CINXE.COM

Обыкновенное дифференциальное уравнение. Большая российская энциклопедия

<!DOCTYPE html><html lang="ru"><head><meta charset="utf-8"> <meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=1"> <title>Обыкновенное дифференциальное уравнение. Большая российская энциклопедия</title> <link href="https://mc.yandex.ru" rel="preconnect"> <link href="https://top-fwz1.mail.ru/js/code.js" as="script" crossorigin> <link href="https://news.gnezdo2.ru/gnezdo_news_tracker_new.js" as="script" crossorigin> <link href="https://mc.yandex.ru" rel="dns-prefetch"> <link href="https://mc.yandex.ru/metrika/tag.js" as="script" crossorigin> <meta name="msapplication-TileColor" content="#da532c"> <meta name="msapplication-config" content="/meta/browserconfig.xml"> <meta name="theme-color" content="#ffffff"> <link rel="icon" sizes="32x32" href="/favicon.ico"> <link rel="icon" type="image/svg+xml" href="/meta/favicon.svg"> <link rel="apple-touch-icon" href="/meta/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="48x48" href="/meta/favicon-48x48.png"> <link rel="manifest" href="/meta/site.webmanifest"> <meta content="2022-05-19T15:54:22.000Z" name="article:modified_time"> <meta content="Научные законы, утверждения, уравнения" property="article:section"> <meta content="Механика" property="article:tag"> <meta content="Теория колебаний" property="article:tag"> <meta content="Обыкнове́нное дифференциа́льное уравне́ние, уравнение, в котором неизвестной является функция от одного независимого переменного, причём в это..." name="description"> <meta content="Механика, Теория колебаний" name="keywords"> <meta content="Обыкнове́нное дифференциа́льное уравне́ние, уравнение, в котором неизвестной является функция от одного независимого переменного, причём в это..." property="og:description"> <meta content="https://i.bigenc.ru/resizer/resize?sign=K2mwjNK87zofppSZEffyIw&filename=vault/3cf067030012eb10bb78b0ddf25f3b6b.webp&width=1200" property="og:image"> <meta content="«Большая российская энциклопедия»" property="og:image:alt"> <meta content="792" property="og:image:height"> <meta content="webp&width=1200" property="og:image:type"> <meta content="1200" property="og:image:width"> <meta content="Обыкновенное дифференциальное уравнение" property="og:title"> <meta content="article" property="og:type"> <meta content="https://bigenc.ru/c/obyknovennoe-differentsial-noe-uravnenie-674fde" property="og:url"> <meta content="summary_large_image" property="twitter:card"> <meta content="Большая российская энциклопедия" property="og:site_name"> <meta content="2022-05-19T15:54:22.000Z" name="article:published_time"> <link rel="stylesheet" href="https://s.bigenc.ru/_nuxt/entry.mpjHLZVQ.css"> <link rel="stylesheet" href="https://s.bigenc.ru/_nuxt/components.EYp_E6uU.css"> <link rel="stylesheet" href="https://s.bigenc.ru/_nuxt/Formula.OAWbmYZe.css"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/entry.-Z8AjeEO.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/chunk.eVCQshbn.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/components.a6A3eWos.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/index.64RxBmGv.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Renderer.vue.KBqHlDjs.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/ArticleSidebar.vue.QjMjnOY7.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Image.vue.hLe6_eLu.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/MediaFigure.vue.8Cjz8VZ4.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Image.MIRfcYkN.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/PreviewLink.1ksiu7wu.js"> <link rel="modulepreload" as="script" crossorigin href="https://s.bigenc.ru/_nuxt/Formula.hIoX9Hw3.js"> <link rel="prefetch" as="image" type="image/jpeg" href="https://s.bigenc.ru/_nuxt/fallback.OCsNm7LY.jpg"> <script type="module" src="https://s.bigenc.ru/_nuxt/entry.-Z8AjeEO.js" crossorigin></script></head><body><div id="__nuxt"><!--[--><div class="loading-indicator" style="position:fixed;top:0;right:0;left:0;pointer-events:none;width:0%;height:1px;opacity:0;background:repeating-linear-gradient(to right,#7698f5 0%,#436ee6 50%,#0047e1 100%);background-size:Infinity% auto;transition:width 0.1s, height 0.4s, opacity 0.4s;z-index:999999;"></div><div><!----><div class="bre-page" itemscope itemprop="mainEntity" itemtype="https://schema.org/WebPage"><header class="bre-header" itemprop="hasPart" itemscope itemtype="https://schema.org/WPHeader" style=""><div class="bre-header-fixed"><nav class="bre-header-nav"><div class="bre-header-nav-item _flex-start _logo"><a class="bre-header-logo -show-on-desktop-s _big" aria-label="Домой"></a><a class="bre-header-logo _small" aria-label="Домой"></a></div><div class="bre-header-nav-item _flex-start _catalog"><button type="button" class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer tw-h-11 -show-on-desktop-s tw-px-4 tw-w-[132px] !tw-justify-start" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M20.75 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h16a.75.75 0 0 1 .75.75Zm-7 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h9a.75.75 0 0 1 .75.75ZM20 18.75a.75.75 0 0 0 0-1.5H4a.75.75 0 0 0 0 1.5h16Z" fill="currentColor"/></svg> </span><span class="c-button__content" data-v-cfbedafc><!--[--> Каталог <!--]--></span></button><button type="button" class="b-button b-button--transparent -text-button tw-rounded-lg tw-cursor-pointer tw-gap-0 md:tw-gap-2 -hide-on-desktop-s" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0 tw-text-primary-black" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M20.75 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h16a.75.75 0 0 1 .75.75Zm-7 6a.75.75 0 0 1-.75.75H4a.75.75 0 0 1 0-1.5h9a.75.75 0 0 1 .75.75ZM20 18.75a.75.75 0 0 0 0-1.5H4a.75.75 0 0 0 0 1.5h16Z" fill="currentColor"/></svg> </span><span class="c-button__content" data-v-cfbedafc><!--[--><span class="tw-hidden tw-pt-0.5 tw-text-primary-black md:tw-block">Каталог</span><!--]--></span></button></div><div class="bre-header-nav-item _flex-start lg:tw-flex-1"><div class="min-lg:tw-w-[228px] tw-relative max-md:tw-mb-[6px] max-md:tw-mt-4 lg:tw-w-full lg:tw-max-w-[606px] max-md:tw-hidden"><div class="tw-flex max-lg:tw-hidden" data-v-f39cd9b8><div class="tw-flex tw-w-full tw-items-center tw-border tw-border-solid tw-border-transparent tw-bg-gray-6 tw-px-3 tw-transition lg:hover:tw-bg-gray-5 lg:tw-bg-primary-white lg:tw-border-gray-5 lg:hover:tw-border-transparent lg:tw-rounded-e-none lg:tw-pr-4 tw-rounded-lg tw-h-11" data-v-f39cd9b8><span class="nuxt-icon _no-icon-margin tw-shrink-0 tw-text-2xl tw-text-gray-2 tw-cursor-pointer" style="display:none;" data-v-f39cd9b8><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M10 17C13.866 17 17 13.866 17 10C17 6.13401 13.866 3 10 3C6.13401 3 3 6.13401 3 10C3 13.866 6.13401 17 10 17Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M21.0004 21.0004L15.5 15.5" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span><input class="b-search-input -text-headline-6 tw-h-full tw-shrink tw-grow tw-basis-auto tw-border-none tw-bg-transparent tw-p-0 tw-indent-2 tw-leading-none tw-text-primary-black tw-outline-none tw-transition md:tw-w-[154px] tw-placeholder-gray-2 lg:tw-placeholder-gray-1 lg:tw-indent-1 lg:tw-pr-4 lg:-text-caption-1 placeholder-on-focus" name="new-search" value="" type="text" placeholder="Искать в энциклопедии" autocomplete="off" spellcheck="false" data-v-f39cd9b8><button type="button" class="b-button tw-gap-2 b-button--transparent -text-button tw-rounded-lg tw-cursor-pointer b-button--icon-only" style="display:none;" data-v-f39cd9b8 data-v-cfbedafc><span class="nuxt-icon nuxt-icon--fill nuxt-icon--stroke tw-text-2xl tw-shrink-0 tw-text-gray-2" data-v-cfbedafc><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="1.5" d="M17 17 7 7M17 7 7 17"/></svg> </span><!----></button></div><!--[--><button type="button" class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer b-button--icon-only tw-h-11 tw-w-11 tw-rounded-s-none tw-flex-none" style="" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M10 17C13.866 17 17 13.866 17 10C17 6.13401 13.866 3 10 3C6.13401 3 3 6.13401 3 10C3 13.866 6.13401 17 10 17Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M21.0004 21.0004L15.5 15.5" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span><!----></button><!--]--></div><!----></div><button class="lg:tw-hidden"><span class="nuxt-icon tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M10 17C13.866 17 17 13.866 17 10C17 6.13401 13.866 3 10 3C6.13401 3 3 6.13401 3 10C3 13.866 6.13401 17 10 17Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M21.0004 21.0004L15.5 15.5" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span></button></div><div class="bre-header-nav-item _flex-start -show-on-tablet button-author-animation lg:tw-justify-end lg:tw-basis-[calc(50vw-348px)]"><a class="b-button tw-gap-2 b-button--secondary -text-button tw-rounded-lg tw-cursor-pointer tw-h-10 tw-w-[172px] tw-px-6 lg:tw-h-11" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[--> Стать автором <!--]--></span></a></div><div class="bre-header-nav-item _flex-start tw-relative max-md:tw-w-6 sm:tw-z-[9] md:tw-z-[21]"><div class="bre-header-profile"><!--[--><!--[--><a class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer tw-h-10 tw-px-6 -show-on-tablet -hide-on-desktop-s tw-w-[102px]" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[--> Войти <!--]--></span></a><a class="b-button tw-gap-2 b-button--primary -text-button tw-rounded-lg tw-cursor-pointer tw-h-11 tw-px-6 -show-on-desktop-s tw-w-[102px]" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[--> Войти <!--]--></span></a><a class="b-button tw-gap-2 b-button--transparent -text-button tw-rounded-lg tw-cursor-pointer b-button--icon-only tw-mx-1 -hide-on-tablet" data-v-cfbedafc><span class="nuxt-icon tw-text-2xl tw-shrink-0 tw-text-primary-black" data-v-cfbedafc><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M20 21V19C20 17.9391 19.5786 16.9217 18.8284 16.1716C18.0783 15.4214 17.0609 15 16 15H8C6.93913 15 5.92172 15.4214 5.17157 16.1716C4.42143 16.9217 4 17.9391 4 19V21" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> <path d="M12 12C14.2091 12 16 10.2091 16 8C16 5.79086 14.2091 4 12 4C9.79086 4 8 5.79086 8 8C8 10.2091 9.79086 12 12 12Z" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/> </svg> </span><!----></a><!--]--></div></div></nav><!----><!----></div><!----><!----></header><main class="bre-page-main"><!--[--><div class="bre-article-layout _no-margin"><nav class="bre-article-layout__menu"><div class="bre-article-menu lg:tw-sticky"><div class="bre-article-menu__list"><!--[--><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><span class="bre-article-menu__list-item _active"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-blue"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M4.29919 18V6C4.29919 4.61929 5.41848 3.5 6.79919 3.5H11.7992H13.4413C13.7192 3.5 13.9922 3.54628 14.25 3.63441V7C14.25 8.51878 15.4812 9.75 17 9.75H19.2992V12V18C19.2992 19.3807 18.1799 20.5 16.7992 20.5H6.79919C5.41848 20.5 4.29919 19.3807 4.29919 18ZM18.9149 8.25C18.8305 8.11585 18.7329 7.98916 18.623 7.87194L15.75 4.80733V7C15.75 7.69036 16.3096 8.25 17 8.25H18.9149ZM2.79919 6C2.79919 3.79086 4.59006 2 6.79919 2H11.7992H13.4413C14.5469 2 15.6032 2.45763 16.3594 3.26424L19.7173 6.84603C20.4124 7.58741 20.7992 8.56555 20.7992 9.58179V12V18C20.7992 20.2091 19.0083 22 16.7992 22H6.79919C4.59006 22 2.79919 20.2091 2.79919 18V6ZM7.04919 12C7.04919 11.5858 7.38498 11.25 7.79919 11.25H15.7992C16.2134 11.25 16.5492 11.5858 16.5492 12C16.5492 12.4142 16.2134 12.75 15.7992 12.75H7.79919C7.38498 12.75 7.04919 12.4142 7.04919 12ZM7.79919 16.25C7.38498 16.25 7.04919 16.5858 7.04919 17C7.04919 17.4142 7.38498 17.75 7.79919 17.75H12.7992C13.2134 17.75 13.5492 17.4142 13.5492 17C13.5492 16.5858 13.2134 16.25 12.7992 16.25H7.79919Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Статья</span></span><!--]--><!--]--><span style="display:none;" class=""><span>Статья</span></span></span><span class="bre-article-menu__list-item _active tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-blue"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M4.29919 18V6C4.29919 4.61929 5.41848 3.5 6.79919 3.5H11.7992H13.4413C13.7192 3.5 13.9922 3.54628 14.25 3.63441V7C14.25 8.51878 15.4812 9.75 17 9.75H19.2992V12V18C19.2992 19.3807 18.1799 20.5 16.7992 20.5H6.79919C5.41848 20.5 4.29919 19.3807 4.29919 18ZM18.9149 8.25C18.8305 8.11585 18.7329 7.98916 18.623 7.87194L15.75 4.80733V7C15.75 7.69036 16.3096 8.25 17 8.25H18.9149ZM2.79919 6C2.79919 3.79086 4.59006 2 6.79919 2H11.7992H13.4413C14.5469 2 15.6032 2.45763 16.3594 3.26424L19.7173 6.84603C20.4124 7.58741 20.7992 8.56555 20.7992 9.58179V12V18C20.7992 20.2091 19.0083 22 16.7992 22H6.79919C4.59006 22 2.79919 20.2091 2.79919 18V6ZM7.04919 12C7.04919 11.5858 7.38498 11.25 7.79919 11.25H15.7992C16.2134 11.25 16.5492 11.5858 16.5492 12C16.5492 12.4142 16.2134 12.75 15.7992 12.75H7.79919C7.38498 12.75 7.04919 12.4142 7.04919 12ZM7.79919 16.25C7.38498 16.25 7.04919 16.5858 7.04919 17C7.04919 17.4142 7.38498 17.75 7.79919 17.75H12.7992C13.2134 17.75 13.5492 17.4142 13.5492 17C13.5492 16.5858 13.2134 16.25 12.7992 16.25H7.79919Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Статья</span></span></div><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><a href="/c/obyknovennoe-differentsial-noe-uravnenie-674fde/annotation" class="bre-article-menu__list-item"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M18.2363 4.12686C18.2363 3.43651 18.796 2.87686 19.4863 2.87686C20.1767 2.87686 20.7363 3.43651 20.7363 4.12686C20.7363 4.81722 20.1767 5.37686 19.4863 5.37686C18.796 5.37686 18.2363 4.81722 18.2363 4.12686ZM19.4863 1.37686C17.9675 1.37686 16.7363 2.60808 16.7363 4.12686C16.7363 4.43206 16.786 4.72564 16.8778 4.99996H7C4.79086 4.99996 3 6.79082 3 8.99996V19C3 21.2091 4.79086 23 7 23H17C19.2091 23 21 21.2091 21 19V8.99996C21 8.16642 20.745 7.39244 20.3089 6.75173C21.4258 6.40207 22.2363 5.35911 22.2363 4.12686C22.2363 2.60808 21.0051 1.37686 19.4863 1.37686ZM7 6.49996H16.6319L14.6964 8.43547C14.4035 8.72837 14.4035 9.20324 14.6964 9.49613C14.9893 9.78903 15.4641 9.78903 15.757 9.49613L18.3547 6.89846C19.0438 7.34362 19.5 8.11852 19.5 8.99996V19C19.5 20.3807 18.3807 21.5 17 21.5H7C5.61929 21.5 4.5 20.3807 4.5 19V8.99996C4.5 7.61924 5.61929 6.49996 7 6.49996ZM9.25 12C9.25 11.5857 9.58579 11.25 10 11.25H12H14C14.4142 11.25 14.75 11.5857 14.75 12C14.75 12.4142 14.4142 12.75 14 12.75H12H10C9.58579 12.75 9.25 12.4142 9.25 12ZM9.25 17C9.25 16.5857 9.58579 16.25 10 16.25H12H14C14.4142 16.25 14.75 16.5857 14.75 17C14.75 17.4142 14.4142 17.75 14 17.75H12H10C9.58579 17.75 9.25 17.4142 9.25 17Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Аннотация</span></a><!--]--><!--]--><span style="display:none;" class=""><span>Аннотация</span></span></span><a href="/c/obyknovennoe-differentsial-noe-uravnenie-674fde/annotation" class="bre-article-menu__list-item tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M18.2363 4.12686C18.2363 3.43651 18.796 2.87686 19.4863 2.87686C20.1767 2.87686 20.7363 3.43651 20.7363 4.12686C20.7363 4.81722 20.1767 5.37686 19.4863 5.37686C18.796 5.37686 18.2363 4.81722 18.2363 4.12686ZM19.4863 1.37686C17.9675 1.37686 16.7363 2.60808 16.7363 4.12686C16.7363 4.43206 16.786 4.72564 16.8778 4.99996H7C4.79086 4.99996 3 6.79082 3 8.99996V19C3 21.2091 4.79086 23 7 23H17C19.2091 23 21 21.2091 21 19V8.99996C21 8.16642 20.745 7.39244 20.3089 6.75173C21.4258 6.40207 22.2363 5.35911 22.2363 4.12686C22.2363 2.60808 21.0051 1.37686 19.4863 1.37686ZM7 6.49996H16.6319L14.6964 8.43547C14.4035 8.72837 14.4035 9.20324 14.6964 9.49613C14.9893 9.78903 15.4641 9.78903 15.757 9.49613L18.3547 6.89846C19.0438 7.34362 19.5 8.11852 19.5 8.99996V19C19.5 20.3807 18.3807 21.5 17 21.5H7C5.61929 21.5 4.5 20.3807 4.5 19V8.99996C4.5 7.61924 5.61929 6.49996 7 6.49996ZM9.25 12C9.25 11.5857 9.58579 11.25 10 11.25H12H14C14.4142 11.25 14.75 11.5857 14.75 12C14.75 12.4142 14.4142 12.75 14 12.75H12H10C9.58579 12.75 9.25 12.4142 9.25 12ZM9.25 17C9.25 16.5857 9.58579 16.25 10 16.25H12H14C14.4142 16.25 14.75 16.5857 14.75 17C14.75 17.4142 14.4142 17.75 14 17.75H12H10C9.58579 17.75 9.25 17.4142 9.25 17Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Аннотация</span></a></div><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><a href="/c/obyknovennoe-differentsial-noe-uravnenie-674fde/references" class="bre-article-menu__list-item"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M5 3.25C3.48122 3.25 2.25 4.48122 2.25 6V16.1667C2.25 17.6854 3.48122 18.9167 5 18.9167H9.3C9.80519 18.9167 10.2974 19.1269 10.6662 19.5139C11.0362 19.9022 11.25 20.4361 11.25 21C11.25 21.4142 11.5858 21.75 12 21.75C12.4142 21.75 12.75 21.4142 12.75 21C12.75 20.4227 12.9564 19.8833 13.3026 19.4973C13.6464 19.114 14.0941 18.9167 14.5412 18.9167H19C20.5188 18.9167 21.75 17.6855 21.75 16.1667V6C21.75 4.48122 20.5188 3.25 19 3.25H15.3882C14.2627 3.25 13.2022 3.74922 12.4341 4.60572C12.266 4.79308 12.1147 4.99431 11.9809 5.20674C11.8358 4.98777 11.6713 4.78092 11.4885 4.58908C10.6758 3.73626 9.56568 3.25 8.4 3.25H5ZM12.75 17.993C13.2735 17.6237 13.8929 17.4167 14.5412 17.4167H19C19.6904 17.4167 20.25 16.857 20.25 16.1667V6C20.25 5.30964 19.6904 4.75 19 4.75H15.3882C14.7165 4.75 14.0534 5.04681 13.5507 5.60725C13.0457 6.17037 12.75 6.95001 12.75 7.77778V17.993ZM11.25 18.0438V7.77778C11.25 6.96341 10.9414 6.18924 10.4026 5.62389C9.86506 5.05976 9.14388 4.75 8.4 4.75H5C4.30964 4.75 3.75 5.30964 3.75 6V16.1667C3.75 16.857 4.30964 17.4167 5 17.4167H9.3C10.0044 17.4167 10.6825 17.64 11.25 18.0438Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Библиография</span></a><!--]--><!--]--><span style="display:none;" class=""><span>Библиография</span></span></span><a href="/c/obyknovennoe-differentsial-noe-uravnenie-674fde/references" class="bre-article-menu__list-item tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M5 3.25C3.48122 3.25 2.25 4.48122 2.25 6V16.1667C2.25 17.6854 3.48122 18.9167 5 18.9167H9.3C9.80519 18.9167 10.2974 19.1269 10.6662 19.5139C11.0362 19.9022 11.25 20.4361 11.25 21C11.25 21.4142 11.5858 21.75 12 21.75C12.4142 21.75 12.75 21.4142 12.75 21C12.75 20.4227 12.9564 19.8833 13.3026 19.4973C13.6464 19.114 14.0941 18.9167 14.5412 18.9167H19C20.5188 18.9167 21.75 17.6855 21.75 16.1667V6C21.75 4.48122 20.5188 3.25 19 3.25H15.3882C14.2627 3.25 13.2022 3.74922 12.4341 4.60572C12.266 4.79308 12.1147 4.99431 11.9809 5.20674C11.8358 4.98777 11.6713 4.78092 11.4885 4.58908C10.6758 3.73626 9.56568 3.25 8.4 3.25H5ZM12.75 17.993C13.2735 17.6237 13.8929 17.4167 14.5412 17.4167H19C19.6904 17.4167 20.25 16.857 20.25 16.1667V6C20.25 5.30964 19.6904 4.75 19 4.75H15.3882C14.7165 4.75 14.0534 5.04681 13.5507 5.60725C13.0457 6.17037 12.75 6.95001 12.75 7.77778V17.993ZM11.25 18.0438V7.77778C11.25 6.96341 10.9414 6.18924 10.4026 5.62389C9.86506 5.05976 9.14388 4.75 8.4 4.75H5C4.30964 4.75 3.75 5.30964 3.75 6V16.1667C3.75 16.857 4.30964 17.4167 5 17.4167H9.3C10.0044 17.4167 10.6825 17.64 11.25 18.0438Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Библиография</span></a></div><div class="tw-grow tw-basis-0 max-md:tw-max-w-[80px]"><span data-v-tippy class="tw-mx-auto tw-hidden lg:tw-flex"><!--[--><!--[--><a href="/c/obyknovennoe-differentsial-noe-uravnenie-674fde/versions" class="bre-article-menu__list-item"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M10.9565 3.85864H7.51619C7.8045 3.2057 8.4577 2.75 9.21734 2.75H13.5652H14.7687C15.4365 2.75 16.0697 3.0466 16.4972 3.55959L19.2502 6.86313C19.5871 7.26748 19.7717 7.77718 19.7717 8.30354V10.6957V16.7826C19.7717 17.5422 19.316 18.1954 18.663 18.4838V13.3043V10.9122C18.663 10.0349 18.3555 9.18542 17.7939 8.51149L15.0409 5.20795C14.3284 4.35298 13.273 3.85864 12.1601 3.85864H10.9565ZM14.913 22.7499C16.6051 22.7499 18.0354 21.6293 18.5022 20.0898C20.0762 19.8113 21.2717 18.4365 21.2717 16.7826V10.6957V8.30354C21.2717 7.42628 20.9641 6.57678 20.4025 5.90285L17.6496 2.59931C16.9371 1.74434 15.8817 1.25 14.7687 1.25H13.5652H9.21734C7.56341 1.25 6.18869 2.44548 5.91016 4.01947C4.37062 4.48633 3.25 5.91662 3.25 7.60864V18.9999C3.25 21.071 4.92893 22.7499 7 22.7499H14.913ZM7 5.35864C5.75736 5.35864 4.75 6.366 4.75 7.60864V18.9999C4.75 20.2426 5.75736 21.2499 7 21.2499H14.913C16.1557 21.2499 17.163 20.2426 17.163 18.9999V13.3043V10.9122C17.163 10.7991 17.1545 10.6867 17.1378 10.5761H15.3043C13.9296 10.5761 12.8152 9.46164 12.8152 8.08694V5.45611C12.6051 5.39215 12.3845 5.35864 12.1601 5.35864H10.9565H7ZM14.3152 6.68014V8.08694C14.3152 8.63322 14.758 9.07607 15.3043 9.07607H16.3118L14.3152 6.68014ZM6.72827 13.3043C6.72827 12.8901 7.06406 12.5543 7.47827 12.5543H14.4348C14.849 12.5543 15.1848 12.8901 15.1848 13.3043C15.1848 13.7185 14.849 14.0543 14.4348 14.0543H7.47827C7.06406 14.0543 6.72827 13.7185 6.72827 13.3043ZM7.47827 16.9022C7.06406 16.9022 6.72827 17.238 6.72827 17.6522C6.72827 18.0664 7.06406 18.4022 7.47827 18.4022H10.9565C11.3707 18.4022 11.7065 18.0664 11.7065 17.6522C11.7065 17.238 11.3707 16.9022 10.9565 16.9022H7.47827Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Версии</span></a><!--]--><!--]--><span style="display:none;" class=""><span>Версии</span></span></span><a href="/c/obyknovennoe-differentsial-noe-uravnenie-674fde/versions" class="bre-article-menu__list-item tw-mx-auto tw-flex lg:tw-hidden"><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-gray-1"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M10.9565 3.85864H7.51619C7.8045 3.2057 8.4577 2.75 9.21734 2.75H13.5652H14.7687C15.4365 2.75 16.0697 3.0466 16.4972 3.55959L19.2502 6.86313C19.5871 7.26748 19.7717 7.77718 19.7717 8.30354V10.6957V16.7826C19.7717 17.5422 19.316 18.1954 18.663 18.4838V13.3043V10.9122C18.663 10.0349 18.3555 9.18542 17.7939 8.51149L15.0409 5.20795C14.3284 4.35298 13.273 3.85864 12.1601 3.85864H10.9565ZM14.913 22.7499C16.6051 22.7499 18.0354 21.6293 18.5022 20.0898C20.0762 19.8113 21.2717 18.4365 21.2717 16.7826V10.6957V8.30354C21.2717 7.42628 20.9641 6.57678 20.4025 5.90285L17.6496 2.59931C16.9371 1.74434 15.8817 1.25 14.7687 1.25H13.5652H9.21734C7.56341 1.25 6.18869 2.44548 5.91016 4.01947C4.37062 4.48633 3.25 5.91662 3.25 7.60864V18.9999C3.25 21.071 4.92893 22.7499 7 22.7499H14.913ZM7 5.35864C5.75736 5.35864 4.75 6.366 4.75 7.60864V18.9999C4.75 20.2426 5.75736 21.2499 7 21.2499H14.913C16.1557 21.2499 17.163 20.2426 17.163 18.9999V13.3043V10.9122C17.163 10.7991 17.1545 10.6867 17.1378 10.5761H15.3043C13.9296 10.5761 12.8152 9.46164 12.8152 8.08694V5.45611C12.6051 5.39215 12.3845 5.35864 12.1601 5.35864H10.9565H7ZM14.3152 6.68014V8.08694C14.3152 8.63322 14.758 9.07607 15.3043 9.07607H16.3118L14.3152 6.68014ZM6.72827 13.3043C6.72827 12.8901 7.06406 12.5543 7.47827 12.5543H14.4348C14.849 12.5543 15.1848 12.8901 15.1848 13.3043C15.1848 13.7185 14.849 14.0543 14.4348 14.0543H7.47827C7.06406 14.0543 6.72827 13.7185 6.72827 13.3043ZM7.47827 16.9022C7.06406 16.9022 6.72827 17.238 6.72827 17.6522C6.72827 18.0664 7.06406 18.4022 7.47827 18.4022H10.9565C11.3707 18.4022 11.7065 18.0664 11.7065 17.6522C11.7065 17.238 11.3707 16.9022 10.9565 16.9022H7.47827Z" fill="currentColor"/> </svg> </span><span class="bre-article-menu__list-item-text tw-hidden md:max-lg:tw-inline">Версии</span></a></div><!--]--></div></div></nav><!--[--><div><meta itemprop="image primaryImageOfPage" content="https://i.bigenc.ru/resizer/resize?sign=YwquNkBjjvRkIItEEj84EA&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=120"><article itemscope itemprop="mainEntity" itemtype="https://schema.org/Article"><div itemprop="publisher" itemscope itemtype="https://schema.org/Organization"><meta itemprop="name" content="Автономная некоммерческая организация «Национальный научно-образовательный центр «Большая российская энциклопедия»"><meta itemprop="address" content="Покровский бульвар, д. 8, стр. 1А, Москва, 109028"><meta itemprop="telephone" content="+7 (495) 781-15-95"><meta itemprop="logo" content="https://s.bigenc.ru/_nuxt/logo.98u7ubS9.svg"></div><div itemprop="copyrightHolder" itemscope itemtype="https://schema.org/Organization"><meta itemprop="name" content="Автономная некоммерческая организация «Национальный научно-образовательный центр «Большая российская энциклопедия»"><meta itemprop="address" content="Покровский бульвар, д. 8, стр. 1А, Москва, 109028"><meta itemprop="telephone" content="+7 (495) 781-15-95"><meta itemprop="logo" content="https://s.bigenc.ru/_nuxt/logo.98u7ubS9.svg"></div><meta itemprop="articleSection" content="Научные законы, утверждения, уравнения"><meta itemprop="headline" content="Обыкновенное дифференциальное уравнение"><meta itemprop="keywords" content="Механика, Теория колебаний"><!----><div class="bre-article-page max-md:tw-mt-10 md:max-lg:tw-mt-[81px] max-md:tw-mt-10"><!----><!----><div class="article-sidebar -hide-on-desktop-s"><div class="article-sidebar-button -show-on-tablet -hide-on-desktop-s"><span class="article-sidebar-title">Информация</span><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M6 9l6 6 6-6" stroke="currentColor" stroke-width="1.5" stroke-linecap="round"/></svg> </span><!--[--><div class="article-sidebar-text -show-on-tablet -hide-on-desktop-s">Обыкновенное дифференциальное уравнение</div><!--]--></div><div class="article-sidebar-wrapper -hide-on-tablet"><header class="bre-article-header -hide-on-tablet"><div class="bre-label__wrap"><span data-v-tippy class="tw-leading-[0px]"><!--[--><!--[--><span class="bre-label">Научные законы, утверждения, уравнения</span><!--]--><!--]--><span style="display:none;" class=""><span>Научные законы, утверждения, уравнения</span></span></span><!----></div><!--[--><!----><h1 class="bre-article-header-title">Обыкновенное дифференциальное уравнение</h1><!--]--><!----></header><section class="-hide-on-tablet tw-h-14 md:tw-h-20"><div><div><div itemprop="interactionStatistic" itemscope itemtype="https://schema.org/InteractionCounter"><meta itemprop="interactionType" content="https://schema.org/ViewAction"><meta itemprop="userInteractionCount" content=""></div><div itemprop="interactionStatistic" itemscope itemtype="https://schema.org/InteractionCounter"><meta itemprop="interactionType" content="https://schema.org/ShareAction"><meta itemprop="userInteractionCount" content=""></div><div itemprop="interactionStatistic" itemscope itemtype="https://schema.org/InteractionCounter"><meta itemprop="interactionType" content="https://schema.org/LikeAction"><meta itemprop="userInteractionCount" content=""></div></div><span></span></div></section><!----><span class="bre-media-image article-sidebar-image _note-exclude _clean" data-width="100%" data-display="block"><span class="bre-media-figure _note-exclude _clean" itemscope itemtype="https://schema.org/ImageObject" itemprop="image"><!--[--><span class="bre-media-image-container _placeholder"><meta itemprop="name" content="Математика"><meta itemprop="caption" content="Математика. Научно-образовательный портал «Большая российская энциклопедия»"><!----><!----><span class="tw-flex tw-w-full" style=""><img src="https://i.bigenc.ru/resizer/resize?sign=YwquNkBjjvRkIItEEj84EA&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=120" onerror="this.setAttribute(&#39;data-error&#39;, 1)" alt="Математика" data-nuxt-img sizes="320px" srcset="https://i.bigenc.ru/resizer/resize?sign=YwquNkBjjvRkIItEEj84EA&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=120 120w,https://i.bigenc.ru/resizer/resize?sign=kwZEMADbF0h1k2QM5MQ63g&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=320 320w,https://i.bigenc.ru/resizer/resize?sign=iDjHjthf4TWMMOWxyvO9-Q&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=480 480w,https://i.bigenc.ru/resizer/resize?sign=aOq57ZwrPJzlZoA0JyAqNA&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=640 640w,https://i.bigenc.ru/resizer/resize?sign=RysrupjbIa5XYWB_pfATYQ&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=768 768w,https://i.bigenc.ru/resizer/resize?sign=8eQ4RSvaDJue-elzThMhjA&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=4tn4w-MU4hKmUoYIwAeqew&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=SXvkdFSbX19Vh-sgDBVBiQ&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=1920 1920w" title="Математика" class="" itemprop="contentUrl"></span><!----></span><!--]--><!----></span><!----><!----></span><div class="article-sidebar-meta"><dl class="tw-mt-0"><!--[--><!--[--><dt>Области знаний:</dt><dd>Дифференциальные, интегральные и функционально-дифференциальные уравнения</dd><!--]--><!--]--><!----></dl></div></div></div><div class="bre-article-page__container"><div class="bre-article-page__content bre-article-content"><header class="bre-article-header -show-on-tablet"><div class="bre-label__wrap"><span data-v-tippy class="tw-leading-[0px]"><!--[--><!--[--><span class="bre-label">Научные законы, утверждения, уравнения</span><!--]--><!--]--><span style="display:none;" class=""><span>Научные законы, утверждения, уравнения</span></span></span><!----></div><!--[--><!----><h1 class="bre-article-header-title">Обыкновенное дифференциальное уравнение</h1><!--]--><!----></header><section class="tw-flex"><div class="-show-on-tablet tw-h-14 md:tw-h-20"><!----></div><span></span></section><div class="js-preview-link-root"><div itemprop="articleBody" class="bre-article-body"><!--[--><section><section><p><b>Обыкнове́нное дифференциа́льное уравне́ние,</b> уравнение, в котором неизвестной является функция от одного независимого переменного, причём в это уравнение входят не только сама неизвестная функция, но и её производные различных порядков.</p><p>Термин «дифференциальные уравнения» был предложен <a href="/c/leibnits-gotfrid-vil-gel-m-b9fd2d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Г. Лейбницем<!--]--><!--]--><!----></a> (G. Leibniz, 1676). Первые исследования обыкновенных дифференциальных уравнений были проведены в конце 17 в. в связи с изучением проблем механики и некоторых геометрических задач.</p><p>Обыкновенные дифференциальные уравнения имеют большое прикладное значение, являясь мощным орудием исследования многих задач естествознания и техники: они широко используются в <a href="/c/mekhanika-abd757" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->механике<!--]--><!--]--><!----></a>, <a href="/c/astronomiia-a85a51" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->астрономии<!--]--><!--]--><!----></a>, <a href="/c/fizika-9be94c" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->физике<!--]--><!--]--><!----></a>, во многих задачах <a href="/c/obshchaia-khimiia-60bfda" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->химии,<!--]--><!--]--><!----></a> <a href="/c/biologiia-ef3532" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->биологии<!--]--><!--]--><!----></a>. Это объясняется тем, что весьма часто объективные законы, которым подчиняются те или иные явления (процессы), записываются в форме обыкновенных дифференциальных уравнений, а сами эти уравнения, таким образом, являются средством для количественного выражения этих законов. Например, законы механики Ньютона позволяют механическую задачу описания движения системы материальных точек или твёрдого тела свести к математической задаче нахождения решений обыкновенных дифференциальных уравнений. Расчёт радиотехнических схем и вычисление траекторий спутников, исследование устойчивости самолёта в полёте и выяснение течения химических реакций – всё это производится путём изучения и решения обыкновенных дифференциальных уравнений. Наиболее важные и интересные технические приложения обыкновенные дифференциальные уравнения находят в <a href="/c/kolebaniia-ef7a5d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->теории колебаний<!--]--><!--]--><!----></a> и в <a href="/c/avtomaticheskoe-upravlenie-d3350d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->теории автоматического управления<!--]--><!--]--><!----></a>. В свою очередь, прикладные вопросы служат источником новых постановок задач в теории обыкновенных дифференциальных уравнений; именно так возникла, например, <a href="/c/optimal-noe-upravlenie-v-matematike-5f9a4a" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->математическая теория оптимального управления<!--]--><!--]--><!----></a>.</p><p>В дальнейшем независимое переменное будет обозначаться через <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi></mrow><annotation encoding="application/x-tex">t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6151em;"></span><span class="mord mathnormal">t</span></span></span></span></span><!----></span>, неизвестные функции – через <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mi>z</mi></mrow><annotation encoding="application/x-tex">x, y, z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span></span></span></span></span><!