mandates a cross-disciplinary approach that interweaves urban planning, water resource governance, and climate resilience strategies. A collaborative ethos, bridging governmental entities, academic institutions, and grassroots communities, assumes paramount importance in crafting and executing comprehensive solutions that grapple with the intricate interplay of urbanization, hydrology, and climate dynamics. In summation, confronting the labyrinthine challenges of urban hydrology in Morocco necessitates proactive strides toward fostering sustainable urban growth and bolstering resilience to climate vagaries. By embracing cutting-edge technologies and embracing an ethos of integrated water management, Morocco can forge a path toward a more water-secure and resilient urban future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20hydrology" title="urban hydrology">urban hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=Morocco" title=" Morocco"> Morocco</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management" title=" water management"> water management</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20infrastructure" title=" green infrastructure"> green infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/183074/urban-hydrology-in-morocco-navigating-challenges-and-seizing-opportunities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4259</span> Evaluating the Water Balance of Sokoto Basement Complex to Address Water Security Challenges </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murtala%20Gada%20Abubakar">Murtala Gada Abubakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliyu%20T.%20Umar"> Aliyu T. Umar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A substantial part of Nigeria is part of semi-arid areas of the world, underlain by basement complex (hard) rocks which are very poor in both transmission and storage of appreciable quantity of water. Recently, a growing attention is being paid on the need to develop water resources in these areas largely due to concerns about increasing droughts and the need to maintain water security challenges. While there is ample body of knowledge that captures the hydrological behaviours of the sedimentary part, reported research which unambiguously illustrates water distribution in the basement complex of the Sokoto basin remains sparse. Considering the growing need to meet the water requirements of those living in this region necessitated the call for accurate water balance estimations that can inform a sustainable planning and development to address water security challenges for the area. To meet this task, a one-dimensional soil water balance model was developed and utilised to assess the state of water distribution within the Sokoto basin basement complex using measured meteorological variables and information about different landscapes within the complex. The model simulated the soil water storage and rates of input and output of water in response to climate and irrigation where applicable using data from 2001 to 2010 inclusive. The results revealed areas within the Sokoto basin basement complex that are rich and deficient in groundwater resource. The high potential areas identified includes the fadama, the fractured rocks and the cultivated lands, while the low potential areas are the sealed surfaces and non-fractured rocks. This study concludes that the modelling approach is a useful tool for assessing the hydrological behaviour and for better understanding the water resource availability within a basement complex. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basement%20complex" title="basement complex">basement complex</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20processes" title=" hydrological processes"> hydrological processes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sokoto%20Basin" title=" Sokoto Basin"> Sokoto Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20security" title=" water security"> water security</a> </p> <a href="https://publications.waset.org/abstracts/59727/evaluating-the-water-balance-of-sokoto-basement-complex-to-address-water-security-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4258</span> SMEs Access to Finance in Croatia – Model Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinko%20Vidu%C4%8Di%C4%87">Vinko Vidučić</a>, <a href="https://publications.waset.org/abstracts/search?q=Ljiljana%20Vidu%C4%8Di%C4%87"> Ljiljana Vidučić</a>, <a href="https://publications.waset.org/abstracts/search?q=Damir%20Boras"> Damir Boras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goals of the research include the determination of the characteristics of SMEs finance in Croatia, as well as the determination of indirect growth rates of the information model of the entrepreneurs` perception of business environment. The research results show that cost of finance and access to finance are most important constraining factor in setting up and running the business of small entrepreneurs in Croatia. Furthermore, small entrepreneurs in Croatia are significantly dissatisfied with the administrative barriers although relatively to a lesser extent than was the case in the pre-crisis time. High collateral requirement represents the main characteristic of bank lending concerning SMEs followed by long credit elaboration process. Formulated information model has defined the individual impact of indirect growth rates of the remaining variables on the model’s specific variable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=business%20environment" title="business environment">business environment</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20model" title=" information model"> information model</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect%20growth%20rates" title=" indirect growth rates"> indirect growth rates</a>, <a href="https://publications.waset.org/abstracts/search?q=SME%20finance" title=" SME finance"> SME finance</a> </p> <a href="https://publications.waset.org/abstracts/3440/smes-access-to-finance-in-croatia-model-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20and%20hydrological%20service%20of%20Croatia&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20and%20hydrological%20service%20of%20Croatia&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20and%20hydrological%20service%20of%20Croatia&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20and%20hydrological%20service%20of%20Croatia&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20and%20hydrological%20service%20of%20Croatia&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20and%20hydrological%20service%20of%20Croatia&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20and%20hydrological%20service%20of%20Croatia&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20and%20hydrological%20service%20of%20Croatia&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20and%20hydrological%20service%20of%20Croatia&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20and%20hydrological%20service%20of%20Croatia&amp;page=142">142</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20and%20hydrological%20service%20of%20Croatia&amp;page=143">143</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20and%20hydrological%20service%20of%20Croatia&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10