CINXE.COM
Search results for: pine
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pine</title> <meta name="description" content="Search results for: pine"> <meta name="keywords" content="pine"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pine" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pine"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 81</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pine</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Release Response of Black Spruce and White Spruce Following Overstory Lodgepole Pine Mortality Due to Mountain Pine Beetle Attack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20O.%20Oboite">F. O. Oboite</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20G.%20Comeau"> P. G. Comeau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advance regeneration is present in many lodgepole pine stands in Alberta. When the overstory pine canopy is killed by Mountain Pine Beetle (MPB) the growth of this advance is likely to increase. Understanding the growth response of these understory tree species is needed to improve mid-term timber supply projections and management decisions. To quantify the growth (diameter, height, height/diameter ratio) responses of black spruce and white spruce to lodgepole pine mortality, sample trees of black and white spruce advance regeneration were selected from 7 lodgepole pine dominated stands (5 attacked; 2 control) in the Foothills Region of western Alberta. Measurements were collected 7-8 years after MPB attack across a wide range of spruce height and stand densities. Analysis was done using mixed model linear regression. Result indicates that there was an increase in both diameter and height growth after MPB attack; however, this increase in growth was delayed for about four years. Both spruce species had similar height response and their height/diameter ratio decreased after release, partly as a result of increased understory light associated with loss of needles in the pine canopy. In addition, the diameter and height growth responses of both spruce species were strongly related to density, prerelease growth and initial size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mountain%20pine%20beetle" title="mountain pine beetle">mountain pine beetle</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20regeneration" title=" forest regeneration"> forest regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=lodgepole%20pine" title=" lodgepole pine"> lodgepole pine</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20response" title=" growth response"> growth response</a> </p> <a href="https://publications.waset.org/abstracts/77119/release-response-of-black-spruce-and-white-spruce-following-overstory-lodgepole-pine-mortality-due-to-mountain-pine-beetle-attack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Batch Adsorption Studies for the Removal of Textile Dyes from Aqueous Solution on Three Different Pine Bark</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Cheknane">B. Cheknane</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Zermane"> F. Zermane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of the present study is the valorization of natural raw materials of plant origin for the treatment of textile industry wastewater. Selected bark was: maritime (MP), pinyon (PP) and Aleppo pine (AP) bark. The efficiency of these barks were tested for the removal of three dye; rhodamine B (RhB), Green Malachite (GM) and X Methyl Orange (MO). At the first time we focus to study the different parameters which can influence the adsorption processes such as: nature of the adsorbents, nature of the pollutants (dyes) and the effect of pH. Obtained results reveals that the speed adsorption is strongly influencing by the pH medium and the comparative study show that adsorption is favorable in the acidic medium with amount adsorbed of (Q=40mg/g) for rhodamine B and (Q=46mg/g) for orange methyl. Results of adsorption kinetics reveals that the molecules of GM are adsorbed better (Q=48mg/g) than the molecules of RhB (Q=46mg/g) and methyl orange (Q=18mg/g), with equilibrium time of 6 hours. The results of adsorption isotherms show clearly that the maritime pine bark is the most effective adsorbents with adsorbed amount of (QRhB=200mg/g) and (QMO=88mg/g) followed by pinyon pine (PP) with (QRhB=184mg/g) and (QMO=56mg/g) and finally Aleppo pine (AP) bark with (QRhB=131mg/g) and (QMO= 46mg/g). The different obtained isotherms were modeled using the Langmuir and Freundlich models and according to the adjustment coefficient values R2, the obtained isotherms are well represented by Freundlich model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maritime%20pine%20bark%20%28MP%29" title="maritime pine bark (MP)">maritime pine bark (MP)</a>, <a href="https://publications.waset.org/abstracts/search?q=pinyon%20pine%20bark%20%28PP%29" title=" pinyon pine bark (PP)"> pinyon pine bark (PP)</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleppo%20pine%20%28AP%29%20bark" title=" Aleppo pine (AP) bark"> Aleppo pine (AP) bark</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=dyes" title=" dyes"> dyes</a> </p> <a href="https://publications.waset.org/abstracts/38613/batch-adsorption-studies-for-the-removal-of-textile-dyes-from-aqueous-solution-on-three-different-pine-bark" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Portuguese Pine Resin: The Economic and Activity Decline to a New Forestry and Biotechnology Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolina%20Nunes">Carolina Nunes</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%B3nia%20Ribeiro"> Sónia Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%A9lio%20Faustinho"> Hélio Faustinho</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%A9lia%20Sales"> Hélia Sales</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Pontes"> Rita Pontes</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Nunes"> João Nunes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pine resin activity in Portugal was one of the most important and major non-wood forestry, representing a strategic natural resource for Portuguese Bioeconomy and an important social activity for rural regions. Pine forests representing a stock of atmospheric carbon, contributing to greenhouse effect mitigation and social and environmental important services returns. They are important sources of numerous useful products, including not only wood and cellulose but also nonwood products used by the chemical, food, and pharmaceutical industries, as well as for biorefineries. Portuguese pine forest area decreases from 1 million hectares to 400 mil hectares in the last 20 years. Portugal, in 80´s decade, was one of the world´s TOP 3 producers, with a middle annual production of 140 mil tones.year-1. With the pressure of the social desertification, forest fires, phytosanitary problems (e.g. nematode of the pine wood) and the decrease of economic value and competitivity of the Portuguese forest, the actual middle annual production is less than 10 mil tones.year-1 (lesser 92%). This significant decrease representing an annual economic loss of approximately 130-140 million Euros. year⁻¹ for forest primary sector in Portugal. The Biopinus project design new forestry approach and strategic biotechnologies knowledge to increase the economic value of Pine resin in Portugal, with an impact on the growth of the economic value of Pine resin from 1,1 to 1,5 Euros/kg. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pine%20resin" title="pine resin">pine resin</a>, <a href="https://publications.waset.org/abstracts/search?q=bioeconomy" title=" bioeconomy"> bioeconomy</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20value" title=" economic value"> economic value</a>, <a href="https://publications.waset.org/abstracts/search?q=biotecnology" title=" biotecnology"> biotecnology</a> </p> <a href="https://publications.waset.org/abstracts/167174/portuguese-pine-resin-the-economic-and-activity-decline-to-a-new-forestry-and-biotechnology-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Friction Coefficient of Epiphen Epoxy System Filled with Powder Resulting from the Grinding of Pine Needles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Graur">I. Graur</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Bria"> V. Bria</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Muntenita"> C. Muntenita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent ecological interests have resulted in scientific concerns regarding natural-organic powder composites. Because natural-organic powders are cheap and biodegradable, green composites represent a substantial contribution in polymer science area. The aim of this study is to point out the effect of natural-organic powder resulting from the grinding of pine needles used as a modifying agent for Epiphen epoxy resin and is focused on friction coefficient behavior. A pin-on-disc setup is used for friction coefficient experiments. Epiphen epoxy resin was used with the different ratio of organic powder from the grinding of pine needles. Because of the challenges of natural organic powder, more and more companies are looking at organic composite materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy" title="epoxy">epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20powder" title=" organic powder"> organic powder</a>, <a href="https://publications.waset.org/abstracts/search?q=pine%20needles" title=" pine needles"> pine needles</a> </p> <a href="https://publications.waset.org/abstracts/96794/friction-coefficient-of-epiphen-epoxy-system-filled-with-powder-resulting-from-the-grinding-of-pine-needles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Brown-Spot Needle Blight: An Emerging Threat Causing Loblolly Pine Needle Defoliation in Alabama, USA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debit%20Datta">Debit Datta</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20J.%20Coleman"> Jeffrey J. Coleman</a>, <a href="https://publications.waset.org/abstracts/search?q=Scott%20A.%20Enebak"> Scott A. Enebak</a>, <a href="https://publications.waset.org/abstracts/search?q=Lori%20G.