----></span> и другие, а производные этих функций по <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi></mrow><annotation encoding="application/x-tex"> t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6151em;"></span><span class="mord mathnormal">t</span></span></span></span></span><!----></span> – через <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>x</mi><mo>˙</mo></mover><mo separator="true">,</mo><mover accent="true"><mi>x</mi><mo>¨</mo></mover><mo separator="true">,</mo><mo>…</mo><msup><mi>x</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding="application/x-tex">\dot{x}, \ddot{x}, \ldots x^{(n)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0824em;vertical-align:-0.1944em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">x</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">˙</span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">x</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2222em;"><span class="mord">¨</span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.888em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span></span></span></span></span><!----></span> и т. д.</p><p>Простейшее обыкновенное дифференциальное уравнение встречается уже в анализе: нахождение первообразной для данной непрерывной функции <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span><!----></span> является по существу задачей об определении такой неизвестной функции <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x=x(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span><!----></span>, которая удовлетворяет уравнению</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><mover accent="true"><mi>x</mi><mo>˙</mo></mover><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(1)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">\dot x=f(t).\tag{1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6679em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">x</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">˙</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord">.</span></span><span class="tag"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">1</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>Для доказательства разрешимости этого уравнения необходимо было построить специальный аппарат – теорию <a href="/c/integral-rimana-0f6905" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->интеграла Римана<!--]--><!--]--><!----></a>.</p><p>Естественным обобщением уравнения (1) является обыкновенное дифференциальное уравнение первого порядка, разрешённое относительно производной:</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><mover accent="true"><mi>x</mi><mo>˙</mo></mover><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">)</mo><mo separator="true">,</mo></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(2)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">\dot{x}=f(t, x),\tag{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6679em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">x</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">˙</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mpunct">,</span></span><span class="tag"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">2</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>где <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(t,x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span><!----></span> – известная функция, определённая в некоторой области <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span></span></span><!----></span> плоскости <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi><mo separator="true">,</mo><mi>x</mi></mrow><annotation encoding="application/x-tex">t,x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8095em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span></span></span></span></span><!----></span>. Многие практические задачи сводятся к задаче решения (или, как часто говорят, интегрирования) этого уравнения. Решением обыкновенного дифференциального уравнения (2) называется функция <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x=x(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span><!----></span>, определённая и дифференцируемая на некотором интервале <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span></span><!----></span> и удовлетворяющая условиям:</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="center" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>∈</mo><mi>D</mi><mo separator="true">,</mo><mspace width="1em"/><mi>t</mi><mo>∈</mo><mi>I</mi><mo separator="true">,</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mover accent="true"><mi>x</mi><mo>˙</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo separator="true">,</mo><mspace width="1em"/><mi>t</mi><mo>∈</mo><mi>I</mi><mi mathvariant="normal">.</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{gathered} (t, x(t)) \in D, \quad t \in I, \\ \dot{x}(t)=f(t, x(t)), \quad t \in I . \end{gathered}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3em;vertical-align:-1.25em;"></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.75em;"><span style="top:-3.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">))</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mpunct">,</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">x</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">˙</span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">))</span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mord">.</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.25em;"><span></span></span></span></span></span></span></span></span></span></span></span></span><!----></span>Решение обыкновенного дифференциального уравнения (2) геометрически можно изобразить на плоскости <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi><mo separator="true">,</mo><mi>x</mi></mrow><annotation encoding="application/x-tex">t,x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8095em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span></span></span></span></span><!----></span> в виде кривой с уравнением <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x=x(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">t\in I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6542em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span></span><!----></span>. Эта кривая называется <a href="/c/integral-naia-krivaia-bc5cd3" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->интегральной кривой<!--]--><!--]--><!----></a>, в каждой своей точке она имеет касательную и целиком лежит в области <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span></span></span><!----></span>. Геометрическую интерпретацию самого уравнения (2) даёт поле направлений в области <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span></span></span><!----></span>, которое получается, если через каждую точку <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>D</mi></mrow><annotation encoding="application/x-tex">(t,x)\in D</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span></span></span><!----></span> провести отрезок <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>l</mi><mrow><mi>t</mi><mo separator="true">,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding="application/x-tex">l_{t,x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9805em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2806em;"><span style="top:-2.55em;margin-left:-0.0197em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">t</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight">x</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> малой длины с угловым коэффициентом <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(t,x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span><!----></span>. Любая интегральная кривая <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x=x(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span><!----></span> в каждой своей точке <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(t,x(t))</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">))</span></span></span></span></span><!----></span> касается отрезка <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>l</mi><mrow><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex"> l_{t,x(t)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0496em;vertical-align:-0.3552em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.5198em;margin-left:-0.0197em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">t</span><span class="mpunct mtight">,</span><span class="mord mathnormal mtight">x</span><span class="mopen mtight">(</span><span class="mord mathnormal mtight">t</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.3552em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>.</p><p>Ответ на вопрос о том, когда уравнение (2) имеет решение, даёт теорема существования: если <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>C</mi><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(t,x)\in C(D)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mclose">)</span></span></span></span></span><!----></span> (т. е. непрерывна в <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span></span></span><!----></span>), то через любую точку <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mo fence="true">(</mo><msub><mi>t</mi><mn>0</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow><mo>∈</mo><mi>D</mi></mrow><annotation encoding="application/x-tex">\left(t_{0},x_{0}\right)\in D</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span></span></span><!----></span> проходит по крайней мере одна непрерывно дифференцируемая интегральная кривая уравнения (2), и каждая из этих кривых может быть продолжена в обе стороны вплоть до границы любой замкнутой подобласти, целиком лежащей в <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span></span></span><!----></span> и содержащей точку <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo fence="true">(</mo><msub><mi>t</mi><mn>0</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow><annotation encoding="application/x-tex">\left(t_{0},x_{0}\right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span><!----></span>. Другими словами, для всякой точки <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mo fence="true">(</mo><msub><mi>l</mi><mn>0</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow><mo>∈</mo><mi>D</mi></mrow><annotation encoding="application/x-tex">\left(l_{0},x_{0}\right)\in D</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0197em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span></span></span><!----></span> найдётся хотя бы одно непродолжаемое решение <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x=x(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">t\in I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6542em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span></span><!----></span>, такое, что <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>∈</mo><msup><mi>C</mi><mn>1</mn></msup><mo stretchy="false">(</mo><mi>I</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x(t)\in C^{1}(I)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mclose">)</span></span></span></span></span><!----></span> (т. е. непрерывна в <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span></span><!----></span> вместе с производной <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>x</mi><mo>˙</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\dot{x}(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">x</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">˙</span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span><!----></span>), </p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><mi>x</mi><mrow><mo fence="true">(</mo><msub><mi>t</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow><mo>=</mo><msub><mi>x</mi><mn>0</mn></msub></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(3)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">x\left(t_{0}\right)=x_{0}\tag{3}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">3</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>и <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span><!----></span> стремится к границе области <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span></span></span><!----></span>, когда <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi></mrow><annotation encoding="application/x-tex">t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6151em;"></span><span class="mord mathnormal">t</span></span></span></span></span><!----></span> стремится к правому или левому концам интервала <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span></span><!----></span>.</p><p>Важнейшим теоретическим вопросом является выяснение того, какие предположения о правой части обыкновенного дифференциального уравнения надо сделать и какие дополнительные условия можно присоединить к уравнению, чтобы выделить одно-единственное его решение. Справедлива следующая теорема существования и единственности: если <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>C</mi><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(t,x)\in C(D)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mclose">)</span></span></span></span></span><!----></span> и удовлетворяет в <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span></span></span><!----></span> <a href="/c/uslovie-lipshitsa-ecc8ec" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->условию Липшица<!--]--><!--]--><!----></a> по <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span></span><!----></span>, a <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mo fence="true">(</mo><msub><mi>t</mi><mn>0</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow><mo>∈</mo><mi>D</mi></mrow><annotation encoding="application/x-tex">\left(t_{0},x_{0}\right)\in D</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span></span></span><!----></span>, то уравнение (2) имеет единственное непродолжаемое решение, удовлетворяющее условию (3). В частности, если два решения <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><msub><mi>x</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x=x_{1}(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi><mo>∈</mo><msub><mi>I</mi><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">t\in I_{1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6542em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, и <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><msub><mi>x</mi><mn>2</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x=x_{2}(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi><mo>∈</mo><msub><mi>I</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">t \in I_{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6542em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, такого уравнения (2) совпадают хотя бы для одного значения <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi><mo>=</mo><msub><mi>t</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">t=t_{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6151em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7651em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, т. е. <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mn>1</mn></msub><mrow><mo fence="true">(</mo><msub><mi>t</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow><mo>=</mo><msub><mi>x</mi><mn>2</mn></msub><mrow><mo fence="true">(</mo><msub><mi>t</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">x_{1}\left(t_{0}\right)=x_{2}\left(t_{0}\right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span><!----></span>, то</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>x</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>x</mi><mn>2</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo separator="true">,</mo><mspace width="1em"/><mi>t</mi><mo>∈</mo><msub><mi>I</mi><mn>1</mn></msub><mo>∩</mo><msub><mi>I</mi><mn>2</mn></msub><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">x_{1}(t)=x_{2}(t),\quad t \in I_{1} \cap I_{2}.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">.</span></span></span></span></span></span><!----></span>Геометрическое содержание этой теоремы заключается в том, что вся область <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span></span></span></span></span><!----></span> покрыта интегральными кривыми уравнения (2), которые нигде не пересекаются между собой. Единственность решений имеет место и при некоторых более слабых предположениях относительно функции <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(t,x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span><!----></span>.</p><p>Соотношение (3) называется начальным условием. Числа <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>t</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">t_{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7651em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> и <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">x_{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> называются начальными значениями для решения уравнения (2), а точка<span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo fence="true">(</mo><msub><mi>t</mi><mn>0</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow><annotation encoding="application/x-tex"> \left(t_{0},x_{0}\right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span><!----></span> – начальной точкой соответствующей интегральной кривой. Задача отыскания решения этого уравнения, удовлетворяющего начальному условию (3) (или, как ещё говорят, имеющего начальные значения <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>t</mi><mn>0</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex"> t_{0},x_{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8095em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>), называется <a href="/c/zadacha-koshi-fac96b" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->задачей Коши<!--]--><!--]--><!----></a>, теорема даёт достаточные условия однозначной разрешимости задачи Коши (2), (3).</p><p>Часто прикладные вопросы приводят к системам обыкновенных дифференциальных уравнений, в которые входят несколько неизвестных функций от одного и того же независимого переменного и их производные. Естественным обобщением уравнения (2) является нормальная форма системы дифференциальных уравнений <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span></span><!----></span>-го порядка:</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><msup><mover accent="true"><mi>x</mi><mo>˙</mo></mover><mi>i</mi></msup><mo>=</mo><msup><mi>f</mi><mi>i</mi></msup><mrow><mo fence="true">(</mo><mi>t</mi><mo separator="true">,</mo><msup><mi>x</mi><mn>1</mn></msup><mo separator="true">,</mo><msup><mi>x</mi><mn>2</mn></msup><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msup><mi>x</mi><mi>n</mi></msup><mo fence="true">)</mo></mrow><mo separator="true">,</mo><mspace width="1em"/><mi>i</mi><mo>=</mo><mn>1</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mi>n</mi><mo separator="true">,</mo></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(4)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">\dot{x}^{i}=f^{i}\left(t, x^{1}, x^{2}, \ldots, x^{n}\right), \quad i=1, \ldots, n,\tag{4}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8747em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">x</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.2247em;vertical-align:-0.35em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8747em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">(</span></span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7144em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">n</span><span class="mpunct">,</span></span><span class="tag"><span class="strut" style="height:1.2247em;vertical-align:-0.35em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">4</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>где <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mn>1</mn></msup><mo separator="true">,</mo><msup><mi>x</mi><mn>2</mn></msup><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msup><mi>x</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">x^{1}, x^{2}, \ldots, x^{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><!----></span> – неизвестные функции от переменного <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi></mrow><annotation encoding="application/x-tex">t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6151em;"></span><span class="mord mathnormal">t</span></span></span></span></span><!----></span>, a <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>f</mi><mi>i</mi></msup></mrow><annotation encoding="application/x-tex">f^{i}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0191em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8247em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span></span></span></span></span></span></span></span></span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">i=1,2, \ldots, n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6595em;"></span><span class="mord mathnormal">i</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">n</span></span></span></span></span><!----></span>, суть заданные функции от <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n+1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span><!----></span> переменных. Полагая</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="center" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>x</mi><mo>=</mo><mrow><mo fence="true">(</mo><msup><mi>x</mi><mn>1</mn></msup><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msup><mi>x</mi><mi>n</mi></msup><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo fence="true">(</mo><msup><mi>f</mi><mn>1</mn></msup><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">)</mo><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msup><mi>f</mi><mi>n</mi></msup><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">)</mo><mo fence="true">)</mo></mrow><mo separator="true">,</mo></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{gathered} x=\left(x^{1}, \ldots, x^{n}\right) \\ f(t, x)=\left(f^{1}(t, x), \ldots, f^{n}(t, x)\right), \end{gathered}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.0482em;vertical-align:-1.2741em;"></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.7741em;"><span style="top:-3.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7144em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">)</span></span></span></span></span><span style="top:-2.3859em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7144em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.2741em;"><span></span></span></span></span></span></span></span></span></span></span></span></span><!----></span>можно переписать систему (4) в векторной форме:</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><mover accent="true"><mi>x</mi><mo>˙</mo></mover><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(5)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">\dot{x} =f(t, x).\tag{5}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6679em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">x</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">˙</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mord">.</span></span><span class="tag"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">5</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>Решением системы (4) или векторного уравнения (5) является вектор-функция</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><mi>x</mi><mo>=</mo><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo fence="true">(</mo><msup><mi>x</mi><mn>1</mn></msup><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msup><mi>x</mi><mi>n</mi></msup><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo fence="true">)</mo></mrow><mo separator="true">,</mo><mspace width="2em"/><mi>t</mi><mo>∈</mo><mi>I</mi><mi mathvariant="normal">.</mi></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(6)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">x=x(t)=\left(x^{1}(t),\ldots,x^{n}(t)\right),\qquad t \in I.\tag{6}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.2141em;vertical-align:-0.35em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7144em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:2em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mord">.</span></span><span class="tag"><span class="strut" style="height:1.2141em;vertical-align:-0.35em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">6</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>Каждое решение можно представлять себе в <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n+1)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mclose">)</span></span></span></span></span><!----></span>-мерном пространстве <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi><mo separator="true">,</mo><msup><mi>x</mi><mn>1</mn></msup><mo separator="true">,</mo><msup><mi>x</mi><mn>2</mn></msup><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msup><mi>x</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">t,x^{1},x^{2},\ldots,x^{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><!----></span> в виде интегральной кривой – графика вектор-функции (6).</p><p>Задача Коши для уравнения (5) состоит в отыскании решения, удовлетворяющего начальным условиям</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>x</mi><mn>1</mn></msup><mrow><mo fence="true">(</mo><msub><mi>t</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow><mo>=</mo><msubsup><mi>x</mi><mn>0</mn><mn>1</mn></msubsup><mo separator="true">,</mo><mspace width="1em"/><mo>…</mo><mo separator="true">,</mo><mspace width="1em"/><msup><mi>x</mi><mi>n</mi></msup><mrow><mo fence="true">(</mo><msub><mi>t</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow><mo>=</mo><msubsup><mi>x</mi><mn>0</mn><mi>n</mi></msubsup><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">x^{1}\left(t_{0}\right)=x_{0}^{1},\quad \ldots, \quad x^{n}\left(t_{0}\right)=x_{0}^{n},</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1141em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1141em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-2.453em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7144em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.9614em;vertical-align:-0.247em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7144em;"><span style="top:-2.453em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mpunct">,</span></span></span></span></span></span><!----></span>или</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><mi>x</mi><mrow><mo fence="true">(</mo><msub><mi>t</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow><mo>=</mo><msub><mi>x</mi><mn>0</mn></msub><mi mathvariant="normal">.</mi></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(7)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">x\left(t_{0}\right)=x_{0}.\tag{7}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">.</span></span><span class="tag"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">7</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>Решение задачи Коши (5), (7) удобно записывать в виде</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><mi>x</mi><mo>=</mo><mi>x</mi><mrow><mo fence="true">(</mo><mi>t</mi><mo separator="true">,</mo><msub><mi>t</mi><mn>0</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow><mo separator="true">,</mo><mspace width="1em"/><mi>t</mi><mo>∈</mo><mi>I</mi><mi mathvariant="normal">.</mi></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(8)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">x=x\left(t, t_{0}, x_{0}\right),\quad t \in I.\tag{8}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mord">.</span></span><span class="tag"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">8</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>Теорема существования и единственности для уравнения (5) формулируется так же, как и для уравнения (2).</p><p>Весьма общие системы обыкновенных дифференциальных уравнений (разрешённые относительно старших производных всех неизвестных функций) сводятся к нормальным системам. Важным частным классом систем (5) являются линейные системы обыкновенных дифференциальных уравнений <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span></span><!----></span>-<span class="background-color-white">го</span> порядка:</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi>x</mi><mo>˙</mo></mover><mo>=</mo><mi>A</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>x</mi><mo>+</mo><msup><mi>F</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">\dot{x}=A(t) x+F^{\prime}(t),</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6679em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">x</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">˙</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">A</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0519em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8019em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mpunct">,</span></span></span></span></span></span><!----></span>где <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">A(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">A</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span><!----></span> – матрица типа <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">n \times n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span></span><!----></span>.</p><p>Большое значение в приложениях и в теории обыкновенных дифференциальных уравнений имеют <a href="/c/avtonomnaia-sistema-obyknovennykh-differentsial-nykh-uravnenii-b6693d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->автономные системы обыкновенных дифференциальных уравнений<!--]--><!--]--><!----></a>:</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><mover accent="true"><mi>x</mi><mo>˙</mo></mover><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo separator="true">,</mo></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(9)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">\dot{x}=f(x),\tag{9}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6679em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">x</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">˙</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mpunct">,</span></span><span class="tag"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">9</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>т. е. нормальные системы, правая часть которых явно не зависит от переменного <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi></mrow><annotation encoding="application/x-tex">t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6151em;"></span><span class="mord mathnormal">t</span></span></span></span></span><!----></span>. В этом случае уравнение (6) удобно рассматривать как параметрическое представление кривой, сопоставляя решению фазовую траекторию в <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span></span><!----></span>-мерном фазовом пространстве <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mn>1</mn></msup><mo separator="true">,</mo><msup><mi>x</mi><mn>2</mn></msup><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msup><mi>x</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">x^{1}, x^{2}, \ldots, x^{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><!----></span>. Если <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x=x(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span><!----></span> есть решение системы (9), то ей удовлетворяет также функция <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo>+</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x=x(t+c)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">c</span><span class="mclose">)</span></span></span></span></span><!----></span>, где <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi></mrow><annotation encoding="application/x-tex">c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">c</span></span></span></span></span><!----></span> – произвольная постоянная.</p><p>Другим обобщением уравнения (2) является обыкновенное дифференциальное уравнение <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span></span><!----></span>-го порядка, разрешённое относительно старшей производной: <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><msup><mi>y</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></msup><mo>=</mo><mi>f</mi><mrow><mo fence="true">(</mo><mi>t</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mover accent="true"><mi>y</mi><mo>˙</mo></mover><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msup><mi>y</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msup><mo fence="true">)</mo></mrow><mi mathvariant="normal">.