CINXE.COM

Search results for: Privacy Preservation in Data Mining (PPDM)

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Privacy Preservation in Data Mining (PPDM)</title> <meta name="description" content="Search results for: Privacy Preservation in Data Mining (PPDM)"> <meta name="keywords" content="Privacy Preservation in Data Mining (PPDM)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Privacy Preservation in Data Mining (PPDM)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Privacy Preservation in Data Mining (PPDM)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 26178</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Privacy Preservation in Data Mining (PPDM)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26178</span> Privacy Preserving in Association Rule Mining on Horizontally Partitioned Database</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manvar%20Sagar">Manvar Sagar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikul%20Virpariya"> Nikul Virpariya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advancement in data mining techniques plays an important role in many applications. In context of privacy and security issues, the problems caused by association rule mining technique are investigated by many research scholars. It is proved that the misuse of this technique may reveal the database owner’s sensitive and private information to others. Many researchers have put their effort to preserve privacy in Association Rule Mining. Amongst the two basic approaches for privacy preserving data mining, viz. Randomization based and Cryptography based, the later provides high level of privacy but incurs higher computational as well as communication overhead. Hence, it is necessary to explore alternative techniques that improve the over-heads. In this work, we propose an efficient, collusion-resistant cryptography based approach for distributed Association Rule mining using Shamir’s secret sharing scheme. As we show from theoretical and practical analysis, our approach is provably secure and require only one time a trusted third party. We use secret sharing for privately sharing the information and code based identification scheme to add support against malicious adversaries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Privacy" title="Privacy">Privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=Privacy%20Preservation%20in%20Data%20Mining%20%28PPDM%29" title=" Privacy Preservation in Data Mining (PPDM)"> Privacy Preservation in Data Mining (PPDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontally%20partitioned%20database" title=" horizontally partitioned database"> horizontally partitioned database</a>, <a href="https://publications.waset.org/abstracts/search?q=EMHS" title=" EMHS"> EMHS</a>, <a href="https://publications.waset.org/abstracts/search?q=MFI" title=" MFI"> MFI</a>, <a href="https://publications.waset.org/abstracts/search?q=shamir%20secret%20sharing" title=" shamir secret sharing"> shamir secret sharing</a> </p> <a href="https://publications.waset.org/abstracts/20983/privacy-preserving-in-association-rule-mining-on-horizontally-partitioned-database" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26177</span> A Comprehensive Survey and Improvement to Existing Privacy Preserving Data Mining Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tosin%20Ige">Tosin Ige</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethics must be a condition of the world, like logic. (Ludwig Wittgenstein, 1889-1951). As important as data mining is, it possess a significant threat to ethics, privacy, and legality, since data mining makes it difficult for an individual or consumer (in the case of a company) to control the accessibility and usage of his data. This research focuses on Current issues and the latest research and development on Privacy preserving data mining methods as at year 2022. It also discusses some advances in those techniques while at the same time highlighting and providing a new technique as a solution to an existing technique of privacy preserving data mining methods. This paper also bridges the wide gap between Data mining and the Web Application Programing Interface (web API), where research is urgently needed for an added layer of security in data mining while at the same time introducing a seamless and more efficient way of data mining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data" title="data">data</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy" title=" privacy"> privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=association%20rule" title=" association rule"> association rule</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy%20preserving" title=" privacy preserving"> privacy preserving</a>, <a href="https://publications.waset.org/abstracts/search?q=mining%20technique" title=" mining technique"> mining technique</a> </p> <a href="https://publications.waset.org/abstracts/145870/a-comprehensive-survey-and-improvement-to-existing-privacy-preserving-data-mining-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26176</span> Reviewing Privacy Preserving Distributed Data Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Baghernezhad">Sajjad Baghernezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeideh%20Baghernezhad"> Saeideh Baghernezhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays considering human involved in increasing data development some methods such as data mining to extract science are unavoidable. One of the discussions of data mining is inherent distribution of the data usually the bases creating or receiving such data belong to corporate or non-corporate persons and do not give their information freely to others. Yet there is no guarantee to enable someone to mine special data without entering in the owner’s privacy. Sending data and then gathering them by each vertical or horizontal software depends on the type of their preserving type and also executed to improve data privacy. In this study it was attempted to compare comprehensively preserving data methods; also general methods such as random data, coding and strong and weak points of each one are examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20data%20mining" title=" distributed data mining"> distributed data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy%20protection" title=" privacy protection"> privacy protection</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy%20preserving" title=" privacy preserving"> privacy preserving</a> </p> <a href="https://publications.waset.org/abstracts/28876/reviewing-privacy-preserving-distributed-data-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26175</span> Location Privacy Preservation of Vehicle Data In Internet of Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Ying%20Liu">Ying Ying Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Austin%20Cooke"> Austin Cooke</a>, <a href="https://publications.waset.org/abstracts/search?q=Parimala%20Thulasiraman"> Parimala Thulasiraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Internet of Things (IoT) has attracted a recent spark in research on Internet of Vehicles (IoV). In this paper, we focus on one research area in IoV: preserving location privacy of vehicle data. We discuss existing location privacy preserving techniques and provide a scheme for evaluating these techniques under IoV traffic condition. We propose a different strategy in applying Differential Privacy using k-d tree data structure to preserve location privacy and experiment on real world Gowalla data set. We show that our strategy produces differentially private data, good preservation of utility by achieving similar regression accuracy to the original dataset on an LSTM (Long Term Short Term Memory) neural network traffic predictor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20privacy" title="differential privacy">differential privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title=" internet of things"> internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20vehicles" title=" internet of vehicles"> internet of vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=location%20privacy" title=" location privacy"> location privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy%20preservation%20scheme" title=" privacy preservation scheme"> privacy preservation scheme</a> </p> <a href="https://publications.waset.org/abstracts/127016/location-privacy-preservation-of-vehicle-data-in-internet-of-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26174</span> HPPDFIM-HD: Transaction Distortion and Connected Perturbation Approach for Hierarchical Privacy Preserving Distributed Frequent Itemset Mining over Horizontally-Partitioned Dataset</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuad%20Ali%20Mohammed%20Al-Yarimi">Fuad Ali Mohammed Al-Yarimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many algorithms have been proposed to provide privacy preserving in data mining. These protocols are based on two main approaches named as: the perturbation approach and the Cryptographic approach. The first one is based on perturbation of the valuable information while the second one uses cryptographic techniques. The perturbation approach is much more efficient with reduced accuracy while the cryptographic approach can provide solutions with perfect accuracy. However, the cryptographic approach is a much slower method and requires considerable computation and communication overhead. In this paper, a new scalable protocol is proposed which combines the advantages of the perturbation and distortion along with cryptographic approach to perform privacy preserving in distributed frequent itemset mining on horizontally distributed data. Both the privacy and performance characteristics of the proposed protocol are studied empirically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anonymity%20data" title="anonymity data">anonymity data</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20frequent%20itemset%20mining" title=" distributed frequent itemset mining"> distributed frequent itemset mining</a>, <a href="https://publications.waset.org/abstracts/search?q=gaussian%20perturbation" title=" gaussian perturbation"> gaussian perturbation</a>, <a href="https://publications.waset.org/abstracts/search?q=perturbation%20approach" title=" perturbation approach"> perturbation approach</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy%20preserving%20data%20mining" title=" privacy preserving data mining"> privacy preserving data mining</a> </p> <a href="https://publications.waset.org/abstracts/20805/hppdfim-hd-transaction-distortion-and-connected-perturbation-approach-for-hierarchical-privacy-preserving-distributed-frequent-itemset-mining-over-horizontally-partitioned-dataset" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26173</span> Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoda%20A.%20Abdel%20Hafez">Hoda A. Abdel Hafez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mining%20big%20data" title="mining big data">mining big data</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=telecommunication" title=" telecommunication"> telecommunication</a> </p> <a href="https://publications.waset.org/abstracts/41412/mining-big-data-in-telecommunications-industry-challenges-techniques-and-revenue-opportunity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26172</span> Secure Multiparty Computations for Privacy Preserving Classifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sumana">M. Sumana</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Hareesha"> K. S. Hareesha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Secure computations are essential while performing privacy preserving data mining. Distributed privacy preserving data mining involve two to more sites that cannot pool in their data to a third party due to the violation of law regarding the individual. Hence in order to model the private data without compromising privacy and information loss, secure multiparty computations are used. Secure computations of product, mean, variance, dot product, sigmoid function using the additive and multiplicative homomorphic property is discussed. The computations are performed on vertically partitioned data with a single site holding the class value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homomorphic%20property" title="homomorphic property">homomorphic property</a>, <a href="https://publications.waset.org/abstracts/search?q=secure%20product" title=" secure product"> secure product</a>, <a href="https://publications.waset.org/abstracts/search?q=secure%20mean%20and%20variance" title=" secure mean and variance"> secure mean and variance</a>, <a href="https://publications.waset.org/abstracts/search?q=secure%20dot%20product" title=" secure dot product"> secure dot product</a>, <a href="https://publications.waset.org/abstracts/search?q=vertically%20partitioned%20data" title=" vertically partitioned data"> vertically partitioned data</a> </p> <a href="https://publications.waset.org/abstracts/34716/secure-multiparty-computations-for-privacy-preserving-classifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26171</span> Isolation Preserving Medical Conclusion Hold Structure via C5 Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swati%20Kishor%20Zode">Swati Kishor Zode</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Ambekar"> Rahul Ambekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data mining is the extraction of fascinating examples on the other hand information from enormous measure of information and choice is made as indicated by the applicable information extracted. As of late, with the dangerous advancement in internet, stockpiling of information and handling procedures, privacy preservation has been one of the major (higher) concerns in data mining. Various techniques and methods have been produced for protection saving data mining. In the situation of Clinical Decision Support System, the choice is to be made on the premise of the data separated from the remote servers by means of Internet to diagnose the patient. In this paper, the fundamental thought is to build the precision of Decision Support System for multiple diseases for different maladies and in addition protect persistent information while correspondence between Clinician side (Client side) also, the Server side. A privacy preserving protocol for clinical decision