%20Eckhardt"> Lori G. Eckhardt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Loblolly pine (Pinus taeda) is a leading productive timber species in the southeastern USA. Over the past three years, an emerging threat is expressed by successive needle defoliation followed by stunted growth and tree mortality in loblolly pine plantations. Considering economic significance, it has now become a rising concern among landowners, forest managers, and forest health state cooperators. However, the symptoms of the disease were perplexed somewhat with root disease(s) and recurrently attributed to invasive Phytophthora species due to the similarity of disease nature and devastation. Therefore, the study investigated the potential causal agent of this disease and characterized the fungi associated with loblolly pine needle defoliation in the southeastern USA. Besides, 70 trees were selected at seven long-term monitoring plots at Chatom, Alabama, to monitor and record the annual disease incidence and severity. Based on colony morphology and ITS-rDNA sequence data, a total of 28 species of fungi representing 17 families have been recovered from diseased loblolly pine needles. The native brown-spot pathogen, Lecanosticta acicola, was the species most frequently recovered from unhealthy loblolly pine needles in combination with some other common needle cast and rust pathogen(s). Identification was confirmed using morphological similarity and amplification of translation elongation factor 1-alpha gene region of interest. Tagged trees were consistently found chlorotic and defoliated from 2019 to 2020. The current emergence of the brown-spot pathogen causing loblolly pine mortality necessitates the investigation of the role of changing climatic conditions, which might be associated with increased pathogen pressure to loblolly pines in the southeastern USA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brown-spot%20needle%20blight" title="brown-spot needle blight">brown-spot needle blight</a>, <a href="https://publications.waset.org/abstracts/search?q=loblolly%20pine" title=" loblolly pine"> loblolly pine</a>, <a href="https://publications.waset.org/abstracts/search?q=needle%20defoliation" title=" needle defoliation"> needle defoliation</a>, <a href="https://publications.waset.org/abstracts/search?q=plantation%20forestry" title=" plantation forestry"> plantation forestry</a> </p> <a href="https://publications.waset.org/abstracts/134448/brown-spot-needle-blight-an-emerging-threat-causing-loblolly-pine-needle-defoliation-in-alabama-usa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Evaluation of Pheromone and Tree Trap Efficiency in Orthotomicus erosus (Col: Curculionidae: Scolytinae) Monitoring in Pine Forests of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudabe%20Amini">Sudabe Amini</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamasb%20Nozari"> Jamasb Nozari</a>, <a href="https://publications.waset.org/abstracts/search?q=Somaye%20Rahimi"> Somaye Rahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bark beetles are one of the most destructive groups of pests in the forest and green space. Mediterranean pine Engraver Orthotomicus erosus (Wollston) is the dominant species in the pine forests of Iran. Pine forests are considered a crucial region in the world and need high protection. Although there is no effective control method, mass trapping is the most common method to suppress the bark beetle population. Due to this, from 2018-to 2020, a survey was conducted on bark beetles mass trapping by using two kinds of traps, including pheromone and tree trap. These traps were evaluated in 10 different sites of pine forests. The statistical results proved that significant differences between the pheromone trap and tree trap were observed. It confirmed that the pheromone trap attracted more beetles than the tree trap. The results of this study suggest that the most effective and applicable method in bark beetle’s management of pines forest is using a pheromone trap that suppresses and maintains bark beetle’s population at an economic level, although tree traps attract bark beetles too. In the future, using tree-pheromone traps, which would synergist attraction of more bark beetles, is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bark%20beetle" title="bark beetle">bark beetle</a>, <a href="https://publications.waset.org/abstracts/search?q=pines%20forest" title=" pines forest"> pines forest</a>, <a href="https://publications.waset.org/abstracts/search?q=Orthotomicus%20erosus" title=" Orthotomicus erosus"> Orthotomicus erosus</a>, <a href="https://publications.waset.org/abstracts/search?q=pheromone%20trap" title=" pheromone trap"> pheromone trap</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20trap" title=" tree trap"> tree trap</a> </p> <a href="https://publications.waset.org/abstracts/149156/evaluation-of-pheromone-and-tree-trap-efficiency-in-orthotomicus-erosus-col-curculionidae-scolytinae-monitoring-in-pine-forests-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> An Emergence of Pinus taeda Needle Defoliation and Tree Mortality in Alabama, USA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debit%20Datta">Debit Datta</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20J.%20Coleman"> Jeffrey J. Coleman</a>, <a href="https://publications.waset.org/abstracts/search?q=Scott%20A.%20Enebak"> Scott A. Enebak</a>, <a href="https://publications.waset.org/abstracts/search?q=Lori%20G.%20Eckhardt"> Lori G. Eckhardt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pinus taeda, commonly known as loblolly pine, is a crucial timber species native to the southeastern USA. An emerging problem has been encountered for the past few years, which is better to be known as loblolly pine needle defoliation (LPND), which is threatening the ecological health of southeastern forests and economic vitality of the region’s timber industry. Currently, more than 1000 hectares of loblolly plantations in Alabama are affected with similar symptoms and have created concern among southeast landowners and forest managers. However, it is still uncertain whether LPND results from one or the combination of several fungal pathogens. Therefore, the objectives of the study were to identify and characterize the fungi associated with LPND in the southeastern USA and document the damage being done to loblolly pine as a result of repeated defoliation. Identification of fungi was confirmed using classical morphological methods (microscopic examination of the infected needles), conventional and species-specific priming (SSPP) PCR, and ITS sequencing. To date, 17 species of fungi, either cultured from pine needles or formed fruiting bodies on pine needles, were identified based on morphology and genetic sequence data. Among them, brown-spot pathogen Lecanostica acicola has been frequently recovered from pine needles in both spring and summer. Moreover, Ophistomatoid fungi such as Leptographium procerum, L. terebrantis are associated with pine decline have also been recovered from root samples of the infected stands. Trees have been increasingly and repeatedly chlorotic and defoliated from 2019 to 2020. Based on morphological observations and molecular data, emerging loblolly pine needle defoliation is due in larger part to the brown-spot pathogen L. acoicola followed by pine decline pathogens L. procerum and L. terebrantis. Root pathogens were suspected to emerge later, and their cumulative effects contribute to the widespread mortality of the trees. It is more likely that longer wet spring and warmer temperatures are favorable to disease development and may be important in the disease ecology of LPND. Therefore, the outbreak of the disease is assumed to be expanded over a large geographical area in a changing climatic condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brown-spot%20fungi" title="brown-spot fungi">brown-spot fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20disease" title=" emerging disease"> emerging disease</a>, <a href="https://publications.waset.org/abstracts/search?q=defoliation" title=" defoliation"> defoliation</a>, <a href="https://publications.waset.org/abstracts/search?q=loblolly%20pine" title=" loblolly pine"> loblolly pine</a> </p> <a href="https://publications.waset.org/abstracts/128973/an-emergence-of-pinus-taeda-needle-defoliation-and-tree-mortality-in-alabama-usa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Comparative Study of the Abundance of Winter Nests of the Pine Processionary Caterpillar in Different Forests of Pinus Halepensis, pinus Pinaster, Pinus Pinea and Cedrus Atlantica, in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boudjahem%20Ibtissem">Boudjahem Ibtissem</a>, <a href="https://publications.waset.org/abstracts/search?q=Aouati%20Amel"> Aouati Amel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thaumetopoea pityocampa is one of the major insect pests of pine forests in Algeria, the Mediterranean region, and central Europe. This pest is responsible for several natural and human damages these last years. The caterpillar can feed itself during the larval stage on several species of pine or cedar. The forests attack by the insect can reduce their resistance against other forest enemies, fires, or drought conditions. In this case, the tree becomes more vulnerable to other pests. To understand the eating behavior of the insect in its ecological conditions, and its nutritional preference, we realized a study of the abundance of winter nests of the pine processionary caterpillar in four different forests: Pinus halepensis; Pinus pinaster; Pinus pinea, and Cedrus atlantica. A count of the sites affected by the processionary caterpillar was carried out on a hundred trees from the forests in different regions in Algeria; Alkala region, Mila region, Annaba region, and Blida region; the total rate and average abundance are calculated for each forest. Ecological parameters are also estimated for each infestation. The results indicated a higher rate of infestation in Pinus halepensis trees (85%) followed by Cedrus atlantica (66%) and Pinus pinaster (50%) trees. The Pinus pinea forest is the least attacked region by the pine processionary caterpillar (23%). The abundance of the pine processionary