</mi></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(10)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">y^{(n)}=f\left(t, y,\dot{y}, \ldots, y^{(n-1)}\right).\tag{10}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1324em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.0833em;"><span class="mord">˙</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">.</span></span><span class="tag"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">10</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>Важный частный класс таких уравнений – линейные обыкновенные дифференциальные уравнения</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>y</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></msup><mo>+</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><msup><mi>y</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msup><mo>+</mo><mo>…</mo><mo>+</mo><msub><mi>a</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mover accent="true"><mi>y</mi><mo>˙</mo></mover><mo>+</mo><msub><mi>a</mi><mi>n</mi></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>y</mi><mo>=</mo><mi>F</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">y^{(n)}+a_{1}(t) y^{(n-1)}+\ldots+a_{n-1}(t) \dot{y}+a_{n}(t) y=F(t).</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1324em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.188em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2083em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.0833em;"><span class="mord">˙</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span></span><!----></span>Уравнение (10) сводится к нормальной системе <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span></span><!----></span>-<span class="background-color-white">го</span> порядка, если ввести новые неизвестные функции переменного <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi></mrow><annotation encoding="application/x-tex">t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6151em;"></span><span class="mord mathnormal">t</span></span></span></span></span><!----></span> по формулам<span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>x</mi><mn>1</mn></msup><mo>=</mo><mi>y</mi><mo separator="true">,</mo><mspace width="1em"/><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mover accent="true"><mi>y</mi><mo>˙</mo></mover><mo separator="true">,</mo><mspace width="1em"/><mo>…</mo><mo separator="true">,</mo><mspace width="1em"/><msup><mi>x</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><msup><mi>y</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo stretchy="false">)</mo></mrow></msup><mo separator="true">,</mo><mspace width="1em"/><msup><mi>x</mi><mi>n</mi></msup><mo>=</mo><msup><mi>y</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msup><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">x^{1}=y,\quad x^{2}=\dot{y},\quad \ldots, \quad x^{n-1}=y^{(n-2)},\quad x^{n}=y^{(n-1)}.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8641em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0585em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0585em;vertical-align:-0.1944em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.0833em;"><span class="mord">˙</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1324em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">2</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7144em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1324em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mord">.</span></span></span></span></span></span><!----></span>Если, например, уравнение (10) описывает динамику некоторого объекта и нужно исследовать движение этого объекта, начинающееся в определённый момент <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi><mo>=</mo><msub><mi>t</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">t=t_{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6151em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7651em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> из определённого начального состояния, то к уравнению (10) добавляются дополнительные условия: <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><mi>y</mi><mrow><mo fence="true">(</mo><msub><mi>t</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow><mo>=</mo><msub><mi>y</mi><mn>0</mn></msub><mo separator="true">,</mo><mspace width="1em"/><mover accent="true"><mi>y</mi><mo>˙</mo></mover><mrow><mo fence="true">(</mo><msub><mi>t</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow><mo>=</mo><mover accent="true"><msub><mi>y</mi><mn>0</mn></msub><mo>˙</mo></mover><mo separator="true">,</mo><mspace width="1em"/><mo>…</mo><mo separator="true">,</mo><msup><mi>y</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msup><mrow><mo fence="true">(</mo><msub><mi>t</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow><mo>=</mo><msubsup><mi>y</mi><mn>0</mn><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msubsup><mi mathvariant="normal">.</mi></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(11)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">y\left(t_{0}\right)=y_{0},\quad \dot{y}\left(t_{0}\right)=\dot{y_{0}},\quad \ldots, y^{(n-1)}\left(t_{0}\right)=y_{0}^{(n-1)}. \tag{11}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.0833em;"><span class="mord">˙</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.188em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1389em;"><span class="mord">˙</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.3111em;vertical-align:-0.2663em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0448em;"><span style="top:-2.4337em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span><span style="top:-3.2198em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2663em;"><span></span></span></span></span></span></span><span class="mord">.</span></span><span class="tag"><span class="strut" style="height:1.3111em;vertical-align:-0.2663em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">11</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>Задача отыскания такой <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span></span><!----></span> раз дифференцируемой функции <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi><mo>=</mo><mi>y</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">y=y(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">t \in I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6542em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span></span><!----></span>, которая обращает уравнение (10) в тождество при всех <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi><mo>∈</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">t\in I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6542em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span></span><!----></span> и удовлетворяет начальным условиям (11), называется задачей Коши.</p><p>Теорема существования и единственности: если <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>f</mi><mrow><mo fence="true">(</mo><mi>t</mi><mo separator="true">,</mo><msub><mi>u</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>u</mi><mn>2</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>u</mi><mi>n</mi></msub><mo fence="true">)</mo></mrow><mo>∈</mo><mi>C</mi><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f\left(t, u_{1}, u_{2}, \ldots, u_{n}\right) \in C(D) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mclose">)</span></span></span></span></span></span><!----></span>и удовлетворяет условию Липшица по <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>u</mi><mn>2</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>u</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">u_{1}, u_{2}, \ldots, u_{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, а <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mrow><mo fence="true">(</mo><msub><mi>t</mi><mn>0</mn></msub><mo separator="true">,</mo><msub><mi>y</mi><mn>0</mn></msub><mo separator="true">,</mo><msub><mover accent="true"><mi>y</mi><mo>˙</mo></mover><mn>0</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msubsup><mi>y</mi><mn>0</mn><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msubsup><mo fence="true">)</mo></mrow><mo>∈</mo><mi>D</mi><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">\left(t_{0}, y_{0}, \dot{y}_{0}, \ldots, y_{0}^{(n-1)}\right) \in D,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.0833em;"><span class="mord">˙</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0448em;"><span style="top:-2.4337em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span><span style="top:-3.2198em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2663em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mpunct">,</span></span></span></span></span></span><!----></span>то задача Коши (10), (11) имеет единственное решение.</p><p>Задача Коши далеко не исчерпывает тех задач, которые изучаются для уравнений (10) высших порядков [как и систем (5)]. Конкретные физические и технические проблемы часто приводят не к начальным условиям, а к дополнительным условиям иного вида (так называемым <a href="/c/kraevye-zadachi-b47211" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->краевым условиям<!--]--><!--]--><!----></a>), когда значения искомой функции <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">y(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span><!----></span> и её производных (или соотношения между ними) задаются для нескольких различных значений независимого переменного. Например, в <a href="/c/brakhistokhrona-d99ef6" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->задаче о брахистохроне<!--]--><!--]--><!----></a> требуется проинтегрировать уравнение <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mn>2</mn><mi>y</mi><mover accent="true"><mi>y</mi><mo>¨</mo></mover><mo>+</mo><msup><mover accent="true"><mi>y</mi><mo>˙</mo></mover><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">2 y \ddot{y}+\dot{y}^{2}+1=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8623em;vertical-align:-0.1944em;"></span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1944em;"><span class="mord">¨</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0585em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.0833em;"><span class="mord">˙</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span></span><!----></span>при краевых условиях <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">y(a)=A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi><mo stretchy="false">(</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">y(b)=B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mopen">(</span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span><!----></span>; отыскание <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mi>π</mi></mrow><annotation encoding="application/x-tex">2\pi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span></span></span></span></span><!----></span>-периодического решения <a href="/c/uravnenie-duffinga-e48f3c" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->уравнения Дуффинга<!--]--><!--]--><!----></a> сводится к выделению такого его решения, которое удовлетворяет условиям периодичности: <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mi>y</mi><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">y(0)=y(2 \pi)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mopen">(</span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mclose">)</span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>y</mi><mo>˙</mo></mover><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mover accent="true"><mi>y</mi><mo>˙</mo></mover><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\dot{y}(0)=\dot{y}(2 \pi)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.0833em;"><span class="mord">˙</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.0833em;"><span class="mord">˙</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mclose">)</span></span></span></span></span><!----></span>; при изучении обтекания пластинки ламинарным потоком встречается задача: <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mi>y</mi><mrow><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">)</mo></mrow></msup><mo>+</mo><mi>y</mi><mover accent="true"><mi>y</mi><mo>¨</mo></mover><mo>=</mo><mn>0</mn><mo separator="true">,</mo><mspace width="1em"/><mi>y</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mover accent="true"><mi>y</mi><mo>˙</mo></mover><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn><mo separator="true">,</mo><mspace width="1em"/><mover accent="true"><mi>y</mi><mo>˙</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>→</mo><mn>2</mn><mspace width="1em"/><mtext>при</mtext><mspace width="1em"/><mi>t</mi><mo>→</mo><mi mathvariant="normal">∞</mi><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">y^{(3)}+y\ddot{y}=0, \quad y(0)=\dot{y}(0)=0,\quad \dot{y}(t) \rightarrow 2\quad \text {при}\quad t \rightarrow \infty .</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1324em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mtight">3</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8623em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1944em;"><span class="mord">¨</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mopen">(</span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.0833em;"><span class="mord">˙</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.0833em;"><span class="mord">˙</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord cyrillic_fallback">при</span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord">∞.</span></span></span></span></span></span><!----></span>Задача отыскания для обыкновенного дифференциального уравнения высшего порядка или системы обыкновенных дифференциальных уравнений решения, удовлетворяющего условиям, отличным от начальных условий (11), называется <a href="/c/kraevye-zadachi-b47211" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->краевой задачей<!--]--><!--]--><!----></a>. Теоретический анализ существования и единственности решения краевой задачи имеет существенное значение для прикладной проблемы, приводящей к этой краевой задаче, поскольку он показывает взаимную согласованность допущений, принятых при математическом описании проблемы, и известную полноту этого описания. Одной из важных краевых задач является <a href="/c/zadacha-shturma-liuvillia-cde48a" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->задача Штурма<!--]--><!--]--><!----></a> – <a href="/c/zadacha-shturma-liuvillia-cde48a" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Лиувилля<!--]--><!--]--><!----></a>. Краевые задачи для линейных уравнений и систем тесно связаны с задачами о <a href="/c/zadacha-na-sobstvennye-znacheniia-d348ff" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->собственных значениях<!--]--><!--]--><!----></a> и <a href="/c/sobstvennaia-funktsiia-1af694" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->собственных функциях<!--]--><!--]--><!----></a>, а также со <a href="/c/spektr-operatora-55c2b3" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->спектральным анализом обыкновенных дифференциальных операторов<!--]--><!--]--><!----></a>.</p><p>Главной задачей теории обыкновенных дифференциальных уравнений является изучение решений таких уравнений. Однако вопрос о том, что значит изучить решения обыкновенного дифференциального уравнения, в разное время понимали по-разному. Первоначально стремились осуществить интегрирование уравнений в квадратурах, т. е. получить замкнутую формулу, дающую (в явной, неявной или параметрической форме) выражение зависимости того или иного решения от <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi></mrow><annotation encoding="application/x-tex">t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6151em;"></span><span class="mord mathnormal">t</span></span></span></span></span><!----></span> через элементарные функции и интегралы от них. Такие формулы, если они найдены, оказывают существенную помощь в вычислениях и при исследовании свойств решений. Особый интерес представляет описание всей совокупности решений данного уравнения. При весьма общих предположениях уравнению (5) удовлетворяет семейство вектор-функций, зависящее от <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span></span><!----></span> произвольных независимых параметров. Если уравнение этого семейства имеет вид</p><p><span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>x</mi><mo>=</mo><mi>φ</mi><mrow><mo fence="true">(</mo><mi>t</mi><mo separator="true">,</mo><msub><mi>c</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>c</mi><mn>2</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>c</mi><mi>n</mi></msub><mo fence="true">)</mo></mrow><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">x=\varphi\left(t, c_{1}, c_{2}, \ldots, c_{n}\right),</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">φ</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span></span></span></span></span></span><!----></span>то функция <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>φ</mi></mrow><annotation encoding="application/x-tex"> \varphi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">φ</span></span></span></span></span><!----></span> называется общим решением уравнения (5).</p><p>Однако в середине 19 в. были указаны первые примеры обыкновенных дифференциальных уравнений, которые нельзя проинтегрировать в квадратурах. Оказалось, что решение в замкнутой форме удаётся найти лишь для небольшого числа классов уравнений (см., например, <a href="/c/uravnenie-bernulli-v-matematike-be59b8" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->уравнение Бернулли<!--]--><!--]--><!----></a>, <a href="/c/differentsial-noe-uravnenie-v-polnykh-differentsialakh-3dc3d8" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Дифференциальное уравнение в полных дифференциалах<!--]--><!--]--><!----></a>, <a href="/c/lineinoe-differentsial-noe-uravnenie-s-postoiannymi-koeffitsientami-112088" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->Линейное дифференциальное уравнение с постоянными коэффициентами<!--]--><!--]--><!----></a>). Не выражающиеся в квадратурах решения отдельных, наиболее важных и часто встречающихся уравнений (например, <a href="/c/uravnenie-besselia-864fee" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->уравнение Бесселя<!--]--><!--]--><!----></a>) стали изучать подробно, ввели для них специальные обозначения, исследовали их свойства и составили таблицы значений. Так появились многие <a href="/c/spetsial-nye-funktsii-6983ac" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->специальные функции<!--]--><!--]--><!----></a>.</p><p>В связи с потребностями практики постоянно разрабатывались и способы приближённого интегрирования обыкновенных дифференциальных уравнений, например <a href="/c/metod-posledovatel-nykh-priblizhenii-beeb45" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->метод последовательных приближений<!--]--><!--]--><!----></a>, <a href="/c/metod-adamsa-7e7b94" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->метод Адамса<!--]--><!--]--><!----></a> и др. Были предложены также разнообразные приёмы графического и механического интегрирования этих уравнений. Математика располагает богатым набором численных методов решения многих задач для обыкновенных дифференциальных уравнений. Эти методы представляют собой удобные алгоритмы вычислений с эффективными оценками точности, а современная вычислительная техника даёт возможность экономно и быстро довести решение каждой такой задачи до числового результата.</p><p>Однако численные методы для конкретного уравнения дают лишь конечное число частных решений на конечном отрезке изменения независимого переменного. Они не могут ответить на вопросы о том, каково асимптотическое поведение решений, есть ли у данного уравнения периодическое решение, имеет ли это уравнение <a href="/c/kolebliushcheesia-reshenie-8e51ca" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->колеблющееся решение<!--]--><!--]--><!----></a>. Между тем во многих прикладных задачах важно установить характер решения на бесконечном промежутке изменения независимого переменного, изучить полную картину интегральных кривых. В связи с этим центр тяжести в теории обыкновенных дифференциальных уравнений был перенесён на исследование общих закономерностей поведения решений обыкновенных дифференциальных уравнений, разработку методов, которые позволяли бы получать представление о глобальных свойствах решений по самому дифференциальному уравнению, без его интегрирования.</p><p>Всё это составило предмет <a href="/c/kachestvennaia-teoriia-differentsial-nykh-uravnenii-b44e9b" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->качественной теории дифференциальных уравнений<!--]--><!--]--><!----></a>, возникшей в конце 19 в. и интенсивно развивающейся.</p><p>Принципиальное значение имеет выяснение того, является ли задача Коши для обыкновенного дифференциального уравнения корректно поставленной задачей. Поскольку в конкретных задачах начальные значения не могут быть указаны абсолютно точно, то важно выяснить, когда малые изменения начальных значений влекут за собой также малые изменения решений. Справедлива теорема о непрерывной зависимости решений от начальных значений: пусть (8) есть решение уравнения (5), где <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>C</mi><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(t,x)\in C(D)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.02778em;">D</span><span class="mclose">)</span></span></span></span></span><!----></span> и удовлетворяет условию Липшица по <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span></span><!----></span>; тогда для любого <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ε</mi><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\varepsilon&gt;0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">ε</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">&gt;</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span><!----></span> и любого замкнутого <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>J</mi><mo>⊆</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">J\subseteq I</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8193em;vertical-align:-0.136em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>∈</mo><mi>J</mi></mrow><annotation encoding="application/x-tex">t_{0}\in J</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7651em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span></span></span></span></span><!----></span>, найдётся такое <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>δ</mi><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\delta&gt;0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">&gt;</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span><!----></span>, что решение <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mrow><mo fence="true">(</mo><mi>t</mi><mo separator="true">,</mo><msub><mi>t</mi><mn>0</mn></msub><mo separator="true">,</mo><msubsup><mi>x</mi><mn>0</mn><mo lspace="0em" rspace="0em">∗</mo></msubsup><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">x\left(t,t_{0},x_{0}^{*}\right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6887em;"><span style="top:-2.4519em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∗</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2481em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span><!----></span> этого уравнения, где <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mo fence="true">∣</mo><msubsup><mi>x</mi><mn>0</mn><mo lspace="0em" rspace="0em">∗</mo></msubsup><mo>−</mo><msub><mi>x</mi><mn>0</mn></msub><mo fence="true">∣</mo></mrow><mo>&lt;</mo><mi>δ</mi></mrow><annotation encoding="application/x-tex">\left|x_{0}^{*}-x_{0}\right|&lt;\delta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">∣</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6887em;"><span style="top:-2.4519em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∗</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.2481em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">∣</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">&lt;</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03785em;">δ</span></span></span></span></span><!----></span>, определено на <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>J</mi></mrow><annotation encoding="application/x-tex">J</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span></span></span></span></span><!----></span> и при всех<span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi><mo>∈</mo><mi>J</mi></mrow><annotation encoding="application/x-tex"> t\in J</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6542em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span></span></span></span></span><!----></span> <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><mrow><mo fence="true">∣</mo><mi>x</mi><mrow><mo fence="true">(</mo><mi>t</mi><mo separator="true">,</mo><msub><mi>t</mi><mn>0</mn></msub><mo separator="true">,</mo><msubsup><mi>x</mi><mn>0</mn><mo lspace="0em" rspace="0em">∗</mo></msubsup><mo fence="true">)</mo></mrow><mo>−</mo><mi>x</mi><mrow><mo fence="true">(</mo><mi>t</mi><mo separator="true">,</mo><msub><mi>t</mi><mn>0</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow><mo fence="true">∣</mo></mrow><mo>&lt;</mo><mi>ε</mi><mi mathvariant="normal">.</mi></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(12)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">\left|x\left(t,t_{0},x_{0}^{*}\right) -x\left(t,t_{0},x_{0}\right)\right|&lt;\varepsilon.\tag{12}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">∣</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7387em;"><span style="top:-2.453em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∗</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span><span class="mclose delimcenter" style="top:0em;">∣</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">&lt;</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">ε</span><span class="mord">.</span></span><span class="tag"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">12</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>Другими словами, если задаться определённым замкнутым отрезком изменения независимого переменного, то при достаточно малом изменении начальных значений решение мало изменится на всём выбранном промежутке. Этот результат может быть обобщён в сторону получения условий, обеспечивающих дифференцируемость решений обыкновенного дифференциального уравнения по начальным значениям.</p><p>Однако сформулированная теорема не исчерпывает актуальную для приложений проблему, поскольку в ней речь идёт лишь о замкнутом отрезке изменения независимого переменного. Между тем часто (например, в теории управления движением) рассматривается решение задачи Коши (5), (7), определённое при всех <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi><mo>≥</mo><msub><mi>t</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex"> t\geq t_0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7651em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, и необходимо выяснить устойчивость этого решения по отношению к малым возмущениям начальных значений на всём бесконечном промежутке <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi><mo>≥</mo><msub><mi>t</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">t\geq t_0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7651em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, т. е. получить условия, обеспечивающие справедливость неравенства (12) при всех <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi><mo>≥</mo><msub><mi>t</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">t\geq t_0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7651em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>. Именно к этой задаче сводится исследование устойчивости положения равновесия или стационарного режима конкретной системы. Решение, мало изменяющееся на бесконечном промежутке <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><msub><mi>t</mi><mn>0</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">∞</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">[t_0,\infty)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">∞</span><span class="mclose">)</span></span></span></span></span><!----></span> при достаточно малых отклонениях начальных значений, называется <a href="/c/ustoichivost-po-liapunovu-cd2f60" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->устойчивым по Ляпунову<!--]--><!--]--><!----></a>.</p><p>При выводе обыкновенного дифференциального уравнения, описывающего реальный процесс, всегда приходится чем-то пренебрегать, что-то идеализировать. Иначе говоря, обыкновенные дифференциальные уравнения описывают процесс приближённо. Например, изучение работы лампового генератора приводит к <a href="/c/uravnenie-van-der-polia-80e0cb" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->уравнению Ван дер Поля<!--]--><!--]--><!----></a> при некоторых предположениях, которые не вполне точно соответствуют действительному положению вещей. Далее, на ход процесса часто оказывают влияние возмущающие факторы, учесть которые при составлении уравнений практически невозможно; известно лишь, что их влияние «мало». Поэтому важно выяснить, как меняется решение при малых изменениях самой системы уравнений, т. е. при переходе от уравнения (5) к возмущённому уравнению <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi>x</mi><mo>˙</mo></mover><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi mathvariant="bold-italic">R</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">)</mo><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">\dot{x}=f(t,x)+\boldsymbol{R}(t,x),</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6679em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">x</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">˙</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.00421em;">R</span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mpunct">,</span></span></span></span></span></span><!----></span>учитывающему малые поправочные члены. Оказывается, что на замкнутом отрезке изменения независимого переменного (при тех же предположениях, что и в теореме o непрерывной зависимости решений от начальных значений) решение мало меняется, если возмущение<span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">R</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> \boldsymbol{R}(t, x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol" style="margin-right:0.00421em;">R</span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span><!----></span> достаточно мало. Если это свойство имеет место на бесконечном промежутке <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi><mo>⩾</mo><msub><mi>t</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">t \geqslant t_{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7733em;vertical-align:-0.1367em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">⩾</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7651em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, то решение называется устойчивым при постоянно действующих возмущениях. </p><p>Исследование устойчивости по Ляпунову, устойчивости при постоянно действующих возмущениях и их модификаций составляют предмет важнейшего раздела качественной теории – <a href="/c/ustoichivost-dvizheniia-1687f7" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->теории устойчивости<!--]--><!--]--><!----></a>. Для практики в первую очередь представляют интерес такие системы обыкновенных дифференциальных уравнений, решения которых мало изменяются при всех малых изменениях этих уравнений; такие системы называется <a href="/c/grubaia-sistema-06267c" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->грубыми системами<!--]--><!--]--><!----></a>.</p><p>Другой важной задачей качественной теории является получение схемы поведения семейства решений во всей области определения уравнения. Применительно к автономной системе (9) речь идёт о построении фазовой картины, т. е. о качественном описании в целом всей совокупности фазовых траекторий в фазовом пространстве. Такая геометрическая картина даёт полное представление о характере всех движений, которые могут происходить в рассматриваемой системе. Для этого существенно прежде всего выяснить поведение траекторий в окрестности положений равновесия, отыскать <a href="/c/separatrisa-e6770b" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->сепаратрисы<!