support network is proposed so that patients information dependably stay scrambled amid diagnose prepare by looking after the accuracy. To enhance the precision of Decision Support System for various malady C5.0 classifiers and to save security, a Homomorphism encryption algorithm Paillier cryptosystem is being utilized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=homomorphic%20encryption" title=" homomorphic encryption"> homomorphic encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20decision%20support" title=" clinical decision support"> clinical decision support</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy" title=" privacy "> privacy </a> </p> <a href="https://publications.waset.org/abstracts/32625/isolation-preserving-medical-conclusion-hold-structure-via-c5-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26170</span> Convergence and Stability in Federated Learning with Adaptive Differential Privacy Preservation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rizwan%20Rizwan">Rizwan Rizwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides an overview of Federated Learning (FL) and its application in enhancing data security, privacy, and efficiency. FL utilizes three distinct architectures to ensure privacy is never compromised. It involves training individual edge devices and aggregating their models on a server without sharing raw data. This approach not only provides secure models without data sharing but also offers a highly efficient privacy--preserving solution with improved security and data access. Also we discusses various frameworks used in FL and its integration with machine learning, deep learning, and data mining. In order to address the challenges of multi--party collaborative modeling scenarios, a brief review FL scheme combined with an adaptive gradient descent strategy and differential privacy mechanism. The adaptive learning rate algorithm adjusts the gradient descent process to avoid issues such as model overfitting and fluctuations, thereby enhancing modeling efficiency and performance in multi-party computation scenarios. Additionally, to cater to ultra-large-scale distributed secure computing, the research introduces a differential privacy mechanism that defends against various background knowledge attacks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=federated%20learning" title="federated learning">federated learning</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20privacy" title=" differential privacy"> differential privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient%20descent%20strategy" title=" gradient descent strategy"> gradient descent strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence" title=" convergence"> convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=threats" title=" threats"> threats</a> </p> <a href="https://publications.waset.org/abstracts/187891/convergence-and-stability-in-federated-learning-with-adaptive-differential-privacy-preservation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26169</span> Privacy Preservation Concerns and Information Disclosure on Social Networks: An Ongoing Research</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aria%20Teimourzadeh">Aria Teimourzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc%20Favier"> Marc Favier</a>, <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Kakavand"> Samaneh Kakavand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The emergence of social networks has revolutionized the exchange of information. Every behavior on these platforms contributes to the generation of data known as social network data that are processed, stored and published by the social network service providers. Hence, it is vital to investigate the role of these platforms in user data by considering the privacy measures, especially when we observe the increased number of individuals and organizations engaging with the current virtual platforms without being aware that the data related to their positioning, connections and behavior is uncovered and used by third parties. Performing analytics on social network datasets may result in the disclosure of confidential information about the individuals or organizations which are the members of these virtual environments. Analyzing separate datasets can reveal private information about relationships, interests and more, especially when the datasets are analyzed jointly. Intentional breaches of privacy is the result of such analysis. Addressing these privacy concerns requires an understanding of the nature of data being accumulated and relevant data privacy regulations, as well as motivations for disclosure of personal information on social network platforms. Some significant points about how user's online information is controlled by the influence of social factors and to what extent the users are concerned about future use of their personal information by the organizations, are highlighted in this paper. Firstly, this research presents a short literature review about the structure of a network and concept of privacy in Online Social Networks. Secondly, the factors of user behavior related to privacy protection and self-disclosure on these virtual communities are presented. In other words, we seek to demonstrates the impact of identified variables on user information disclosure that could be taken into account to explain the privacy preservation of individuals on social networking platforms. Thirdly, a few research directions are discussed to address this topic for new researchers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20disclosure" title="information disclosure">information disclosure</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy%20measures" title=" privacy measures"> privacy measures</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy%20preservation" title=" privacy preservation"> privacy preservation</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20network%20analysis" title=" social network analysis"> social network analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20experience" title=" user experience"> user experience</a> </p> <a href="https://publications.waset.org/abstracts/69904/privacy-preservation-concerns-and-information-disclosure-on-social-networks-an-ongoing-research" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26168</span> Privacy Preserving Data Publishing Based on Sensitivity in Context of Big Data Using Hive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Srinivasa%20Rao">P. Srinivasa Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Venkatesh%20Sharma"> K. Venkatesh Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Sadhya%20Devi"> G. Sadhya Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Nagesh"> V. Nagesh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Privacy Preserving Data Publication is the main concern in present days because the data being published through the internet has been increasing day by day. This huge amount of data was named as Big Data by its size. This project deals the privacy preservation in the context of Big Data using a data warehousing solution called hive. We implemented Nearest Similarity Based Clustering (NSB) with Bottom-up