caterpillar can be influenced by the height of the trees, the climate of the region, the age of the forest but also the quality of needles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thaumetopoea%20pityocampa" title="Thaumetopoea pityocampa">Thaumetopoea pityocampa</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinus%20halepensis" title=" Pinus halepensis"> Pinus halepensis</a>, <a href="https://publications.waset.org/abstracts/search?q=needles" title=" needles"> needles</a>, <a href="https://publications.waset.org/abstracts/search?q=winter%20nests" title=" winter nests"> winter nests</a> </p> <a href="https://publications.waset.org/abstracts/129357/comparative-study-of-the-abundance-of-winter-nests-of-the-pine-processionary-caterpillar-in-different-forests-of-pinus-halepensis-pinus-pinaster-pinus-pinea-and-cedrus-atlantica-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Numerical Investigation of Natural Convection of Pine, Olive and Orange Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Tahavvor">Ali Reza Tahavvor</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Hosseini"> Saeed Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazli%20Jowkar"> Nazli Jowkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Behnam%20Amiri"> Behnam Amiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer of leaves is a crucial factor in optimal operation of metabolic functions in plants. In order to quantify this phenomenon in different leaves and investigate the influence of leaf shape on heat transfer, natural convection for pine, orange and olive leaves was simulated as representatives of different groups of leaf shapes. CFD techniques were used in this simulation with the purpose to calculate heat transfer of leaves in similar environmental conditions. The problem was simulated for steady state and three-dimensional conditions. From obtained results, it was concluded that heat fluxes of all three different leaves are almost identical, however, total rate of heat transfer have highest and lowest values for orange leaves and pine leaves, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamic" title="computational fluid dynamic">computational fluid dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20flux" title=" heat flux"> heat flux</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a> </p> <a href="https://publications.waset.org/abstracts/30133/numerical-investigation-of-natural-convection-of-pine-olive-and-orange-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Influence of Magnetic Field on the Antibacterial Properties of Pine Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawid%20So%C5%82oducha">Dawid Sołoducha</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Borowski"> Tomasz Borowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Agata%20Markowska-Szczupak"> Agata Markowska-Szczupak</a>, <a href="https://publications.waset.org/abstracts/search?q=Aneta%20Weso%C5%82owska"> Aneta Wesołowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Kordas"> Marian Kordas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Rakoczy"> Rafał Rakoczy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many studies report varied effects of the magnetic field in medicine, but applications are still missing. Also, essential oils (EOs) were historically used in healing therapies, food preservation and the cosmetic industry due to their wound healing and antioxidant properties and antimicrobial activity. Unfortunately, the chemical characterization of EOs activates its antibacterial action only at a fairly high concentration. They can cause skin reactions, e.g., irritation (irritant contact dermatitis) or allergic contact dermatitis; therefore, they should always be used with caution. However, the administration of EOs to achieve the desired antimicrobial activity and stability with long-term medical usage in low concentration is challenging. The aim of this work was to investigate the antimicrobial activity of commercial Pinus sylvestris L. essential oil from Polish company Avicenna-Oil® under Rotating Magnetic Field (RMF) at f = 1 – 50 Hz. The novel construction of the magnetically assisted self-constructed reactor (MAP) was applied for this study. The chemical composition of essential pine oil was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Different concentrations of pine oil was prepared: 100% 50%, 25%, 12.5% and 6.25%. The disc diffusion and MIC test were done. To examine the effect of essential pine oil and rotating magnetic field RMF on antibacterial performance agar plate method was used. Pine oil consist of α-pinene (28.58%), β-pinene (17.79%), δ-3-carene (14.17%) and limonene (11.58%). The present study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of pine oil. We have shown that the rotating magnetic fields (RMF) at a frequency, f, between 25 Hz to 50 Hz, increase the antimicrobial efficiency of oil at lower than 50% concentration. The new method can be applied in many fields e.g. aromatherapy, medicine as a component of dressing, or as food preservatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotating%20magnetic%20field" title="rotating magnetic field">rotating magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=pine%20oil" title=" pine oil"> pine oil</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a> </p> <a href="https://publications.waset.org/abstracts/145025/influence-of-magnetic-field-on-the-antibacterial-properties-of-pine-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Kinetic Analysis of Wood Pellets by Isothermal Calorimetry for Evaluating its Self-heating Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Can%20Yao">Can Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Dong%20Sheng"> Chang Dong Sheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat released by wood pellets during storage will cause self-heating and even self-ignition. In this work, the heat release rates of pine, fir wood and mahogany pellets at 30–70℃ were measured by TAM air isothermal calorimeter, and the kinetic analysis was performed by iso-conversion ratio and non-steady-state methods to evaluate its self-heating potential. The results show that the reaction temperature can significantly affect the heat release rate. The higher the temperature, the greater the heat release rate. The heat release rates of different kinds of wood pellets are obviously different, and the order of the heat release rates for the three pellets at 70℃ is pine > fir wood > mahogany. The kinetic analysis of the iso-conversion ratio method indicates that the distribution of activation energy for pine, fir wood and mahogany pellets under the release of 0.1–1.0 J/g specific heat are 58–102 kJ/mol, 59–108 kJ/mol and 59–112 kJ/mol, respectively. Their activation energies obtained from the non-steady-state kinetic analysis are 13.43 kJ/mol, 19.19 kJ/mol and 21.09 kJ/mol, respectively. Both kinetic analyses show that the magnitude of self-heating risk for the three pellet fuels is pine pellets > fir wood pellets > mahogany pellets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isothermal%20calorimeter" title="isothermal calorimeter">isothermal calorimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=self-heating" title=" self-heating"> self-heating</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20pellets" title=" wood pellets"> wood pellets</a> </p> <a href="https://publications.waset.org/abstracts/147219/kinetic-analysis-of-wood-pellets-by-isothermal-calorimetry-for-evaluating-its-self-heating-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Effect of Black Locust Trees on the Nitrogen Dynamics of Black Pine Trees in Shonai Coastal Forest, Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazushi%20Murata">Kazushi Murata</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabian%20Watermann"> Fabian Watermann</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20B.%20Herve%20Gonroudobou"> O. B. Herve Gonroudobou</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Thuy%20Hang"> Le Thuy Hang</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiro%20Yamanaka"> Toshiro Yamanaka</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Larry%20Lopez%20C."> M. Larry Lopez C.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: Black pine coastal forests play an important role as a windbreak and as a natural barrier to sand and salt spray inland in Japan. The recent invasion of N₂-fxing black locust (Robinia pseudoacacia) trees in these forests is expected to have a nutritional contribution to black pine trees growth. Thus, the effect of this new source of N on black pine trees' N assimilation needs to be assessed. Methods: In order to evaluate this contribution, tree-ring isotopic composition (δ¹⁵N) and nitrogen content (%N) of black pine (Pinus thunbergii) trees in a pure stand (BPP) and a mixed stand (BPM) with black locust (BL) trees were measured for the period 2000–2019 for BPP and BL and 1990–2019 for BPM. The same measurements were conducted in plant tissues and in soil samples. Results: The tree ring δ15N values showed that for the last 30 years, BPM trees gradually switched from BPP to BL-derived soil N starting in the 1990s, becoming the dominant N source from 2000 as no significant diference was found between BPM and BL tree ring δ¹⁵N values from 2000 to 2019. No difference in root and sapwood BPM and BL δ¹⁵N values were found, but BPM foliage (−2.1‰) was different to BPP (−4.4‰) and BL (−0.3‰), which is related to the different N assimilation pathways between BP and BL. Conclusions: Based on the results of this study, the assimilation of BL-derived N inferred from the BPM tissues' δ¹⁵N values is the result of an increase in soil bioavailable N with a higher δ¹⁵N value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen-15" title="nitrogen-15">nitrogen-15</a>, <a href="https://publications.waset.org/abstracts/search?q=N%E2%82%82-fxing%20species" title=" N₂-fxing species"> N₂-fxing species</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20stand" title=" mixed stand"> mixed stand</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20rings" title=" tree rings"> tree rings</a> </p> <a href="https://publications.waset.org/abstracts/170611/effect-of-black-locust-trees-on-the-nitrogen-dynamics-of-black-pine-trees-in-shonai-coastal-forest-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Influence of Pine Wood Ash as Pozzolanic Material on Compressive Strength of a Concrete </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Nicolas">M. I. Nicolas</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Cruz"> J. C. Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ysmael%20Verde"> Ysmael Verde</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Yeladaqui-Tello"> A.Yeladaqui-Tello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The manufacture of Portland cement has revolutionized the construction industry since the nineteenth century; however, the high cost and large amount of energy required on its manufacturing encouraged, from the seventies, the search of alternative materials to replace it partially or completely. Among the materials studied to replace the cement are the ashes. In the city of Chetumal, south of the Yucatan Peninsula in Mexico, there are no natural sources of pozzolanic ash. In the present study, the cementitious properties of artificial ash resulting from the combustion of waste pine wood were analyzed. The ash obtained was sieved through the screen and No.200 a fraction was analyzed using the technique of X-ray diffraction; with the aim of identifying the crystalline phases and particle sizes of pozzolanic material by the Debye-Scherrer equation. From the characterization of materials, mixtures for a concrete of f'c = 250 kg / cm2 were designed with the method ACI 211.1; for the pattern mixture and for partial replacements of Portland cement by 5%, 10% and 12% pine wood ash mixture. Simple resistance to axial compression of specimens prepared with each concrete mixture, at 3, 14 and 28 days of curing was evaluated. Pozzolanic activity was observed in the ash obtained, checking the presence of crystalline silica (SiO2 of 40.24 nm) and alumina (Al2O3 of 35.08 nm). At 28 days of curing, the specimens prepared with a 5% ash, reached a compression resistance 63% higher than design; for specimens with 10% ash, was 45%; and for specimens with 12% ash, only 36%. Compared to Pattern mixture, which after 28 days showed a f'c = 423.13 kg/cm2, the specimens reached only 97%, 86% and 82% of the compression resistance, for mixtures containing 5%, 10% ash and 12% respectively. The pozzolanic activity of pine wood ash influences the compression resistance, which indicates that it can replace up to 12% of Portland cement by ash without compromising its design strength, however, there is a decrease in strength compared to the pattern concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=pine%20wood%20ash" title=" pine wood ash"> pine wood ash</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolanic%20activity" title=" pozzolanic activity"> pozzolanic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray" title=" X-ray"> X-ray</a> </p> <a href="https://publications.waset.org/abstracts/29230/influence-of-pine-wood-ash-as-pozzolanic-material-on-compressive-strength-of-a-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Historic Fire Occurrence in Hemi-Boreal Forests: Exploring Natural and Cultural Scots Pine Multi-Cohort Fire Regimes in Lithuania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charles%20Ruffner">Charles Ruffner</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Manton"> Michael Manton</a>, <a href="https://publications.waset.org/abstracts/search?q=Gintautas%20Kibirkstis"> Gintautas Kibirkstis</a>, <a href="https://publications.waset.org/abstracts/search?q=Gediminas%20Brazaitas"> Gediminas Brazaitas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitas%20Marozas"> Vitas Marozas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterine%20Makrickiene"> Ekaterine Makrickiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Rutile%20Pukiene"> Rutile Pukiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Per%20Angelstam"> Per Angelstam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In dynamic boreal forests, fire is an important natural disturbance, which drives regeneration and mortality of living and dead trees, and thus successional trajectories. However, current forest management practices focusing on wood production only have effectively eliminated fire as a stand-level disturbance. While this is generally well studied across much of Europe, in Lithuania, little is known about the historic fire regime and the role fire plays as a management tool towards the sustainable management of future landscapes. Focusing on Scots pine forests, we explore; i) the relevance of fire disturbance regimes on forestlands of Lithuania; ii) fire occurrence in the Dzukija landscape for dry upland and peatland forest sites, and iii) correlate tree-ring data with climate variables to ascertain climatic influences on growth and fire occurrence. We sampled and cross-dated 132 Scots pine samples with fire scars from 4 dry pine forest stands and 4 peatland forest stands, respectively. The fire history of each sample was analyzed using standard dendrochronological methods and presented in FHAES format. Analyses of soil moisture and nutrient conditions revealed a strong probability of finding forests that have a high fire frequency in Scots pine forests (59%), which cover 34.5% of Lithuania’s current forestland. The fire history analysis revealed 455 fire scars and 213 fire events during the period 1742-2019. Within the Dzukija landscape, the mean fire interval was 4.3 years for the dry Scots pine forest and 8.7 years for the peatland Scots pine forest. However, our comparison of fire frequency before and after 1950 shows a marked decrease in mean fire interval. Our data suggest that hemi-boreal forest landscapes of Lithuania provide strong evidence that fire, both human and lightning-ignited fires, has been and should be a natural phenomenon and that the examination of biological archives can be used to guide sustainable forest management into the future. Currently, fire use is prohibited by law as a tool for forest management in Lithuania. We recommend introducing trials that use low-intensity prescribed burning of Scots pine stands as a regeneration tool towards mimicking natural forest disturbance regimes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity%20conservation" title="biodiversity conservation">biodiversity conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20burning" title=" cultural burning"> cultural burning</a>, <a href="https://publications.waset.org/abstracts/search?q=dendrochronology" title=" dendrochronology"> dendrochronology</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20dynamics" title=" forest dynamics"> forest dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20management" title=" forest management"> forest management</a>, <a href="https://publications.waset.org/abstracts/search?q=succession" title=" succession"> succession</a> </p> <a href="https://publications.waset.org/abstracts/138982/historic-fire-occurrence-in-hemi-boreal-forests-exploring-natural-and-cultural-scots-pine-multi-cohort-fire-regimes-in-lithuania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Determination of Elastic Constants for Scots Pine Grown in Turkey Using Ultrasound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Guntekin">Ergun Guntekin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated elastic constants of scots pine (Pinus sylvestris L.) grown in Turkey by means of ultrasonic waves. Three Young’s modulus, three shear modulus and six Poisson ratios were determined at constant moisture content (12 %). Three longitudinal and six shear wave velocities propagating along the principal axes of anisotropy, and additionally, three quasi-shear wave velocities at 45° with respect to the principal axes of anisotropy were measured using EPOCH 650 ultrasonic flaw detector. The measured average longitudinal wave velocities for the sapwood in L, R, T directions were 4795, 1713 and 1117 m/s, respectively. The measured average shear wave velocities ranged from 682 to 1382 m/s. The measured quasi-shear wave velocities varied between 642 and 1280 m/s. The calculated average modulus of elasticity values for the sapwood in L, R, T directions were 11913, 1565 and 663 N/mm2, respectively. The calculated shear modulus in LR, LT and RT planes were 1031, 541, 415 N/mm2. Comparing with available literature, the predicted elastic constants are acceptable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title="elastic constants">elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=Scots%20pine" title=" Scots pine"> Scots pine</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/50083/determination-of-elastic-constants-for-scots-pine-grown-in-turkey-using-ultrasound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Reduction of Terpene Emissions from Oriented Strand Boards (OSB) by Bacterial Pre-Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernhard%20Widhalm">Bernhard Widhalm</a>, <a href="https://publications.waset.org/abstracts/search?q=Cornelia%20Rieder-Gradinger"> Cornelia Rieder-Gradinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Ewald%20Srebotnik"> Ewald Srebotnik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pine wood (Pinus sylvestris L.) is the basic raw material for the production of Oriented Strand Boards (OSB) and the major source of volatile organic compounds, especially terpenes (like α- and β-pinene). To lower the total emission level of OSB, terpene metabolising microorganisms were therefore applied onto pine wood strands for the production of emission-reduced boards. Suitable microorganisms were identified during preliminary tests under laboratory conditions. At first, their terpene degrading potential was investigated in liquid culture, followed by laboratory tests using unsterile pine wood particles and strands. The main focus was laid on an adoptable terpene reduction in a short incubation time. An optimised bacterial mixture of Pseudomonas putida and Pseudomonas fluorescens showed the best results and was therefore used for further experiments on a larger scale. In an industry-compatible testing procedure, pine wood strands were incubated with the bacterial mixture for a period of 2 to 4 days. Incubation time was stopped by drying the strands. OSB were then manufactured from the pre-treated strands and emissions were measured by means of SPME/GC-MS analysis. Bacterial pre-treatment of strands resulted in a reduction of α-pinene- and β-pinene-emissions from OSB by 40% and 70%, respectively, even after only 2 days of incubation. The results of the investigation provide a basis for the application of microbial treatment within the industrial OSB production line, where shortest possible incubation times are required. For this purpose, the performance of the bacterial mixture will have to be further optimised. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title="GC-MS">GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=OSB" title=" OSB"> OSB</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20sp." title=" Pseudomonas sp."> Pseudomonas sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=terpene%20degradation" title=" terpene degradation"> terpene degradation</a> </p> <a href="https://publications.waset.org/abstracts/56194/reduction-of-terpene-emissions-from-oriented-strand-boards-osb-by-bacterial-pre-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Microbial Reduction of Terpenes from Pine Wood Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernhard%20Widhalm">Bernhard Widhalm</a>, <a href="https://publications.waset.org/abstracts/search?q=Cornelia%20Rieder-Gradinger"> Cornelia Rieder-Gradinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Ters"> Thomas Ters</a>, <a href="https://publications.waset.org/abstracts/search?q=Ewald%20Srebotnik"> Ewald Srebotnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Kuncinger"> Thomas Kuncinger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Terpenes are natural components in softwoods and rank among the most frequently emitted volatile organic compounds (VOC) in the wood-processing industry. In this study, the main focus was on α- and β-pinene as well as Δ3-carene, which are the major terpenes in softwoods. To lower the total emission level of wood composites, defined terpene degrading microorganisms were applied to basic raw materials (e.g. pine wood particles and strands) in an optimised and industry-compatible testing procedure. In preliminary laboratory tests, bacterial species suitable for the utilisation of α-pinene as single carbon source in liquid culture were selected and then subjected to wood material inoculation. The two species Pseudomonas putida and Pseudomonas fluorescens were inoculated onto wood particles and strands and incubated at room temperature. Applying specific pre-cultivation and daily ventilation of the samples enabled a reduction of incubation time from six days to one day. SPME measurements and subsequent GC-MS analysis indicated a complete absence of α- and β-pinene emissions after 24 hours from pine wood particles. When using pine wood strands rather than particles, bacterial treatment resulted in a reduction of α- and β-pinene by 50%, while Δ3-carene emissions were reduced by 30% in comparison to untreated strands. Other terpenes were also reduced in the course of the microbial treatment. The method developed here appears to be feasible for industrial application. However, growth parameters such as time and temperature as well as the technical implementation of the inoculation step will have to be adapted for the production process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title="GC-MS">GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomonas" title=" pseudomonas"> pseudomonas</a>, <a href="https://publications.waset.org/abstracts/search?q=SPME" title=" SPME"> SPME</a>, <a href="https://publications.waset.org/abstracts/search?q=terpenes" title=" terpenes"> terpenes</a> </p> <a href="https://publications.waset.org/abstracts/48124/microbial-reduction-of-terpenes-from-pine-wood-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Impact of Insect-Feeding and Fire-Heating Wounding on Wood Properties of Lodgepole Pine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Estelle%20Arbellay">Estelle Arbellay</a>, <a href="https://publications.waset.org/abstracts/search?q=Lori%20D.%20Daniels"> Lori D. Daniels</a>, <a href="https://publications.waset.org/abstracts/search?q=Shawn%20D.%20Mansfield"> Shawn D. Mansfield</a>, <a href="https://publications.waset.org/abstracts/search?q=Alice%20S.%20Chang"> Alice S. Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mountain pine beetle (MPB) outbreaks are currently devastating lodgepole pine forests in western North America, which are also widely disturbed by frequent wildfires. Both MPB and fire can leave scars on lodgepole pine trees, thereby diminishing their commercial value and possibly compromising their utilization in solid wood products. In order to fully exploit the affected resource, it is crucial to understand how wounding from these two disturbance agents impact wood properties. Moreover, previous research on lodgepole pine has focused solely on sound wood and stained wood resulting from the MPB-transmitted blue fungi. By means of a quantitative multi-proxy approach, we tested the hypotheses that (i) wounding (of either MPB or fire origin) caused significant changes in wood properties of lodgepole pine and that (ii) MPB-induced wound effects could differ from those induced by fire in type and magnitude. Pith-to-bark strips were extracted from 30 MPB scars and 30 fire scars. Strips were cut immediately adjacent to the wound margin and encompassed 12 rings from normal wood formed prior to wounding and 12 rings from wound wood formed after wounding. Wood properties evaluated within this 24-year window included ring width, relative wood density, cellulose crystallinity, fibre dimensions, and carbon and nitrogen concentrations. Methods used to measure these proxies at a (sub-)annual resolution included X-ray densitometry, X-ray diffraction, fibre quality analysis, and elemental analysis. Results showed a substantial growth release in wound wood compared to normal wood, as both earlywood and latewood width increased over a decade following wounding. Wound wood was also shown to have a significantly different latewood density than normal wood 4 years after wounding. Latewood density decreased in MPB scars while the opposite was true in fire scars. By contrast, earlywood density was presented only minor variations following wounding. Cellulose crystallinity decreased in wound wood compared to normal wood, being especially diminished in MPB scars the first year after wounding. Fibre dimensions also decreased following wounding. However, carbon and nitrogen concentrations did not substantially differ between wound wood and normal wood. Nevertheless, insect-feeding and fire-heating wounding were shown to significantly alter most wood properties of lodgepole pine, as demonstrated by the existence of several morphological anomalies in wound wood. MPB and fire generally elicited similar anomalies, with the major exception of latewood density. In addition to providing quantitative criteria for differentiating between biotic (MPB) and abiotic (fire) disturbances, this study provides the wood industry with fundamental information on the physiological response of lodgepole pine to wounding in order to evaluate the utilization of scarred trees in solid wood products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elemental%20analysis" title="elemental analysis">elemental analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre%20quality%20analysis" title=" fibre quality analysis"> fibre quality analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=lodgepole%20pine" title=" lodgepole pine"> lodgepole pine</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20properties" title=" wood properties"> wood properties</a>, <a href="https://publications.waset.org/abstracts/search?q=wounding" title=" wounding"> wounding</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20densitometry" title=" X-ray densitometry"> X-ray densitometry</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a> </p> <a href="https://publications.waset.org/abstracts/29662/impact-of-insect-feeding-and-fire-heating-wounding-on-wood-properties-of-lodgepole-pine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Physiological Response of Naturally Regenerated Pinus taeda L. Saplings to Four Levels of Stem Inoculation with Leptographium terebrantis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20K.%20Mensah">John K. Mensah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mary%20A.%20Sword%20Sayer"> Mary A. Sword Sayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20L.%20Nadel"> Ryan L. Nadel</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Matusick"> George Matusick</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaofei%20Fan"> Zhaofei Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lori%20G.