--]--><!--]--><!----></a> и <a href="/c/predel-nyi-tsikl-sistemy-differentsial-nykh-uravnenii-536c8b" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->предельные циклы<!--]--><!--]--><!----></a>. Особо актуальной задачей является нахождение устойчивых предельных циклов, ибо им соответствуют <a href="/c/avtokolebaniia-e3a99d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->автоколебания<!--]--><!--]--><!----></a> в реальных системах.</p><p>Любой реальный объект характеризуется различными параметрами, которые часто входят в виде некоторых величин <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mo fence="true">(</mo><msup><mi>ε</mi><mn>1</mn></msup><mo separator="true">,</mo><msup><mi>ε</mi><mn>2</mn></msup><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msup><mi>ε</mi><mi>k</mi></msup><mo fence="true">)</mo></mrow><mo>=</mo><mi>ε</mi></mrow><annotation encoding="application/x-tex">\left(\varepsilon^{1}, \varepsilon^{2}, \ldots, \varepsilon^{k}\right)=\varepsilon</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2em;vertical-align:-0.35em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mord mathnormal">ε</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">ε</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">ε</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">)</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">ε</span></span></span></span></span><!----></span> в правую часть системы обыкновенных дифференциальных уравнений, описывающей поведение объекта: <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><mover accent="true"><mi>x</mi><mo>˙</mo></mover><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo separator="true">,</mo><mi>ε</mi><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(13)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">\dot{x}=f(t, x, \varepsilon).\tag{13} </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6679em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">x</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">˙</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">ε</span><span class="mclose">)</span><span class="mord">.</span></span><span class="tag"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">13</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>Значения этих параметров не могут быть известны абсолютно точно, и потому важно выяснить условия, обеспечивающие устойчивость решений уравнения (13) по отношению к малым возмущениям параметра <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ε</mi></mrow><annotation encoding="application/x-tex"> \varepsilon</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">ε</span></span></span></span></span><!----></span>. Если задаться определённым замкнутым отрезком изменения независимого переменного, то при естественных предположениях о правой части уравнения (13) имеет место непрерывная (и даже дифференцируемая) зависимость решений от параметров.</p><p>Выяснение зависимости решений от параметра имеет прямое отношение к вопросу о том, насколько хороша идеализация, приводящая к математической модели поведения объекта – системе обыкновенных дифференциальных уравнений. Одним из типичных примеров идеализации является пренебрежение малым параметром. Если учёт этого малого параметра приводит к системе (13), то непрерывная зависимость решений от параметра позволяет при изучении поведения объекта на конечном отрезке времени безболезненно пренебречь этим параметром, т. е. в первом приближении рассматривать более простую систему <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi>x</mi><mo>˙</mo></mover><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">\dot{x}=f(t, x, 0). </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6679em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">x</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">˙</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span></span><!----></span>Этот результат лежит в основе имеющих широкие приложения <a href="/c/metody-malogo-parametra-v-matematike-4768f8" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->метода малого параметра<!--]--><!--]--><!----></a>, <a href="/c/metod-usredneniia-krylova-bogoliubova-e7f779" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->метода усреднения Крылова – Боголюбова<!--]--><!--]--><!----></a> и других асимптотических методов решения обыкновенных дифференциальных уравнений. Однако исследование ряда явлений приводит к системе <a href="/c/differentsial-nye-uravneniia-s-malym-parametrom-pri-proizvodnykh-47ba52" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->дифференциальных уравнений с малым параметром при производных<!--]--><!--]--><!----></a>: <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>ε</mi><mover accent="true"><mi>x</mi><mo>˙</mo></mover><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo stretchy="false">)</mo><mo separator="true">,</mo><mspace width="1em"/><mover accent="true"><mi>y</mi><mo>˙</mo></mover><mo>=</mo><mi>g</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">\varepsilon \dot{x}=f(t, x, y), \quad \dot{y}=g(t, x, y). </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6679em;"></span><span class="mord mathnormal">ε</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">x</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">˙</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.0833em;"><span class="mord">˙</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span></span><!----></span>Здесь уже нельзя, вообще говоря, принимать <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ε</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\varepsilon=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">ε</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span><!----></span>, даже если пытаться составить грубое представление о явлении на конечном отрезке времени.</p><p>В теории обыкновенных дифференциальных уравнений рассматриваются некоторые плодотворные и важные обобщения перечисленных выше задач. Прежде всего, можно расширить класс функций, в котором ищется решение задачи Коши (2), (3): определить решение в классе абсолютно непрерывных функций и доказать существование таких решений. Особый интерес для приложений представляет определение решения уравнения (2) в случае, когда функция <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(t,x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span><!----></span> разрывна или многозначна по <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span></span><!----></span>. Наиболее общей в этом направлении является задача о решении <a href="/c/differentsial-noe-vkliuchenie-a3930d" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->дифференциального включения<!--]--><!--]--><!----></a>.</p><p>Рассматривается и более общее, чем (10), неразрешённое относительно старшей производной обыкновенное дифференциальное уравнение <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span></span><!----></span>-го порядка <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>F</mi><mrow><mo fence="true">(</mo><mi>t</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mover accent="true"><mi>y</mi><mo>˙</mo></mover><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msup><mi>y</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msup><mo separator="true">,</mo><msup><mi>y</mi><mrow><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></msup><mo fence="true">)</mo></mrow><mo>=</mo><mn>0</mn><mo separator="true">;</mo></mrow><annotation encoding="application/x-tex">F\left(t, y, \dot{y}, \ldots, y^{(n-1)}, y^{(n)}\right)=0; </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.8em;vertical-align:-0.65em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size2">(</span></span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.0833em;"><span class="mord">˙</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mathnormal mtight">n</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size2">)</span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">;</span></span></span></span></span></span><!----></span>исследования этого уравнения тесно связаны с теорией неявных функций.</p><p>Уравнение (2) связывает производную решения в точке <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi></mrow><annotation encoding="application/x-tex">t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6151em;"></span><span class="mord mathnormal">t</span></span></span></span></span><!----></span> со значением решения в этой же точке: <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>x</mi><mo>˙</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\dot x(t)=f(t,x(t))</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">x</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">˙</span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">))</span></span></span></span></span><!----></span>. Но некоторые прикладные задачи (например, требующие учёта эффекта запаздывания исполнительного устройства) приводят к <a href="/c/differentsial-noe-uravnenie-s-zapazdyvaiushchim-argumentom-9e14fb" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->дифференциальным уравнениям с запаздывающим аргументом<!--]--><!--]--><!----></a>: <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi>x</mi><mo>˙</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><mi>τ</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo separator="true">;</mo></mrow><annotation encoding="application/x-tex">\dot{x}(t)=f(t, x(t-\tau));</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6679em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">x</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">˙</span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span><span class="mclose">))</span><span class="mpunct">;</span></span></span></span></span></span><!----></span>здесь производная решения в точке <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi></mrow><annotation encoding="application/x-tex">t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6151em;"></span><span class="mord mathnormal">t</span></span></span></span></span><!----></span> связывается со значением решения в точке <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi><mo>−</mo><mi>τ</mi></mrow><annotation encoding="application/x-tex">t-\tau</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6984em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">t</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.1132em;">τ</span></span></span></span></span><!----></span>. Изучению таких уравнений, а также более общих <a href="/c/differentsial-noe-uravnenie-s-otkloniaiushchimsia-argumentom-b48e98" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->дифференциальных уравнений с отклоняющимся аргументом<!--]--><!--]--><!----></a> посвящён специальный раздел теории обыкновенных дифференциальных уравнений.</p><p>Изучение фазового пространства автономной системы (9) позволяет подойти к ещё одному обобщению обыкновенных дифференциальных уравнений. Траекторию этой системы, проходящую через точку <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">x_{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span>, будем записывать в виде <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mi>x</mi><mrow><mo fence="true">(</mo><mi>t</mi><mo separator="true">,</mo><msub><mi>x</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">x=x\left(t, x_{0}\right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span><!----></span>. Если точке <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">x_{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><!----></span> поставить в соответствие точку <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mrow><mo fence="true">(</mo><mi>t</mi><mo separator="true">,</mo><msub><mi>x</mi><mn>0</mn></msub><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">x\left(t, x_{0}\right)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;">)</span></span></span></span></span></span><!----></span>, то получится преобразование фазового пространства, зависящее от параметра <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi></mrow><annotation encoding="application/x-tex">t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6151em;"></span><span class="mord mathnormal">t</span></span></span></span></span><!----></span>, которое определяет движение в фазовом пространстве. Свойства этих движений исследуются в теории <a href="/c/dinamicheskaia-sistema-v-matematike-76ea2c" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->динамических систем<!--]--><!--]--><!----></a>. Такие движения можно рассматривать не только в евклидовом пространстве, но и на многообразиях, изучая, например, <a href="/c/differentsial-nye-uravneniia-na-tore-4dd71f" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->дифференциальные уравнения на торе<!--]--><!--]--><!----></a>.</p><p>Выше речь шла об обыкновенных дифференциальных уравнениях в поле действительных чисел [например, отыскивалась действительная функция <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x(t) </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span><!----></span> действительного переменного <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi></mrow><annotation encoding="application/x-tex">t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6151em;"></span><span class="mord mathnormal">t</span></span></span></span></span><!----></span>, удовлетворяющая уравнению (2)]. Однако некоторые вопросы теории таких уравнений удобнее изучать с привлечением комплексных чисел. Естественным дальнейшим обобщением является изучение обыкновенных дифференциальных уравнений в поле комплексных чисел. Так, можно рассмотреть уравнение <span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mfrac><mrow><mi>d</mi><mi>w</mi></mrow><mrow><mi>d</mi><mi>z</mi></mrow></mfrac><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>z</mi><mo separator="true">,</mo><mi>w</mi><mo stretchy="false">)</mo><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">\frac{d w}{d z}=f(z, w), </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.0574em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord mathnormal" style="margin-right:0.02691em;">w</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.02691em;">w</span><span class="mclose">)</span><span class="mpunct">,</span></span></span></span></span></span><!----></span>где <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>z</mi><mo separator="true">,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(z, w)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.02691em;">w</span><span class="mclose">)</span></span></span></span></span><!----></span> – аналитическая функция своих переменных, и поставить задачу о нахождении аналитической функции <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>w</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">w(z )</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.02691em;">w</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mclose">)</span></span></span></span></span><!----></span> комплексного переменного <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi></mrow><annotation encoding="application/x-tex">z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span></span></span></span></span><!----></span>, которая удовлетворяла бы этому уравнению. Исследование таких уравнений, уравнений высших порядков и систем составляет предмет <a href="/c/analiticheskaia-teoriia-differentsial-nykh-uravnenii-4d2cf2" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->аналитической теории дифференциальных уравнений<!--]--><!--]--><!----></a>; в частности, она содержит важные для приложений к математической физике результаты, касающиеся <a href="/c/lineinoe-differentsial-noe-uravnenie-vtorogo-poriadka-0f31ad" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->линейных дифференциальных уравнений второго порядка<!--]--><!--]--><!----></a>. Можно также рассматривать уравнение<span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><mfrac><mrow><mi>d</mi><mi>x</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">)</mo><mo separator="true">,</mo></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(14)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex"> \frac{d x}{d t}=f(t, x),\tag{14}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.0574em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord mathnormal">x</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mpunct">,</span></span><span class="tag"><span class="strut" style="height:2.0574em;vertical-align:-0.686em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">14</span></span><span class="mord">)</span></span></span></span></span></span></span><!----></span>считая, что <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span></span><!----></span> принадлежит бесконечномерному банахову пространству <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span><!----></span>, <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>t</mi></mrow><annotation encoding="application/x-tex">t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6151em;"></span><span class="mord mathnormal">t</span></span></span></span></span><!----></span> – действительное или комплексное независимое переменное, а <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>t</mi><mo separator="true">,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(t,x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span><!----></span> – оператор, отображающий произведение <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mo>−</mo><mi mathvariant="normal">∞</mi><mo separator="true">,</mo><mo>+</mo><mi mathvariant="normal">∞</mi><mo stretchy="false">)</mo><mo>×</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">(-\infty,+\infty) \times B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord">∞</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">+</span><span class="mord">∞</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span><!----></span> в <span class="bre-formula _note-exclude" data-display="inline"><span class="bre-formula__content"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span><!----></span>. В виде уравнения (14) можно трактовать, например, системы обыкновенных <a href="/c/differentsial-nye-uravneniia-sistema-beskonechnogo-poriadka-9adb38" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->дифференциальных уравнений бесконечного порядка<!--]--><!--]--><!----></a>. Уравнения вида (14) изучает теория <a href="/c/abstraktnoe-differentsial-noe-uravnenie-b16bf7" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->абстрактных дифференциальных уравнений<!--]--><!--]--><!----></a>, лежащая на стыке обыкновенных дифференциальных уравнений и функционального анализа. В частности, большой интерес представляют линейные дифференциальные уравнения<span class="bre-formula _note-exclude" data-display="block"><span class="bre-formula__content"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mfrac><mrow><mi>d</mi><mi>x</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>=</mo><mi>A</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>x</mi><mo>+</mo><mi>F</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\frac{d x}{d t}=A(t) x+F(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.0574em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord mathnormal">x</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">A</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span></span><!----></span>с ограниченными или неограниченными операторами; в форме такого уравнения удаётся записать некоторые классы <a href="/c/differentsial-noe-uravnenie-s-chastnymi-proizvodnymi-b7300e" class="bre-preview-link" itemprop="url" data-external="false"><!--[--><!--[-->дифференциальных уравнений с частными производными<!--]--><!--]--><!----></a>.</p><span itemscope itemprop="author" itemtype="https://schema.org/Person" class="-text-caption-2-italic tw-justify-end tw-mt-4 tw-mb-10 author _note-exclude"><a href="/a/ef-mishenko-b11369" class=""><span itemprop="name">Мищенко Евгений Фролович</span></a></span></section></section><!--]--></div><span class="bre-inline-menu _article-meta" style=""><meta itemprop="description" content="Обыкнове́нное дифференциа́льное уравне́ние, уравнение, в котором неизвестной является функция от одного независимого переменного, причём в это..."><span><span class="bre-inline-menu__item _article-meta max-md:tw-block"><!--[-->Опубликовано <!--]--><span itemprop="datePublished">19 мая 2022 г. в 15:54 (GMT+3). </span></span><span class="bre-inline-menu__item _article-meta max-md:tw-block"> Последнее обновление <span itemprop="dateModified">19 мая 2022 г. в 15:54 (GMT+3).</span></span></span><span class="-flex-divider"></span><span class="bre-inline-menu__item tw-items-start"><button type="button" class="b-button tw-gap-2 b-button--link -text-button-text tw-rounded-lg tw-cursor-pointer" data-v-cfbedafc><!----><span class="c-button__content" data-v-cfbedafc><!--[-->Связаться с редакцией<!--]--></span></button></span></span></div></div><div class="bre-tags-wrap"><!--[--><span data-v-063d9480><a href="/l/mekhanika-300995" class="bre-article-tag bre-article-tag__link _default _no-border" data-v-063d9480>#Механика</a><!----></span><span data-v-063d9480><a href="/l/teoriia-kolebanii-440eda" class="bre-article-tag bre-article-tag__link _default _no-border" data-v-063d9480>#Теория колебаний</a><!----></span><!--]--></div></div><aside class="bre-article-page__sidebar -show-on-desktop-s" style=""><!----><!----><div class="bre-article-page__sidebar-wrapper _loc"><div class="article-sidebar"><div class="article-sidebar-button -show-on-tablet -hide-on-desktop-s"><span class="article-sidebar-title">Информация</span><span class="nuxt-icon _no-icon-margin tw-text-2xl tw-text-primary-black"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M6 9l6 6 6-6" stroke="currentColor" stroke-width="1.5" stroke-linecap="round"/></svg> </span><!--[--><div class="article-sidebar-text -show-on-tablet -hide-on-desktop-s"></div><!--]--></div><div class="article-sidebar-wrapper -hide-on-tablet"><!----><!----><!----><span class="bre-media-image article-sidebar-image _note-exclude _clean" data-width="100%" data-display="block"><span class="bre-media-figure _note-exclude _clean" itemscope itemtype="https://schema.org/ImageObject" itemprop="image"><!--[--><span class="bre-media-image-container _placeholder"><meta itemprop="name" content="Математика"><meta itemprop="caption" content="Математика. Научно-образовательный портал «Большая российская энциклопедия»"><!----><!----><span class="tw-flex tw-w-full" style=""><img src="https://i.bigenc.ru/resizer/resize?sign=YwquNkBjjvRkIItEEj84EA&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=120" onerror="this.setAttribute(&#39;data-error&#39;, 1)" alt="Математика" data-nuxt-img sizes="320px" srcset="https://i.bigenc.ru/resizer/resize?sign=YwquNkBjjvRkIItEEj84EA&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=120 120w,https://i.bigenc.ru/resizer/resize?sign=kwZEMADbF0h1k2QM5MQ63g&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=320 320w,https://i.bigenc.ru/resizer/resize?sign=iDjHjthf4TWMMOWxyvO9-Q&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=480 480w,https://i.bigenc.ru/resizer/resize?sign=aOq57ZwrPJzlZoA0JyAqNA&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=640 640w,https://i.bigenc.ru/resizer/resize?sign=RysrupjbIa5XYWB_pfATYQ&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=768 768w,https://i.bigenc.ru/resizer/resize?sign=8eQ4RSvaDJue-elzThMhjA&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=4tn4w-MU4hKmUoYIwAeqew&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=SXvkdFSbX19Vh-sgDBVBiQ&amp;filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&amp;width=1920 1920w" title="Математика" class="" itemprop="contentUrl"></span><!----></span><!--]--><!----></span><!----><!----></span><div class="article-sidebar-meta"><dl class="tw-mt-0"><!--[--><!--[--><dt>Области знаний:</dt><dd>Дифференциальные, интегральные и функционально-дифференциальные уравнения</dd><!--]--><!--]--><!----></dl></div></div></div></div></aside></div><!----></article></div><!--]--></div><!----><!--]--><div></div></main><footer class="bre-footer" itemscope itemprop="hasPart" itemtype="https://schema.org/WPFooter"><meta itemprop="copyrightNotice" content="&amp;copy;&amp;nbsp;АНО БРЭ, 2022&amp;nbsp;&amp;mdash;&amp;nbsp;2024. Все права защищены."><div class="bre-footer__inner" itemprop="hasPart" itemscope itemtype="https://schema.org/SiteNavigationElement"><!--[--><div class="_menu bre-footer-section"><ul class="bre-inline-menu _footer-link-groups"><!--[--><li class="_footer-links bre-inline-menu__item"><ul class="bre-inline-menu _footer-links"><!--[--><li class="_button bre-inline-menu__item"><a href="/p/about-project" class="" itemprop="url"><!----><span>О портале</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/author" class="" itemprop="url"><!----><span>Стать автором</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/partners" class="" itemprop="url"><!----><span>Партнёры</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/copyright-holders" class="" itemprop="url"><!----><span>Правообладателям</span></a></li><li class="_button bre-inline-menu__item"><a href="/p/contacts" class="" itemprop="url"><!----><span>Контакты</span></a></li><li class="_button _full-width bre-inline-menu__item"><a href="https://old.bigenc.ru/" rel="noopener noreferrer nofollow" target="_blank" itemprop="url"><!----><span>Старая версия сайта</span></a></li><!--]--></ul></li><li class="bre-inline-menu__item"><ul class="bre-inline-menu"><!--[--><li class="bre-inline-menu__item"><a href="https://t.me/bigenc" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="Telegram"><svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24"> <path fill="currentColor" d="m2.319 11.552 4.147 1.555 1.605 5.189a.49.49 0 0 0 .562.336.487.487 0 0 0 .214-.102l2.312-1.893a.686.686 0 0 1 .84-.024l4.17 3.043a.486.486 0 0 0 .766-.297L19.99 4.59a.494.494 0 0 0-.397-.584.49.49 0 0 0-.258.025l-17.022 6.6a.491.491 0 0 0 .006.92Zm5.493.728 8.107-5.02c.145-.088.294.11.17.227l-6.69 6.25a1.39 1.39 0 0 0-.43.832l-.228 1.698c-.03.227-.346.25-.41.03l-.875-3.096a.823.823 0 0 1 .356-.921Z"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://vk.com/bigenc_ru" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="ВКонтакте"><svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24"> <path fill="currentColor" d="M21.969 6.82c.17.425-.353 1.418-1.567 2.978-.17.213-.389.496-.656.85-.559.663-.875 1.1-.947 1.313-.122.284-.073.555.145.815.122.142.401.426.838.851h.037v.036c.996.874 1.664 1.62 2.004 2.234l.073.141.073.267v.336l-.255.266-.62.124-2.66.071c-.17.024-.37 0-.601-.07a2.607 2.607 0 0 1-.528-.213l-.22-.142a4.162 4.162 0 0 1-.728-.639 28.415 28.415 0 0 1-.71-.78 3.62 3.62 0 0 0-.638-.585c-.219-.153-.413-.206-.583-.16a.18.18 0 0 0-.091.036 1.473 1.473 0 0 0-.183.16 1.148 1.148 0 0 0-.218.301 2.19 2.19 0 0 0-.164.514c-.049.225-.073.49-.073.798a.939.939 0 0 1-.036.266 1.154 1.154 0 0 1-.073.195l-.037.036c-.146.141-.34.212-.583.212h-1.166a4.34 4.34 0 0 1-1.548-.141 5.719 5.719 0 0 1-1.367-.55c-.389-.225-.74-.45-1.057-.674a6.361 6.361 0 0 1-.729-.585l-.255-.248a1.58 1.58 0 0 1-.291-.284c-.122-.141-.37-.449-.747-.922a23.006 23.006 0 0 1-1.111-1.524A29.008 29.008 0 0 1 3.42 9.957 34.16 34.16 0 0 1 2.073 7.21.8.8 0 0 1 2 6.926c0-.071.012-.13.036-.177l.037-.036c.097-.142.291-.213.583-.213h2.879a.49.49 0 0 1 .218.054l.182.088.037.036c.121.07.206.177.255.319.146.33.31.68.492 1.046s.322.644.419.833l.146.284c.218.402.419.75.6 1.046.183.295.347.526.493.691.146.166.291.296.437.39.146.095.267.142.365.142.097 0 .194-.012.291-.036l.036-.053.128-.23.146-.461.09-.816V8.557a6.15 6.15 0 0 0-.108-.727 2.135 2.135 0 0 0-.146-.479l-.037-.106c-.17-.236-.473-.39-.91-.461-.074 0-.05-.083.072-.248a1.55 1.55 0 0 1 .401-.284c.364-.189 1.19-.272 2.478-.248.559 0 1.032.047 1.421.142.121.023.23.065.328.124.097.059.17.142.219.248.048.106.085.213.109.32.024.106.036.26.036.46v.55a5.784 5.784 0 0 0-.036.709v.85c0 .072-.006.214-.018.426a9.251 9.251 0 0 0-.018.497c0 .118.012.254.036.408.024.153.067.283.128.39a.55.55 0 0 0 .4.283c.061.012.152-.023.274-.106a2.55 2.55 0 0 0 .4-.355c.146-.153.328-.384.547-.691.219-.307.45-.662.692-1.064a18.64 18.64 0 0 0 1.13-2.305c.024-.047.055-.1.091-.16.037-.058.08-.1.128-.123h.036l.037-.036.145-.035h.219l2.988-.036c.267-.023.492-.011.674.036.182.047.286.106.31.177l.073.106Z"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://dzen.ru/bigenc" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="Дзен"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <defs> <mask id="inner-star"> <circle cx="12" cy="12" r="9" fill="#fff"/> <path d="M21 12.0964V11.9036C17.0143 11.775 15.195 11.6786 13.7357 10.2643C12.3214 8.805 12.2186 6.98571 12.0964 3H11.9036C11.775 6.98571 11.6786 8.805 10.2643 10.2643C8.805 11.6786 6.98571 11.7814 3 11.9036V12.0964C6.98571 12.225 8.805 12.3214 10.2643 13.7357C11.6786 15.195 11.7814 17.0143 11.9036 21H12.0964C12.225 17.0143 12.3214 15.195 13.7357 13.7357C15.195 12.3214 17.0143 12.2186 21 12.0964Z" fill="#000"/> </mask> </defs> <circle cx="12" cy="12" r="9" fill="currentColor" mask="url(#inner-star)"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://ok.ru/group/70000000707835" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="Одноклассники"><svg viewBox="0 0 200 200" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M100.1 99.2C109.8 99.2 118.6 95.2 124.9 88.9C131.2 82.6 135.2 73.8 135.2 64.1C135.2 54.4 131.2 45.6 124.9 39.3C118.6 33 109.8 29 100.1 29C90.4 29 81.6 33 75.3 39.3C69 45.5 65 54.3 65 64.1C65 73.9 69 82.6 75.3 88.9C81.6 95.2 90.5 99.2 100.1 99.2ZM88.9 52.7C91.8 49.8 95.8 48 100.2 48C104.7 48 108.6 49.8 111.5 52.7C114.4 55.6 116.2 59.6 116.2 64C116.2 68.5 114.4 72.4 111.5 75.3C108.6 78.2 104.6 80 100.2 80C95.7 80 91.8 78.2 88.9 75.3C86 72.4 84.2 68.4 84.2 64C84.2 59.6 86.1 55.6 88.9 52.7Z" fill="currentColor"/> <path d="M147.5 113.4L137.2 99.3C136.6 98.5 135.4 98.4 134.7 99.1C125 107.4 113 112.8 100.1 112.8C87.2 112.8 75.3 107.4 65.5 99.1C64.8 98.5 63.6 98.6 63 99.3L52.7 113.4C52.2 114.1 52.3 115 52.9 115.6C61.6 122.6 71.7 127.4 82.2 129.9L60.4 168.3C59.8 169.4 60.6 170.8 61.8 170.8H83.1C83.8 170.8 84.4 170.4 84.6 169.7L99.8 135.7L115 169.7C115.2 170.3 115.8 170.8 116.5 170.8H137.8C139.1 170.8 139.8 169.5 139.2 168.3L117.4 129.9C127.9 127.4 138 122.8 146.7 115.6C148 115 148.1 114.1 147.5 113.4Z" fill="currentColor"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://www.youtube.com/channel/UCY4SUgcT8rBt4EgK9CAg6Ng" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="YouTube"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M21.1623 4.21363C22.1781 4.48683 22.9706 5.28671 23.2453 6.30818C23.9638 9.22233 23.917 14.7319 23.2604 17.6916C22.9887 18.713 22.1932 19.5099 21.1774 19.7861C18.3094 20.4995 5.46414 20.4114 2.76226 19.7861C1.74641 19.5129 0.953955 18.713 0.679238 17.6916C0.0015019 14.914 0.0482943 9.04019 0.664143 6.32335C0.935842 5.30188 1.73131 4.50505 2.74716 4.22881C6.58112 3.42438 19.7977 3.68392 21.1623 4.21363ZM9.69057 8.44824L15.8491 11.9999L9.69057 15.5515V8.44824Z" fill="currentColor"/> </svg> </span><!----></a></li><li class="bre-inline-menu__item"><a href="https://rutube.ru/channel/29677486/" rel="noopener noreferrer nofollow" target="_blank"><span class="nuxt-icon tw-text-2xl tw-text-gray-4 tw-transition-colors tw-duration-200 hover:tw-text-primary-black _no-icon-margin" title="RUTUBE"><svg viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M3 6.45205C3 4.54554 4.54554 3 6.45205 3H17.5479C19.4545 3 21 4.54554 21 6.45205V17.5479C21 19.4545 19.4545 21 17.5479 21H6.45205C4.54554 21 3 19.4545 3 17.5479V6.45205ZM14.8657 7.43835H6.20547V16.8082H8.6159V13.7598H13.2346L15.342 16.8082H18.0411L15.7173 13.7458C16.439 13.6335 16.9586 13.3665 17.2761 12.9451C17.5936 12.5237 17.7524 11.8494 17.7524 10.9503V10.2479C17.7524 9.71409 17.6947 9.29268 17.5936 8.96955C17.4926 8.64646 17.3194 8.3655 17.0741 8.11265C16.8142 7.87383 16.5256 7.70526 16.1792 7.59288C15.8328 7.49454 15.3997 7.43835 14.8657 7.43835ZM14.476 11.6948H8.6159V9.50336H14.476C14.808 9.50336 15.0389 9.55957 15.1544 9.65789C15.2698 9.75622 15.342 9.93886 15.342 10.2058V10.9925C15.342 11.2734 15.2698 11.456 15.1544 11.5543C15.0389 11.6527 14.808 11.6948 14.476 11.6948ZM19.274 6.57535C19.274 7.18816 18.7771 7.68494 18.1646 7.68494C17.5516 7.68494 17.0548 7.18816 17.0548 6.57535C17.0548 5.96254 17.5516 5.46576 18.1646 5.46576C18.7771 5.46576 19.274 5.96254 19.274 6.57535Z" fill="currentColor"/> </svg> </span><!