CINXE.COM
Search results for: green propellant
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: green propellant</title> <meta name="description" content="Search results for: green propellant"> <meta name="keywords" content="green propellant"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="green propellant" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="green propellant"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2176</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: green propellant</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2176</span> Propellant Less Propulsion System Using Microwave Thrusters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Pradeep%20Mitra">D. Pradeep Mitra</a>, <a href="https://publications.waset.org/abstracts/search?q=Prafulla"> Prafulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Looking to the word propellant-less system it makes us to believe that it is an impossible one, but this paper demonstrates the use of microwaves to create a system which makes impossible to be possible, it means a propellant-less propulsion system using microwaves. In these thrusters, microwaves are radiated into a sealed parabolic cavity through a waveguide, which act on the surface of the cavity and follow the axis of the thrusters to produce thrust. The advantages of these thrusters are: (1) Producing thrust without propellant; without erosion, wear, and thermal stress from the hot exhaust gas; and at the same time increasing quality. (2) If the microwave output power is stable, the performance of thrusters is not affected by its working environment. This paper is demonstrated from general maxwell equations. These equations are used to create the mathematical model of the thrusters. These mathematical model helps us to calculate the Q factor and calculate the approximate thrust which would be generated in the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propellant%20less" title="propellant less">propellant less</a>, <a href="https://publications.waset.org/abstracts/search?q=microwaves" title=" microwaves"> microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20wave%20guide" title=" parabolic wave guide"> parabolic wave guide</a>, <a href="https://publications.waset.org/abstracts/search?q=propulsion%20system" title=" propulsion system"> propulsion system</a> </p> <a href="https://publications.waset.org/abstracts/15925/propellant-less-propulsion-system-using-microwave-thrusters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2175</span> The Mechanical Response of a Composite Propellant under Harsh Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xin%20Tong">Xin Tong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-sheng%20Xu"> Jin-sheng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiong%20Chen"> Xiong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya%20Zheng"> Ya Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to study the mechanical properties of HTPB (Hydroxyl-terminated polybutadiene) composite propellant under harsh conditions. It describes two tests involving uniaxial tensile tests of various strain rates (ranging from 0.0005 s<sup>-1</sup> to 1.5 s<sup>-1</sup>), temperatures (ranging from 223 K to 343 K) and high-cycle fatigue tests under low-temperature (223 K, frequencies were set at 50, 100, 150 Hz) using DMA (Dynamic Mechanical Analyzer). To highlight the effect of small pre-strain on fatigue properties of HTPB propellant, quasi-static stretching was carried out before fatigue loading, and uniaxial tensile tests at constant strain rates were successively applied. The results reveal that flow stress of propellant increases with reduction in temperature and rise in strain rate, and the strain rate-temperature equivalence relationship could be described by TTSP (time-temperature superposition principle) incorporating a modified WLF equation. Moreover, the rate of performance degradations and damage accumulation of propellant during fatigue tests increased with increasing strain amplitude and loading frequencies, while initial quasi-static loading has a negative effect on fatigue properties by comparing stress-strain relations after fatigue tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue" title="fatigue">fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=HTPB%20propellant" title=" HTPB propellant"> HTPB propellant</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20properties" title=" tensile properties"> tensile properties</a>, <a href="https://publications.waset.org/abstracts/search?q=time-temperature%20superposition%20principle" title=" time-temperature superposition principle"> time-temperature superposition principle</a> </p> <a href="https://publications.waset.org/abstracts/70854/the-mechanical-response-of-a-composite-propellant-under-harsh-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2174</span> Development of Self-Reliant Satellite-Level Propulsion System by Using Hydrogen Peroxide Propellant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Liu">H. J. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20A.%20Chan"> Y. A. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20K.%20Pai"> C. K. Pai</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Tseng"> K. C. Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Chen"> Y. H. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Chan"> Y. L. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20C.%20Kuo"> T. C. Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To satisfy the mission requirement of the FORMOSAT-7 project, NSPO has initialized a self-reliant development on satellite propulsion technology. A trade-off study on different types of on-board propulsion system has been done. A green propellant, high-concentration hydrogen peroxide (H2O2 hereafter), is chosen in this research because it is ITAR-free, nontoxic and easy to produce. As the components designed for either cold gas or hydrazine propulsion system are not suitable for H2O2 propulsion system, the primary objective of the research is to develop the components compatible with H2O2. By cooperating with domestic research institutes and manufacturing vendors, several prototype components, including a diaphragm-type tank, pressure transducer, ball latching valve, and one-Newton thruster with catalyst bed, were manufactured, and the functional tests were performed successfully according to the mission requirements. The requisite environmental tests, including hot firing test, thermal vaccum test, vibration test and compatibility test, are prepared and will be to completed in the near future. To demonstrate the subsystem function, an Air-Bearing Thrust Stand (ABTS) and a real-time Data Acquisition & Control System (DACS) were implemented to assess the performance of the proposed H2O2 propulsion system. By measuring the distance that the thrust stand has traveled in a given time, the thrust force can be derived from the kinematics equation. To validate the feasibility of the approach, it is scheduled to assess the performance of a cold gas (N2) propulsion system prior to the H2O2 propulsion system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FORMOSAT-7" title="FORMOSAT-7">FORMOSAT-7</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20propellant" title=" green propellant"> green propellant</a>, <a href="https://publications.waset.org/abstracts/search?q=Hydrogen%20peroxide" title=" Hydrogen peroxide"> Hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=thruster" title=" thruster"> thruster</a> </p> <a href="https://publications.waset.org/abstracts/30721/development-of-self-reliant-satellite-level-propulsion-system-by-using-hydrogen-peroxide-propellant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2173</span> Analysis of Mechanical Properties for AP/HTPB Solid Propellant under Different Loading Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walid%20M.%20Adel">Walid M. Adel</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Guo-Zhu"> Liang Guo-Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To investigate the characterization of the mechanical properties of composite solid propellant (CSP) based on hydroxyl-terminated polybutadiene (HTPB) at different temperatures and strain rates, uniaxial tensile tests were conducted over a range of temperatures -60 °C to +76 °C and strain rates 0.000164 to 0.328084 s<sup>-1 </sup>using a conventional universal testing machine. From the experimental data, it can be noted that the mechanical properties of AP/HTPB propellant are mainly dependent on the applied strain rate and the temperature condition. The stress-strain responses exhibited an initial yielding followed by the viscoelastic phase, which was strongly affected by the strain rate and temperature. It was found that the mechanical properties increased with both increasing strain rate and decreasing temperature. Based on the experimental tests, the master curves of the tensile properties are drawn using predetermined shift factor and the results were discussed. This work is a first step in preliminary investigation the nonlinear viscoelasticity behavior of CSP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AP%2FHTPB%20composite%20solid%20propellant" title="AP/HTPB composite solid propellant">AP/HTPB composite solid propellant</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title=" mechanical behavior"> mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20viscoelastic" title=" nonlinear viscoelastic"> nonlinear viscoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20rate" title=" strain rate"> strain rate</a> </p> <a href="https://publications.waset.org/abstracts/80610/analysis-of-mechanical-properties-for-aphtpb-solid-propellant-under-different-loading-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2172</span> Slosh Investigations on a Spacecraft Propellant Tank for Control Stability Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarath%20Chandran%20Nair%20S">Sarath Chandran Nair S</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivas%20Kodati"> Srinivas Kodati</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasudevan%20R"> Vasudevan R</a>, <a href="https://publications.waset.org/abstracts/search?q=Asraff%20A.%20K"> Asraff A. K</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spacecrafts generally employ liquid propulsion for their attitude and orbital maneuvers or raising it from geo-transfer orbit to geosynchronous orbit. Liquid propulsion systems use either mono-propellant or bi-propellants for generating thrust. These propellants are generally stored in either spherical tanks or cylindrical tanks with spherical end domes. The propellant tanks are provided with a propellant acquisition system/propellant management device along with vanes and their conical mounting structure to ensure propellant availability in the outlet for thrust generation even under a low/zero-gravity environment. Slosh is the free surface oscillations in partially filled containers under external disturbances. In a spacecraft, these can be due to control forces and due to varying