%20Eckhardt"> Lori G. Eckhardt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leptographium terebrantis is an opportunistic root pathogen commonly associated with loblolly pine (Pinus taeda L.) stands that are undergoing a loss of vigor in the southeastern US. In order to understand the relationship between L. terebrantis inoculum density and host physiology, an artificial inoculation study was conducted in a five-year-old naturally regenerated loblolly pine stand over a 24 week period in a completely randomized design. L. terebrantis caused sapwood occlusions that increased in severity as inoculum density increased. The occlusions significantly reduced water transport through the stem but did not interfere with fascicle-level stomatal conductance or induce moisture stress in the saplings. The resilience of stomatal conductance among pathogen-infested saplings is attributed to the growth and hydraulic function of new sapwood that developed after artificial inoculation. Results demonstrate that faster-growing families of loblolly pine may be capable of tolerating the vascular root disease when the formation of new sapwood is supported by sustained crown health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20conductance" title="hydraulic conductance">hydraulic conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum%20density" title=" inoculum density"> inoculum density</a>, <a href="https://publications.waset.org/abstracts/search?q=Leptographium%20terebrantis" title=" Leptographium terebrantis"> Leptographium terebrantis</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinus%20taeda" title=" Pinus taeda"> Pinus taeda</a>, <a href="https://publications.waset.org/abstracts/search?q=sapwood%20occlusion" title=" sapwood occlusion"> sapwood occlusion</a> </p> <a href="https://publications.waset.org/abstracts/84361/physiological-response-of-naturally-regenerated-pinus-taeda-l-saplings-to-four-levels-of-stem-inoculation-with-leptographium-terebrantis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Hard Coatings Characterization Based on Chromium Nitrides: Applications for Wood Machining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Chemani">B. Chemani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Aknouche"> H. Aknouche</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zerizer"> A. Zerizer</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Marchal"> R. Marchal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phenomena occurring during machining are related to the internal friction of the material that deforms and the friction the flake on the rake face of tool. Various researches have been conducted to improve the wear resistance of the tool by thin film deposition. This work aims to present an experimental approach related to wood machining technique to evaluate the wear for the case of ripping Aleppo pine, a species well established in the Mediterranean in general and in Algeria in particular. The study will be done on tungsten carbide cutting tools widely used in woodworking and coated with chrome nitride (CrN) and Chromium Nitride enriched Aluminium (CrAlN) with percentage different of aluminum sputtered through frame magnetron mark Nordiko 3500. The deposition conditions are already optimized by previous studies. The wear tests were performed in the laboratory of ENSAM Cluny (France) on a numerical control ripper of recordi type. This comparative study of the behavior of tools, coated and uncoated, showed that the addition of the aluminum chromium nitride films does not improve the tool ability to resist abrasive wear that is predominant when ripping the Aleppo pine. By against the aluminum addition improves the crystallization of chromium nitride films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleppo%20pine" title="Aleppo pine">Aleppo pine</a>, <a href="https://publications.waset.org/abstracts/search?q=PVD" title=" PVD"> PVD</a>, <a href="https://publications.waset.org/abstracts/search?q=coatings" title=" coatings"> coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=CrAlN" title=" CrAlN"> CrAlN</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/25931/hard-coatings-characterization-based-on-chromium-nitrides-applications-for-wood-machining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Functional Characteristics of Chemosensory Proteins in the Sawyer Beetle Monochamus alternatus Hope </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saqib%20Ali">Saqib Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Man-Qun%20Wang"> Man-Qun Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Japanese pine sawyer, Monochamus alternatus Hope (Coleoptera: Cerambycidae), is a major pest of pines and it is also the key vector of the exotic pinewood nematode in China. In the present study, we cloned, expressed, and purified a chemosensory protein (CSP) in M. alternatus. We surveyed its expression in various developmental stages of male and female adult tissues and determined its binding affinities for different pine volatiles using a competitive binding fluorescence assay. A CSP known as CSP5 in M. alternatus was obtained from an antennal cDNA library and expressed in Escherichia coli. Quantitative reverse transcription polymerase chain reaction results indicated that the CSP5 gene was mainly expressed in male and female antennae. Competitive binding assays were performed to test the binding affinity of recombinant CSP5 to 13 odour molecules of pine volatiles. The results showed that CSP5 showed very strong binding abilities to myrcene, (+)-β-pinene, and (−)-isolongifolene, whereas the volatiles 2-methoxy-4-vinylphenol, p-cymene, and (+)-limonene oxide have relatively weak binding affinity at pH 5.0. Three volatiles myrcene, (+)-β-pinene, and (−)-isolongifolene may play crucial roles in CSP5 binding with ligands, but this needs further study for confirmation. The sensitivity of insect to host plant volatiles can effectively be used to control and monitor the population through mass trapping as part of integrated pest management programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olfactory-specific%20protein" title="olfactory-specific protein">olfactory-specific protein</a>, <a href="https://publications.waset.org/abstracts/search?q=volatiles" title=" volatiles"> volatiles</a>, <a href="https://publications.waset.org/abstracts/search?q=competitive%20binding%20assay" title=" competitive binding assay"> competitive binding assay</a>, <a href="https://publications.waset.org/abstracts/search?q=expression%20characteristics" title=" expression characteristics"> expression characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=qPCR" title=" qPCR"> qPCR</a> </p> <a href="https://publications.waset.org/abstracts/94563/functional-characteristics-of-chemosensory-proteins-in-the-sawyer-beetle-monochamus-alternatus-hope" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Analyses of Copper Nanoparticles Impregnated Wood and Its Fungal Degradation Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20Graciela%20Aguayo">María Graciela Aguayo</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Reyes"> Laura Reyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Oviedo"> Claudia Oviedo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Navarrete"> José Navarrete</a>, <a href="https://publications.waset.org/abstracts/search?q=Liset%20G%C3%B3mez"> Liset Gómez</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugo%20Torres"> Hugo Torres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most wood species used in construction deteriorate when exposed to environmental conditions that favor wood-degrading organisms’ growth. Therefore, chemical protection by impregnation allows more efficient use of forest resources extending the wood useful life. A wood protection treatment which has attracted considerable interest in the scientific community during the last decade is wood impregnation with nano compounds. Radiata pine is the main wood species used in the Chilean construction industry, with total availability of 8 million m³ sawn timber. According to the requirements of the American Wood Protection Association (AWPA) and the Chilean Standards (NCh) radiata pine timber used in construction must be protected due to its low natural durability. In this work, the impregnation with copper nanoparticles (CuNP) was studied in terms of penetration and its protective effect against wood rot fungi. Two concentrations: 1 and 3 g/L of NPCu were applied by impregnation on radiata pine sapwood. Test penetration under AWPA A3-91 standard was carried out, and wood decay tests were performed according to EN 113, with slight modifications. The results of penetration for 1 g/L CuNP showed an irregular total penetration, and the samples impregnated with 3 g/L showed a total penetration with uniform concentration (blue color in all cross sections). The impregnation wood mass losses due to fungal exposure were significantly reduced, regardless of the concentration of the solution or the fungus. In impregnated wood samples, exposure to G. trabeum resulted ML values of 2.70% and 1.19% for 1 g/L and 3 g/L CuNP, respectively, and exposure to P. placenta resulted in 4.02% and 0.70%-ML values for 1 g/L and 3 g/L CuNP, respectively. In this study, the penetration analysis confirmed a uniform distribution inside the wood, and both concentrations were effective against the tested fungi, giving mass loss values lower than 5%. Therefore, future research in wood preservatives should focus on new nanomaterials that are more efficient and environmentally friendly. Acknowledgments: CONICYT FONDEF IDeA I+D 2019, grant number ID19I10122. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20nanoparticles" title="copper nanoparticles">copper nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal%20degradation" title=" fungal degradation"> fungal degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=radiata%20pine%20wood" title=" radiata pine wood"> radiata pine wood</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20preservation" title=" wood preservation"> wood preservation</a> </p> <a href="https://publications.waset.org/abstracts/141069/analyses-of-copper-nanoparticles-impregnated-wood-and-its-fungal-degradation-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Hole Characteristics of Percussion and Single Pulse Laser-Incised Radiata Pine and the Effects of Wood Anatomy on Laser-Incision</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subhasisa%20Nath">Subhasisa Nath</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Waugh"> David Waugh</a>, <a href="https://publications.waset.org/abstracts/search?q=Graham%20Ormondroyd"> Graham Ormondroyd</a>, <a href="https://publications.waset.org/abstracts/search?q=Morwenna%20Spear"> Morwenna Spear</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20Pitman"> Andy Pitman</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Mason"> Paul Mason</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood is one of the most sustainable and environmentally favourable materials and is chemically treated in timber industries to maximise durability. To increase the chemical preservative uptake and retention by the wood, current limiting incision technologies are commonly used. This work reports the effects of single pulse CO2 laser-incision and frequency tripled Nd:YAG percussion laser-incision on the characteristics of laser-incised holes in the Radiata Pine. The laser-incision studies were based on changing laser wavelengths, energies and