generalization to achieve (v,l)-anonymity. (v,l)-Anonymity deals with the sensitivity vulnerabilities and ensures the individual privacy. We also calculate the sensitivity levels by simple comparison method using the index values, by classifying the different levels of sensitivity. The experiments were carried out on the hive environment to verify the efficiency of algorithms with Big Data. This framework also supports the execution of existing algorithms without any changes. The model in the paper outperforms than existing models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title="sensitivity">sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitive%20level" title=" sensitive level"> sensitive level</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=Privacy%20Preserving%20Data%20Publication%20%28PPDP%29" title=" Privacy Preserving Data Publication (PPDP)"> Privacy Preserving Data Publication (PPDP)</a>, <a href="https://publications.waset.org/abstracts/search?q=bottom-up%20generalization" title=" bottom-up generalization"> bottom-up generalization</a>, <a href="https://publications.waset.org/abstracts/search?q=Big%20Data" title=" Big Data"> Big Data</a> </p> <a href="https://publications.waset.org/abstracts/71445/privacy-preserving-data-publishing-based-on-sensitivity-in-context-of-big-data-using-hive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26167</span> Healthcare Data Mining Innovations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eugenia%20Jilinguirian">Eugenia Jilinguirian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the healthcare industry, data mining is essential since it transforms the field by collecting useful data from large datasets. Data mining is the process of applying advanced analytical methods to large patient records and medical histories in order to identify patterns, correlations, and trends. Healthcare professionals can improve diagnosis accuracy, uncover hidden linkages, and predict disease outcomes by carefully examining these statistics. Additionally, data mining supports personalized medicine by personalizing treatment according to the unique attributes of each patient. This proactive strategy helps allocate resources more efficiently, enhances patient care, and streamlines operations. However, to effectively apply data mining, however, and ensure the use of private healthcare information, issues like data privacy and security must be carefully considered. Data mining continues to be vital for searching for more effective, efficient, and individualized healthcare solutions as technology evolves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare" title=" healthcare"> healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/abstracts/search?q=individualised%20healthcare" title=" individualised healthcare"> individualised healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare%20solutions" title=" healthcare solutions"> healthcare solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=database" title=" database"> database</a> </p> <a href="https://publications.waset.org/abstracts/178640/healthcare-data-mining-innovations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26166</span> Choosing an Optimal Epsilon for Differentially Private Arrhythmia Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arin%20Ghazarian">Arin Ghazarian</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyril%20Rakovski"> Cyril Rakovski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Differential privacy has become the leading technique to protect the privacy of individuals in a database while allowing useful analysis to be done and the results to be shared. It puts a guarantee on the amount of privacy loss in the worst-case scenario. Differential privacy is not a toggle between full privacy and zero privacy. It controls the tradeoff between the accuracy of the results and the privacy loss using a single key parameter called <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arrhythmia" title="arrhythmia">arrhythmia</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiology" title=" cardiology"> cardiology</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20privacy" title=" differential privacy"> differential privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG" title=" ECG"> ECG</a>, <a href="https://publications.waset.org/abstracts/search?q=epsilon" title=" epsilon"> epsilon</a>, <a href="https://publications.waset.org/abstracts/search?q=medi-cal%20data" title=" medi-cal data"> medi-cal data</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy%20preserving%20analytics" title=" privacy preserving analytics"> privacy preserving analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20databases" title=" statistical databases"> statistical databases</a> </p> <a href="https://publications.waset.org/abstracts/117252/choosing-an-optimal-epsilon-for-differentially-private-arrhythmia-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26165</span> A Review Paper on Data Mining and Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sikander%20Singh%20Cheema">Sikander Singh Cheema</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasmeen%20Kaur"> Jasmeen Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the concept of data mining is summarized and its one of the important process i.e KDD is summarized. The data mining based on Genetic Algorithm is researched in and ways to achieve the data mining Genetic Algorithm are surveyed. This paper also conducts a formal review on the area of data mining tasks and genetic algorithm in various fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=KDD" title=" KDD"> KDD</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=descriptive%20mining" title=" descriptive mining"> descriptive mining</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20mining" title=" predictive mining"> predictive mining</a> </p> <a href="https://publications.waset.org/abstracts/43637/a-review-paper-on-data-mining-and-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">591</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26164</span> Fair Federated Learning in Wireless Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shayan%20Mohajer%20Hamidi">Shayan Mohajer Hamidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=federated%20learning" title="federated learning">federated learning</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communications" title=" wireless communications"> wireless communications</a>, <a href="https://publications.waset.org/abstracts/search?q=fairness" title=" fairness"> fairness</a>, <a href="https://publications.waset.org/abstracts/search?q=imbalanced%20data" title=" imbalanced data"> imbalanced data</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy%20preservation" title=" privacy preservation"> privacy preservation</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20allocation" title=" resource allocation"> resource allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20privacy" title=" differential privacy"> differential privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/167868/fair-federated-learning-in-wireless-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26163</span> Online