acceleration. Knowledge of slosh and its effect due to internals is essential for understanding its stability through control stability studies. It is mathematically represented by a pendulum-mass model. It requires parameters such as slosh frequency, damping, sloshes mass and its location, etc. This paper enumerates various numerical and experimental methods used for evaluating the slosh parameters required for representing slosh. Numerical methods like finite element methods based on linear velocity potential theory and computational fluid dynamics based on Reynolds Averaged Navier Stokes equations are used for the detailed evaluation of slosh behavior in one of the spacecraft propellant tanks used in an Indian space mission. Experimental studies carried out on a scaled-down model are also discussed. Slosh parameters evaluated by different methods matched very well and finalized their dispersion bands based on experimental studies. It is observed that the presence of internals such as propellant management devices, including conical support structure, alters slosh parameters. These internals also offers one order higher damping compared to viscous/ smooth wall damping. It is an advantage factor for the stability of slosh. These slosh parameters are given for establishing slosh margins through control stability studies and finalize the spacecraft control system design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20stability" title="control stability">control stability</a>, <a href="https://publications.waset.org/abstracts/search?q=propellant%20tanks" title=" propellant tanks"> propellant tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=slosh" title=" slosh"> slosh</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft" title=" spacecraft"> spacecraft</a>, <a href="https://publications.waset.org/abstracts/search?q=slosh%20spacecraft" title=" slosh spacecraft"> slosh spacecraft</a> </p> <a href="https://publications.waset.org/abstracts/138510/slosh-investigations-on-a-spacecraft-propellant-tank-for-control-stability-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2171</span> Substructure Method for Thermal-Stress Analysis of Liquid-Propellant Rocket Engine Combustion Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20V.%20Korotkaya">Olga V. Korotkaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is devoted to an important problem of calculation of deflected mode of the combustion chamber and the nozzle end of a new liquid-propellant rocket cruise engine. A special attention is given to the methodology of calculation. Three operating modes are considered. The analysis has been conducted in ANSYS software. The methods of conducted research are mathematical modelling, substructure method, cyclic symmetry, and finite element method. The calculation has been carried out to order of S. P. Korolev Rocket and Space Corporation «Energia». The main results are practical. Proposed methodology and created models would be able to use for a wide range of strength problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion%20chamber" title="combustion chamber">combustion chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20symmetry" title=" cyclic symmetry"> cyclic symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-propellant%20rocket%20engine" title=" liquid-propellant rocket engine"> liquid-propellant rocket engine</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20end" title=" nozzle end"> nozzle end</a>, <a href="https://publications.waset.org/abstracts/search?q=substructure" title=" substructure"> substructure</a> </p> <a href="https://publications.waset.org/abstracts/3281/substructure-method-for-thermal-stress-analysis-of-liquid-propellant-rocket-engine-combustion-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2170</span> Artificial Intelligence and Machine Vision-Based Defect Detection Methodology for Solid Rocket Motor Propellant Grains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandip%20Suman">Sandip Suman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mechanical defects (cracks, voids, irregularities) in rocket motor propellant are not new and it is induced due to various reasons, which could be an improper manufacturing process, lot-to-lot variation in chemicals or just the natural aging of the products. These defects are normally identified during the examination of radiographic films by quality inspectors. However, a lot of times, these defects are under or over-classified by human inspectors, which leads to unpredictable performance during lot acceptance tests and significant economic loss. The human eye can only visualize larger cracks and defects in the radiographs, and it is almost impossible to visualize every small defect through the human eye. A different artificial intelligence-based machine vision methodology has been proposed in this work to identify and classify the structural defects in the radiographic films of rocket motors with solid propellant. The proposed methodology can extract the features of defects, characterize them, and make intelligent decisions for acceptance or rejection as per the customer requirements. This will automatize the defect detection process during manufacturing with human-like intelligence. It will also significantly reduce production downtime and help to restore processes in the least possible time. The proposed methodology is highly scalable and can easily be transferred to various products and processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20vision" title=" machine vision"> machine vision</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20detection" title=" defect detection"> defect detection</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket%20motor%20propellant%20grains" title=" rocket motor propellant grains"> rocket motor propellant grains</a> </p> <a href="https://publications.waset.org/abstracts/168782/artificial-intelligence-and-machine-vision-based-defect-detection-methodology-for-solid-rocket-motor-propellant-grains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2169</span> Green Construction in EGYPT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20A.