focal planes to conclude on an optimised combination for the laser-incision of Radiata Pine. The laser pulse duration had a dominant effect over laser power in controlling hole aspect ratio in CO2 laser-incision. A maximum depth of ~ 30 mm was measured with a laser power output of 170 W and a pulse duration of 80 ms. However, increased laser power led to increased carbonisation of holes. The carbonisation effect was reduced during laser-incision in the ultra-violet (UV) regime. Deposition of a foamy phase on the laser-incised hole wall was evident irrespective of laser radiation wavelength and energy. A maximum hole depth of ~20 mm was measured in the percussion laser-incision in the UV regime (355 nm) with a pulse energy of 320 mJ. The radial and tangential faces had a significant effect on laser-incision efficiency for all laser wavelengths. The laser-incised hole shapes and circularities were affected by the wood anatomy (earlywoods and latewoods in the structure). Subsequently, the mechanism of laser-incision is proposed by analysing the internal structure of laser-incised holes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20Laser" title="CO2 Laser">CO2 Laser</a>, <a href="https://publications.waset.org/abstracts/search?q=Nd%3A%20YAG%20laser" title=" Nd: YAG laser"> Nd: YAG laser</a>, <a href="https://publications.waset.org/abstracts/search?q=incision" title=" incision"> incision</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a>, <a href="https://publications.waset.org/abstracts/search?q=hole%20characteristics" title=" hole characteristics"> hole characteristics</a> </p> <a href="https://publications.waset.org/abstracts/138450/hole-characteristics-of-percussion-and-single-pulse-laser-incised-radiata-pine-and-the-effects-of-wood-anatomy-on-laser-incision" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Records of Lepidopteron Borers (Lepidoptera) on Stored Seeds of Indian Himalayan Conifers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawan%20Kumar">Pawan Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pitamber%20Singh%20Negi"> Pitamber Singh Negi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many of the regeneration failures in conifers are often being attributed to heavy insect attack and pathogens during the period of seed formation and under storage conditions. Conifer berries and seed insects occur throughout the known range of the hosts and also limit the production of seed for nursery stock. On occasion, even entire seed crops are lost due to insect attacks. The berry and seeds of both the species have been found to be infected with insects. Recently, heavy damage to the berry and seeds of Juniper and Chilgoza Pine was observed in the field as well as in stored conditions, leading to reduction in the viability of seeds to germinate. Both the species are under great threat and regeneration of the species is very low. Due to lack of adequate literature, the study on the damage potential of seed insects was urgently required to know the exact status of the insect-pests attacking seeds/berries of both the pine species so as to develop pest management practices against the insect pests attack. As both the species are also under threat and are fighting for survival, so the study is important to develop management practices for the insect-pests of seeds/berries of Juniper and Chilgoza pine so as to evaluate in the nursery, as these species form major vegetation of their distribution zones. A six-year study on the management of insect pests of seeds of Chilgoza revealed that seeds of this species are prone to insect pests mainly borers. During present investigations, it was recorded that cones of are heavily attacked only by <em>Dioryctria abietella </em>(Lepidoptera: Pyralidae) in natural conditions, but seeds which are economically important are heavily infected, (sometimes up to 100% damage was also recorded) by insect borer, <em>Plodia interpunctella</em> (Lepidoptera: Pyralidae) and is recorded for the first time ‘to author’s best knowledge’ infesting the stored Chilgoza seeds. Similarly, Juniper berries and seeds were heavily attacked only by a single borer, <em>Homaloxestis cholopis</em> (Lepidoptera: Lecithoceridae) recorded as a new report in natural habitat as well as in stored conditions. During the present investigation details of insect pest attack on Juniper and Chilgoza pine seeds and berries was observed and suitable management practices were also developed to contain the insect-pests attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=borer" title="borer">borer</a>, <a href="https://publications.waset.org/abstracts/search?q=chilgozapine" title=" chilgozapine"> chilgozapine</a>, <a href="https://publications.waset.org/abstracts/search?q=cones" title=" cones"> cones</a>, <a href="https://publications.waset.org/abstracts/search?q=conifer" title=" conifer"> conifer</a>, <a href="https://publications.waset.org/abstracts/search?q=Lepidoptera" title=" Lepidoptera"> Lepidoptera</a>, <a href="https://publications.waset.org/abstracts/search?q=juniper" title=" juniper"> juniper</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=seed" title=" seed"> seed</a> </p> <a href="https://publications.waset.org/abstracts/89887/records-of-lepidopteron-borers-lepidoptera-on-stored-seeds-of-indian-himalayan-conifers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Status of Alien Invasive Trees on the Grassland Plateau in Nyika National Park</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Kanzunguze">Andrew Kanzunguze</a>, <a href="https://publications.waset.org/abstracts/search?q=Sopani%20Sichinga"> Sopani Sichinga</a>, <a href="https://publications.waset.org/abstracts/search?q=Paston%20Simkoko"> Paston Simkoko</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Nxumayo"> George Nxumayo</a>, <a href="https://publications.waset.org/abstracts/search?q=Cosmas"> Cosmas</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20B.%20Dambo"> V. B. Dambo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Early detection of plant invasions is a necessary prerequisite for effective invasive plant management in protected areas. This study was conducted to determine the distribution and abundance of alien invasive trees in Nyika National Park (NNP). Data on species' presence and abundance were collected from belt transects (n=31) in a 100 square kilometer area on the central plateau. The data were tested for normality using the Shapiro-Wilk test; Mann-Whitney test was carried out to compare frequencies and abundances between the species, and geographical information systems were used for spatial analyses. Results revealed that Black Wattle (Acacia mearnsii), Mexican Pine (Pinus patula) and Himalayan Raspberry (Rubus ellipticus) were the main alien invasive trees on the plateau. A. mearnsii was localized in the areas where it was first introduced, whereas P. patula and R. ellipticus were spread out beyond original points of introduction. R. ellipticus occurred as dense, extensive (up to 50 meters) thickets on the margins of forest patches and pine stands, whilst P. patula trees were frequent in the valleys, occurring most densely (up to 39 stems per 100 square meters) south-west of Chelinda camp on the central plateau with high variation in tree heights. Additionally, there were no significant differences in abundance between R. ellipticus (48) and P. patula (48) in the study area (p > 0.05) It was concluded that R. ellipticus and P. patula require more attention as compared to A. mearnsii. Howbeit, further studies into the invasion ecology of both P. patula and R. ellipticus on the Nyika plateau are highly recommended so as to assess the threat posed by the species on biodiversity, and recommend appropriate conservation measures in the national park. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alien-invasive%20trees" title="alien-invasive trees">alien-invasive trees</a>, <a href="https://publications.waset.org/abstracts/search?q=Himalayan%20raspberry" title=" Himalayan raspberry"> Himalayan raspberry</a>, <a href="https://publications.waset.org/abstracts/search?q=Nyika%20National%20Park" title=" Nyika National Park"> Nyika National Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Mexican%20pine" title=" Mexican pine"> Mexican pine</a> </p> <a href="https://publications.waset.org/abstracts/99850/status-of-alien-invasive-trees-on-the-grassland-plateau-in-nyika-national-park" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Pollution of Cadmium in Green Space of Rasht City and Environmental Health</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Armin%20Hashemi">Seyed Armin Hashemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Rahimzadeh"> Somayeh Rahimzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The urban green space and environment should be considered to be among the most fundamental elements of the sustainability of natural and human life in the new citizenship. The present research is intended to evaluate the impact of irrigation using urban wastewater of Cadmium (Cd) in the soil and leaves of the pine trees of Rasht in the forest territories of Rasht. For this purpose, following the exact specification of the geographical and topographical attributes of under treatment area, 100 sample trees were implemented randomly –systematically in each compound studied. Approaching the end of growth season, five trees were selected randomly in each of the plats and samples of leaves were collected from the parts near to the end of the crown and the part which was adjacent to the light. At the foot of each of the trees selected, a soil profile was dug and samples of soil were extracted from three depths of 0-20, centimeters. The measurements done in the laboratory showed that the density of nutritious elements of the samples of leaf and soil in the compound irrigated with wastewater .The results of the present research suggest that urban can be used as a source of irrigation whereas muck can be employed in forestation and irrigation with precise and particular supervision and control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation" title="irrigation">irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=forestation" title=" forestation"> forestation</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20waste%20water" title=" urban