Shopping vs Privacy – Results of an Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Poszewiecki">Andrzej Poszewiecki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presented paper contributes to the experimental current of research on privacy. The question of privacy is being discussed at length at present, primarily among lawyers and politicians. However, the matter of privacy has been of interest for economists for some time as well. The valuation of privacy by people is of great importance now. This article is about how people valuate their privacy. An experimental method has been utilised in the conducted research – the survey was carried out among customers of an online store, and the studied issue was whether their readiness to sell their data (WTA) was different from the willingness to buy data back (WTP). The basic aim of this article is to analyse whether people shopping on the Internet differentiate their privacy depending on whether they protect or sell it. The achieved results indicate the presence of major differences in this respect, which do not always come up with the original expectations. The obtained results have supported the hypothesis that people are more willing to sell their data than to repurchase them. However, the hypothesis that the value of proposed remuneration affects the willingness to sell/buy back personal data (one’s privacy) has not been supported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=privacy" title="privacy">privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20economics" title=" experimental economics"> experimental economics</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioural%20economics" title=" behavioural economics"> behavioural economics</a>, <a href="https://publications.waset.org/abstracts/search?q=internet" title=" internet"> internet</a> </p> <a href="https://publications.waset.org/abstracts/50832/online-shopping-vs-privacy-results-of-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26162</span> Platform-as-a-Service Sticky Policies for Privacy Classification in the Cloud</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maha%20Shamseddine">Maha Shamseddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Nusayr"> Amjad Nusayr</a>, <a href="https://publications.waset.org/abstracts/search?q=Wassim%20Itani"> Wassim Itani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a Platform-as-a-Service (PaaS) model for controlling the privacy enforcement mechanisms applied on user data when stored and processed in Cloud data centers. The proposed architecture consists of establishing user configurable &lsquo;sticky&rsquo; policies on the Graphical User Interface (GUI) data-bound components during the application development phase to specify the details of privacy enforcement on the contents of these components. Various privacy classification classes on the data components are formally defined to give the user full control on the degree and scope of privacy enforcement including the type of execution containers to process the data in the Cloud. This not only enhances the privacy-awareness of the developed Cloud services, but also results in major savings in performance and energy efficiency due to the fact that the privacy mechanisms are solely applied on sensitive data units and not on all the user content. The proposed design is implemented in a real PaaS cloud computing environment on the Microsoft Azure platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=privacy%20enforcement" title="privacy enforcement">privacy enforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=platform-as-a-service%20privacy%20awareness" title=" platform-as-a-service privacy awareness"> platform-as-a-service privacy awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing%20privacy" title=" cloud computing privacy"> cloud computing privacy</a> </p> <a href="https://publications.waset.org/abstracts/131754/platform-as-a-service-sticky-policies-for-privacy-classification-in-the-cloud" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26161</span> Protecting Privacy and Data Security in Online Business</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bilquis%20Ferdousi">Bilquis Ferdousi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the exponential growth of the online business, the threat to consumers’ privacy and data security has become a serious challenge. This literature review-based study focuses on a better understanding of those threats and what legislative measures have been taken to address those challenges. Research shows that people are increasingly involved in online business using different digital devices and platforms, although this practice varies based on age groups. The threat to consumers’ privacy and data security is a serious hindrance in developing trust among consumers in online businesses. There are some legislative measures taken at the federal and state level to protect consumers’ privacy and data security. The study was based on an extensive review of current literature on protecting consumers’ privacy and data security and legislative measures that have been taken. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=privacy" title="privacy">privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20security" title=" data security"> data security</a>, <a href="https://publications.waset.org/abstracts/search?q=legislation" title=" legislation"> legislation</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20business" title=" online business"> online business</a> </p> <a href="https://publications.waset.org/abstracts/160198/protecting-privacy-and-data-security-in-online-business" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26160</span> Architectural Framework to Preserve Information of Cardiac Valve Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucia%20Carrion%20Gordon">Lucia Carrion Gordon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Santiago%20Sanchez%20Reinoso"> Jaime Santiago Sanchez Reinoso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the relation of Digital Preservation and the Health field as a case of study, the architectural model help us to explain that definitions. .The principal goal of Data Preservation is to keep information for a long term. Regarding of Mediacal information, in order to perform a heart transplant, physicians need to preserve this organ in an adequate way. This approach between the two perspectives, the medical and the technological allow checking the similarities about the concepts of preservation. Digital preservation and medical advances are related in the same level as knowledge improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20management" title="medical management">medical management</a>, <a href="https://publications.waset.org/abstracts/search?q=digital" title=" digital"> digital</a>, <a href="https://publications.waset.org/abstracts/search?q=data" title=" data"> data</a>, <a href="https://publications.waset.org/abstracts/search?q=heritage" title=" heritage"> heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=preservation" title=" preservation"> preservation</a> </p> <a