%20Anwar">Hanan A. Anwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces green building construction in Egypt with different concepts and practices. The following study includes green building applied definition, guidelines, regulations and Standards. Evaluation of cost/benefit of green construction methods and green construction rating systems are presented. Relevant case studies will be reviewed. Four sites will be included. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20construction" title="green construction">green construction</a>, <a href="https://publications.waset.org/abstracts/search?q=ecofreindly" title=" ecofreindly"> ecofreindly</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sufficient%20town" title=" self-sufficient town"> self-sufficient town</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20neutral%20atmosphere" title=" carbon neutral atmosphere"> carbon neutral atmosphere</a> </p> <a href="https://publications.waset.org/abstracts/21630/green-construction-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">656</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2168</span> The Application of Green Technology to Residential Architecture in Hangzhou</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huiru%20Chen">Huiru Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuran%20Zhang"> Xuran Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, the residential architecture in China are still causing high energy consumption and high pollution during their whole life cycle, which can be backward compared with the developed countries. The aim of this paper is to discuss the application of green technology to residential architecture in Hangzhou. This article will start with the development of green buildings, then analyzes the use status of green technology in Hangzhou from several specific measures. Analysis of the typical existing green residential buildings in Hangzhou is an attempt to form a preliminary Hangzhou’s green technology application strategy system. Through research, it has been found that the application of green technology in Hangzhou has changed from putting green to the facade, to the combination of the preservation of the traditional green concept and the modern green technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=application" title="application">application</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20technology" title=" green technology"> green technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Hangzhou" title=" Hangzhou"> Hangzhou</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20architecture" title=" residential architecture"> residential architecture</a> </p> <a href="https://publications.waset.org/abstracts/92930/the-application-of-green-technology-to-residential-architecture-in-hangzhou" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2167</span> Artificial Intelligent Methodology for Liquid Propellant Engine Design Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Naseh">Hassan Naseh</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Roozgard"> Javad Roozgard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper represents the methodology based on Artificial Intelligent (AI) applied to Liquid Propellant Engine (LPE) optimization. The AI methodology utilized from Adaptive neural Fuzzy Inference System (ANFIS). In this methodology, the optimum objective function means to achieve maximum performance (specific impulse). The independent design variables in ANFIS modeling are combustion chamber pressure and temperature and oxidizer to fuel ratio and output of this modeling are specific impulse that can be applied with other objective functions in LPE design optimization. To this end, the LPE’s parameter has been modeled in ANFIS methodology based on generating fuzzy inference system structure by using grid partitioning, subtractive clustering and Fuzzy C-Means (FCM) clustering for both inferences (Mamdani and Sugeno) and various types of membership functions. The final comparing optimization results shown accuracy and processing run time of the Gaussian ANFIS Methodology between all methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANFIS%20methodology" title="ANFIS methodology">ANFIS methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligent" title=" artificial intelligent"> artificial intelligent</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20propellant%20engine" title=" liquid propellant engine"> liquid propellant engine</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/56970/artificial-intelligent-methodology-for-liquid-propellant-engine-design-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">589</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2166</span> Optimal Design of Propellant Grain Shape Based on Structural Strength Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen%20Xiong">Chen Xiong</a>, <a