----></a></li><!--]--></ul></li><!--]--></ul></div><div class="_border bre-footer-section"><ul class="bre-inline-menu"><!--[--><li class="_footer-text bre-inline-menu__item"><span><!----><span>Научно-образовательный портал «Большая российская энциклопедия»<br />Создан при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций Российской Федерации.<br />Свидетельство о регистрации СМИ ЭЛ № ФС77-84198, выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) 15&nbsp;ноября&nbsp;2022&nbsp;года.<br>ISSN: 2949-2076</span></span></li><li class="_footer-text bre-inline-menu__item"><span><!----><span>Учредитель: Автономная некоммерческая организация «Национальный научно-образовательный центр «Большая российская энциклопедия» <br /> Главный редактор: Кравец С. Л. <br />Телефон редакции: <a href="tel:+74959179000">+7 (495) 917 90 00</a> <br />Эл. почта редакции: <a href="mailto:secretar@greatbook.ru">secretar@greatbook.ru</a></span></span></li><li class="_half-width bre-inline-menu__item"><ul class="bre-inline-menu"><!--[--><li class="tw-h-12 tw-mt-3 bre-inline-menu__item"><span><span class="nuxt-icon tw-text-gray-2 tw-text-[60px] _no-icon-margin" title="АНО «БРЭ»"><svg viewBox="0 0 60 48" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M25.577.226C14.027 1.426 4.087 8.42.903 17.586c-1.187 3.417-1.206 8.83-.045 12.525 4.42 14.064 24.29 21.772 41.012 15.91 4.81-1.686 7.426-3.253 11.082-6.64 9.507-8.81 9.383-22.047-.29-31.086C45.986 2.058 36.151-.872 25.576.226zm12.902 3.345c1.283.355 3.172 1.009 4.198 1.452l1.866.806-2.498.863c-2.472.855-2.529.854-5.365-.107-3.749-1.27-9.587-1.36-14.153-.22-2.764.692-3.65.744-5.015.298-.91-.298-1.657-.717-1.657-.93 0-.435 4.797-2.101 7.962-2.765 2.75-.577 11.74-.207 14.662.603zM16.498 7.354c1.654.685 1.69.756 1.736 3.35.051 2.917.542 5.21.962 4.494.147-.251.406-1.213.574-2.138.169-.924.839-2.208 1.49-2.854 1.145-1.134 2.687-1.289 5.207-.523.928.282.818 10.774-.116 11.128-.385.147-.7.475-.7.73 0 .284 1.353.395 3.494.288 3.904-.195 5.13-.936 5.627-3.4.42-2.078-1.08-3.728-3.748-4.125l-2.108-.313v-2.05c0-2.032.015-2.051 1.617-2.051 1.196 0 1.764.27 2.187 1.04l.57 1.039.28-1.155c.768-3.16 5.399-.393 7.647 4.569 1.253 2.765 2.241 6.748 1.786 7.198-.136.136-5.723.237-12.415.226-9.379-.016-12.595-.173-14.033-.686-1.026-.366-1.918-.67-1.982-.673-.065-.004-.117.409-.117.917 0 .877-.311.924-6.085.924H2.285l.316-1.733c.84-4.62 3.604-9.246 7.303-12.224 3.61-2.905 4.04-3.034 6.594-1.978zm31.704.637c4.444 3.03 8.238 8.665 8.977 13.334l.311 1.964H48.171l-.258-2.821c-.33-3.602-2.508-8.06-5.049-10.334-1.046-.936-1.816-1.789-1.71-1.894.31-.306 3.796-1.516 4.471-1.552.339-.018 1.498.568 2.577 1.303zm-15.32.018c.815.318.741.406-.584.697-1.994.438-8.188-.192-6.88-.7 1.21-.47 6.259-.468 7.463.003zm-1.45 8.003c1.79 1.593 1.82 3.79.064 4.582-1.793.81-2.58-.147-2.58-3.137 0-2.827.585-3.163 2.516-1.445zm-17.73 10.05c-.164 1.016-.152 1.848.026 1.848s1.017-.728 1.864-1.618l1.54-1.617H43.459l-.306 1.964c-.824 5.29-2.498 8.885-4.907 10.53-.976.667-1.813.75-5.132.505l-3.964-.292-.132-5.43c-.129-5.327-.112-5.429.897-5.429 1.575 0 2.733 1.32 2.733 3.115 0 1.338-.219 1.668-1.4 2.11-1.494.558-1.867 1.244-.676 1.244 2.64 0 4.921-3.225 3.992-5.646-.584-1.52-1.303-1.747-5.542-1.747-2.972 0-3.418.095-2.744.583.696.504.787 1.301.672 5.882l-.133 5.298-2.262.374c-2.662.442-3.293.074-4.047-2.355-1.024-3.302-.923-3.132-1.405-2.376-.239.374-.438 1.837-.442 3.252l-.007 2.572-2.547 1.046c-1.475.605-2.943.921-3.486.75-1.374-.431-6.27-5.358-7.66-7.707-1.317-2.227-2.856-7.512-2.4-8.243.166-.266 2.655-.462 5.864-.462H14l-.299 1.848zm43.493.335c-.525 3.8-2.78 7.8-6.359 11.283-1.79 1.742-3.553 3.167-3.916 3.167-.364 0-1.837-.446-3.273-.99l-2.612-.99 2.245-2.36c2.681-2.82 4.187-5.74 4.564-8.85.438-3.62.174-3.444 5.144-3.444h4.51l-.303 2.184zM34.867 39.034c-1.24.715-5.09 1.044-8.004.684-4.526-.56-2.874-1.182 3.103-1.168 4.098.01 5.484.147 4.9.484zm7.727 1.625c1.2.405 2.182.91 2.182 1.122 0 .54-4.773 2.26-8.396 3.028-3.871.82-9.19.82-13.061 0-3.535-.749-8.397-2.485-8.397-2.997 0-.195.81-.62 1.801-.944 1.592-.52 1.955-.489 3.13.273 1.141.74 2.277.86 8.11.86 5.997 0 7.028-.116 8.883-1 2.592-1.235 3.025-1.26 5.748-.342z" fill="currentColor"/></svg> </span><!----></span></li><li class="tw-h-12 tw-mt-3 bre-inline-menu__item"><span><span class="nuxt-icon tw-text-gray-2 tw-text-5xl _no-icon-margin" title="Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации"><svg viewBox="0 0 48 48" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M23.723.258c.06.157 0 .258-.15.258a.254.254 0 0 0-.248.258c0 .142.118.258.263.258.144 0 .216.078.159.172-.058.095.056.172.253.172.196 0 .31-.077.253-.172-.058-.094.014-.172.159-.172.149 0 .263-.146.263-.338 0-.232-.08-.308-.255-.24-.183.072-.226.022-.151-.177.077-.203.005-.277-.27-.277-.262 0-.344.077-.276.258zm-.11 1.57c-.21.214-.128.712.134.815.414.162.781-.076.726-.471-.05-.362-.62-.59-.86-.344zm-.086 1.303c-.277.283-.254 1.342.058 2.608.405 1.644.432 1.654.764.283.508-2.103.396-3.097-.35-3.097a.767.767 0 0 0-.472.206zm-1.65.296c-.984.45-1.211 1.079-.825 2.284.161.502.398 1.124.526 1.382.218.44.284.463 1.032.363.44-.059.823-.127.853-.152.08-.067-.675-3.928-.796-4.07-.056-.066-.412.02-.79.193zm3.392-.113c-.143.439-.788 3.943-.734 3.989.03.025.415.094.855.153.747.1.814.076 1.032-.363.127-.258.364-.88.525-1.382.432-1.348.155-1.927-1.17-2.44-.323-.125-.457-.114-.509.043zM10.175 4.2c-.473.491-.977.824-1.428.944-.977.26-1.39.573-.612.463.325-.046.932-.13 1.35-.186.418-.056 1.193-.33 1.723-.611.53-.28 1.214-.511 1.519-.514.552-.006.55-.008-.288-.429-.464-.233-1-.424-1.189-.425-.19 0-.673.34-1.075.758zm25.301-.313c-.741.39-.747.4-.25.407.28.004.963.233 1.519.508.974.484 1.306.572 2.95.783.912.117.64-.153-.443-.44-.45-.12-.954-.454-1.427-.945-.842-.874-1.193-.921-2.349-.313zm-18.727.71c-.182.21-.193.3-.04.352.112.038.161.14.109.227-.053.086.015.157.15.157.293 0 .477-.415.342-.774-.123-.326-.251-.317-.56.038zm13.94-.038c-.095.254.023.774.176.774.043 0 .193-.116.332-.258.225-.23.225-.287 0-.516-.14-.142-.289-.258-.332-.258-.043 0-.122.116-.175.258zm-18.352.043c-.01.071-.006.361.008.645.015.284-.092.855-.236 1.27-.665 1.913-.131 2.904 1.849 3.431l.675.18-.498-.376c-.83-.627-1.274-1.18-1.274-1.584 0-.21.19-.82.421-1.356.548-1.26.563-2.088.043-2.23-.524-.143-.967-.134-.988.02zm22.253-.014c-.43.12-.378 1.028.127 2.191.232.535.422 1.153.422 1.373 0 .42-.442.973-1.275 1.597l-.497.372.59-.13c1.968-.433 2.597-1.564 1.933-3.475-.144-.414-.239-1.024-.211-1.355.045-.535.004-.605-.372-.629a2.652 2.652 0 0 0-.717.056zM3.422 5.958c-.489.633-.737 1.705-.609 2.632.205 1.48.872 2.56 2.75 4.454.968.977 1.799 1.737 1.845 1.69.212-.216-.4-1.476-1.08-2.223-.728-.8-1.653-2.533-1.539-2.882.031-.095.54.524 1.13 1.377.59.852 1.132 1.512 1.204 1.467.072-.046.177-.272.234-.504.08-.325-.126-.783-.912-2.023-.56-.88-1.327-2.24-1.706-3.021-.38-.78-.753-1.42-.83-1.42-.075 0-.295.204-.487.453zm13.32-.109c0 .26.088.352.296.312.162-.032.295-.172.295-.312 0-.139-.133-.279-.295-.31-.208-.042-.296.051-.296.31zm13.924-.172c-.141.233.05.517.348.517.134 0 .243-.155.243-.345 0-.356-.407-.474-.59-.172zm12.595 1.248c-.38.78-1.147 2.14-1.706 3.021-.787 1.24-.993 1.697-.913 2.023.057.232.163.459.235.504.072.045.613-.615 1.204-1.467.59-.853 1.098-1.472 1.13-1.377.113.349-.812 2.082-1.54 2.882-.68.747-1.292 2.007-1.08 2.222.047.048.877-.712 1.846-1.689 2.38-2.4 3.154-4.12 2.674-5.937-.185-.698-.761-1.602-1.022-1.602-.076 0-.449.64-.828 1.42zM7.924 5.877c-.552.206-.574.402-.127 1.09.395.609.425 1.246.08 1.711-.137.184-.248.449-.248.59 0 .19.097.16.39-.12.528-.505.622-.474.622.21 0 .343.143.749.35.989l.349.406-.1-.475c-.06-.286.009-.688.173-1.011.312-.615.256-1.332-.209-2.684-.324-.943-.453-1.014-1.28-.706zm30.871.706c-.465 1.352-.52 2.069-.208 2.684.164.323.232.725.172 1.011l-.1.475.35-.406c.206-.24.35-.646.35-.99 0-.683.093-.714.621-.209.293.28.39.31.39.12 0-.141-.11-.406-.247-.59-.345-.465-.316-1.102.079-1.71.457-.704.426-.882-.194-1.102-.814-.289-.88-.25-1.213.717zm-22.156.03c-.112.296.049 1.64.265 2.227.117.315.162.264.334-.378.273-1.02.178-1.991-.2-2.065a.365.365 0 0 0-.4.216zm14.005.009c-.132.35.036 1.882.25 2.27.122.224.203.069.356-.688.11-.537.175-1.15.145-1.363-.064-.461-.601-.618-.752-.22zm-15.213.127c-.54.266-.614.788-.251 1.775.3.819.336.85.895.793.32-.032.595-.07.61-.086.014-.014-.091-.627-.235-1.36-.266-1.36-.348-1.451-1.02-1.122zm2.414.004c-.114.362-.428 2.024-.428 2.268 0 .127.237.266.527.31.48.07.554.016.84-.627.172-.387.316-.878.318-1.091.006-.703-1.073-1.442-1.257-.86zm11.397.118c-.435.444-.442 1.04-.021 1.882.29.58.385.644.844.576.587-.088.6-.162.292-1.672-.235-1.153-.542-1.37-1.115-.786zm2.307 1c-.144.733-.249 1.346-.234 1.36.014.015.285.054.602.086.544.056.593.015.905-.754.189-.465.288-.986.23-1.217-.087-.355-.707-.808-1.105-.808-.075 0-.255.6-.398 1.333zm-9.406.066c-.41.168-.413.18-.094.419.457.343 3.443.344 3.902.001.316-.237.31-.252-.148-.43-.591-.23-3.09-.223-3.66.01zm-.928.947c-.186.15-.793.495-1.35.769-1.002.492-1.007.497-.41.497.784 0 2.113-.412 2.857-.887l.59-.377-.421-.125c-.656-.194-.902-.17-1.266.123zm4.304-.123l-.422.125.59.377c.746.476 2.075.888 2.858.886l.602-.002-.9-.427c-.496-.236-1.116-.583-1.377-.773-.501-.364-.67-.387-1.351-.186zm-9.283.805c-.14.053-.365.132-.502.177-.218.072-.218.101 0 .242.531.342 3.034.11 2.683-.25-.138-.14-1.898-.276-2.181-.17zm13.797.01c-.255.045-.464.145-.464.223 0 .238.486.352 1.49.349.986-.003 1.572-.2 1.233-.414-.25-.157-1.688-.257-2.259-.158zm-14.81.807c0 .49.798 1.74 1.55 2.43.904.828 1.277.996.988.446-.264-.503-.213-.575.2-.28.551.394.865.356.638-.076-.212-.403-.049-.435.412-.08.458.353.643.314.512-.106-.11-.354-.106-.355.356-.047.462.309.466.308.374-.052-.092-.357-.082-.356.5.047.623.43 2.109.584 2.318.238.06-.098-.093-.172-.358-.172-.255 0-.798-.165-1.208-.367l-.744-.368.48-.4.48-.4-.588-.007-.588-.006.58-.317c.632-.346.96-.861.41-.646-.54.211-4.146.31-5.257.145-.705-.105-1.055-.1-1.055.018zm10.999-.06c.04.124.335.37.653.543l.58.317-.589.006-.588.006.48.4.48.401-.744.368c-.41.202-.953.367-1.207.367-.266 0-.419.074-.36.172.21.346 1.696.193 2.32-.238.582-.403.591-.404.5-.046-.093.36-.088.36.374.051.461-.308.466-.307.356.047-.131.42.054.459.511.106.46-.355.624-.323.412.08-.226.432.087.47.638.076.413-.295.465-.223.2.28-.289.55.085.382.987-.446.753-.69 1.55-1.94 1.55-2.43 0-.117-.35-.123-1.054-.018-1.11.166-4.716.066-5.256-.145-.224-.088-.295-.057-.243.103zm-11.42.515c-.153.251.405 1.128 1.001 1.576l.517.389-.294-.423a12.588 12.588 0 0 1-.637-1.068c-.366-.691-.426-.74-.587-.474zm17.818.453c-.193.367-.484.856-.646 1.089l-.295.423.517-.389c.673-.505 1.184-1.373.95-1.611-.12-.122-.285.032-.526.488zM.61 11.206c-.159.262.61 1.77 1.246 2.445.734.778 2.12 1.771 3.374 2.417.813.42.915.436 1.159.188.147-.15.239-.293.205-.318a74.556 74.556 0 0 0-.906-.584 9.907 9.907 0 0 1-1.52-1.248c-.65-.683-.657-.702-.188-.521.589.227 1.262.691 2.383 1.644.746.635 1.772 1.09 1.772.785 0-.171-2-2.117-3.088-3.004-.539-.439-1.365-.997-1.836-1.24-.912-.471-2.454-.806-2.6-.564zm45.728-.016c-1.464.295-3.226 1.487-5.419 3.666-.58.576-1.054 1.098-1.054 1.158 0 .304 1.026-.15 1.772-.785 1.12-.953 1.794-1.417 2.383-1.644.469-.18.462-.162-.19.521-.37.39-1.054.95-1.518 1.248-.464.296-.872.56-.906.584-.035.025.057.168.204.318.244.248.346.232 1.16-.188 1.253-.646 2.64-1.64 3.373-2.417.926-.982 1.595-2.716 1.011-2.621-.064.01-.431.082-.816.16zm-32.82.184c-.8.3-.994 1.35-.38 2.064.219.254.295.249.911-.062.645-.325.708-.327 1.535-.051 1.27.424 1.602.2.622-.422-.43-.273-.988-.772-1.24-1.108-.474-.634-.702-.7-1.448-.42zm3.818.077c-.378.292-.784.267-.889-.053-.048-.148.133-.213.577-.21.61.005.628.02.312.263zm14.216-.053c-.104.32-.51.345-.889.053-.316-.243-.299-.258.313-.263.444-.004.625.062.576.21zm1.481.397c-.252.336-.81.835-1.24 1.108-.98.621-.649.845.623.422.827-.276.89-.274 1.534.051.616.31.693.316.91.062.638-.741.418-1.768-.445-2.075-.763-.27-.884-.233-1.382.432zm-25.399.065c-.297.567-.205 2.075.178 2.88.31.655 2.21 2.636 2.526 2.636.215 0-.294-1.246-.574-1.406-.298-.17-1.123-1.516-1.123-1.83 0-.109.318.154.706.584.697.77.709.775.908.396.181-.345.112-.492-.68-1.442-.484-.582-1.022-1.305-1.196-1.605-.367-.633-.504-.672-.745-.213zm31.987.213c-.174.3-.713 1.023-1.198 1.605-.79.95-.86 1.097-.678 1.442.199.38.21.374.907-.396.389-.43.706-.693.706-.585 0 .316-.825 1.661-1.122 1.83-.28.16-.79 1.407-.575 1.407.317 0 2.215-1.98 2.526-2.636.383-.805.476-2.313.178-2.88-.241-.46-.377-.42-.744.213zm-25.41.486c0 .095-.114.172-.253.172-.14 0-.254-.077-.254-.172 0-.095.114-.172.254-.172.139 0 .253.077.253.172zm20 0c.057.095-.015.172-.16.172-.144 0-.262-.077-.262-.172 0-.095.071-.172.158-.172.088 0 .206.077.264.172zm-14.43.497c0 .091.322.48.717.863l.717.698.054-.635c.04-.454-.03-.698-.243-.857-.212-.158-.33-.167-.413-.032-.083.138-.213.136-.474-.006-.208-.114-.359-.127-.359-.03zm7.193.069c-.214.159-.283.402-.244.857l.054.635.718-.698c.752-.732.953-1.157.405-.858-.198.108-.37.11-.473.005-.103-.104-.27-.083-.46.058zm-8.038.304c0 .293-.052.318-.337.162-.525-.286-.4.055.285.773.561.59.634.621.747.327.264-.686.163-1.21-.273-1.412-.374-.174-.422-.157-.422.15zm9.663-.132c-.397.183-.485.739-.222 1.413.124.318.18.293.747-.335.676-.747.791-1.065.288-.79-.264.144-.336.117-.38-.142-.044-.266-.119-.29-.433-.146zm-7.097 1.126c-.04.796.019 1.088.285 1.419.331.412.336.413.593.072.4-.533.33-1.362-.168-1.965-.24-.291-.487-.53-.548-.53-.062.001-.134.452-.162 1.004zm4.285-.474c-.498.603-.569 1.432-.168 1.965.257.341.262.34.594-.072.265-.33.324-.623.284-1.42-.027-.55-.1-1.002-.162-1.002-.061 0-.308.238-.548.529zm-11.354.155c-.573.173-1.067.294-1.097.269-.03-.025-.26-.096-.513-.157-.586-.144-.484.267.14.557.77.358 1.725.244 2.184-.26.34-.374.55-.792.372-.736l-1.086.327zm1.244.142c-.25.265-.454.619-.454.786 0 .283.03.282.464-.026.6-.425 1.474-.725 2.135-.732.497-.005.507-.018.196-.258-.18-.139-.678-.253-1.108-.253-.634 0-.864.09-1.233.483zm14.304-.23c-.31.24-.3.253.196.258.662.007 1.536.307 2.135.732.452.32.464.321.464.006 0-.178-.213-.532-.474-.786-.37-.362-.638-.463-1.233-.463-.418 0-.908.114-1.088.253zm2.457-.093c0 .074.187.34.414.59.459.504 1.414.618 2.185.26.623-.29.726-.7.14-.557-.253.061-.485.133-.515.158-.03.025-.543-.096-1.14-.27-.596-.174-1.084-.256-1.084-.181zm-12.489.748c0 .77.366 1.501.751 1.501.259 0 .43-.37.43-.928 0-.348-.78-1.309-1.064-1.309-.064 0-.117.332-.117.736zm7.373-.253c-.444.473-.555.94-.35 1.482.145.386.508.337.816-.11.27-.394.37-1.854.125-1.854-.075 0-.341.217-.59.482zm-16.74.488c-.643 1 .008 2.858 1.268 3.617.577.348.664.584.167.452-.186-.05-.338-.144-.338-.209 0-.164-2.158-1.804-2.825-2.148-.57-.293-1.965-.438-2.173-.226-.215.22.51 1.366 1.183 1.868.361.27 1.074.692 1.583.938.746.36.955.402 1.07.216.227-.364.19-.419-.496-.734a6.155 6.155 0 0 1-1.14-.708c-.82-.683-.074-.502 1.09.265.575.378 1.175.689 1.334.69.206.002.169.065-.13.22-.56.288-.62.744-.178 1.353l.363.5-.39-.087a45.326 45.326 0 0 0-1.393-.264c-1.17-.206-1.775-.622-.683-.469.372.052.917.148 1.213.213.48.106.528.082.45-.226-.096-.372-1.576-.899-2.518-.897-.763.001-1.76.333-1.76.586 0 .325 1.216 1.138 1.971 1.317.9.213 2.54.197 2.952-.028.25-.136.396-.136.529 0s.062.188-.256.188c-.287 0-.597.189-.886.54l-.445.539.375.407c.252.274.564.407.951.407h.577l-.456.552c-.464.562-1.676 1.232-2.008 1.11-.1-.036.27-.29.822-.563 1.03-.51 1.392-.927.803-.927-.447 0-1.705.463-2.227.82-.233.159-.614.299-.846.31-.232.012-.875.15-1.428.306-.553.156-1.199.278-1.435.27-.777-.026.93-.689 2.388-.927.732-.12 1.367-.255 1.413-.302.045-.046-.343-.129-.862-.183-1.34-.142-3.548.262-4.717.862-.57.292-1.435 1.07-1.435 1.289 0 .262.913.51 1.89.512 1.32.003 3.558-.763 3.933-1.347.154-.24.318-.397.364-.35.047.047-.046.29-.205.537-.369.574-.252.68.73.663 1.12-.02 2.23-.502 2.244-.974.01-.364.012-.363.163.02.119.3.288.386.76.386.334 0 .75-.077.923-.172.286-.156.307-.118.224.407-.114.712.179 1.314.638 1.314.19 0 .561-.221.826-.491l.482-.49.11.447c.129.53.553 1.05.856 1.05.298 0 .914-.836.914-1.24 0-.272.106-.218.582.296.991 1.071 1.163.852 1.182-1.508.01-1.199-.05-2.021-.148-2.021-.09 0-.374.206-.632.458-.36.352-.688.477-1.401.538-1.114.094-1.79-.156-2.39-.883-.378-.458-.425-.641-.344-1.342a5.43 5.43 0 0 1 .441-1.505c.673-1.344.393-2.112-1.216-3.342-.596-.456-1.297-1.172-1.557-1.592-.26-.42-.491-.762-.513-.762-.023 0-.172.204-.333.454zm7.926.019c.156.644.644 1.477.85 1.45.364-.045.262-.855-.175-1.383-.555-.673-.828-.7-.675-.067zm10.308.067c-.433.524-.537 1.317-.184 1.4.194.047.703-.822.86-1.467.152-.633-.121-.606-.676.067zm7.763.21c-.264.426-.966 1.148-1.559 1.604-.592.455-1.188 1-1.323 1.21-.344.532-.306 1.318.1 2.132.192.38.39 1.058.442 1.505.082.7.035.884-.343 1.342-.6.727-1.276.977-2.39.883-.731-.062-1.04-.184-1.433-.568-.275-.27-.553-.435-.619-.369-.064.067-.129 1.01-.143 2.095-.024 1.86-.006 1.975.308 1.975.183 0 .588-.277.9-.615.468-.505.57-.555.57-.28 0 .403.616 1.239.914 1.239.302 0 .727-.52.856-1.05l.11-.448.481.491c.265.27.636.49.826.49.456 0 .752-.6.64-1.299l-.089-.564.536.218c.294.12.725.166.957.103.35-.095.418-.212.396-.677a1.759 1.759 0 0 0-.41-.978l-.382-.415h.526c.322 0 .71-.167 1-.43l.474-.43-.552-.516c-.303-.284-.663-.517-.801-.517s-.25-.085-.25-.19c0-.119.11-.14.295-.053.515.239 2.24.283 3.054.078.919-.233 2.051-.94 2.051-1.283 0-.296-.863-.616-1.66-.616-1.031 0-2.518.51-2.618.898-.08.308-.031.332.45.226.295-.065.84-.161 1.212-.213 1.163-.163.442.282-.773.477-.596.095-1.224.217-1.397.27-.282.088-.277.047.06-.415.45-.62.393-1.075-.17-1.365-.3-.155-.337-.218-.13-.22.158-.001.759-.312 1.333-.69 1.164-.767 1.91-.948 1.09-.265a6.155 6.155 0 0 1-1.14.708c-.683.314-.722.371-.5.727.17.275 1.581-.323 2.64-1.119.703-.529 1.428-1.663 1.207-1.888-.234-.24-1.62-.067-2.298.285-.574.298-2.453 1.734-2.707 2.068-.135.177-.675.345-.674.21 0-.069.217-.25.48-.402 1.28-.742 1.969-2.81 1.246-3.735l-.312-.4-.48.776zm-13.945.848c-.297.856-.255 1.26.192 1.842l.33.43.334-.43c.397-.512.429-1.048.099-1.698-.461-.909-.678-.941-.955-.144zm2.172-.436c-.71.83-.812 1.614-.296 2.278l.333.43.334-.43c.39-.502.443-1.482.113-2.13-.214-.42-.243-.43-.484-.148zm-24.734.003c-.348.243.62 1.431 1.618 1.983 1.108.615 3.585 1.253 5.432 1.4l1.435.116-.417-.34c-.23-.187-1.076-.497-1.88-.688-1.466-.349-3.02-.979-3.02-1.225 0-.194 1.282.087 2.574.565 2.08.77 1.095-.396-1.064-1.26-1.145-.457-1.724-.582-2.944-.635-.836-.036-1.616.002-1.734.084zm43.865.307c-.683.238-1.48.554-1.772.703-.49.251-1.107.867-1.115 1.115-.002.06.509-.082 1.135-.314 1.295-.48 2.574-.76 2.574-.564 0 .261-1.449.855-2.948 1.208-.842.198-1.719.512-1.95.698l-.418.338 1.434-.113c1.85-.146 4.327-.781 5.433-1.395.988-.547 1.97-1.744 1.617-1.972-.477-.31-2.727-.142-3.99.296zm-24.21.342c-.104.654.19 1.814.473 1.858.091.015.27-.192.395-.46.258-.547.07-1.246-.47-1.743-.28-.259-.305-.237-.398.345zm8.132-.325c-.568.663-.685 1.074-.481 1.702.224.692.375.741.633.206.309-.64.368-1.045.241-1.65-.115-.549-.133-.56-.393-.258zm-6.714.204c-.275.523-.22 1.258.135 1.806l.316.489.274-.398c.405-.59.347-1.396-.135-1.856-.405-.388-.408-.389-.59-.041zm5.087.072c-.444.482-.488 1.263-.102 1.825l.273.398.316-.489c.366-.566.413-1.409.103-1.841-.2-.28-.24-.274-.59.107zm-4.148 1.864c-.324.47-.364 1.497-.082 2.126.258.578.381.554.816-.163.407-.672.361-1.276-.15-1.959l-.306-.41-.278.405zm1.498.147c-.142.28-.257.712-.257.963 0 .434.473 1.454.675 1.454.201 0 .675-1.02.675-1.454 0-.52-.436-1.47-.675-1.47-.088 0-.276.228-.418.507zm1.724-.116c-.494.768-.527 1.268-.128 1.926.438.723.56.748.82.169.293-.656.24-1.705-.11-2.144l-.304-.384-.278.433zm-4.762.12c-.368.414-.407 1.208-.1 1.983l.206.516.41-.483c.49-.579.538-1.465.109-2.006l-.3-.377-.325.367zm6.261.026c-.401.585-.344 1.424.135 1.99l.41.483.205-.516c.32-.806.27-1.596-.125-2l-.35-.356-.274.4zm-25.371.503c-.784.158-1.4.447-1.4.656 0 .264.774.872 1.566 1.23.754.34 3.358.677 5.269.683l.675.002-.506-.416c-.35-.288-.818-.45-1.52-.527-.556-.061-1.268-.193-1.58-.292-.837-.265-.323-.493.834-.37.61.065 1.082.025 1.336-.113.543-.296.271-.419-1.674-.757-1.734-.301-1.946-.308-3-.096zm42.159.073c-.688.131-1.447.29-1.688.351-.428.11-.43.117-.1.37.253.194.594.234 1.35.161 1.221-.118 1.763.11.907.381-.313.1-1.025.23-1.581.292-.702.077-1.169.24-1.52.527l-.506.416.675-.002c3.165-.01 5.53-.526 6.454-1.411.51-.488.483-.625-.174-.904-.867-.37-2.442-.444-3.817-.181zm-22.524 1.74c-.624.936-.58 1.103.287 1.103.402 0 .77-.04.82-.09.15-.154-.044-.845-.36-1.272l-.302-.408-.445.667zm1.701-.117c-.159.274-.29.662-.29.86 0 .306.103.36.676.36.573 0 .675-.054.675-.36 0-.362-.495-1.36-.675-1.36-.053 0-.226.225-.386.5zm1.688 0c-.16.274-.29.662-.29.86 0 .306.103.36.675.36.573 0 .676-.054.676-.36 0-.362-.496-1.36-.675-1.36-.053 0-.227.225-.386.5zm1.67-.074c-.151.234-.293.602-.315.817-.037.352.04.397.76.444.579.038.802-.011.802-.175 0-.213-.786-1.512-.915-1.512-.032 0-.182.192-.333.426zm-6.104.14c-.265.702-1.728 1.048-2.363.558-.477-.368-.581-.324-.581.246 0 .582.494 1.135 1.124 1.258.45.088.672-.198.502-.65-.078-.207.066-.258.739-.258.743 0 .846-.046.938-.417.056-.23.025-.559-.07-.732-.165-.299-.178-.3-.289-.005zm7.613.094c-.235.755.026 1.06.907 1.06.774 0 .808.02.79.474-.015.409.039.465.404.414.615-.085 1.181-.692 1.181-1.266 0-.488-.002-.49-.497-.228-.879.463-1.806.28-2.394-.475l-.275-.352-.116.373zM2.312 21.689c-.75.227-1.603.729-1.603.942 0 .103.323.376.717.606.64.374.916.419 2.574.419 1.021 0 2.082-.064 2.358-.142l.503-.142-.418-.33c-.277-.219-.57-.298-.868-.234-.585.123-1.73-.095-1.536-.293.081-.083.685-.181 1.341-.218.748-.042 1.36-.178 1.637-.363.243-.163.443-.326.443-.362 0-.137-4.662-.03-5.148.117zm5.883-.02c-.6.147-1.748.826-1.748 1.035 0 .379 1.308.78 2.48.759 1.504-.026 1.86-.139 1.569-.497-.138-.17-.52-.256-1.126-.256-.569 0-.878-.066-.813-.172.057-.095.332-.172.612-.172.632 0 1.16-.277 1.16-.609 0-.278-1.155-.325-2.134-.088zm29.475.064c0 .354.512.633 1.16.633.28 0 .555.077.613.172.064.106-.245.172-.814.172-.606 0-.988.087-1.126.256-.291.358.065.47 1.57.497 1.18.02 2.48-.38 2.48-.766 0-.08-.337-.346-.748-.591-.952-.569-3.135-.829-3.135-.373zm2.87-.177c0 .313 1.036.682 2.079.74.656.038 1.26.136 1.342.22.194.198-.952.415-1.537.292-.299-.064-.59.015-.868.234l-.417.33.502.142c.276.078 1.337.142 2.358.142 1.658 0 1.934-.045 2.574-.419.395-.23.718-.507.718-.614 0-.108-.361-.384-.802-.614-.725-.378-1.047-.423-3.376-.476-1.415-.032-2.573-.022-2.573.023zm-19.747 1.41c0 .07.165.426.367.792.253.46.426.615.559.502.16-.135.978.276 1.594.802.04.034-.008.145-.108.247-.13.132-.303.104-.606-.098-.316-.21-.456-.231-.548-.08-.07.116-.004.273.153.363.396.226.347.368-.256.731-.475.286-.503.343-.253.53.154.114.28.257.28.318 0 .24-.655.09-1.075-.247-.404-.323-.445-.466-.445-1.545 0-1.114-.025-1.195-.408-1.293-.85-.218-1.022-.06-1.076.989-.099 1.905.66 2.827 2.204 2.68.486-.047 1.004-.137 1.151-.201.156-.068.43.018.656.204l.387.32-.866.648c-.476.357-.865.7-.863.763.002.063.381.367.844.675.462.308.84.618.84.688-.003.265-1.423 1.054-1.61.895-.127-.106-.313.069-.571.538-.212.383-.35.73-.31.771.04.042.43.026.865-.035.621-.087.773-.17.708-.388-.055-.188.184-.46.741-.847l.824-.57.853.57c.587.392.828.657.77.847-.065.218.085.3.708.388.435.06.82.081.854.045.053-.053-.522-1.188-.749-1.48-.035-.044-.124.021-.2.145-.105.174-.293.114-.828-.263-.38-.269-.694-.54-.698-.603-.003-.063.374-.398.838-.746.465-.348.806-.696.76-.774-.048-.077-.428-.36-.845-.63-.417-.268-.759-.544-.759-.613 0-.069.18-.245.399-.392.307-.205.504-.226.855-.09.665.258 1.823.216 2.238-.08.52-.372.926-1.589.864-2.592L28.98 24h-1.351l-.084 1.263c-.071 1.061-.148 1.315-.483 1.591-.424.35-1.036.443-1.036.157a.17.17 0 0 1 .169-.172c.193 0 .235-.513.042-.522-.07-.003-.273-.118-.45-.255-.309-.238-.31-.266-.032-.58.387-.436.034-.681-.403-.28-.22.204-.398.244-.592.133-.232-.132-.143-.25.53-.696.57-.377.847-.476.933-.335.067.111.15.166.185.121.227-.291.802-1.426.75-1.48-.035-.035-.42-.015-.855.046-.623.087-.773.17-.708.388.058.19-.18.453-.755.837l-.84.56-.838-.56c-.614-.41-.815-.64-.748-.861.064-.215-.003-.301-.238-.301-.18 0-.565-.049-.855-.108-.29-.059-.527-.05-.527.02zm15.733.647c.035.118.517.439 1.069.712.552.273.914.53.804.57-.11.04-.429-.049-.709-.196-.663-.35-.695-.343-.695.14 0 .44.432.698 1.621.971.68.157 1.586.048 1.586-.191 0-.372-1.187-1.459-1.988-1.82-.98-.441-1.792-.531-1.688-.186zm3 .116c-.868.135-.702.21 1.132.51 1.244.203 2.77.841 2.069.865-.373.012-1.082-.15-2.676-.61l-.404-.117.39.538c.75 1.033 4.062 1.797 5.44 1.255.254-.1.463-.248.463-.327 0-.22-.866-.998-1.442-1.293-1.213-.624-3.648-1.025-4.971-.82zm-28.929 2.195c-.236.364-.479.913-.539 1.218-.096.49-.065.557.257.557.955 0 2.619-1.371 2.518-2.076-.054-.374-.094-.358-.869.326-1.077.952-1.282.9-.4-.1.189-.212.26-.387.158-.387-.101 0-.3-.044-.44-.1-.17-.066-.4.122-.685.562zm24.542-.243c0 .704 1.656 2.018 2.544 2.018.324 0 .354-.066.258-.557-.159-.81-.91-1.902-1.224-1.78-.14.056-.339.1-.44.1-.101 0-.03.175.157.387.189.213.4.492.472.62.191.341-.415-.013-.839-.49-.184-.207-.468-.45-.631-.539-.244-.133-.297-.09-.297.24zm-10.962.211c-.013.256-.39.209-.478-.06-.047-.144.03-.208.206-.171.155.033.277.137.272.231zm-18.005.424c-.884.517-2.088 1.778-2.088 2.188 0 .158.258.227.844.227.612 0 .935.093 1.173.335.348.355 2.61 5.897 2.796 6.848.06.307.178.56.264.56.085 0 .155.204.155.453 0 .25.168.796.372 1.213.367.75.367.766.057 1.354-.277.524-.287.653-.084 1.067.273.56 1.271 1.543 1.708 1.684.17.056.31.243.31.418 0 .398.925 1.208 1.379 1.208.306 0 .333-.09.271-.903-.038-.497-.12-1.02-.184-1.162-.083-.185.157-.436.855-.894 1.577-1.034 2.164-1.226 3.789-1.242 1.786-.017 2.015-.172 1.502-1.019-.332-.547-.337-.593-.058-.518.343.091 1.222-.534 1.222-.868 0-.144-.175-.19-.525-.138-.594.09-.818-.145-.822-.86-.003-.568.546-.998 1.274-.998.304 0 .65-.139.818-.328.282-.318.262-.33-.69-.397-.832-.059-1.03-.015-1.29.285l-.306.354.176-.369c.131-.273.113-.498-.072-.875-.202-.413-.364-.512-.882-.539-.349-.018-.78-.05-.96-.071-.205-.025-.468.176-.717.546-.215.322-.392.506-.392.41 0-.096.16-.382.357-.637.347-.45.348-.47.043-.71-.64-.503-1.744.153-2.098 1.245-.3.926-.131 1.123.627.728.873-.453 1.042-.419 1.103.227.08.837.535.815 1.298-.06l.64-.736.108.55c.066.333.21.549.37.549.233 0 .232.044-.009.419-.148.23-.245.637-.215.903.036.315-.044.544-.228.656-3.535 2.149-4.644 2.385-5.283 1.126-.229-.451-.36-.523-.942-.523-.496 0-.7-.08-.767-.302-.133-.438-1.1-2.484-1.275-2.699-.186-.227-1.999-4.03-1.999-4.193 0-.065.337-.3.748-.523.646-.35 1.748-1.473 2.2-2.244.22-.375-.725-.079-1.387.434-.677.526-.712.268-.066-.489.264-.31.52-.78.568-1.044.085-.47.08-.474-.27-.178-.917.773-1.675 1.565-1.986 2.077-.378.62-.57.61-.691-.04-.067-.359.034-.498.613-.844.381-.228 1.149-.78 1.706-1.227l1.013-.813-.652.118c-.359.065-1.093.354-1.632.642-1.22.652-1.722.553-.598-.118.7-.418.775-.511.502-.62-.547-.219-.799-.166-1.693.357zm33.962-.357c-.272.109-.197.202.503.62 1.123.671.622.77-.599.118-.539-.288-1.273-.577-1.631-.641l-.652-.118 1.097.883c1.657 1.334 2.887 1.91 4.077 1.91.704 0 .986-.065.986-.227 0-.41-1.204-1.671-2.087-2.188-.895-.523-1.146-.576-1.694-.357zm-16.736.346c.051.084-.026.2-.173.258-.464.181-.63.119-.407-.154.238-.293.443-.33.58-.104zm1.783.104c.175.215.152.258-.138.258-.37 0-.6-.223-.42-.407.17-.173.331-.13.558.149zm-12.566.47c-.28.686-.335 1.467-.125 1.803.27.435 1.886-1.041 1.889-1.726 0-.218-.733.072-.964.38-.18.242-.207.222-.214-.153-.004-.237-.08-.545-.167-.686-.125-.201-.213-.12-.419.382zm2.12-.158c-.353.915-.204 2.354.245 2.354.243 0 1.087-1.033 1.087-1.33 0-.324-.493-.384-.665-.082-.14.244-.171.206-.185-.222-.01-.284-.08-.671-.156-.86-.128-.32-.151-.31-.325.14zm2.024.213c-.403.697-.438 1.077-.158 1.703.257.576.414.553.822-.12.502-.83.587-1.32.28-1.632-.238-.244-.28-.215-.442.316l-.179.584.067-.731c.037-.402.044-.731.016-.731-.029 0-.211.275-.406.611zm14.091.12l.067.73-.179-.583c-.162-.53-.203-.56-.442-.316a.694.694 0 0 0-.161.67c.14.55.743 1.52.944 1.52.09 0 .255-.31.367-.688.175-.598.16-.768-.12-1.304-.451-.864-.553-.87-.476-.03zm2.035-.356c-.057.22-.108.592-.112.829-.006.369-.031.388-.176.136-.172-.302-.665-.242-.665.081 0 .308.848 1.331 1.103 1.331.32 0 .478-.7.372-1.66-.103-.93-.37-1.296-.522-.717zm2.028-.128a2.39 2.39 0 0 0-.117.67c-.005.33-.03.341-.212.097-.23-.31-.965-.6-.964-.38.002.346.721 1.292 1.218 1.6.485.3.561.308.693.068.186-.338.003-1.64-.288-2.045-.206-.287-.225-.288-.33-.01zm3.228.403c.047.257.302.722.567 1.033.615.722.628 1.102.017.517-.517-.495-1.706-.864-1.466-.455.756 1.29 2.592 2.728 3.482 2.728.94 0-.377-2.428-2.05-3.779l-.634-.512.084.468zm-13.538.058c.05.083-.101.24-.336.348-.33.154-.485.149-.686-.022-.233-.197-.23-.241.024-.431.292-.218.836-.16.997.105zm-12.79.304c-1.026.671-1.99 2.449-1.99 3.67 0 .798.021.84.38.729.652-.202 1.45-.919 1.905-1.709.402-.698.417-.795.193-1.23l-.243-.473-.263.518c-.144.285-.384.621-.532.747-.242.204-.251.178-.091-.25.098-.264.326-.69.507-.95.282-.404.742-1.401.629-1.364-.021.007-.244.147-.495.312zm6.2.463c-.241.59-.238.679.045 1.173.427.744.625.536.625-.656 0-1.216-.29-1.441-.67-.517zM29.3 27.42c-.14.375-.001 2 .175 2.045.088.022.298-.2.466-.494.282-.492.285-.585.05-1.162-.267-.649-.536-.8-.69-.389zm6.514-.015c0 .118.19.5.423.85.431.646.814 1.508.67 1.508-.043 0-.296-.306-.562-.68l-.484-.68-.197.441c-.17.38-.136.549.24 1.204.436.758 1.61 1.78 2.045 1.78.313 0 .3-1.381-.02-2.162-.368-.899-1.243-2.07-1.707-2.286-.313-.146-.408-.14-.408.025zm-21.648.982c-.054.142-.186.547-.292.9-.207.686-.507 1.021-.507.567 0-.15.111-.545.247-.876l.247-.603-.506.304c-.79.476-1.214 2.475-.713 3.367.168.301 1.135-.683 1.526-1.553.36-.803.398-1.04.259-1.65-.1-.435-.2-.613-.261-.456zm1.825.467c-.064.388-.229.848-.366 1.023-.228.29-.24.267-.136-.278.114-.593.113-.594-.287-.324-.463.312-.625 1.468-.319 2.288l.182.487.433-.412c.882-.84 1.27-2.204.858-3.007l-.248-.483-.117.706zm15.621-.167c-.35.863.034 2.136.89 2.951l.432.412.182-.487c.309-.828.145-1.975-.327-2.293l-.409-.276.117.594c.178.908-.207.396-.459-.61l-.207-.828-.219.537zm1.935.13c-.162.876.223 1.96.96 2.712.355.36.707.616.785.567.289-.182.346-1.434.103-2.267-.177-.61-.387-.93-.751-1.15l-.506-.304.247.603c.136.331.245.74.242.909-.005.283-.024.281-.25-.024-.136-.183-.294-.59-.352-.906-.146-.794-.347-.853-.478-.14zm-8.869.023c.37.25.672.48.672.514 0 .033-.304.265-.675.516l-.675.455-.675-.455c-.372-.25-.675-.49-.675-.533 0-.074 1.206-.95 1.308-.95.027 0 .351.204.72.453zm-6.74 1.946c-.116.657-.3 1.27-.41 1.364-.11.093-.502.194-.872.224l-.673.056.573.318c.315.175.92.33 1.343.345l.77.025.052-.645c.041-.51-.007-.645-.23-.645-.262 0-.263-.022-.003-.315.465-.522.294-1.922-.233-1.922-.06 0-.203.538-.318 1.195zm11.496-.988c-.295.3-.248 1.35.077 1.715.26.293.26.315 0 .315-.375 0-.396 1.17-.023 1.315.312.122 1.756-.23 2.09-.51.195-.164.098-.22-.504-.289l-.745-.086-.229-1.333c-.233-1.36-.31-1.49-.666-1.127zm2.034 3.1c-.467.23-.473.34-.042.736.185.172.337.412.337.535 0 .123.361.397.802.61.441.212.859.416.928.452.232.121.13-1.004-.138-1.533-.206-.406-1.174-1.068-1.46-.998a6.313 6.313 0 0 0-.427.198zm6.609.07c.08.213.026.257-.235.187-.273-.073-.34-.007-.34.335 0 .341.064.405.323.32.262-.084.307-.037.234.247-.071.277-.01.352.287.352.296 0 .357-.075.286-.352-.073-.284-.028-.33.234-.246.26.084.323.02.323-.32 0-.343-.066-.409-.34-.336-.261.07-.316.026-.235-.188.078-.205.007-.279-.268-.279-.276 0-.346.074-.27.28zm-8.087.36c-.549.052-.738.168-1.001.615-.179.303-.305.629-.282.724.023.094-.054.075-.172-.043-.24-.241-2.341-.304-2.341-.07 0 .36.723.773 1.375.787.552.01.767.111 1.04.482.294.4.314.534.14.922-.168.377-.289.44-.71.378-.644-.096-.746.069-.352.565.204.257.493.39.843.39.581 0 .65.181.337.882-.108.242-.148.489-.088.55.06.06.622.168 1.25.238 1.997.224 4.315.816 5.43 1.386.96.492 1.136.53 1.615.354.295-.109.707-.198.916-.198.85 0 2.018-.971 2.914-2.426l.28-.454-.871-.107c-1.123-.137-2.498-.137-3.787 0-.93.099-1.007.137-.836.416.295.481-.121.852-.952.847-1.3-.006-3.481-.98-3.481-1.554 0-.135.627-.076 1.06.1.27.11.29.044.194-.63-.058-.413-.24-.945-.402-1.182-.162-.237-.333-.84-.38-1.339-.06-.628-.207-1.039-.477-1.332-.215-.234-.435-.411-.488-.395a9.238 9.238 0 0 1-.774.094zm.93 2.294c0 .076.106.163.236.193.195.046.197.093.016.263-.177.166-.275.093-.487-.363-.146-.314-.372-.661-.502-.771-.192-.162-.262-.108-.365.277-.07.263-.112.788-.095 1.166.033.68.155.858 1.037 1.51.412.304.412.304-.094.046-.897-.458-1.097-.703-1.097-1.347 0-.411-.15-.8-.458-1.185-.366-.457-.38-.504-.074-.235.328.288.407.3.54.086.086-.138.157-.44.158-.672.003-.402.03-.391.594.237.325.361.59.72.59.795zm-6.372-.871c-.301.187-.548.434-.548.547 0 .114-.213 0-.474-.255-.547-.535-1.214-.622-1.214-.158 0 .166.133.544.295.837.41.743 1.393 1.907 1.393 1.651 0-.116.272-.518.606-.895.41-.462.635-.908.697-1.376.104-.787.014-.829-.755-.351zm.97.119c0 .253-.09.718-.203 1.034-.176.497-.163.612.105.872.22.213.33.24.384.09.042-.115.262-.489.49-.83l.412-.62-.383-.494c-.485-.627-.804-.648-.804-.052zm-4.108.025c-.366.412-.356.49.142 1.093.233.281.422.622.422.756 0 .322.242.312.513-.021.179-.219.167-.373-.063-.866-.155-.33-.28-.752-.28-.938 0-.425-.368-.437-.734-.024zm-6.358.179c-.408.222-.614.473-.673.817-.06.35-.198.512-.465.551-.5.073-.479.3.06.66.363.242.529.26.95.097l.51-.196-.097.61c-.084.529-.059.594.19.485.158-.069.579-.143.936-.165.986-.061 1.522-.562 1.662-1.55.078-.555.045-.97-.1-1.251l-.217-.422-.363.52c-.2.285-.434.701-.522.924-.117.298-.162.326-.17.104-.02-.55-.798-.348-1.16.301-.152.274-.192.287-.196.064-.002-.154.11-.376.248-.494.257-.217.361-1.376.124-1.376-.07 0-.394.144-.717.32zm16.981-.195c-.346.353.355 1.96 1.02 2.34.367.21 1.035-.007 1.243-.404.149-.283.127-.342-.13-.342a.719.719 0 0 1-.715-.703c0-.404-1.173-1.141-1.418-.89zm5.026.12c-.565.252-1.298 1.131-1.497 1.798-.122.41-.12.41.933.306.58-.058 1.074-.127 1.096-.153.128-.146.258-2.196.138-2.19-.078.003-.38.111-.67.24zm.949.012c0 .143.15.258.337.258.188 0 .338-.115.338-.258 0-.144-.15-.258-.337-.258-.188 0-.338.114-.338.258zm.881.859c.026.614.123 1.12.216 1.125.093.005.613.052 1.156.105.975.096.986.092.867-.308-.204-.682-.94-1.547-1.534-1.8-.31-.131-.605-.24-.657-.24-.052 0-.073.503-.047 1.118zm-.881.001c0 .143.15.258.337.258.188 0 .338-.115.338-.258 0-.143-.15-.258-.337-.258-.188 0-.338.115-.338.258zm.032.903c.031.166.169.301.306.301.136 0 .274-.135.305-.3.04-.212-.051-.302-.306-.302-.254 0-.345.09-.305.301zm-15.732.307c-.23.24-.564.569-.743.731-.865.787-1.11 1.074-1.11 1.303 0 .21.128.2.795-.058 1.187-.459 1.568-.875 1.568-1.71 0-.386-.02-.702-.046-.702-.025 0-.234.196-.464.436zm2.648-.321c-.23.235-.101 1.058.234 1.492.196.254.655.533 1.055.642.39.107.803.273.92.37.155.13.21.089.21-.156 0-.19-.461-.755-1.078-1.321a121.956 121.956 0 0 1-1.154-1.066c-.04-.042-.125-.024-.187.039zm-1.795.625c-.005.655.388 1.669.648 1.669.331 0 .703-.692.792-1.475l.097-.848-.45.516c-.249.287-.482.431-.523.326a3.04 3.04 0 0 0-.317-.516c-.223-.301-.242-.277-.247.328zm13.096.213a.276.276 0 0 0 .158.365c.33.13.48-.026.353-.364-.128-.34-.383-.341-.511-.001zm.936.02c.071.377.562.43.562.062 0-.14-.14-.283-.31-.317-.226-.044-.295.026-.252.256zm.89-.098c-.174.287.217.616.45.379.195-.199.073-.566-.188-.566-.081 0-.2.084-.262.187zm.853-.015c-.141.233.05.517.348.517.133 0 .243-.155.243-.345 0-.356-.407-.474-.59-.172zm1.041-.057c-.205.21-.116.574.14.574.141 0 .254-.153.254-.345 0-.342-.18-.447-.394-.229zm-4.594.244c-.063.103-.036.267.06.364.213.217.54.034.54-.303 0-.29-.435-.334-.6-.06zm5.354.099c.033.174.173.317.311.317.362 0 .31-.5-.06-.573-.225-.044-.294.026-.25.256zm-18.173.733c-.185.187-.965.612-1.733.946-.768.334-1.752.883-2.186 1.22-.888.692-1.489.744-1.467.127.009-.26-.084-.387-.284-.387-.664 0-1.177 1.053-.833 1.71.157.298.13.446-.154.813-.438.568-.442 1.264-.008 1.825.185.24.337.56.337.712 0 .408.293.33.61-.163l.28-.436.306.511c.168.281.456.594.64.694.407.223 1.199.235 1.525.024.168-.108.38-.01.717.333.561.572 1.258.769 1.875.53.388-.15.513-.099 1.025.423.32.327.652.594.736.594.084 0 .405-.265.713-.59.48-.505.62-.566.978-.428.587.228 1.64-.096 2.053-.632.279-.36.396-.405.673-.254.792.432 1.866-.045 2.254-1 .165-.408.19-.418.259-.107.141.64.715 1.074.715.54 0-.13.151-.432.337-.673.44-.569.442-1.523.006-1.926-.251-.231-.293-.383-.17-.618.381-.724.02-1.745-.683-1.933-.258-.068-.344-.017-.323.194.088.92-.458.968-1.489.132-.395-.32-1.478-.909-2.408-1.308-.929-.4-1.768-.854-1.865-1.008-.136-.218-.197-.23-.268-.055-.051.125-.264.43-.472.677-.414.49-.442.476-1.144-.52-.204-.29-.231-.29-.552.033zm.602 2.714c-.192.644-.438 1.904-.548 2.8-.191 1.554-.21 1.606-.418 1.119-.281-.66-.164-1.408.548-3.484.315-.92.584-1.828.598-2.017.022-.308.032-.305.096.034.04.208-.084.905-.276 1.548zm2.528 2.03c.23.732.2 1.688-.064 2.057-.199.277-.24.149-.333-1.042-.059-.747-.298-2.055-.531-2.907-.234-.851-.422-1.664-.42-1.806.005-.22.82 2.015 1.348 3.698zm-4.029-2.759c-.282.328-.714.947-.962 1.377-.436.76-.758.887-.75.297.005-.379.414-.89 1.32-1.653.923-.776 1.049-.783.392-.02zm5.668.683c.37.343.549.667.549.992 0 .582-.29.634-.493.09-.08-.216-.405-.739-.72-1.161-1.087-1.456-.97-1.442.664.079zM19.78 44.17c0 .12-.07.217-.157.217-.248 0-.7-.528-.596-.698.123-.203.753.2.753.481zm8.86-.018c-.297.22-.59.174-.59-.093 0-.075.171-.214.38-.31.482-.224.64.081.21.403z" fill="currentColor"/></svg> </span><!