href="https://publications.waset.org/abstracts/39341/architectural-framework-to-preserve-information-of-cardiac-valve-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26159</span> Digital Preservation: A Need of Tomorrow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Kumar">Gaurav Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital libraries have been established all over the world to create, maintain and to preserve the digital materials. This paper exhibits the importance and objectives of digital preservation. The necessities of preservation are hardware and software technology to interpret the digital documents and discuss various aspects of digital preservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=preservation" title="preservation">preservation</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20preservation" title=" digital preservation"> digital preservation</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=archive" title=" archive"> archive</a>, <a href="https://publications.waset.org/abstracts/search?q=repository" title=" repository"> repository</a>, <a href="https://publications.waset.org/abstracts/search?q=document" title=" document"> document</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20technology" title=" information technology"> information technology</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware" title=" hardware"> hardware</a>, <a href="https://publications.waset.org/abstracts/search?q=software" title=" software"> software</a>, <a href="https://publications.waset.org/abstracts/search?q=organization" title=" organization"> organization</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20readable%20format" title=" machine readable format"> machine readable format</a> </p> <a href="https://publications.waset.org/abstracts/23433/digital-preservation-a-need-of-tomorrow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26158</span> A Systematic Literature Review on Security and Privacy Design Patterns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebtehal%20Aljedaani">Ebtehal Aljedaani</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20Aljohani"> Maha Aljohani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Privacy and security patterns are both important for developing software that protects users' data and privacy. Privacy patterns are designed to address common privacy problems, such as unauthorized data collection and disclosure. Security patterns are designed to protect software from attack and ensure reliability and trustworthiness. Using privacy and security patterns, software engineers can implement security and privacy by design principles, which means that security and privacy are considered throughout the software development process. These patterns are available to translate "security & privacy-by-design" into practical advice for software engineering. Previous research on privacy and security patterns has typically focused on one category of patterns at a time. This paper aims to bridge this gap by merging the two categories and identifying their similarities and differences. To do this, the authors conducted a systematic literature review of 25 research papers on privacy and security patterns. The papers were analysed based on the category of the pattern, the classification of the pattern, and the security requirements that the pattern addresses. This paper presents the results of a comprehensive review of privacy and security design patterns. The review is intended to help future IT designers understand the relationship between the two types of patterns and how to use them to design secure and privacy-preserving software. The paper provides a clear classification of privacy and security design patterns, along with examples of each type. The authors found that there is only one widely accepted classification of privacy design patterns, while there are several competing classifications of security design patterns. Three types of security design patterns were found to be the most commonly used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20patterns" title="design patterns">design patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy" title=" privacy"> privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20of%20patterns" title=" classification of patterns"> classification of patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20patterns" title=" security patterns"> security patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy%20patterns" title=" privacy patterns"> privacy patterns</a> </p> <a href="https://publications.waset.org/abstracts/174494/a-systematic-literature-review-on-security-and-privacy-design-patterns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26157</span> Transforming Healthcare Data Privacy: Integrating Blockchain with Zero-Knowledge Proofs and Cryptographic Security</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20Harper">Kenneth Harper</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blockchain technology presents solutions for managing healthcare data, addressing critical challenges in privacy, integrity, and access. This paper explores how privacy-preserving technologies, such as zero-knowledge proofs (ZKPs) and homomorphic encryption (HE), enhance decentralized healthcare platforms by enabling secure computations and patient data protection. An examination of the mathematical foundations of these methods, their practical applications, and how they meet the evolving demands of healthcare data security is unveiled. Using real-world examples, this research highlights industry-leading implementations and offers a roadmap for future applications in secure, decentralized healthcare ecosystems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain" title="blockchain">blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptography" title=" cryptography"> cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20privacy" title=" data privacy"> data privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized%20data%20management" title=" decentralized data management"> decentralized data management</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20privacy" title=" differential privacy"> differential privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare" title=" healthcare"> healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare%20data%20security" title=" healthcare data security"> healthcare data security</a>, <a href="https://publications.waset.org/abstracts/search?q=homomorphic%20encryption" title=" homomorphic encryption"> homomorphic encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy-preserving%20technologies" title=" privacy-preserving technologies"> privacy-preserving technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=secure%20computations" title=" secure computations"> secure computations</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-knowledge%20proofs" title=" zero-knowledge proofs"> zero-knowledge proofs</a> </p> <a href="https://publications.waset.org/abstracts/191929/transforming-healthcare-data-privacy-integrating-blockchain-with-zero-knowledge-proofs-and-cryptographic-security" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26156</span> Frequent Item Set Mining for Big Data Using MapReduce Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamanna%20Jethava">Tamanna Jethava</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Joshi"> Rahul Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequent%20item%20set%20mining" title="frequent item set mining">frequent item set mining</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadoop" title=" Hadoop"> Hadoop</a>, <a href="https://publications.waset.org/abstracts/search?q=MapReduce" title=" MapReduce"> MapReduce</a> </p> <a href="https://publications.waset.org/abstracts/49592/frequent-item-set-mining-for-big-data-using-mapreduce-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26155</span> Offshore Outsourcing: Global Data Privacy Controls and International Compliance Issues</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michelle%20J.