href="https://publications.waset.org/abstracts/search?q=Tong%20Xin"> Tong Xin</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Hao"> Li Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Jin-Sheng"> Xu Jin-Sheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experiment and simulation researches on the structural integrity of propellant grain in solid rocket motor (SRM) with high volumetric fraction were conducted. First, by using SRM parametric modeling functions with secondary development tool Python of ABAQUS, the three dimensional parameterized modeling programs of star shaped grain, wheel shaped grain and wing cylindrical grain were accomplished. Then, the mechanical properties under different loads for star shaped grain were obtained with the application of automatically established finite element model in ABAQUS. Next, several optimization algorithms are introduced to optimize the star shaped grain, wheel shaped grain and wing cylindrical grain. After meeting the demands of burning surface changes and volumetric fraction, the optimum three dimensional shapes of grain were obtained. Finally, by means of parametric modeling functions, pressure data of SRM’s cold pressurization test was directly applied to simulation of grain in terms of mechanical performance. The results verify the reliability and practical of parameterized modeling program of SRM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20pressurization%20test" title="cold pressurization test">cold pressurization test</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%9Farametric%20modeling" title=" ğarametric modeling"> ğarametric modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity" title=" structural integrity"> structural integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=propellant%20grain" title=" propellant grain"> propellant grain</a>, <a href="https://publications.waset.org/abstracts/search?q=SRM" title=" SRM"> SRM</a> </p> <a href="https://publications.waset.org/abstracts/71197/optimal-design-of-propellant-grain-shape-based-on-structural-strength-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2165</span> Studies on Pre-ignition Chamber Dynamics of Solid Rockets with Different Port Geometries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Vivek">S. Vivek</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharad%20Sharan"> Sharad Sharan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Arvind"> R. Arvind</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20V.%20Praveen"> D. V. Praveen</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Vigneshwar"> J. Vigneshwar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ajith"> S. Ajith</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper numerical studies have been carried out to examine the starting transient flow features of high-performance solid propellant rocket motors with different port geometries but with same propellant loading density. Numerical computations have been carried out using a 3D SST k-ω turbulence model. This code solves standard k-omega turbulence equations with shear flow corrections using a coupled second order implicit unsteady formulation. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations are employed. We have observed from the numerical results that in solid rocket motors with highly loaded propellants having divergent port geometry the hot igniter gases can create pre-ignition thrust oscillations due to flow unsteadiness and recirculation. Under these conditions the convective flux to the surface of the propellant will be enhanced, which will create reattachment point far downstream of the transition region and it will create a situation for secondary ignition and formation of multiple-flame fronts. As a result the effective time required for the complete burning surface area to be ignited comes down drastically giving rise to a high pressurization rate (dp/dt) in the second phase of starting transient. This in effect could lead to starting thrust oscillations and eventually a hard start of the solid rocket motor. We have also observed that the igniter temperature fluctuations will be diminished rapidly and will reach the steady state value faster in the case of solid propellant rocket motors with convergent port than the divergent port irrespective of the igniter total pressure. We have concluded that the thrust oscillations and unexpected thrust spike often observed in solid rockets with non-uniform ports are presumably contributed due to the joint effects of the geometry dependent driving forces, transient burning and the chamber gas dynamics forces. We also concluded that the prudent selection of the port geometry, without altering the propellant loading density, for damping the total temperature fluctuations within the motor is a meaningful objective for the suppression and control of instability and/or pressure/thrust oscillations often observed in solid propellant rocket motors with non-uniform port geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ignition%20transient" title="ignition transient">ignition transient</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20rockets" title=" solid rockets"> solid rockets</a>, <a href="https://publications.waset.org/abstracts/search?q=starting%20transient" title=" starting transient"> starting transient</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20transient" title=" thrust transient"> thrust transient</a> </p> <a