----></span></li><!--]--></ul></li><li class="_half-width _align-end tw-h-12 tw-mt-3 bre-inline-menu__item"><span><span class="nuxt-icon tw-text-gray-2 tw-text-5xl _no-icon-margin" title="16+"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 48 48" fill="none"><circle cx="24" cy="24" r="23" stroke="currentColor" stroke-width="2"/><path fill="currentColor" d="M10.11 21.188v-1.516c.703-.031 1.195-.078 1.476-.14.448-.1.812-.298 1.094-.595.192-.203.338-.474.437-.812.057-.203.086-.354.086-.453h1.852V29h-2.282v-7.813H10.11Zm10.77 4.226c0 .61.165 1.107.493 1.492a1.57 1.57 0 0 0 1.25.578c.495 0 .883-.185 1.164-.554.286-.375.43-.86.43-1.453 0-.662-.162-1.167-.485-1.516a1.545 1.545 0 0 0-1.187-.531c-.38 0-.717.114-1.008.343-.438.339-.656.886-.656 1.641Zm3.133-4.89c0-.183-.07-.383-.21-.602-.24-.354-.602-.531-1.086-.531-.724 0-1.24.406-1.547 1.218-.167.448-.282 1.11-.344 1.985.276-.328.596-.568.96-.719a3.243 3.243 0 0 1 1.25-.227c1.006 0 1.829.342 2.47 1.024.645.682.968 1.555.968 2.617 0 1.057-.315 1.99-.945 2.797-.63.807-1.61 1.21-2.937 1.21-1.427 0-2.48-.595-3.157-1.788-.526-.932-.789-2.136-.789-3.61 0-.864.037-1.567.11-2.109.13-.963.382-1.766.757-2.406a3.89 3.89 0 0 1 1.266-1.32c.526-.334 1.154-.5 1.883-.5 1.052 0 1.89.27 2.515.812.625.537.977 1.253 1.055 2.148h-2.219Zm3.85 5.257v-2.039h3.203V20.54h2.055v3.203h3.203v2.04H33.12V29h-2.055v-3.219h-3.203Z"/></svg> </span><!----></span></li><!--]--></ul></div><div class="bre-footer-section"><ul class="bre-inline-menu _min-gap-x _no-gap-y"><!--[--><li class="_footer-copyright bre-inline-menu__item"><span><!----><span>&copy;&nbsp;АНО БРЭ, 2022&nbsp;&mdash;&nbsp;2025. Все права защищены.</span></span></li><li class="-hide-on-tablet _stretch-width -text-caption-1 text-decoration-underline tw-text-gray-2 tw-cursor-pointer bre-inline-menu__item"><span data-v-tippy><!--[--><!--[-->Условия использования информации.<!--]--><!--]--><span style="display:none;" class=""><span>Вся информация, размещенная на данном портале, предназначена только для использования в личных целях и не подлежит дальнейшему воспроизведению.<br />Медиаконтент (иллюстрации, фотографии, видео, аудиоматериалы, карты, скан&nbsp;образы) может быть использован только с разрешения правообладателей.</span></span></span></li><li class="-show-on-tablet _stretch-width -text-caption-1 text-decoration-underline tw-text-gray-2 tw-cursor-pointer bre-inline-menu__item"><span data-v-tippy><!--[--><!--[-->Условия использования информации.<!--]--><!--]--><span style="display:none;" class=""><span>Вся информация, размещенная на данном портале, предназначена только для использования в личных целях и не подлежит дальнейшему воспроизведению.<br />Медиаконтент (иллюстрации, фотографии, видео, аудиоматериалы, карты, скан&nbsp;образы) может быть использован только с разрешения правообладателей.</span></span></span></li><!--]--></ul></div><!--]--></div></footer><span></span></div></div><!----><!--]--></div><script type="application/json" id="__NUXT_DATA__" data-ssr="true">[["Reactive",1],{"data":2,"state":3,"once":4,"_errors":5,"serverRendered":6,"path":7,"pinia":8},{},{"$sreferer":-1},["Set"],{},true,"/c/obyknovennoe-differentsial-noe-uravnenie-674fde",{"preview":9,"auth-token":11,"search":14,"page-loading":19,"search-suggestions":20,"filters":23,"component-header":25,"collection":26,"article":27,"article-media-slider":1606,"modal":1614,"article-notes":1615,"article-loc":1616,"article-sidebar":1617,"author":1618,"article-metrics":1619,"collection-articles-favorite":1620,"article-collections":1621,"article-versions":1622,"error-form":1631,"text-selection":1632},{"get_":10,"getError":10,"getPending":6},null,{"post_":10,"postError":10,"postPending":6,"savedRoutePath":10,"isAuthorized":12,"firstNameLetter":13,"fullName":13,"userId":13,"processingRefresh":12,"showAuthModal":10},false,"",{"searchQuery":13,"savedList":15,"limit":16,"offset":17,"loading":12,"isSearchOpened":12,"page":18},[],10,0,1,{"loading":12},{"get_":10,"getError":10,"getPending":6,"headerSearchQuery":13,"pageSearchQuery":13,"selectedSuggestionIndex":21,"focusOn":22},-1,"header",{"get_":10,"getError":10,"getPending":6,"loading":12,"isExtendedSearchOpened":12,"chosenFilters":24},{},{"showCategories":12,"isFixed":12},{"get_":10,"getError":10,"getPending":6,"put_":-1,"putError":10,"putPending":6,"delete_":-1,"deleteError":10,"deletePending":6},{"get_":28,"getError":10,"getPending":12,"headers":1603,"timeline":1604,"isFullScreen":12,"getCache":1605},{"article":29,"components":1598},{"content":30,"createdAt":1572,"id":1573,"lastVersionId":1574,"meta":1575,"sections":10,"slug":1589,"tags":1590,"updatedAt":1572},{"article":31,"biblioRecord":1540,"category":1541,"sidebar":1542,"title":1571},[32],{"content":33,"type":1539},[34],{"attrs":35,"content":37,"marks":10,"text":13,"type":1539},{"section_id":36},"1e3ea1c4-c094-4dfc-8e48-ecaca3ff7930",[38,52,72,157,184,199,218,223,255,320,373,397,457,472,507,517,546,554,562,580,585,593,601,609,627,643,658,692,706,758,778,907,920,933,985,1009,1024,1039,1095,1128,1158,1182,1216,1236,1285,1307,1321,1368,1414,1531],{"attrs":39,"content":40,"marks":10,"text":13,"type":51},{"textAlign":10},[41,49],{"attrs":10,"content":10,"marks":42,"text":47,"type":48},[43],{"attrs":44,"content":10,"marks":10,"text":13,"type":46},{"version":45},"1","bold","Обыкнове́нное дифференциа́льное уравне́ние,","text",{"attrs":10,"content":10,"marks":10,"text":50,"type":48}," уравнение, в котором неизвестной является функция от одного независимого переменного, причём в это уравнение входят не только сама неизвестная функция, но и её производные различных порядков.","paragraph",{"attrs":53,"content":54,"marks":10,"text":13,"type":51},{"textAlign":10},[55,57,70],{"attrs":10,"content":10,"marks":10,"text":56,"type":48},"Термин «дифференциальные уравнения» был предложен ",{"attrs":10,"content":10,"marks":58,"text":69,"type":48},[59],{"attrs":60,"content":10,"marks":10,"text":13,"type":68},{"content_id":61,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":64,"link_type":67,"navigation_value":10,"target":13,"version":45},"b9fd2d64-f227-4f8a-bd21-aa3e4854321f","#","2",{"slug":65,"type":66},"leibnits-gotfrid-vil-gel-m-b9fd2d","article","25","a","Г. Лейбницем",{"attrs":10,"content":10,"marks":10,"text":71,"type":48}," (G. Leibniz, 1676). Первые исследования обыкновенных дифференциальных уравнений были проведены в конце 17 в. в связи с изучением проблем механики и некоторых геометрических задач.",{"attrs":73,"content":74,"marks":10,"text":13,"type":51},{"textAlign":10},[75,77,86,88,96,97,105,107,115,117,125,127,135,137,145,147,155],{"attrs":10,"content":10,"marks":10,"text":76,"type":48},"Обыкновенные дифференциальные уравнения имеют большое прикладное значение, являясь мощным орудием исследования многих задач естествознания и техники: они широко используются в ",{"attrs":10,"content":10,"marks":78,"text":85,"type":48},[79],{"attrs":80,"content":10,"marks":10,"text":13,"type":68},{"content_id":81,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":82,"link_type":84,"navigation_value":10,"target":13,"version":45},"abd75795-6449-40a1-ae73-cdb726c8250b",{"slug":83,"type":66},"mekhanika-abd757",114,"механике",{"attrs":10,"content":10,"marks":10,"text":87,"type":48},", ",{"attrs":10,"content":10,"marks":89,"text":95,"type":48},[90],{"attrs":91,"content":10,"marks":10,"text":13,"type":68},{"content_id":92,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":93,"link_type":84,"navigation_value":10,"target":13,"version":45},"a85a510e-92f4-4964-8a69-f73927c8d43b",{"slug":94,"type":66},"astronomiia-a85a51","астрономии",{"attrs":10,"content":10,"marks":10,"text":87,"type":48},{"attrs":10,"content":10,"marks":98,"text":104,"type":48},[99],{"attrs":100,"content":10,"marks":10,"text":13,"type":68},{"content_id":101,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":102,"link_type":84,"navigation_value":10,"target":13,"version":45},"9be94c48-185f-414b-be41-222c1f807150",{"slug":103,"type":66},"fizika-9be94c","физике",{"attrs":10,"content":10,"marks":10,"text":106,"type":48},", во многих задачах ",{"attrs":10,"content":10,"marks":108,"text":114,"type":48},[109],{"attrs":110,"content":10,"marks":10,"text":13,"type":68},{"content_id":111,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":112,"link_type":84,"navigation_value":10,"target":13,"version":45},"60bfda69-19ff-467b-b784-356a4b6e9198",{"slug":113,"type":66},"obshchaia-khimiia-60bfda","химии,",{"attrs":10,"content":10,"marks":10,"text":116,"type":48}," ",{"attrs":10,"content":10,"marks":118,"text":124,"type":48},[119],{"attrs":120,"content":10,"marks":10,"text":13,"type":68},{"content_id":121,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":122,"link_type":84,"navigation_value":10,"target":13,"version":45},"ef3532de-cd79-49cd-a7e1-f63117621f7d",{"slug":123,"type":66},"biologiia-ef3532","биологии",{"attrs":10,"content":10,"marks":10,"text":126,"type":48},". Это объясняется тем, что весьма часто объективные законы, которым подчиняются те или иные явления (процессы), записываются в форме обыкновенных дифференциальных уравнений, а сами эти уравнения, таким образом, являются средством для количественного выражения этих законов. Например, законы механики Ньютона позволяют механическую задачу описания движения системы материальных точек или твёрдого тела свести к математической задаче нахождения решений обыкновенных дифференциальных уравнений. Расчёт радиотехнических схем и вычисление траекторий спутников, исследование устойчивости самолёта в полёте и выяснение течения химических реакций – всё это производится путём изучения и решения обыкновенных дифференциальных уравнений. Наиболее важные и интересные технические приложения обыкновенные дифференциальные уравнения находят в ",{"attrs":10,"content":10,"marks":128,"text":134,"type":48},[129],{"attrs":130,"content":10,"marks":10,"text":13,"type":68},{"content_id":131,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":132,"link_type":45,"navigation_value":10,"target":13,"version":45},"ef7a5d24-4288-4787-bbe8-730110571f67",{"slug":133,"type":66},"kolebaniia-ef7a5d","теории колебаний",{"attrs":10,"content":10,"marks":10,"text":136,"type":48}," и в ",{"attrs":10,"content":10,"marks":138,"text":144,"type":48},[139],{"attrs":140,"content":10,"marks":10,"text":13,"type":68},{"content_id":141,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":142,"link_type":84,"navigation_value":10,"target":13,"version":45},"d3350d39-7a8e-4d04-88e8-37270704490e",{"slug":143,"type":66},"avtomaticheskoe-upravlenie-d3350d","теории автоматического управления",{"attrs":10,"content":10,"marks":10,"text":146,"type":48},". В свою очередь, прикладные вопросы служат источником новых постановок задач в теории обыкновенных дифференциальных уравнений; именно так возникла, например, ",{"attrs":10,"content":10,"marks":148,"text":154,"type":48},[149],{"attrs":150,"content":10,"marks":10,"text":13,"type":68},{"content_id":151,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":152,"link_type":45,"navigation_value":10,"target":13,"version":45},"5f9a4af6-b2d1-4917-a45b-edb73ab489c7",{"slug":153,"type":66},"optimal-noe-upravlenie-v-matematike-5f9a4a","математическая теория оптимального управления",{"attrs":10,"content":10,"marks":10,"text":156,"type":48},".",{"attrs":158,"content":159,"marks":10,"text":13,"type":51},{"textAlign":10},[160,162,167,169,172,174,177,179,182],{"attrs":10,"content":10,"marks":10,"text":161,"type":48},"В дальнейшем независимое переменное будет обозначаться через ",{"attrs":163,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":165,"title":13},"inline","t","formula",{"attrs":10,"content":10,"marks":10,"text":168,"type":48},", неизвестные функции – через ",{"attrs":170,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":171,"title":13},"x, y, z",{"attrs":10,"content":10,"marks":10,"text":173,"type":48}," и другие, а производные этих функций по ",{"attrs":175,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":176,"title":13}," t",{"attrs":10,"content":10,"marks":10,"text":178,"type":48}," – через ",{"attrs":180,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":181,"title":13},"\\dot{x}, \\ddot{x}, \\ldots x^{(n)}",{"attrs":10,"content":10,"marks":10,"text":183,"type":48}," и т. д.",{"attrs":185,"content":186,"marks":10,"text":13,"type":51},{"textAlign":10},[187,189,192,194,197],{"attrs":10,"content":10,"marks":10,"text":188,"type":48},"Простейшее обыкновенное дифференциальное уравнение встречается уже в анализе: нахождение первообразной для данной непрерывной функции ",{"attrs":190,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":191,"title":13},"f(t)",{"attrs":10,"content":10,"marks":10,"text":193,"type":48}," является по существу задачей об определении такой неизвестной функции ",{"attrs":195,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":196,"title":13},"x=x(t)",{"attrs":10,"content":10,"marks":10,"text":198,"type":48},", которая удовлетворяет уравнению",{"attrs":200,"content":201,"marks":10,"text":13,"type":51},{"textAlign":10},[202,207,209,217],{"attrs":203,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":206,"title":13},"block","displayMode","\\dot x=f(t).\\tag{1}",{"attrs":10,"content":10,"marks":10,"text":208,"type":48},"Для доказательства разрешимости этого уравнения необходимо было построить специальный аппарат – теорию ",{"attrs":10,"content":10,"marks":210,"text":216,"type":48},[211],{"attrs":212,"content":10,"marks":10,"text":13,"type":68},{"content_id":213,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":214,"link_type":84,"navigation_value":10,"target":13,"version":45},"0f690549-406a-4ddc-a2c5-c1d67ebd451f",{"slug":215,"type":66},"integral-rimana-0f6905","интеграла Римана",{"attrs":10,"content":10,"marks":10,"text":156,"type":48},{"attrs":219,"content":220,"marks":10,"text":13,"type":51},{"textAlign":10},[221],{"attrs":10,"content":10,"marks":10,"text":222,"type":48},"Естественным обобщением уравнения (1) является обыкновенное дифференциальное уравнение первого порядка, разрешённое относительно производной:",{"attrs":224,"content":225,"marks":10,"text":13,"type":51},{"textAlign":10},[226,229,231,234,236,239,241,244,246,248,250,253],{"attrs":227,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":228,"title":13},"\\dot{x}=f(t, x),\\tag{2}",{"attrs":10,"content":10,"marks":10,"text":230,"type":48},"где ",{"attrs":232,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":233,"title":13},"f(t,x)",{"attrs":10,"content":10,"marks":10,"text":235,"type":48}," – известная функция, определённая в некоторой области ",{"attrs":237,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":238,"title":13},"D",{"attrs":10,"content":10,"marks":10,"text":240,"type":48}," плоскости ",{"attrs":242,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":243,"title":13},"t,x",{"attrs":10,"content":10,"marks":10,"text":245,"type":48},". Многие практические задачи сводятся к задаче решения (или, как часто говорят, интегрирования) этого уравнения. Решением обыкновенного дифференциального уравнения (2) называется функция ",{"attrs":247,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":196,"title":13},{"attrs":10,"content":10,"marks":10,"text":249,"type":48},", определённая и дифференцируемая на некотором интервале ",{"attrs":251,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":252,"title":13},"I",{"attrs":10,"content":10,"marks":10,"text":254,"type":48}," и удовлетворяющая условиям:",{"attrs":256,"content":257,"marks":10,"text":13,"type":51},{"textAlign":10},[258,261,263,265,267,269,270,273,275,283,285,287,289,291,293,296,298,301,303,305,307,309,311,314,316,319],{"attrs":259,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":260,"title":13},"\\begin{gathered}\n\n(t, x(t)) \\in D, \\quad t \\in I, \\\\\n\n\\dot{x}(t)=f(t, x(t)), \\quad t \\in I .\n\n\\end{gathered}",{"attrs":10,"content":10,"marks":10,"text":262,"type":48},"Решение обыкновенного дифференциального уравнения (2) геометрически можно изобразить на плоскости ",{"attrs":264,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":243,"title":13},{"attrs":10,"content":10,"marks":10,"text":266,"type":48}," в виде кривой с уравнением ",{"attrs":268,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":196,"title":13},{"attrs":10,"content":10,"marks":10,"text":87,"type":48},{"attrs":271,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":272,"title":13},"t\\in I",{"attrs":10,"content":10,"marks":10,"text":274,"type":48},". Эта кривая называется ",{"attrs":10,"content":10,"marks":276,"text":282,"type":48},[277],{"attrs":278,"content":10,"marks":10,"text":13,"type":68},{"content_id":279,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":280,"link_type":84,"navigation_value":10,"target":13,"version":45},"bc5cd38b-3c57-442b-b9e1-30bcced8bb36",{"slug":281,"type":66},"integral-naia-krivaia-bc5cd3","интегральной кривой",{"attrs":10,"content":10,"marks":10,"text":284,"type":48},", в каждой своей точке она имеет касательную и целиком лежит в области ",{"attrs":286,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":238,"title":13},{"attrs":10,"content":10,"marks":10,"text":288,"type":48},". Геометрическую интерпретацию самого уравнения (2) даёт поле направлений в области ",{"attrs":290,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":238,"title":13},{"attrs":10,"content":10,"marks":10,"text":292,"type":48},", которое получается, если через каждую точку ",{"attrs":294,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":295,"title":13},"(t,x)\\in D",{"attrs":10,"content":10,"marks":10,"text":297,"type":48}," провести отрезок ",{"attrs":299,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":300,"title":13},"l_{t,x}",{"attrs":10,"content":10,"marks":10,"text":302,"type":48}," малой длины с угловым коэффициентом ",{"attrs":304,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":233,"title":13},{"attrs":10,"content":10,"marks":10,"text":306,"type":48},". Любая интегральная кривая ",{"attrs":308,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":196,"title":13},{"attrs":10,"content":10,"marks":10,"text":310,"type":48}," в каждой своей точке ",{"attrs":312,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":313,"title":13},"(t,x(t))",{"attrs":10,"content":10,"marks":10,"text":315,"type":48}," касается отрезка ",{"attrs":317,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":318,"title":13}," l_{t,x(t)}",{"attrs":10,"content":10,"marks":10,"text":156,"type":48},{"attrs":321,"content":322,"marks":10,"text":13,"type":51},{"textAlign":10},[323,325,328,330,332,334,337,339,341,343,346,348,351,353,355,356,358,360,363,364,366,368,371],{"attrs":10,"content":10,"marks":10,"text":324,"type":48},"Ответ на вопрос о том, когда уравнение (2) имеет решение, даёт теорема существования: если ",{"attrs":326,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":327,"title":13},"f(t,x)\\in C(D)",{"attrs":10,"content":10,"marks":10,"text":329,"type":48}," (т. е. непрерывна в ",{"attrs":331,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":238,"title":13},{"attrs":10,"content":10,"marks":10,"text":333,"type":48},"), то через любую точку ",{"attrs":335,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":336,"title":13},"\\left(t_{0},x_{0}\\right)\\in D",{"attrs":10,"content":10,"marks":10,"text":338,"type":48}," проходит по крайней мере одна непрерывно дифференцируемая интегральная кривая уравнения (2), и каждая из этих кривых может быть продолжена в обе стороны вплоть до границы любой замкнутой подобласти, целиком лежащей в ",{"attrs":340,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":238,"title":13},{"attrs":10,"content":10,"marks":10,"text":342,"type":48}," и содержащей точку ",{"attrs":344,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":345,"title":13},"\\left(t_{0},x_{0}\\right)",{"attrs":10,"content":10,"marks":10,"text":347,"type":48},". Другими словами, для всякой точки ",{"attrs":349,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":350,"title":13},"\\left(l_{0},x_{0}\\right)\\in D",{"attrs":10,"content":10,"marks":10,"text":352,"type":48}," найдётся хотя бы одно непродолжаемое решение ",{"attrs":354,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":196,"title":13},{"attrs":10,"content":10,"marks":10,"text":87,"type":48},{"attrs":357,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":272,"title":13},{"attrs":10,"content":10,"marks":10,"text":359,"type":48},", такое, что ",{"attrs":361,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":362,"title":13},"x(t)\\in C^{1}(I)",{"attrs":10,"content":10,"marks":10,"text":329,"type":48},{"attrs":365,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":252,"title":13},{"attrs":10,"content":10,"marks":10,"text":367,"type":48}," вместе с производной ",{"attrs":369,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":370,"title":13},"\\dot{x}(t)",{"attrs":10,"content":10,"marks":10,"text":372,"type":48},"), ",{"attrs":374,"content":375,"marks":10,"text":13,"type":51},{"textAlign":10},[376,379,381,384,386,388,390,392,394,396],{"attrs":377,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":378,"title":13},"x\\left(t_{0}\\right)=x_{0}\\tag{3}",{"attrs":10,"content":10,"marks":10,"text":380,"type":48},"и ",{"attrs":382,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":383,"title":13},"x(t)",{"attrs":10,"content":10,"marks":10,"text":385,"type":48}," стремится к границе области ",{"attrs":387,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":238,"title":13},{"attrs":10,"content":10,"marks":10,"text":389,"type":48},", когда ",{"attrs":391,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":165,"title":13},{"attrs":10,"content":10,"marks":10,"text":393,"type":48}," стремится к правому или левому концам интервала ",{"attrs":395,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":252,"title":13},{"attrs":10,"content":10,"marks":10,"text":156,"type":48},{"attrs":398,"content":399,"marks":10,"text":13,"type":51},{"textAlign":10},[400,402,404,406,408,409,418,420,423,425,427,429,432,433,436,438,441,442,445,447,450,452,455],{"attrs":10,"content":10,"marks":10,"text":401,"type":48},"Важнейшим теоретическим вопросом является выяснение того, какие предположения о правой части обыкновенного дифференциального уравнения надо сделать и какие дополнительные условия можно присоединить к уравнению, чтобы выделить одно-единственное его решение. Справедлива следующая теорема существования и единственности: если ",{"attrs":403,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":327,"title":13},{"attrs":10,"content":10,"marks":10,"text":405,"type":48}," и удовлетворяет в ",{"attrs":407,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":238,"title":13},{"attrs":10,"content":10,"marks":10,"text":116,"type":48},{"attrs":10,"content":10,"marks":410,"text":417,"type":48},[411],{"attrs":412,"content":10,"marks":10,"text":13,"type":68},{"content_id":413,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":414,"link_type":416,"navigation_value":10,"target":13,"version":45},"ecc8ec74-4147-43da-9136-0511fb3f15c9",{"slug":415,"type":66},"uslovie-lipshitsa-ecc8ec","107","условию Липшица",{"attrs":10,"content":10,"marks":10,"text":419,"type":48}," по ",{"attrs":421,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":422,"title":13},"x",{"attrs":10,"content":10,"marks":10,"text":424,"type":48},", a ",{"attrs":426,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":336,"title":13},{"attrs":10,"content":10,"marks":10,"text":428,"type":48},", то уравнение (2) имеет единственное непродолжаемое решение, удовлетворяющее условию (3). В частности, если два решения ",{"attrs":430,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":431,"title":13},"x=x_{1}(t)",{"attrs":10,"content":10,"marks":10,"text":87,"type":48},{"attrs":434,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":435,"title":13},"t\\in I_{1}",{"attrs":10,"content":10,"marks":10,"text":437,"type":48},", и ",{"attrs":439,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":440,"title":13},"x=x_{2}(t)",{"attrs":10,"content":10,"marks":10,"text":87,"type":48},{"attrs":443,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":444,"title":13},"t \\in I_{2}",{"attrs":10,"content":10,"marks":10,"text":446,"type":48},", такого уравнения (2) совпадают хотя бы для одного значения ",{"attrs":448,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":449,"title":13},"t=t_{0}",{"attrs":10,"content":10,"marks":10,"text":451,"type":48},", т. е. ",{"attrs":453,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":454,"title":13},"x_{1}\\left(t_{0}\\right)=x_{2}\\left(t_{0}\\right)",{"attrs":10,"content":10,"marks":10,"text":456,"type":48},", то",{"attrs":458,"content":459,"marks":10,"text":13,"type":51},{"textAlign":10},[460,463,465,467,469,471],{"attrs":461,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":462,"title":13},"x_{1}(t)=x_{2}(t),\\quad t \\in I_{1} \\cap I_{2}.",{"attrs":10,"content":10,"marks":10,"text":464,"type":48},"Геометрическое содержание этой теоремы заключается в том, что вся область ",{"attrs":466,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":238,"title":13},{"attrs":10,"content":10,"marks":10,"text":468,"type":48}," покрыта интегральными кривыми уравнения (2), которые нигде не пересекаются между собой. Единственность решений имеет место и при некоторых более слабых предположениях относительно функции ",{"attrs":470,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":233,"title":13},{"attrs":10,"content":10,"marks":10,"text":156,"type":48},{"attrs":473,"content":474,"marks":10,"text":13,"type":51},{"textAlign":10},[475,477,480,482,485,487,490,492,495,497,505],{"attrs":10,"content":10,"marks":10,"text":476,"type":48},"Соотношение (3) называется начальным условием. Числа ",{"attrs":478,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":479,"title":13},"t_{0}",{"attrs":10,"content":10,"marks":10,"text":481,"type":48}," и ",{"attrs":483,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":484,"title":13},"x_{0}",{"attrs":10,"content":10,"marks":10,"text":486,"type":48}," называются начальными значениями для решения уравнения (2), а точка",{"attrs":488,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":489,"title":13}," \\left(t_{0},x_{0}\\right)",{"attrs":10,"content":10,"marks":10,"text":491,"type":48}," – начальной точкой соответствующей интегральной кривой. Задача отыскания решения этого уравнения, удовлетворяющего начальному условию (3) (или, как ещё говорят, имеющего начальные значения ",{"attrs":493,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":494,"title":13}," t_{0},x_{0}",{"attrs":10,"content":10,"marks":10,"text":496,"type":48},"), называется ",{"attrs":10,"content":10,"marks":498,"text":504,"type":48},[499],{"attrs":500,"content":10,"marks":10,"text":13,"type":68},{"content_id":501,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":502,"link_type":45,"navigation_value":10,"target":13,"version":45},"fac96b25-08c1-4eee-b84a-574777819d88",{"slug":503,"type":66},"zadacha-koshi-fac96b","задачей Коши",{"attrs":10,"content":10,"marks":10,"text":506,"type":48},", теорема даёт достаточные условия однозначной разрешимости задачи Коши (2), (3).",{"attrs":508,"content":509,"marks":10,"text":13,"type":51},{"textAlign":10},[510,512,515],{"attrs":10,"content":10,"marks":10,"text":511,"type":48},"Часто прикладные вопросы приводят к системам обыкновенных дифференциальных уравнений, в которые входят несколько неизвестных функций от одного и того же независимого переменного и их производные. Естественным обобщением уравнения (2) является нормальная форма системы дифференциальных уравнений ",{"attrs":513,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":514,"title":13},"n",{"attrs":10,"content":10,"marks":10,"text":516,"type":48},"-го порядка:",{"attrs":518,"content":519,"marks":10,"text":13,"type":51},{"textAlign":10},[520,523,524,527,529,531,532,535,536,539,541,544],{"attrs":521,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":522,"title":13},"\\dot{x}^{i}=f^{i}\\left(t, x^{1}, x^{2}, \\ldots, x^{n}\\right), \\quad i=1, \\ldots, n,\\tag{4}",{"attrs":10,"content":10,"marks":10,"text":230,"type":48},{"attrs":525,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":526,"title":13},"x^{1}, x^{2}, \\ldots, x^{n}",{"attrs":10,"content":10,"marks":10,"text":528,"type":48}," – неизвестные функции от переменного ",{"attrs":530,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":165,"title":13},{"attrs":10,"content":10,"marks":10,"text":424,"type":48},{"attrs":533,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":534,"title":13},"f^{i}",{"attrs":10,"content":10,"marks":10,"text":87,"type":48},{"attrs":537,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":538,"title":13},"i=1,2, \\ldots, n",{"attrs":10,"content":10,"marks":10,"text":540,"type":48},", суть заданные функции от ",{"attrs":542,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":543,"title":13},"n+1",{"attrs":10,"content":10,"marks":10,"text":545,"type":48}," переменных. Полагая",{"attrs":547,"content":548,"marks":10,"text":13,"type":51},{"textAlign":10},[549,552],{"attrs":550,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":551,"title":13},"\\begin{gathered}\n\nx=\\left(x^{1}, \\ldots, x^{n}\\right) \\\\\n\nf(t, x)=\\left(f^{1}(t, x), \\ldots, f^{n}(t, x)\\right),\n\n\\end{gathered}",{"attrs":10,"content":10,"marks":10,"text":553,"type":48},"можно переписать систему (4) в векторной форме:",{"attrs":555,"content":556,"marks":10,"text":13,"type":51},{"textAlign":10},[557,560],{"attrs":558,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":559,"title":13},"\\dot{x} =f(t, x).