waste water"> urban waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=pine" title=" pine"> pine</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/42151/pollution-of-cadmium-in-green-space-of-rasht-city-and-environmental-health" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Beginner Steps of the First Dendrochronology Lab in Montenegro - Dendrochronology Research in The Bosnian Pine (Pinus heldreichii) Forests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Popovi%C4%87">Jelena Popović</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrijana%20Mi%C4%87anovi%C4%87"> Andrijana Mićanović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Officially, 60% of Montenegrin territory is covered in forests, but they are continually being destroyed by illegal cutting, concession politics and wildfires. Montenegrin Ecologists Society started the first dendrochronology lab in Montenegro, and data collection began in the Summer of 2021. The cores were taken from 3 localities around the peak Lisac on the mt. Prekornica, where biggest P.heldreichii forests existed until recent huge wildfires. This research is the first step towards comprehensive dendrochronology research in Montenegro. It will show how old certain forest stands of Pinus heldreichii on mountain Prekornica are, that were not destroyed in huge wildfires from the recent years. It will also show how do they correlate between each other. Per locality 15 trees were sampled. Electric sanders (150 - 2000) were used for preparation. Cores were scanned, then measured in CooRecorder. Analysis is done in Cofecha. Process will be repeated with Lintab 6 and TSAP (Time Series Analysis and Presentation for Dendrochronology and Related Applications) - Win Scientific software by Rinntech. Since this is the first dendrochronology research entirely done in Montenegro it is a foundation for the dendroclimatology research. Besides, it’ll contribute to the understanding of the life of these forests in this part of its areal, and in designing good management practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dendrochronology" title="dendrochronology">dendrochronology</a>, <a href="https://publications.waset.org/abstracts/search?q=bosnian%20pine" title=" bosnian pine"> bosnian pine</a>, <a href="https://publications.waset.org/abstracts/search?q=pinus%20heldreichii" title=" pinus heldreichii"> pinus heldreichii</a>, <a href="https://publications.waset.org/abstracts/search?q=montenegro" title=" montenegro"> montenegro</a>, <a href="https://publications.waset.org/abstracts/search?q=forests" title=" forests"> forests</a> </p> <a href="https://publications.waset.org/abstracts/156735/beginner-steps-of-the-first-dendrochronology-lab-in-montenegro-dendrochronology-research-in-the-bosnian-pine-pinus-heldreichii-forests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Assessment of Zinc Content in Nuts by Atomic Absorption Spectrometry Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Socha">Katarzyna Socha</a>, <a href="https://publications.waset.org/abstracts/search?q=Konrad%20Mielcarek"> Konrad Mielcarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Kangowski"> Grzegorz Kangowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Renata%20Markiewicz-Zukowska"> Renata Markiewicz-Zukowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Puscion-Jakubik"> Anna Puscion-Jakubik</a>, <a href="https://publications.waset.org/abstracts/search?q=Jolanta%20Soroczynska"> Jolanta Soroczynska</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20H.%20Borawska"> Maria H. Borawska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nuts have high nutritional value. They are a good source of polyunsaturated fatty acids, dietary fiber, vitamins (B₁, B₆, E, K) and minerals: magnesium, selenium, zinc (Zn). Zn is an essential element for proper functioning and development of human organism. Due to antioxidant and anti-inflammatory properties, Zn has an influence on immunological and central nervous system. It also affects proper functioning of reproductive organs and has beneficial impact on the condition of skin, hair, and nails. The objective of this study was estimation of Zn content in edible nuts. The research material consisted of 10 types of nuts, 12 samples of each type: almonds, brazil nuts, cashews, hazelnuts, macadamia nuts, peanuts, pecans, pine nuts, pistachios, and walnuts. The samples of nuts were digested in concentrated nitric acid using microwave mineralizer (Berghof, Germany). The concentration of Zn was determined by flame atomic absorption spectrometry method with Zeeman background correction (Hitachi, Japan). The accuracy of the method was verified on certified reference material: Simulated Diet D. The statistical analysis was performed using Statistica v. 13.0 software. For comparison between the groups, t-Student test was used. The highest content of Zn was shown in pine nuts and cashews: 78.57 ± 21.9, 70.02 ± 10,2 mg/kg, respectively, significantly higher than in other types of nuts. The lowest content of Zn was found in macadamia nuts: 16.25 ± 4.1 mg/kg. The consumption of a standard 42-gram portion of almonds, brazil nuts, cashews, peanuts, pecans, and pine nuts covers the daily requirement for Zn above 15% of recommended daily allowances (RDA) for women, while in the case of men consumption all of the above types of nuts, except peanuts. Selected types of nuts can be a good source of Zn in the diet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20absorption%20spectrometry" title="atomic absorption spectrometry">atomic absorption spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=microelement" title=" microelement"> microelement</a>, <a href="https://publications.waset.org/abstracts/search?q=nuts" title=" nuts"> nuts</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a> </p> <a href="https://publications.waset.org/abstracts/104089/assessment-of-zinc-content-in-nuts-by-atomic-absorption-spectrometry-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Thermodynamic Analysis of a Multi-Generation Plant Driven by Pine Sawdust as Primary Fuel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Panahirad">Behzad Panahirad</a>, <a href="https://publications.waset.org/abstracts/search?q=U%C4%9FUr%20%20Atikol"> UğUr Atikol </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study is based on a combined heat and power system with multi-objectives, driven by biomass. The system consists of a combustion chamber (CC), a single effect absorption cooling system (SEACS), an air conditioning unit (AC), a reheat steam Rankine cycle (RRC), an organic Rankine cycle (ORC) and an electrolyzer. The purpose of this system is to produce hydrogen, electricity, heat, cooling, and air conditioning. All the simulations had been performed by Engineering Equation Solver (EES) software. Pine sawdust is the selected biofuel for the combustion process. The overall utilization factor (εₑₙ) and exergetic efficiency (ψₑₓ) were calculated to be 2.096 and 24.03% respectively. The performed renewable and environmental impact analysis indicated a sustainability index of 1.316 (SI) and a specific CO2 emission of 353.8 kg/MWh. The parametric study is conducted based on the variation of ambient (sink) temperature, biofuel mass flow rate, and boilers outlet temperatures. The parametric simulation showed that the increase in biofuel mass flow rate has a positive effect on the sustainability of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20assessment" title=" exergy assessment"> exergy assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20plant" title=" multi-objective plant"> multi-objective plant</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20emission" title=" CO₂ emission"> CO₂ emission</a>, <a href="https://publications.waset.org/abstracts/search?q=irreversibility" title=" irreversibility"> irreversibility</a> </p> <a href="https://publications.waset.org/abstracts/79997/thermodynamic-analysis-of-a-multi-generation-plant-driven-by-pine-sawdust-as-primary-fuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Elastic Constants of Heat Treated Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Guntekin">Ergun Guntekin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effects of heat treatment on elastic constants of Black pine (Pinus nigra) wood were investigated. Specimens were exposed to heat under atmospheric pressure at two different temperatures (180 and 210 °C) and three different time levels (2, 5, 8 hours). Three Young’s modulus in three anatomical directions, six Poisson’s ratios and three Shear modulus values associated with the main directions were evaluated by compression tests. Compression strength of the samples in three principal directions was also determined. All of the properties of the specimens tested were altered by heat treatment. The degree of alteration depends on the temperature as well as duration applied. Results indicate that EL and compression strength in L direction were not significantly influenced, compression strength in R direction significantly decreased, ER, ET and compression strength in T direction were increased for shorter periods, then dropped for 8-hour application of 180 ºC. ER was not significantly affected, compression strength in R direction and EL was significantly decreased, ET and compression strength in T direction were increased for shorter periods, then decreased for 8-hour application of 210 ºC. The shear modulus of the samples was decreased with application of treatment combinations. Most of the Poisson’s ratios were not affected by heat treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20pine" title="black pine">black pine</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title=" elastic constants"> elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a> </p> <a href="https://publications.waset.org/abstracts/90755/elastic-constants-of-heat-treated-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pine&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pine&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pine&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>