%20Miller">Michelle J. Miller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent year, there has been a rise of two emerging issues that impact the global employment and business market that the legal community must review closer: offshore outsourcing and data privacy. These two issues intersect because employment opportunities are shifting due to offshore outsourcing and some States, like the United States, anti-outsourcing legislation has been passed or presented to retain jobs within the country. In addition, the legal requirements to retain the privacy of data as a global employer extends to employees and third party service provides, including services outsourced to offshore locations. For this reason, this paper will review the intersection of these two issues with a specific focus on data privacy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=outsourcing" title="outsourcing">outsourcing</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20privacy" title=" data privacy"> data privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20compliance" title=" international compliance"> international compliance</a>, <a href="https://publications.waset.org/abstracts/search?q=multinational%20corporations" title=" multinational corporations"> multinational corporations</a> </p> <a href="https://publications.waset.org/abstracts/35220/offshore-outsourcing-global-data-privacy-controls-and-international-compliance-issues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26154</span> The Relationship Between Artificial Intelligence, Data Science, and Privacy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Naidoo">M. Naidoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial intelligence often requires large amounts of good quality data. Within important fields, such as healthcare, the training of AI systems predominately relies on health and personal data; however, the usage of this data is complicated by various layers of law and ethics that seek to protect individuals’ privacy rights. This research seeks to establish the challenges AI and data sciences pose to (i) informational rights, (ii) privacy rights, and (iii) data protection. To solve some of the issues presented, various methods are suggested, such as embedding values in technological development, proper balancing of rights and interests, and others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20science" title=" data science"> data science</a>, <a href="https://publications.waset.org/abstracts/search?q=law" title=" law"> law</a>, <a href="https://publications.waset.org/abstracts/search?q=policy" title=" policy"> policy</a> </p> <a href="https://publications.waset.org/abstracts/153286/the-relationship-between-artificial-intelligence-data-science-and-privacy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26153</span> Algorithms used in Spatial Data Mining GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Bairami%20Rad">Vahid Bairami Rad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20data%20base" title="spatial data base">spatial data base</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20discovery%20database" title=" knowledge discovery database"> knowledge discovery database</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20relationship" title=" spatial relationship"> spatial relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20data%20mining" title=" predictive data mining"> predictive data mining</a> </p> <a href="https://publications.waset.org/abstracts/29004/algorithms-used-in-spatial-data-mining-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26152</span> Data Privacy: Stakeholders’ Conflicts in Medical Internet of Things</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benny%20Sand">Benny Sand</a>, <a href="https://publications.waset.org/abstracts/search?q=Yotam%20Lurie"> Yotam Lurie</a>, <a href="https://publications.waset.org/abstracts/search?q=Shlomo%20Mark"> Shlomo Mark</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical Internet of Things (MIoT), AI, and data privacy are linked forever in a gordian knot. This paper explores the conflicts of interests between the stakeholders regarding data privacy in the MIoT arena. While patients are at home during healthcare hospitalization, MIoT can play a significant role in improving the health of large parts of the population by providing medical teams with tools for collecting data, monitoring patients’ health parameters, and even enabling remote treatment. While the amount of data handled by MIoT devices grows exponentially, different stakeholders have conflicting understandings and concerns regarding this data. The findings of the research indicate that medical teams are not concerned by the violation of data privacy rights of the patients' in-home healthcare, while patients are more troubled and, in many cases, are unaware that their data is being used without their consent. MIoT technology is in its early phases, and hence a mixed qualitative and quantitative research approach will be used, which will include case studies and questionnaires in order to explore this issue and provide alternative solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MIoT" title="MIoT">MIoT</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20privacy" title=" data privacy"> data privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=stakeholders" title=" stakeholders"> stakeholders</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20healthcare" title=" home healthcare"> home healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20privacy" title=" information privacy"> information privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=AI" title=" AI"> AI</a> </p> <a href="https://publications.waset.org/abstracts/153239/data-privacy-stakeholders-conflicts-in-medical-internet-of-things" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26151</span> A Privacy Protection Scheme Supporting Fuzzy Search for NDN Routing Cache Data Name</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng%20Tao">Feng Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma%20Jing"> Ma Jing</a>, <a href="https://publications.waset.org/abstracts/search?q=Guo%20Xian"> Guo Xian</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Jing"> Wang Jing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Named Data Networking (NDN) replaces IP address of traditional network with data name, and adopts