\\tag{5}",{"attrs":10,"content":10,"marks":10,"text":561,"type":48},"Решением системы (4) или векторного уравнения (5) является вектор-функция",{"attrs":563,"content":564,"marks":10,"text":13,"type":51},{"textAlign":10},[565,568,570,573,575,578],{"attrs":566,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":567,"title":13},"x=x(t)=\\left(x^{1}(t),\\ldots,x^{n}(t)\\right),\\qquad \n\nt \\in I.\\tag{6}",{"attrs":10,"content":10,"marks":10,"text":569,"type":48},"Каждое решение можно представлять себе в ",{"attrs":571,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":572,"title":13},"(n+1)",{"attrs":10,"content":10,"marks":10,"text":574,"type":48},"-мерном пространстве ",{"attrs":576,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":577,"title":13},"t,x^{1},x^{2},\\ldots,x^{n}",{"attrs":10,"content":10,"marks":10,"text":579,"type":48}," в виде интегральной кривой – графика вектор-функции (6).",{"attrs":581,"content":582,"marks":10,"text":13,"type":51},{"textAlign":10},[583],{"attrs":10,"content":10,"marks":10,"text":584,"type":48},"Задача Коши для уравнения (5) состоит в отыскании решения, удовлетворяющего начальным условиям",{"attrs":586,"content":587,"marks":10,"text":13,"type":51},{"textAlign":10},[588,591],{"attrs":589,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":590,"title":13},"x^{1}\\left(t_{0}\\right)=x_{0}^{1},\\quad \\ldots, \\quad x^{n}\\left(t_{0}\\right)=x_{0}^{n},",{"attrs":10,"content":10,"marks":10,"text":592,"type":48},"или",{"attrs":594,"content":595,"marks":10,"text":13,"type":51},{"textAlign":10},[596,599],{"attrs":597,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":598,"title":13},"x\\left(t_{0}\\right)=x_{0}.\\tag{7}",{"attrs":10,"content":10,"marks":10,"text":600,"type":48},"Решение задачи Коши (5), (7) удобно записывать в виде",{"attrs":602,"content":603,"marks":10,"text":13,"type":51},{"textAlign":10},[604,607],{"attrs":605,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":606,"title":13},"x=x\\left(t, t_{0}, x_{0}\\right),\\quad t \\in I.\\tag{8}",{"attrs":10,"content":10,"marks":10,"text":608,"type":48},"Теорема существования и единственности для уравнения (5) формулируется так же, как и для уравнения (2).",{"attrs":610,"content":611,"marks":10,"text":13,"type":51},{"textAlign":10},[612,614,616,618,625],{"attrs":10,"content":10,"marks":10,"text":613,"type":48},"Весьма общие системы обыкновенных дифференциальных уравнений (разрешённые относительно старших производных всех неизвестных функций) сводятся к нормальным системам. Важным частным классом систем (5) являются линейные системы обыкновенных дифференциальных уравнений ",{"attrs":615,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":514,"title":13},{"attrs":10,"content":10,"marks":10,"text":617,"type":48},"-",{"attrs":10,"content":10,"marks":619,"text":624,"type":48},[620],{"attrs":621,"content":10,"marks":10,"text":13,"type":623},{"class":622,"version":45},"background-color-white","text_class","го",{"attrs":10,"content":10,"marks":10,"text":626,"type":48}," порядка:",{"attrs":628,"content":629,"marks":10,"text":13,"type":51},{"textAlign":10},[630,633,634,637,639,642],{"attrs":631,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":632,"title":13},"\\dot{x}=A(t) x+F^{\\prime}(t),",{"attrs":10,"content":10,"marks":10,"text":230,"type":48},{"attrs":635,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":636,"title":13},"A(t)",{"attrs":10,"content":10,"marks":10,"text":638,"type":48}," – матрица типа ",{"attrs":640,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":641,"title":13},"n \\times n",{"attrs":10,"content":10,"marks":10,"text":156,"type":48},{"attrs":644,"content":645,"marks":10,"text":13,"type":51},{"textAlign":10},[646,648,656],{"attrs":10,"content":10,"marks":10,"text":647,"type":48},"Большое значение в приложениях и в теории обыкновенных дифференциальных уравнений имеют ",{"attrs":10,"content":10,"marks":649,"text":655,"type":48},[650],{"attrs":651,"content":10,"marks":10,"text":13,"type":68},{"content_id":652,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":653,"link_type":84,"navigation_value":10,"target":13,"version":45},"b6693d17-9353-455d-8b81-b3fb1945d0b8",{"slug":654,"type":66},"avtonomnaia-sistema-obyknovennykh-differentsial-nykh-uravnenii-b6693d","автономные системы обыкновенных дифференциальных уравнений",{"attrs":10,"content":10,"marks":10,"text":657,"type":48},":",{"attrs":659,"content":660,"marks":10,"text":13,"type":51},{"textAlign":10},[661,664,666,668,670,672,674,676,678,680,682,685,687,690],{"attrs":662,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":663,"title":13},"\\dot{x}=f(x),\\tag{9}",{"attrs":10,"content":10,"marks":10,"text":665,"type":48},"т. е. нормальные системы, правая часть которых явно не зависит от переменного ",{"attrs":667,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":165,"title":13},{"attrs":10,"content":10,"marks":10,"text":669,"type":48},". В этом случае уравнение (6) удобно рассматривать как параметрическое представление кривой, сопоставляя решению фазовую траекторию в ",{"attrs":671,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":514,"title":13},{"attrs":10,"content":10,"marks":10,"text":673,"type":48},"-мерном фазовом пространстве ",{"attrs":675,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":526,"title":13},{"attrs":10,"content":10,"marks":10,"text":677,"type":48},". Если ",{"attrs":679,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":196,"title":13},{"attrs":10,"content":10,"marks":10,"text":681,"type":48}," есть решение системы (9), то ей удовлетворяет также функция ",{"attrs":683,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":684,"title":13},"x=x(t+c)",{"attrs":10,"content":10,"marks":10,"text":686,"type":48},", где ",{"attrs":688,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":689,"title":13},"c",{"attrs":10,"content":10,"marks":10,"text":691,"type":48}," – произвольная постоянная.",{"attrs":693,"content":694,"marks":10,"text":13,"type":51},{"textAlign":10},[695,697,699,701,704],{"attrs":10,"content":10,"marks":10,"text":696,"type":48},"Другим обобщением уравнения (2) является обыкновенное дифференциальное уравнение ",{"attrs":698,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":514,"title":13},{"attrs":10,"content":10,"marks":10,"text":700,"type":48},"-го порядка, разрешённое относительно старшей производной: ",{"attrs":702,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":703,"title":13},"y^{(n)}=f\\left(t, y,\\dot{y}, \\ldots, y^{(n-1)}\\right).\\tag{10}",{"attrs":10,"content":10,"marks":10,"text":705,"type":48},"Важный частный класс таких уравнений – линейные обыкновенные дифференциальные уравнения",{"attrs":707,"content":708,"marks":10,"text":13,"type":51},{"textAlign":10},[709,712,714,716,717,721,723,725,727,730,732,734,736,739,741,743,745,748,749,752,754,756],{"attrs":710,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":711,"title":13},"y^{(n)}+a_{1}(t) y^{(n-1)}+\\ldots+a_{n-1}(t) \\dot{y}+a_{n}(t) y=F(t).",{"attrs":10,"content":10,"marks":10,"text":713,"type":48},"Уравнение (10) сводится к нормальной системе ",{"attrs":715,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":514,"title":13},{"attrs":10,"content":10,"marks":10,"text":617,"type":48},{"attrs":10,"content":10,"marks":718,"text":624,"type":48},[719],{"attrs":720,"content":10,"marks":10,"text":13,"type":623},{"class":622,"version":45},{"attrs":10,"content":10,"marks":10,"text":722,"type":48}," порядка, если ввести новые неизвестные функции переменного ",{"attrs":724,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":165,"title":13},{"attrs":10,"content":10,"marks":10,"text":726,"type":48}," по формулам",{"attrs":728,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":729,"title":13},"x^{1}=y,\\quad x^{2}=\\dot{y},\\quad \\ldots, \\quad x^{n-1}=y^{(n-2)},\\quad x^{n}=y^{(n-1)}.",{"attrs":10,"content":10,"marks":10,"text":731,"type":48},"Если, например, уравнение (10) описывает динамику некоторого объекта и нужно исследовать движение этого объекта, начинающееся в определённый момент ",{"attrs":733,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":449,"title":13},{"attrs":10,"content":10,"marks":10,"text":735,"type":48}," из определённого начального состояния, то к уравнению (10) добавляются дополнительные условия: ",{"attrs":737,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":738,"title":13},"y\\left(t_{0}\\right)=y_{0},\\quad \\dot{y}\\left(t_{0}\\right)=\\dot{y_{0}},\\quad \\ldots, y^{(n-1)}\\left(t_{0}\\right)=y_{0}^{(n-1)}. \\tag{11}",{"attrs":10,"content":10,"marks":10,"text":740,"type":48},"Задача отыскания такой ",{"attrs":742,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":514,"title":13},{"attrs":10,"content":10,"marks":10,"text":744,"type":48}," раз дифференцируемой функции ",{"attrs":746,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":747,"title":13},"y=y(t)",{"attrs":10,"content":10,"marks":10,"text":87,"type":48},{"attrs":750,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":751,"title":13},"t \\in I",{"attrs":10,"content":10,"marks":10,"text":753,"type":48},", которая обращает уравнение (10) в тождество при всех ",{"attrs":755,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":272,"title":13},{"attrs":10,"content":10,"marks":10,"text":757,"type":48}," и удовлетворяет начальным условиям (11), называется задачей Коши.",{"attrs":759,"content":760,"marks":10,"text":13,"type":51},{"textAlign":10},[761,763,766,768,771,773,776],{"attrs":10,"content":10,"marks":10,"text":762,"type":48},"Теорема существования и единственности: если ",{"attrs":764,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":765,"title":13},"f\\left(t, u_{1}, u_{2}, \\ldots, u_{n}\\right) \\in C(D) ",{"attrs":10,"content":10,"marks":10,"text":767,"type":48},"и удовлетворяет условию Липшица по ",{"attrs":769,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":770,"title":13},"u_{1}, u_{2}, \\ldots, u_{n}",{"attrs":10,"content":10,"marks":10,"text":772,"type":48},", а ",{"attrs":774,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":775,"title":13},"\\left(t_{0}, y_{0}, \\dot{y}_{0}, \\ldots, y_{0}^{(n-1)}\\right) \\in D,",{"attrs":10,"content":10,"marks":10,"text":777,"type":48},"то задача Коши (10), (11) имеет единственное решение.",{"attrs":779,"content":780,"marks":10,"text":13,"type":51},{"textAlign":10},[781,783,791,793,796,798,807,809,812,814,817,818,821,823,826,828,837,839,842,843,846,848,851,853,859,861,869,871,877,879,887,888,896,898,906],{"attrs":10,"content":10,"marks":10,"text":782,"type":48},"Задача Коши далеко не исчерпывает тех задач, которые изучаются для уравнений (10) высших порядков [как и систем (5)]. Конкретные физические и технические проблемы часто приводят не к начальным условиям, а к дополнительным условиям иного вида (так называемым ",{"attrs":10,"content":10,"marks":784,"text":790,"type":48},[785],{"attrs":786,"content":10,"marks":10,"text":13,"type":68},{"content_id":787,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":788,"link_type":84,"navigation_value":10,"target":13,"version":45},"b4721106-4f95-4a3a-aa80-9952d49a95ac",{"slug":789,"type":66},"kraevye-zadachi-b47211","краевым условиям",{"attrs":10,"content":10,"marks":10,"text":792,"type":48},"), когда значения искомой функции ",{"attrs":794,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":795,"title":13},"y(t)",{"attrs":10,"content":10,"marks":10,"text":797,"type":48}," и её производных (или соотношения между ними) задаются для нескольких различных значений независимого переменного. Например, в ",{"attrs":10,"content":10,"marks":799,"text":806,"type":48},[800],{"attrs":801,"content":10,"marks":10,"text":13,"type":68},{"content_id":802,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":803,"link_type":805,"navigation_value":10,"target":13,"version":45},"d99ef65f-a859-44cf-97dd-6cf490876fde",{"slug":804,"type":66},"brakhistokhrona-d99ef6","26","задаче о брахистохроне",{"attrs":10,"content":10,"marks":10,"text":808,"type":48}," требуется проинтегрировать уравнение ",{"attrs":810,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":811,"title":13},"2 y \\ddot{y}+\\dot{y}^{2}+1=0",{"attrs":10,"content":10,"marks":10,"text":813,"type":48},"при краевых условиях ",{"attrs":815,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":816,"title":13},"y(a)=A",{"attrs":10,"content":10,"marks":10,"text":87,"type":48},{"attrs":819,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":820,"title":13},"y(b)=B",{"attrs":10,"content":10,"marks":10,"text":822,"type":48},"; отыскание ",{"attrs":824,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":825,"title":13},"2\\pi",{"attrs":10,"content":10,"marks":10,"text":827,"type":48},"-периодического решения ",{"attrs":10,"content":10,"marks":829,"text":836,"type":48},[830],{"attrs":831,"content":10,"marks":10,"text":13,"type":68},{"content_id":832,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":833,"link_type":835,"navigation_value":10,"target":13,"version":45},"e48f3c0e-6912-4ab3-b151-9574c3dd97c1",{"slug":834,"type":66},"uravnenie-duffinga-e48f3c","9","уравнения Дуффинга",{"attrs":10,"content":10,"marks":10,"text":838,"type":48}," сводится к выделению такого его решения, которое удовлетворяет условиям периодичности: ",{"attrs":840,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":841,"title":13},"y(0)=y(2 \\pi)",{"attrs":10,"content":10,"marks":10,"text":87,"type":48},{"attrs":844,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":845,"title":13},"\\dot{y}(0)=\\dot{y}(2 \\pi)",{"attrs":10,"content":10,"marks":10,"text":847,"type":48},"; при изучении обтекания пластинки ламинарным потоком встречается задача: ",{"attrs":849,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":850,"title":13},"y^{(3)}+y\\ddot{y}=0, \\quad y(0)=\\dot{y}(0)=0,\\quad \\dot{y}(t) \\rightarrow 2\\quad \\text {при}\\quad t \\rightarrow \\infty .",{"attrs":10,"content":10,"marks":10,"text":852,"type":48},"Задача отыскания для обыкновенного дифференциального уравнения высшего порядка или системы обыкновенных дифференциальных уравнений решения, удовлетворяющего условиям, отличным от начальных условий (11), называется ",{"attrs":10,"content":10,"marks":854,"text":858,"type":48},[855],{"attrs":856,"content":10,"marks":10,"text":13,"type":68},{"content_id":787,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":857,"link_type":84,"navigation_value":10,"target":13,"version":45},{"slug":789,"type":66},"краевой задачей",{"attrs":10,"content":10,"marks":10,"text":860,"type":48},". Теоретический анализ существования и единственности решения краевой задачи имеет существенное значение для прикладной проблемы, приводящей к этой краевой задаче, поскольку он показывает взаимную согласованность допущений, принятых при математическом описании проблемы, и известную полноту этого описания. Одной из важных краевых задач является ",{"attrs":10,"content":10,"marks":862,"text":868,"type":48},[863],{"attrs":864,"content":10,"marks":10,"text":13,"type":68},{"content_id":865,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":866,"link_type":84,"navigation_value":10,"target":13,"version":45},"cde48a08-4658-461b-b945-ae10e45171f4",{"slug":867,"type":66},"zadacha-shturma-liuvillia-cde48a","задача Штурма",{"attrs":10,"content":10,"marks":10,"text":870,"type":48}," – ",{"attrs":10,"content":10,"marks":872,"text":876,"type":48},[873],{"attrs":874,"content":10,"marks":10,"text":13,"type":68},{"content_id":865,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":875,"link_type":84,"navigation_value":10,"target":13,"version":45},{"slug":867,"type":66},"Лиувилля",{"attrs":10,"content":10,"marks":10,"text":878,"type":48},". Краевые задачи для линейных уравнений и систем тесно связаны с задачами о ",{"attrs":10,"content":10,"marks":880,"text":886,"type":48},[881],{"attrs":882,"content":10,"marks":10,"text":13,"type":68},{"content_id":883,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":884,"link_type":84,"navigation_value":10,"target":13,"version":45},"d348ff36-adce-4b0e-9999-c3ad7b42d735",{"slug":885,"type":66},"zadacha-na-sobstvennye-znacheniia-d348ff","собственных значениях",{"attrs":10,"content":10,"marks":10,"text":481,"type":48},{"attrs":10,"content":10,"marks":889,"text":895,"type":48},[890],{"attrs":891,"content":10,"marks":10,"text":13,"type":68},{"content_id":892,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":893,"link_type":84,"navigation_value":10,"target":13,"version":45},"1af69454-5667-42e4-b042-c5284e926fcf",{"slug":894,"type":66},"sobstvennaia-funktsiia-1af694","собственных функциях",{"attrs":10,"content":10,"marks":10,"text":897,"type":48},", а также со ",{"attrs":10,"content":10,"marks":899,"text":905,"type":48},[900],{"attrs":901,"content":10,"marks":10,"text":13,"type":68},{"content_id":902,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":903,"link_type":84,"navigation_value":10,"target":13,"version":45},"55c2b38d-67f7-471c-b278-c42bcce689d8",{"slug":904,"type":66},"spektr-operatora-55c2b3","спектральным анализом обыкновенных дифференциальных операторов",{"attrs":10,"content":10,"marks":10,"text":156,"type":48},{"attrs":908,"content":909,"marks":10,"text":13,"type":51},{"textAlign":10},[910,912,914,916,918],{"attrs":10,"content":10,"marks":10,"text":911,"type":48},"Главной задачей теории обыкновенных дифференциальных уравнений является изучение решений таких уравнений. Однако вопрос о том, что значит изучить решения обыкновенного дифференциального уравнения, в разное время понимали по-разному. Первоначально стремились осуществить интегрирование уравнений в квадратурах, т. е. получить замкнутую формулу, дающую (в явной, неявной или параметрической форме) выражение зависимости того или иного решения от ",{"attrs":913,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":165,"title":13},{"attrs":10,"content":10,"marks":10,"text":915,"type":48}," через элементарные функции и интегралы от них. Такие формулы, если они найдены, оказывают существенную помощь в вычислениях и при исследовании свойств решений. Особый интерес представляет описание всей совокупности решений данного уравнения. При весьма общих предположениях уравнению (5) удовлетворяет семейство вектор-функций, зависящее от ",{"attrs":917,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":514,"title":13},{"attrs":10,"content":10,"marks":10,"text":919,"type":48}," произвольных независимых параметров. Если уравнение этого семейства имеет вид",{"attrs":921,"content":922,"marks":10,"text":13,"type":51},{"textAlign":10},[923,926,928,931],{"attrs":924,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":925,"title":13},"x=\\varphi\\left(t, c_{1}, c_{2}, \\ldots, c_{n}\\right),",{"attrs":10,"content":10,"marks":10,"text":927,"type":48},"то функция ",{"attrs":929,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":930,"title":13}," \\varphi",{"attrs":10,"content":10,"marks":10,"text":932,"type":48}," называется общим решением уравнения (5).",{"attrs":934,"content":935,"marks":10,"text":13,"type":51},{"textAlign":10},[936,938,946,947,955,956,964,966,974,976,984],{"attrs":10,"content":10,"marks":10,"text":937,"type":48},"Однако в середине 19 в. были указаны первые примеры обыкновенных дифференциальных уравнений, которые нельзя проинтегрировать в квадратурах. Оказалось, что решение в замкнутой форме удаётся найти лишь для небольшого числа классов уравнений (см., например, ",{"attrs":10,"content":10,"marks":939,"text":945,"type":48},[940],{"attrs":941,"content":10,"marks":10,"text":13,"type":68},{"content_id":942,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":943,"link_type":84,"navigation_value":10,"target":13,"version":45},"be59b899-cca8-4033-97fa-f0d3f25294a2",{"slug":944,"type":66},"uravnenie-bernulli-v-matematike-be59b8","уравнение Бернулли",{"attrs":10,"content":10,"marks":10,"text":87,"type":48},{"attrs":10,"content":10,"marks":948,"text":954,"type":48},[949],{"attrs":950,"content":10,"marks":10,"text":13,"type":68},{"content_id":951,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":952,"link_type":84,"navigation_value":10,"target":13,"version":45},"3dc3d89f-f175-4a10-9657-f3c9d8df8041",{"slug":953,"type":66},"differentsial-noe-uravnenie-v-polnykh-differentsialakh-3dc3d8","Дифференциальное уравнение в полных дифференциалах",{"attrs":10,"content":10,"marks":10,"text":87,"type":48},{"attrs":10,"content":10,"marks":957,"text":963,"type":48},[958],{"attrs":959,"content":10,"marks":10,"text":13,"type":68},{"content_id":960,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":961,"link_type":84,"navigation_value":10,"target":13,"version":45},"1120884c-1399-43b5-8081-0224a9d20ae6",{"slug":962,"type":66},"lineinoe-differentsial-noe-uravnenie-s-postoiannymi-koeffitsientami-112088","Линейное дифференциальное уравнение с постоянными коэффициентами",{"attrs":10,"content":10,"marks":10,"text":965,"type":48},"). Не выражающиеся в квадратурах решения отдельных, наиболее важных и часто встречающихся уравнений (например, ",{"attrs":10,"content":10,"marks":967,"text":973,"type":48},[968],{"attrs":969,"content":10,"marks":10,"text":13,"type":68},{"content_id":970,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":971,"link_type":84,"navigation_value":10,"target":13,"version":45},"864feee7-b38b-463d-92eb-ce5a77163f79",{"slug":972,"type":66},"uravnenie-besselia-864fee","уравнение Бесселя",{"attrs":10,"content":10,"marks":10,"text":975,"type":48},") стали изучать подробно, ввели для них специальные обозначения, исследовали их свойства и составили таблицы значений. Так появились многие ",{"attrs":10,"content":10,"marks":977,"text":983,"type":48},[978],{"attrs":979,"content":10,"marks":10,"text":13,"type":68},{"content_id":980,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":981,"link_type":84,"navigation_value":10,"target":13,"version":45},"6983acc8-2044-4b3f-9420-1d9743142c7c",{"slug":982,"type":66},"spetsial-nye-funktsii-6983ac","специальные функции",{"attrs":10,"content":10,"marks":10,"text":156,"type":48},{"attrs":986,"content":987,"marks":10,"text":13,"type":51},{"textAlign":10},[988,990,998,999,1007],{"attrs":10,"content":10,"marks":10,"text":989,"type":48},"В связи с потребностями практики постоянно разрабатывались и способы приближённого интегрирования обыкновенных дифференциальных уравнений, например ",{"attrs":10,"content":10,"marks":991,"text":997,"type":48},[992],{"attrs":993,"content":10,"marks":10,"text":13,"type":68},{"content_id":994,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":995,"link_type":84,"navigation_value":10,"target":13,"version":45},"beeb4519-f7da-4759-9365-a70b31714820",{"slug":996,"type":66},"metod-posledovatel-nykh-priblizhenii-beeb45","метод последовательных приближений",{"attrs":10,"content":10,"marks":10,"text":87,"type":48},{"attrs":10,"content":10,"marks":1000,"text":1006,"type":48},[1001],{"attrs":1002,"content":10,"marks":10,"text":13,"type":68},{"content_id":1003,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1004,"link_type":84,"navigation_value":10,"target":13,"version":45},"7e7b94a3-65ef-478b-9f40-fd5a47d482ff",{"slug":1005,"type":66},"metod-adamsa-7e7b94","метод Адамса",{"attrs":10,"content":10,"marks":10,"text":1008,"type":48}," и др. Были предложены также разнообразные приёмы графического и механического интегрирования этих уравнений. Математика располагает богатым набором численных методов решения многих задач для обыкновенных дифференциальных уравнений. Эти методы представляют собой удобные алгоритмы вычислений с эффективными оценками точности, а современная вычислительная техника даёт возможность экономно и быстро довести решение каждой такой задачи до числового результата.",{"attrs":1010,"content":1011,"marks":10,"text":13,"type":51},{"textAlign":10},[1012,1014,1022],{"attrs":10,"content":10,"marks":10,"text":1013,"type":48},"Однако численные методы для конкретного уравнения дают лишь конечное число частных решений на конечном отрезке изменения независимого переменного. Они не могут ответить на вопросы о том, каково асимптотическое поведение решений, есть ли у данного уравнения периодическое решение, имеет ли это уравнение ",{"attrs":10,"content":10,"marks":1015,"text":1021,"type":48},[1016],{"attrs":1017,"content":10,"marks":10,"text":13,"type":68},{"content_id":1018,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1019,"link_type":84,"navigation_value":10,"target":13,"version":45},"8e51ca7d-d576-4638-8a4b-4a41b7576ac0",{"slug":1020,"type":66},"kolebliushcheesia-reshenie-8e51ca","колеблющееся решение",{"attrs":10,"content":10,"marks":10,"text":1023,"type":48},". Между тем во многих прикладных задачах важно установить характер решения на бесконечном промежутке изменения независимого переменного, изучить полную картину интегральных кривых. В связи с этим центр тяжести в теории обыкновенных дифференциальных уравнений был перенесён на исследование общих закономерностей поведения решений обыкновенных дифференциальных уравнений, разработку методов, которые позволяли бы получать представление о глобальных свойствах решений по самому дифференциальному уравнению, без его интегрирования.",{"attrs":1025,"content":1026,"marks":10,"text":13,"type":51},{"textAlign":10},[1027,1029,1037],{"attrs":10,"content":10,"marks":10,"text":1028,"type":48},"Всё это составило предмет ",{"attrs":10,"content":10,"marks":1030,"text":1036,"type":48},[1031],{"attrs":1032,"content":10,"marks":10,"text":13,"type":68},{"content_id":1033,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1034,"link_type":84,"navigation_value":10,"target":13,"version":45},"b44e9b69-1515-49db-b8db-d4033648afff",{"slug":1035,"type":66},"kachestvennaia-teoriia-differentsial-nykh-uravnenii-b44e9b","качественной теории дифференциальных уравнений",{"attrs":10,"content":10,"marks":10,"text":1038,"type":48},", возникшей в конце 19 в. и интенсивно развивающейся.",{"attrs":1040,"content":1041,"marks":10,"text":13,"type":51},{"textAlign":10},[1042,1044,1046,1048,1050,1052,1055,1057,1060,1061,1064,1066,1069,1071,1074,1076,1079,1081,1084,1086,1089,1090,1093],{"attrs":10,"content":10,"marks":10,"text":1043,"type":48},"Принципиальное значение имеет выяснение того, является ли задача Коши для обыкновенного дифференциального уравнения корректно поставленной задачей. Поскольку в конкретных задачах начальные значения не могут быть указаны абсолютно точно, то важно выяснить, когда малые изменения начальных значений влекут за собой также малые изменения решений. Справедлива теорема о непрерывной зависимости решений от начальных значений: пусть (8) есть решение уравнения (5), где ",{"attrs":1045,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":327,"title":13},{"attrs":10,"content":10,"marks":10,"text":1047,"type":48}," и удовлетворяет условию Липшица по ",{"attrs":1049,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":422,"title":13},{"attrs":10,"content":10,"marks":10,"text":1051,"type":48},"; тогда для любого ",{"attrs":1053,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1054,"title":13},"\\varepsilon>0",{"attrs":10,"content":10,"marks":10,"text":1056,"type":48}," и любого замкнутого ",{"attrs":1058,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1059,"title":13},"J\\subseteq I",{"attrs":10,"content":10,"marks":10,"text":87,"type":48},{"attrs":1062,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1063,"title":13},"t_{0}\\in J",{"attrs":10,"content":10,"marks":10,"text":1065,"type":48},", найдётся такое ",{"attrs":1067,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1068,"title":13},"\\delta>0",{"attrs":10,"content":10,"marks":10,"text":1070,"type":48},", что решение ",{"attrs":1072,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1073,"title":13},"x\\left(t,t_{0},x_{0}^{*}\\right)",{"attrs":10,"content":10,"marks":10,"text":1075,"type":48}," этого уравнения, где ",{"attrs":1077,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1078,"title":13},"\\left|x_{0}^{*}-x_{0}\\right|\u003C\\delta",{"attrs":10,"content":10,"marks":10,"text":1080,"type":48},", определено на ",{"attrs":1082,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1083,"title":13},"J",{"attrs":10,"content":10,"marks":10,"text":1085,"type":48}," и при всех",{"attrs":1087,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1088,"title":13}," t\\in J",{"attrs":10,"content":10,"marks":10,"text":116,"type":48},{"attrs":1091,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":1092,"title":13},"\\left|x\\left(t,t_{0},x_{0}^{*}\\right) -x\\left(t,t_{0},x_{0}\\right)\\right|\u003C\\varepsilon.