dynamic cache mechanism. In the existing mechanism, however, only one-to-one search can be achieved because every data has a unique name corresponding to it. There is a certain mapping relationship between data content and data name, so if the data name is intercepted by an adversary, the privacy of the data content and user’s interest can hardly be guaranteed. In order to solve this problem, this paper proposes a one-to-many fuzzy search scheme based on order-preserving encryption to reduce the query overhead by optimizing the caching strategy. In this scheme, we use hash value to ensure the user’s query safe from each node in the process of search, so does the privacy of the requiring data content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NDN" title="NDN">NDN</a>, <a href="https://publications.waset.org/abstracts/search?q=order-preserving%20encryption" title=" order-preserving encryption"> order-preserving encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20search" title=" fuzzy search"> fuzzy search</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy" title=" privacy"> privacy</a> </p> <a href="https://publications.waset.org/abstracts/28847/a-privacy-protection-scheme-supporting-fuzzy-search-for-ndn-routing-cache-data-name" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26150</span> Iot Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Femi%20Elegbeleye">Femi Elegbeleye</a>, <a href="https://publications.waset.org/abstracts/search?q=Omobayo%20Esan"> Omobayo Esan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muienge%20Mbodila"> Muienge Mbodila</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Bowe"> Patrick Bowe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focused on cost effective storage architecture using fog and cloud data storage gateway and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. The several results obtained from this study on data privacy model shows that when two or more data privacy model is combined we tend to have a more stronger privacy to our data, and when fog storage gateway have several advantages over using the traditional cloud storage, from our result shows fog has reduced latency/delay, low bandwidth consumption, and energy usage when been compare with cloud storage, therefore, fog storage will help to lessen excessive cost. This paper dwelt more on the system descriptions, the researchers focused on the research design and framework design for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, its structure, and its interrelationships. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IoT" title="IoT">IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=fog" title=" fog"> fog</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud" title=" cloud"> cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20analysis" title=" data analysis"> data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20privacy" title=" data privacy"> data privacy</a> </p> <a href="https://publications.waset.org/abstracts/154451/iot-device-cost-effective-storage-architecture-and-real-time-data-analysisdata-privacy-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26149</span> Digital Preservation: Requirement of 21st Century</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Kumar">Gaurav Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shilpa"> Shilpa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital libraries have been established all over the world to create, maintain and to preserve the digital materials. This paper focuses on operational digital preservation systems specifically in educational organizations in India. It considers the broad range of digital objects including e-journals, technical reports, e-records, project documents, scientific data, etc. This paper describes the main objectives, process and technological issues involved in preservation of digital materials. Digital preservation refers to the various methods of keeping digital materials alive for the future. It includes everything from electronic publications on CD-ROM to Online database and collections of experimental data in digital format maintains the ability to display, retrieve and use digital collections in the face of rapidly changing technological and organizational infrastructures elements. This paper exhibits the importance and objectives of digital preservation. The necessities of preservation are hardware and software technology to interpret the digital documents and discuss various aspects of digital preservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=preservation" title="preservation">preservation</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20preservation" title=" digital preservation"> digital preservation</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20dark%20age" title=" digital dark age"> digital dark age</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=archive" title=" archive"> archive</a>, <a href="https://publications.waset.org/abstracts/search?q=repository" title=" repository"> repository</a>, <a href="https://publications.waset.org/abstracts/search?q=document" title=" document"> document</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20technology" title=" information technology"> information technology</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware" title=" hardware"> hardware</a>, <a href="https://publications.waset.org/abstracts/search?q=software" title=" software"> software</a>, <a href="https://publications.waset.org/abstracts/search?q=organization" title=" organization"> organization</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20readable%20format" title=" machine readable format"> machine readable format</a> </p> <a href="https://publications.waset.org/abstracts/31308/digital-preservation-requirement-of-21st-century" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Privacy%20Preservation%20in%20Data%20Mining%20%28PPDM%29&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Privacy%20Preservation%20in%20Data%20Mining%20%28PPDM%29&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Privacy%20Preservation%20in%20Data%20Mining%20%28PPDM%29&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Privacy%20Preservation%20in%20Data%20Mining%20%28PPDM%29&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Privacy%20Preservation%20in%20Data%20Mining%20%28PPDM%29&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Privacy%20Preservation%20in%20Data%20Mining%20%28PPDM%29&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Privacy%20Preservation%20in%20Data%20Mining%20%28PPDM%29&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Privacy%20Preservation%20in%20Data%20Mining%20%28PPDM%29&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Privacy%20Preservation%20in%20Data%20Mining%20%28PPDM%29&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Privacy%20Preservation%20in%20Data%20Mining%20%28PPDM%29&amp;page=872">872</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Privacy%20Preservation%20in%20Data%20Mining%20%28PPDM%29&amp;page=873">873</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Privacy%20Preservation%20in%20Data%20Mining%20%28PPDM%29&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10