\\tag{12}",{"attrs":10,"content":10,"marks":10,"text":1094,"type":48},"Другими словами, если задаться определённым замкнутым отрезком изменения независимого переменного, то при достаточно малом изменении начальных значений решение мало изменится на всём выбранном промежутке. Этот результат может быть обобщён в сторону получения условий, обеспечивающих дифференцируемость решений обыкновенного дифференциального уравнения по начальным значениям.",{"attrs":1096,"content":1097,"marks":10,"text":13,"type":51},{"textAlign":10},[1098,1100,1103,1105,1108,1110,1112,1114,1117,1119,1127],{"attrs":10,"content":10,"marks":10,"text":1099,"type":48},"Однако сформулированная теорема не исчерпывает актуальную для приложений проблему, поскольку в ней речь идёт лишь о замкнутом отрезке изменения независимого переменного. Между тем часто (например, в теории управления движением) рассматривается решение задачи Коши (5), (7), определённое при всех ",{"attrs":1101,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1102,"title":13}," t\\geq t_0",{"attrs":10,"content":10,"marks":10,"text":1104,"type":48},", и необходимо выяснить устойчивость этого решения по отношению к малым возмущениям начальных значений на всём бесконечном промежутке ",{"attrs":1106,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1107,"title":13},"t\\geq t_0",{"attrs":10,"content":10,"marks":10,"text":1109,"type":48},", т. е. получить условия, обеспечивающие справедливость неравенства (12) при всех ",{"attrs":1111,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1107,"title":13},{"attrs":10,"content":10,"marks":10,"text":1113,"type":48},". Именно к этой задаче сводится исследование устойчивости положения равновесия или стационарного режима конкретной системы. Решение, мало изменяющееся на бесконечном промежутке ",{"attrs":1115,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1116,"title":13},"[t_0,\\infty)",{"attrs":10,"content":10,"marks":10,"text":1118,"type":48}," при достаточно малых отклонениях начальных значений, называется ",{"attrs":10,"content":10,"marks":1120,"text":1126,"type":48},[1121],{"attrs":1122,"content":10,"marks":10,"text":13,"type":68},{"content_id":1123,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1124,"link_type":84,"navigation_value":10,"target":13,"version":45},"cd2f6002-f3a3-43bc-886d-83fe52c43d92",{"slug":1125,"type":66},"ustoichivost-po-liapunovu-cd2f60","устойчивым по Ляпунову",{"attrs":10,"content":10,"marks":10,"text":156,"type":48},{"attrs":1129,"content":1130,"marks":10,"text":13,"type":51},{"textAlign":10},[1131,1133,1141,1143,1146,1148,1151,1153,1156],{"attrs":10,"content":10,"marks":10,"text":1132,"type":48},"При выводе обыкновенного дифференциального уравнения, описывающего реальный процесс, всегда приходится чем-то пренебрегать, что-то идеализировать. Иначе говоря, обыкновенные дифференциальные уравнения описывают процесс приближённо. Например, изучение работы лампового генератора приводит к ",{"attrs":10,"content":10,"marks":1134,"text":1140,"type":48},[1135],{"attrs":1136,"content":10,"marks":10,"text":13,"type":68},{"content_id":1137,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1138,"link_type":84,"navigation_value":10,"target":13,"version":45},"80e0cbdb-b0b5-43fe-b70f-173393697ed1",{"slug":1139,"type":66},"uravnenie-van-der-polia-80e0cb","уравнению Ван дер Поля",{"attrs":10,"content":10,"marks":10,"text":1142,"type":48}," при некоторых предположениях, которые не вполне точно соответствуют действительному положению вещей. Далее, на ход процесса часто оказывают влияние возмущающие факторы, учесть которые при составлении уравнений практически невозможно; известно лишь, что их влияние «мало». Поэтому важно выяснить, как меняется решение при малых изменениях самой системы уравнений, т. е. при переходе от уравнения (5) к возмущённому уравнению ",{"attrs":1144,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":1145,"title":13},"\\dot{x}=f(t,x)+\\boldsymbol{R}(t,x),",{"attrs":10,"content":10,"marks":10,"text":1147,"type":48},"учитывающему малые поправочные члены. Оказывается, что на замкнутом отрезке изменения независимого переменного (при тех же предположениях, что и в теореме o непрерывной зависимости решений от начальных значений) решение мало меняется, если возмущение",{"attrs":1149,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1150,"title":13}," \\boldsymbol{R}(t, x)",{"attrs":10,"content":10,"marks":10,"text":1152,"type":48}," достаточно мало. Если это свойство имеет место на бесконечном промежутке ",{"attrs":1154,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1155,"title":13},"t \\geqslant t_{0}",{"attrs":10,"content":10,"marks":10,"text":1157,"type":48},", то решение называется устойчивым при постоянно действующих возмущениях. ",{"attrs":1159,"content":1160,"marks":10,"text":13,"type":51},{"textAlign":10},[1161,1163,1171,1173,1181],{"attrs":10,"content":10,"marks":10,"text":1162,"type":48},"Исследование устойчивости по Ляпунову, устойчивости при постоянно действующих возмущениях и их модификаций составляют предмет важнейшего раздела качественной теории – ",{"attrs":10,"content":10,"marks":1164,"text":1170,"type":48},[1165],{"attrs":1166,"content":10,"marks":10,"text":13,"type":68},{"content_id":1167,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1168,"link_type":84,"navigation_value":10,"target":13,"version":45},"1687f7c7-d00d-4dd5-8628-aff7194eb4d2",{"slug":1169,"type":66},"ustoichivost-dvizheniia-1687f7","теории устойчивости",{"attrs":10,"content":10,"marks":10,"text":1172,"type":48},". Для практики в первую очередь представляют интерес такие системы обыкновенных дифференциальных уравнений, решения которых мало изменяются при всех малых изменениях этих уравнений; такие системы называется ",{"attrs":10,"content":10,"marks":1174,"text":1180,"type":48},[1175],{"attrs":1176,"content":10,"marks":10,"text":13,"type":68},{"content_id":1177,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1178,"link_type":84,"navigation_value":10,"target":13,"version":45},"06267c80-d42a-4f8c-8447-20272374d012",{"slug":1179,"type":66},"grubaia-sistema-06267c","грубыми системами",{"attrs":10,"content":10,"marks":10,"text":156,"type":48},{"attrs":1183,"content":1184,"marks":10,"text":13,"type":51},{"textAlign":10},[1185,1187,1195,1196,1204,1206,1214],{"attrs":10,"content":10,"marks":10,"text":1186,"type":48},"Другой важной задачей качественной теории является получение схемы поведения семейства решений во всей области определения уравнения. Применительно к автономной системе (9) речь идёт о построении фазовой картины, т. е. о качественном описании в целом всей совокупности фазовых траекторий в фазовом пространстве. Такая геометрическая картина даёт полное представление о характере всех движений, которые могут происходить в рассматриваемой системе. Для этого существенно прежде всего выяснить поведение траекторий в окрестности положений равновесия, отыскать ",{"attrs":10,"content":10,"marks":1188,"text":1194,"type":48},[1189],{"attrs":1190,"content":10,"marks":10,"text":13,"type":68},{"content_id":1191,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1192,"link_type":84,"navigation_value":10,"target":13,"version":45},"e6770bf4-1581-4e18-9715-1cac3f814a49",{"slug":1193,"type":66},"separatrisa-e6770b","сепаратрисы",{"attrs":10,"content":10,"marks":10,"text":481,"type":48},{"attrs":10,"content":10,"marks":1197,"text":1203,"type":48},[1198],{"attrs":1199,"content":10,"marks":10,"text":13,"type":68},{"content_id":1200,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1201,"link_type":84,"navigation_value":10,"target":13,"version":45},"536c8bd6-8846-4104-a7cd-ce5b3e08d814",{"slug":1202,"type":66},"predel-nyi-tsikl-sistemy-differentsial-nykh-uravnenii-536c8b","предельные циклы",{"attrs":10,"content":10,"marks":10,"text":1205,"type":48},". Особо актуальной задачей является нахождение устойчивых предельных циклов, ибо им соответствуют ",{"attrs":10,"content":10,"marks":1207,"text":1213,"type":48},[1208],{"attrs":1209,"content":10,"marks":10,"text":13,"type":68},{"content_id":1210,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1211,"link_type":84,"navigation_value":10,"target":13,"version":45},"e3a99d36-cc0e-45aa-8005-dec8ef736517",{"slug":1212,"type":66},"avtokolebaniia-e3a99d","автоколебания",{"attrs":10,"content":10,"marks":10,"text":1215,"type":48}," в реальных системах.",{"attrs":1217,"content":1218,"marks":10,"text":13,"type":51},{"textAlign":10},[1219,1221,1224,1226,1229,1231,1234],{"attrs":10,"content":10,"marks":10,"text":1220,"type":48},"Любой реальный объект характеризуется различными параметрами, которые часто входят в виде некоторых величин ",{"attrs":1222,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1223,"title":13},"\\left(\\varepsilon^{1}, \\varepsilon^{2}, \\ldots, \\varepsilon^{k}\\right)=\\varepsilon",{"attrs":10,"content":10,"marks":10,"text":1225,"type":48}," в правую часть системы обыкновенных дифференциальных уравнений, описывающей поведение объекта: ",{"attrs":1227,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":1228,"title":13},"\\dot{x}=f(t, x, \\varepsilon).\\tag{13} ",{"attrs":10,"content":10,"marks":10,"text":1230,"type":48},"Значения этих параметров не могут быть известны абсолютно точно, и потому важно выяснить условия, обеспечивающие устойчивость решений уравнения (13) по отношению к малым возмущениям параметра ",{"attrs":1232,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1233,"title":13}," \\varepsilon",{"attrs":10,"content":10,"marks":10,"text":1235,"type":48},". Если задаться определённым замкнутым отрезком изменения независимого переменного, то при естественных предположениях о правой части уравнения (13) имеет место непрерывная (и даже дифференцируемая) зависимость решений от параметров.",{"attrs":1237,"content":1238,"marks":10,"text":13,"type":51},{"textAlign":10},[1239,1241,1244,1246,1254,1255,1263,1265,1273,1275,1278,1280,1283],{"attrs":10,"content":10,"marks":10,"text":1240,"type":48},"Выяснение зависимости решений от параметра имеет прямое отношение к вопросу о том, насколько хороша идеализация, приводящая к математической модели поведения объекта – системе обыкновенных дифференциальных уравнений. Одним из типичных примеров идеализации является пренебрежение малым параметром. Если учёт этого малого параметра приводит к системе (13), то непрерывная зависимость решений от параметра позволяет при изучении поведения объекта на конечном отрезке времени безболезненно пренебречь этим параметром, т. е. в первом приближении рассматривать более простую систему ",{"attrs":1242,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":1243,"title":13},"\\dot{x}=f(t, x, 0). ",{"attrs":10,"content":10,"marks":10,"text":1245,"type":48},"Этот результат лежит в основе имеющих широкие приложения ",{"attrs":10,"content":10,"marks":1247,"text":1253,"type":48},[1248],{"attrs":1249,"content":10,"marks":10,"text":13,"type":68},{"content_id":1250,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1251,"link_type":84,"navigation_value":10,"target":13,"version":45},"4768f85b-9d40-4c28-af68-8a45068bc6dc",{"slug":1252,"type":66},"metody-malogo-parametra-v-matematike-4768f8","метода малого параметра",{"attrs":10,"content":10,"marks":10,"text":87,"type":48},{"attrs":10,"content":10,"marks":1256,"text":1262,"type":48},[1257],{"attrs":1258,"content":10,"marks":10,"text":13,"type":68},{"content_id":1259,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1260,"link_type":84,"navigation_value":10,"target":13,"version":45},"e7f7791a-a732-406d-97d4-92a5433c629a",{"slug":1261,"type":66},"metod-usredneniia-krylova-bogoliubova-e7f779","метода усреднения Крылова – Боголюбова",{"attrs":10,"content":10,"marks":10,"text":1264,"type":48}," и других асимптотических методов решения обыкновенных дифференциальных уравнений. Однако исследование ряда явлений приводит к системе ",{"attrs":10,"content":10,"marks":1266,"text":1272,"type":48},[1267],{"attrs":1268,"content":10,"marks":10,"text":13,"type":68},{"content_id":1269,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1270,"link_type":84,"navigation_value":10,"target":13,"version":45},"47ba520a-bea0-4a78-97d5-c4d56bb2a89d",{"slug":1271,"type":66},"differentsial-nye-uravneniia-s-malym-parametrom-pri-proizvodnykh-47ba52","дифференциальных уравнений с малым параметром при производных",{"attrs":10,"content":10,"marks":10,"text":1274,"type":48},": ",{"attrs":1276,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":1277,"title":13},"\\varepsilon \\dot{x}=f(t, x, y), \\quad \\dot{y}=g(t, x, y). ",{"attrs":10,"content":10,"marks":10,"text":1279,"type":48},"Здесь уже нельзя, вообще говоря, принимать ",{"attrs":1281,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1282,"title":13},"\\varepsilon=0",{"attrs":10,"content":10,"marks":10,"text":1284,"type":48},", даже если пытаться составить грубое представление о явлении на конечном отрезке времени.",{"attrs":1286,"content":1287,"marks":10,"text":13,"type":51},{"textAlign":10},[1288,1290,1292,1294,1296,1298,1306],{"attrs":10,"content":10,"marks":10,"text":1289,"type":48},"В теории обыкновенных дифференциальных уравнений рассматриваются некоторые плодотворные и важные обобщения перечисленных выше задач. Прежде всего, можно расширить класс функций, в котором ищется решение задачи Коши (2), (3): определить решение в классе абсолютно непрерывных функций и доказать существование таких решений. Особый интерес для приложений представляет определение решения уравнения (2) в случае, когда функция ",{"attrs":1291,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":233,"title":13},{"attrs":10,"content":10,"marks":10,"text":1293,"type":48}," разрывна или многозначна по ",{"attrs":1295,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":422,"title":13},{"attrs":10,"content":10,"marks":10,"text":1297,"type":48},". Наиболее общей в этом направлении является задача о решении ",{"attrs":10,"content":10,"marks":1299,"text":1305,"type":48},[1300],{"attrs":1301,"content":10,"marks":10,"text":13,"type":68},{"content_id":1302,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1303,"link_type":84,"navigation_value":10,"target":13,"version":45},"a3930dc8-0a19-4d4c-976f-5c059b59fa07",{"slug":1304,"type":66},"differentsial-noe-vkliuchenie-a3930d","дифференциального включения",{"attrs":10,"content":10,"marks":10,"text":156,"type":48},{"attrs":1308,"content":1309,"marks":10,"text":13,"type":51},{"textAlign":10},[1310,1312,1314,1316,1319],{"attrs":10,"content":10,"marks":10,"text":1311,"type":48},"Рассматривается и более общее, чем (10), неразрешённое относительно старшей производной обыкновенное дифференциальное уравнение ",{"attrs":1313,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":514,"title":13},{"attrs":10,"content":10,"marks":10,"text":1315,"type":48},"-го порядка ",{"attrs":1317,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":1318,"title":13},"F\\left(t, y, \\dot{y}, \\ldots, y^{(n-1)}, y^{(n)}\\right)=0; ",{"attrs":10,"content":10,"marks":10,"text":1320,"type":48},"исследования этого уравнения тесно связаны с теорией неявных функций.",{"attrs":1322,"content":1323,"marks":10,"text":13,"type":51},{"textAlign":10},[1324,1326,1328,1330,1333,1335,1343,1344,1347,1349,1351,1353,1356,1358,1366],{"attrs":10,"content":10,"marks":10,"text":1325,"type":48},"Уравнение (2) связывает производную решения в точке ",{"attrs":1327,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":165,"title":13},{"attrs":10,"content":10,"marks":10,"text":1329,"type":48}," со значением решения в этой же точке: ",{"attrs":1331,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1332,"title":13},"\\dot x(t)=f(t,x(t))",{"attrs":10,"content":10,"marks":10,"text":1334,"type":48},". Но некоторые прикладные задачи (например, требующие учёта эффекта запаздывания исполнительного устройства) приводят к ",{"attrs":10,"content":10,"marks":1336,"text":1342,"type":48},[1337],{"attrs":1338,"content":10,"marks":10,"text":13,"type":68},{"content_id":1339,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1340,"link_type":84,"navigation_value":10,"target":13,"version":45},"9e14fb9a-0d24-48d6-964f-86b874ebec67",{"slug":1341,"type":66},"differentsial-noe-uravnenie-s-zapazdyvaiushchim-argumentom-9e14fb","дифференциальным уравнениям с запаздывающим аргументом",{"attrs":10,"content":10,"marks":10,"text":1274,"type":48},{"attrs":1345,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":1346,"title":13},"\\dot{x}(t)=f(t, x(t-\\tau));",{"attrs":10,"content":10,"marks":10,"text":1348,"type":48},"здесь производная решения в точке ",{"attrs":1350,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":165,"title":13},{"attrs":10,"content":10,"marks":10,"text":1352,"type":48}," связывается со значением решения в точке ",{"attrs":1354,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1355,"title":13},"t-\\tau",{"attrs":10,"content":10,"marks":10,"text":1357,"type":48},". Изучению таких уравнений, а также более общих ",{"attrs":10,"content":10,"marks":1359,"text":1365,"type":48},[1360],{"attrs":1361,"content":10,"marks":10,"text":13,"type":68},{"content_id":1362,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1363,"link_type":84,"navigation_value":10,"target":13,"version":45},"b48e982f-66c0-421f-9c49-770435e7c970",{"slug":1364,"type":66},"differentsial-noe-uravnenie-s-otkloniaiushchimsia-argumentom-b48e98","дифференциальных уравнений с отклоняющимся аргументом",{"attrs":10,"content":10,"marks":10,"text":1367,"type":48}," посвящён специальный раздел теории обыкновенных дифференциальных уравнений.",{"attrs":1369,"content":1370,"marks":10,"text":13,"type":51},{"textAlign":10},[1371,1373,1375,1377,1380,1382,1384,1386,1389,1391,1393,1395,1403,1405,1413],{"attrs":10,"content":10,"marks":10,"text":1372,"type":48},"Изучение фазового пространства автономной системы (9) позволяет подойти к ещё одному обобщению обыкновенных дифференциальных уравнений. Траекторию этой системы, проходящую через точку ",{"attrs":1374,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":484,"title":13},{"attrs":10,"content":10,"marks":10,"text":1376,"type":48},", будем записывать в виде ",{"attrs":1378,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1379,"title":13},"x=x\\left(t, x_{0}\\right)",{"attrs":10,"content":10,"marks":10,"text":1381,"type":48},". Если точке ",{"attrs":1383,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":484,"title":13},{"attrs":10,"content":10,"marks":10,"text":1385,"type":48}," поставить в соответствие точку ",{"attrs":1387,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1388,"title":13},"x\\left(t, x_{0}\\right)",{"attrs":10,"content":10,"marks":10,"text":1390,"type":48},", то получится преобразование фазового пространства, зависящее от параметра ",{"attrs":1392,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":165,"title":13},{"attrs":10,"content":10,"marks":10,"text":1394,"type":48},", которое определяет движение в фазовом пространстве. Свойства этих движений исследуются в теории ",{"attrs":10,"content":10,"marks":1396,"text":1402,"type":48},[1397],{"attrs":1398,"content":10,"marks":10,"text":13,"type":68},{"content_id":1399,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1400,"link_type":84,"navigation_value":10,"target":13,"version":45},"76ea2c5d-8619-4cca-b87c-589909bfe749",{"slug":1401,"type":66},"dinamicheskaia-sistema-v-matematike-76ea2c","динамических систем",{"attrs":10,"content":10,"marks":10,"text":1404,"type":48},". Такие движения можно рассматривать не только в евклидовом пространстве, но и на многообразиях, изучая, например, ",{"attrs":10,"content":10,"marks":1406,"text":1412,"type":48},[1407],{"attrs":1408,"content":10,"marks":10,"text":13,"type":68},{"content_id":1409,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1410,"link_type":84,"navigation_value":10,"target":13,"version":45},"4dd71f2c-15dd-4515-bc57-2f05f2a4ebb0",{"slug":1411,"type":66},"differentsial-nye-uravneniia-na-tore-4dd71f","дифференциальные уравнения на торе",{"attrs":10,"content":10,"marks":10,"text":156,"type":48},{"attrs":1415,"content":1416,"marks":10,"text":13,"type":51},{"textAlign":10},[1417,1419,1422,1424,1426,1428,1431,1432,1435,1437,1440,1442,1445,1447,1455,1457,1465,1467,1470,1472,1474,1476,1479,1480,1482,1484,1486,1488,1491,1493,1495,1497,1505,1507,1515,1517,1520,1522,1530],{"attrs":10,"content":10,"marks":10,"text":1418,"type":48},"Выше речь шла об обыкновенных дифференциальных уравнениях в поле действительных чисел [например, отыскивалась действительная функция ",{"attrs":1420,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1421,"title":13},"x(t) ",{"attrs":10,"content":10,"marks":10,"text":1423,"type":48}," действительного переменного ",{"attrs":1425,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":165,"title":13},{"attrs":10,"content":10,"marks":10,"text":1427,"type":48},", удовлетворяющая уравнению (2)]. Однако некоторые вопросы теории таких уравнений удобнее изучать с привлечением комплексных чисел. Естественным дальнейшим обобщением является изучение обыкновенных дифференциальных уравнений в поле комплексных чисел. Так, можно рассмотреть уравнение ",{"attrs":1429,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":1430,"title":13},"\\frac{d w}{d z}=f(z, w), ",{"attrs":10,"content":10,"marks":10,"text":230,"type":48},{"attrs":1433,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1434,"title":13},"f(z, w)",{"attrs":10,"content":10,"marks":10,"text":1436,"type":48}," – аналитическая функция своих переменных, и поставить задачу о нахождении аналитической функции ",{"attrs":1438,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1439,"title":13},"w(z )",{"attrs":10,"content":10,"marks":10,"text":1441,"type":48}," комплексного переменного ",{"attrs":1443,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1444,"title":13},"z",{"attrs":10,"content":10,"marks":10,"text":1446,"type":48},", которая удовлетворяла бы этому уравнению. Исследование таких уравнений, уравнений высших порядков и систем составляет предмет ",{"attrs":10,"content":10,"marks":1448,"text":1454,"type":48},[1449],{"attrs":1450,"content":10,"marks":10,"text":13,"type":68},{"content_id":1451,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1452,"link_type":84,"navigation_value":10,"target":13,"version":45},"4d2cf21a-6317-43f0-8f74-7a1b933b6394",{"slug":1453,"type":66},"analiticheskaia-teoriia-differentsial-nykh-uravnenii-4d2cf2","аналитической теории дифференциальных уравнений",{"attrs":10,"content":10,"marks":10,"text":1456,"type":48},"; в частности, она содержит важные для приложений к математической физике результаты, касающиеся ",{"attrs":10,"content":10,"marks":1458,"text":1464,"type":48},[1459],{"attrs":1460,"content":10,"marks":10,"text":13,"type":68},{"content_id":1461,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1462,"link_type":84,"navigation_value":10,"target":13,"version":45},"0f31ad92-3bab-4c20-bdb4-6c8a003c0d39",{"slug":1463,"type":66},"lineinoe-differentsial-noe-uravnenie-vtorogo-poriadka-0f31ad","линейных дифференциальных уравнений второго порядка",{"attrs":10,"content":10,"marks":10,"text":1466,"type":48},". Можно также рассматривать уравнение",{"attrs":1468,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":1469,"title":13}," \\frac{d x}{d t}=f(t, x),\\tag{14}",{"attrs":10,"content":10,"marks":10,"text":1471,"type":48},"считая, что ",{"attrs":1473,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":422,"title":13},{"attrs":10,"content":10,"marks":10,"text":1475,"type":48}," принадлежит бесконечномерному банахову пространству ",{"attrs":1477,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1478,"title":13},"B",{"attrs":10,"content":10,"marks":10,"text":87,"type":48},{"attrs":1481,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":165,"title":13},{"attrs":10,"content":10,"marks":10,"text":1483,"type":48}," – действительное или комплексное независимое переменное, а ",{"attrs":1485,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":233,"title":13},{"attrs":10,"content":10,"marks":10,"text":1487,"type":48}," – оператор, отображающий произведение ",{"attrs":1489,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1490,"title":13},"(-\\infty,+\\infty) \\times B",{"attrs":10,"content":10,"marks":10,"text":1492,"type":48}," в ",{"attrs":1494,"content":10,"marks":10,"text":13,"type":166},{"display":164,"displayMode":13,"src":1478,"title":13},{"attrs":10,"content":10,"marks":10,"text":1496,"type":48},". В виде уравнения (14) можно трактовать, например, системы обыкновенных ",{"attrs":10,"content":10,"marks":1498,"text":1504,"type":48},[1499],{"attrs":1500,"content":10,"marks":10,"text":13,"type":68},{"content_id":1501,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1502,"link_type":84,"navigation_value":10,"target":13,"version":45},"9adb385c-45e8-4775-9c3a-9c748389ad0e",{"slug":1503,"type":66},"differentsial-nye-uravneniia-sistema-beskonechnogo-poriadka-9adb38","дифференциальных уравнений бесконечного порядка",{"attrs":10,"content":10,"marks":10,"text":1506,"type":48},". Уравнения вида (14) изучает теория ",{"attrs":10,"content":10,"marks":1508,"text":1514,"type":48},[1509],{"attrs":1510,"content":10,"marks":10,"text":13,"type":68},{"content_id":1511,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1512,"link_type":84,"navigation_value":10,"target":13,"version":45},"b16bf797-bfcf-41a5-9ffb-952f2edff1ef",{"slug":1513,"type":66},"abstraktnoe-differentsial-noe-uravnenie-b16bf7","абстрактных дифференциальных уравнений",{"attrs":10,"content":10,"marks":10,"text":1516,"type":48},", лежащая на стыке обыкновенных дифференциальных уравнений и функционального анализа. В частности, большой интерес представляют линейные дифференциальные уравнения",{"attrs":1518,"content":10,"marks":10,"text":13,"type":166},{"display":204,"displayMode":205,"src":1519,"title":13},"\\frac{d x}{d t}=A(t) x+F(t)",{"attrs":10,"content":10,"marks":10,"text":1521,"type":48},"с ограниченными или неограниченными операторами; в форме такого уравнения удаётся записать некоторые классы ",{"attrs":10,"content":10,"marks":1523,"text":1529,"type":48},[1524],{"attrs":1525,"content":10,"marks":10,"text":13,"type":68},{"content_id":1526,"external":12,"graph_link":6,"href":62,"kind_id":63,"link":1527,"link_type":84,"navigation_value":10,"target":13,"version":45},"b7300e8e-b833-445c-a0e9-9a334ff06ef6",{"slug":1528,"type":66},"differentsial-noe-uravnenie-s-chastnymi-proizvodnymi-b7300e","дифференциальных уравнений с частными производными",{"attrs":10,"content":10,"marks":10,"text":156,"type":48},{"attrs":1532,"content":10,"marks":10,"text":13,"type":1538},{"list":1533},[1534],{"slug":1535,"type":1536,"value":1537},"ef-mishenko-b11369","portal_author","Мищенко Евгений Фролович","author","doc","Мищенко Е. Ф. Обыкновенное дифференциальное уравнение // Большая российская энциклопедия: научно-образовательный портал – URL: https://bigenc.ru/c/obyknovennoe-differentsial-noe-uravnenie-674fde/?v=3750705. – Дата публикации: 19.05.2022","Научные законы, утверждения, уравнения",{"descriptionList":1543,"image":1547},[1544],{"kind":48,"label":1545,"value":1546},"Области знаний","Дифференциальные, интегральные и функционально-дифференциальные уравнения",{"caption":1548,"element":1551},{"text":1549,"title":1550},"Математика. Научно-образовательный портал «Большая российская энциклопедия»","Математика",{"alt":1550,"areaViews":1552,"height":1567,"placeholder":6,"src":1568,"srcset":1569,"title":1550,"width":1570},[1553,1558,1562],{"alias":1554,"height":1555,"srcset":1556,"width":1557},"16/9",394,"https://i.bigenc.ru/resizer/resize?sign=FajqjhmscSErdVNL6kwK_Q&filename=vault/00ea55d38dd1c40a960001366f02ee8d.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=kYo6Za7GRD2FRG1fIpTuRQ&filename=vault/00ea55d38dd1c40a960001366f02ee8d.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=XG_TlHmPh4ArMZcMY8icPw&filename=vault/00ea55d38dd1c40a960001366f02ee8d.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=Q7HjrlmJ87eIYUxcWojXJQ&filename=vault/00ea55d38dd1c40a960001366f02ee8d.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=YM7IYwUUSz0OO065zdxwtw&filename=vault/00ea55d38dd1c40a960001366f02ee8d.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=ey_rnBaOXv-gXL2kcVAAoQ&filename=vault/00ea55d38dd1c40a960001366f02ee8d.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=_np0OMgBGGW8dLD13Rnv5Q&filename=vault/00ea55d38dd1c40a960001366f02ee8d.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=MiCmUdExF65IUpLkFHPAAw&filename=vault/00ea55d38dd1c40a960001366f02ee8d.webp&width=1920 1920w,https://i.bigenc.ru/resizer/resize?sign=_z5cHAbpX81T_4b7JROzdQ&filename=vault/00ea55d38dd1c40a960001366f02ee8d.webp&width=3840 3840w",700,{"alias":1559,"height":1560,"srcset":1561,"width":1560},"1/1",228,"https://i.bigenc.ru/resizer/resize?sign=6VYkqpXGFFum_yaKmqqAcg&filename=vault/187ea84b29837b026e5efb49c9f077e8.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=bzKaSbgT_itcDhGLcVw8oA&filename=vault/187ea84b29837b026e5efb49c9f077e8.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=_tGXyUZVJ32BRDl5Yo461w&filename=vault/187ea84b29837b026e5efb49c9f077e8.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=DlPXAGLUgtmi5b-vD1HVlw&filename=vault/187ea84b29837b026e5efb49c9f077e8.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=6TDZj1bfqv3EnbZVakutYA&filename=vault/187ea84b29837b026e5efb49c9f077e8.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=Ev3rMS_2VTHJ-ySyzsLZBg&filename=vault/187ea84b29837b026e5efb49c9f077e8.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=B8xkvplBfD15y95eSPEDGw&filename=vault/187ea84b29837b026e5efb49c9f077e8.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=1qoVMguHtIQccH4wHD9dUw&filename=vault/187ea84b29837b026e5efb49c9f077e8.webp&width=1920 1920w,https://i.bigenc.ru/resizer/resize?sign=H1o_TZMlxu-UZUD9MsoWpw&filename=vault/187ea84b29837b026e5efb49c9f077e8.webp&width=3840 3840w",{"alias":1563,"height":1564,"srcset":1565,"width":1566},"3/4",752,"https://i.bigenc.ru/resizer/resize?sign=nc3nKK9j9df4KQiLGGb84w&filename=vault/98f5b7fbf6d02cf7b16bcca778dcf2af.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=68zVF9E9tm6qxlltGCuhfg&filename=vault/98f5b7fbf6d02cf7b16bcca778dcf2af.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=aSDz96-qucNrk-ZKW064fw&filename=vault/98f5b7fbf6d02cf7b16bcca778dcf2af.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=d6kX3tl1wmAlDvL30Vn9DQ&filename=vault/98f5b7fbf6d02cf7b16bcca778dcf2af.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=5RtyQRTkWVMhxPJS0VrapA&filename=vault/98f5b7fbf6d02cf7b16bcca778dcf2af.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=8cD21MeHMxnMPkzwu_Mztg&filename=vault/98f5b7fbf6d02cf7b16bcca778dcf2af.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=cU70domXDGR7fB2crdZRiA&filename=vault/98f5b7fbf6d02cf7b16bcca778dcf2af.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=k-9U0n1UqYqOJRS-DZ7MWA&filename=vault/98f5b7fbf6d02cf7b16bcca778dcf2af.webp&width=1920 1920w,https://i.bigenc.ru/resizer/resize?sign=_E3VXK0Q6qbWZvcE8hxU_Q&filename=vault/98f5b7fbf6d02cf7b16bcca778dcf2af.webp&width=3840 3840w",564,1008,"https://i.bigenc.ru/resizer/resize?sign=YwquNkBjjvRkIItEEj84EA&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=120","https://i.bigenc.ru/resizer/resize?sign=YwquNkBjjvRkIItEEj84EA&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=120 120w,https://i.bigenc.ru/resizer/resize?sign=kwZEMADbF0h1k2QM5MQ63g&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=320 320w,https://i.bigenc.ru/resizer/resize?sign=iDjHjthf4TWMMOWxyvO9-Q&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=480 480w,https://i.bigenc.ru/resizer/resize?sign=aOq57ZwrPJzlZoA0JyAqNA&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=640 640w,https://i.bigenc.ru/resizer/resize?sign=RysrupjbIa5XYWB_pfATYQ&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=768 768w,https://i.bigenc.ru/resizer/resize?sign=8eQ4RSvaDJue-elzThMhjA&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=1024 1024w,https://i.bigenc.ru/resizer/resize?sign=4tn4w-MU4hKmUoYIwAeqew&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=1280 1280w,https://i.bigenc.ru/resizer/resize?sign=SXvkdFSbX19Vh-sgDBVBiQ&filename=vault/0ebb84c68bb91060eb81d2a5da097bbf.webp&width=1920 1920w",1528,"Обыкновенное дифференциальное уравнение","2022-05-19T15:54:22.000Z","674fdefa-4c03-4d19-95f9-9925e630b6e4",3750705,{"article:modified_time":1572,"article:section":1541,"article:tag":1576,"description":1579,"keywords":1580,"og:description":1579,"og:image":1581,"og:image:alt":1582,"og:image:height":1583,"og:image:type":1584,"og:image:width":1585,"og:title":1586,"og:type":66,"og:url":1587,"title":1586,"twitter:card":1588},[1577,1578],"Механика","Теория колебаний","Обыкнове́нное дифференциа́льное уравне́ние, уравнение, в котором неизвестной является функция от одного независимого переменного, причём в это...","Механика, Теория колебаний","https://i.bigenc.ru/resizer/resize?sign=K2mwjNK87zofppSZEffyIw&filename=vault/3cf067030012eb10bb78b0ddf25f3b6b.webp&width=1200","«Большая российская энциклопедия»","792","webp&width=1200","1200","Обыкновенное дифференциальное уравнение. Большая российская энциклопедия","https://bigenc.ru/c/obyknovennoe-differentsial-noe-uravnenie-674fde","summary_large_image","obyknovennoe-differentsial-noe-uravnenie-674fde",[1591,1595],{"label":1577,"link":1592},{"slug":1593,"type":1594},"mekhanika-300995","tag",{"label":1578,"link":1596},{"slug":1597,"type":1594},"teoriia-kolebanii-440eda",{"createdAt":1572,"tabs":1599,"title":1571,"updatedAt":1572},[66,1600,1601,1602],"annotation","references","versions",[],{},"/content/articles/obyknovennoe-differentsial-noe-uravnenie-674fde",{"get_":1607,"getError":10,"getPending":12,"slideNumber":17,"getCache":1613},{"components":1608,"media":1610,"meta":1611},{"createdAt":1572,"tabs":1609,"title":1571,"updatedAt":1572},[66,1600,1601,1602],{},{"article:modified_time":1572,"article:section":1541,"article:tag":1612,"description":1579,"keywords":1580,"og:description":1579,"og:image":1581,"og:image:alt":1582,"og:image:height":1583,"og:image:type":1584,"og:image:width":1585,"og:title":1586,"og:type":66,"og:url":1587,"title":1586,"twitter:card":1588},[1577,1578],"/content/articles/obyknovennoe-differentsial-noe-uravnenie-674fde/media?slider=true",{"isOpened":12},{"get_":10,"getError":10,"getPending":6,"post_":-1,"postError":10,"postPending":6,"count":17,"noteActive":12,"allVersions":12,"rendered":12,"loading":12},{"isOpened":12},{"isOpened":12},{"get_":10,"getError":10,"getPending":6},{"get_":10,"getError":10,"getPending":6},{"get_":10,"getError":10,"getPending":6},{"get_":10,"getError":10,"getPending":6,"post_":-1,"postError":10,"postPending":6},{"get_":1623,"getError":10,"getPending":12,"getCache":1630},{"components":1624,"title":1571,"versions":1626},{"createdAt":1572,"tabs":1625,"title":1571,"updatedAt":1572},[66,1600,1601,1602],[1627],{"createdAt":1572,"id":1628,"isCurrent":6,"title":1629},"3750705","Версия №1 (актуальная)","/content/articles/obyknovennoe-differentsial-noe-uravnenie-674fde/versions",{"show":12},{"text":13}]</script> <script>window.__NUXT__={};window.__NUXT__.config={public:{apiPrefix:"https://api.bigenc.ru",sVault:"",iVault:"",apiContentSubPrefix:"c.",apiUserSubPrefix:"u.",domain:"bigenc.ru",sentryDns:"https://be4279c4bfa0caa49440eefadf8abb1c@sentry.bigenc.ru/2",googleAnalytics:{id:"G-B0B7W0RKMV",allowedEnv:"production",url:"https://www.googletagmanager.com/gtag/js?id=G-B0B7W0RKMV"},mailRuCounter:{id:3400444,allowedEnv:"production",url:"https://top-fwz1.mail.ru/js/code.js"},version:"1.40.12",gnezdo:{id:2904018441,allowedEnv:"production",url:"https://news.gnezdo2.ru/gnezdo_news_tracker_new.js"},clickcloud:{id:"https://r.ccsyncuuid.net/match/1000511/",allowedEnv:"production"},yandexMetrika:{id:88885444,allowedEnv:"production",url:"https://mc.yandex.ru/metrika/tag.js",options:{defer:true,webvisor:true,clickmap:true,trackLinks:true,childIframe:true,accurateTrackBounce:true}},device:{enabled:true,defaultUserAgent:"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.39 Safari/537.36",refreshOnResize:false},persistedState:{storage:"cookies",debug:false,cookieOptions:{}}},app:{baseURL:"/",buildAssetsDir:"/_nuxt/",cdnURL:"https://s.bigenc.ru/"}}</script></body></html>

Pages: 1 2 3 4 5 6 7 8 9 10