href="https://publications.waset.org/abstracts/35068/studies-on-pre-ignition-chamber-dynamics-of-solid-rockets-with-different-port-geometries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2164</span> Feasibility Study of Particle Image Velocimetry in the Muzzle Flow Fields during the Intermediate Ballistic Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moumen%20Abdelhafidh">Moumen Abdelhafidh</a>, <a href="https://publications.waset.org/abstracts/search?q=Stribu%20Bogdan"> Stribu Bogdan</a>, <a href="https://publications.waset.org/abstracts/search?q=Laboureur%20Delphine"> Laboureur Delphine</a>, <a href="https://publications.waset.org/abstracts/search?q=Gallant%20Johan"> Gallant Johan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hendrick%20Patrick"> Hendrick Patrick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is part of an ongoing effort to improve the understanding of phenomena occurring during the intermediate ballistic phase, such as muzzle flows. A thorough comprehension of muzzle flow fields is essential for optimizing muzzle device and projectile design. This flow characterization has heretofore been almost entirely limited to local and intrusive measurement techniques such as pressure measurements using pencil probes. Consequently, the body of quantitative experimental data is limited, so is the number of numerical codes validated in this field. The objective of the work presented here is to demonstrate the applicability of the Particle Image Velocimetry (PIV) technique in the challenging environment of the propellant flow of a .300 blackout weapon to provide accurate velocity measurements. The key points of a successful PIV measurement are the selection of the particle tracer, their seeding technique, and their tracking characteristics. We have experimentally investigated the aforementioned points by evaluating the resistance, gas dispersion, laser light reflection as well as the response to a step change across the Mach disk for five different solid tracers using two seeding methods. To this end, an experimental setup has been performed and consisted of a PIV system, the combustion chamber pressure measurement, classical high-speed schlieren visualization, and an aerosol spectrometer. The latter is used to determine the particle size distribution in the muzzle flow. The experimental results demonstrated the ability of PIV to accurately resolve the salient features of the propellant flow, such as the under the expanded jet and vortex rings, as well as the instantaneous velocity field with maximum centreline velocities of more than 1000 m/s. Besides, naturally present unburned particles in the gas and solid ZrO₂ particles with a nominal size of 100 nm, when coated on the propellant powder, are suitable as tracers. However, the TiO₂ particles intended to act as a tracer, surprisingly not only melted but also functioned as a combustion accelerator and decreased the number of particles in the propellant gas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intermediate%20ballistic" title="intermediate ballistic">intermediate ballistic</a>, <a href="https://publications.waset.org/abstracts/search?q=muzzle%20flow%20fields" title=" muzzle flow fields"> muzzle flow fields</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry" title=" particle image velocimetry"> particle image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=propellant%20gas" title=" propellant gas"> propellant gas</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=under%20expanded%20jet" title=" under expanded jet"> under expanded jet</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20particle%20tracers" title=" solid particle tracers"> solid particle tracers</a> </p> <a href="https://publications.waset.org/abstracts/135991/feasibility-study-of-particle-image-velocimetry-in-the-muzzle-flow-fields-during-the-intermediate-ballistic-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2163</span> Contextual Paper on Green Finance: Analysis of the Green Bonds Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dina%20H.%20Gabr">Dina H. Gabr</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20A.%20El%20Bannan"> Mona A. El Bannan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With growing worldwide concern for global warming, green finance has become the fuel that pushes the world to act in combating and mitigating climate change. Coupled with adopting the Paris Agreement and the United Nations Sustainable Development Goals, Green finance became a vital tool in creating a pathway to sustainable development, as it connects the financial world with environmental and societal benefits. This paper provides a comprehensive review of the concepts and definitions of green finance and the importance of 'green' impact investments today. The core challenge in combating climate change is reducing and controlling Greenhouse gas emissions; therefore, this study explores the solutions green finance provides putting emphasis on the use of renewable energy, which is necessary for enhancing the transition to the green economy. With increasing attention to the concept of green finance, multiple forms of green investments and financial tools have come to fruition; the most prominent are green bonds. The rise of green bonds, a debt market to finance climate solutions, provide a promising mechanism for sustainable finance. Following the review, this paper compiles a comprehensive green bond dataset, presenting a statistical study of the evolution of the green bonds market from its first appearance in 2006 until 2021. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=GHG%20emissions" title=" GHG emissions"> GHG emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20bonds" title=" green bonds"> green bonds</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20finance" title=" green finance"> green finance</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20finance" title=" sustainable finance"> sustainable finance</a> </p> <a href="https://publications.waset.org/abstracts/149244/contextual-paper-on-green-finance-analysis-of-the-green-bonds-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2162</span> Agriroofs and Agriwalls: Applications of Food Production in Green Roofs and Green Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20M.%20Elmazek">Eman M. Elmazek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green roofs and walls are a rising technology in the global sustainable architectural industry. The idea takes great steps towards the future of sustainable design due to its many benefits. However, there are many barriers and constraints. Economical, structural, and knowledge barriers prevent the spread of the usage of green roofs and living walls. Understanding the benefits and expanding them will spread the idea. Benefits provided by these green spots interrupt and maintain the current urban cover. Food production is one of the benefits of green roofs. It can save money and energy spent in food transportation. The goal of this paper is to put a better understanding of implementing green systems. The paper aims to identify gains versus challenges facing the technology. It surveys with case studies buildings with green roofs and walls used for food production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title="green roof">green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20walls" title=" green walls"> green walls</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20farming" title=" urban farming"> urban farming</a>, <a href="https://publications.waset.org/abstracts/search?q=roof%20herb%20garden" title=" roof herb garden"> roof herb garden</a> </p> <a href="https://publications.waset.org/abstracts/46610/agriroofs-and-agriwalls-applications-of-food-production-in-green-roofs-and-green-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2161</span> Integrated Evaluation of Green Design and Green Manufacturing Processes Using a Mathematical Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Jye%20Tseng">Yuan-Jye Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin-Han%20Lin"> Shin-Han Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, a mathematical model for integrated evaluation of green design and green manufacturing processes is presented. To design a product, there can be alternative options to design the detailed components to fulfill the same product requirement. In the design alternative cases, the components of the product can be designed with different materials and detailed specifications. If several design alternative cases are proposed, the different materials and specifications can affect the manufacturing processes. In this paper, a new concept for integrating green design and green manufacturing processes is presented. A green design can be determined based the manufacturing processes of the designed product by evaluating the green criteria including energy usage and environmental impact, in addition to the traditional criteria of manufacturing cost. With this concept, a mathematical model is developed to find the green design and the associated green manufacturing processes. In the mathematical model, the cost items include material cost, manufacturing cost, and green related cost. The green related cost items include energy cost and environmental cost. The objective is to find the decisions of green design and green manufacturing processes to achieve the minimized total cost. In practical applications, the decision-making can be made to select a good green design case and its green manufacturing processes. In this presentation, an example product is illustrated. It shows that the model is practical and useful for integrated evaluation of green design and green manufacturing processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title="supply chain management">supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20supply%20chain" title=" green supply chain"> green supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20design" title=" green design"> green design</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20manufacturing" title=" green manufacturing"> green manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a> </p> <a href="https://publications.waset.org/abstracts/10104/integrated-evaluation-of-green-design-and-green-manufacturing-processes-using-a-mathematical-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">807</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2160</span> Sustainable Building Law - The Legal Issues Abound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20J.%20Sobelsohn">Richard J. Sobelsohn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green Building and Sustainable Development help fight climate change, and protects the ozone, animal habitats, air quality, and ground water. The myriad of reasons to go Green has multiplied to the point that a developer that is building a ground-up or renovating/retrofitting a property has a plethora of choices to get to the green goal post. Sustainability not affects the bottom line but satisfies corporate mandates (ESG), consumer demand, market requirements, and the many laws dictating green building practices. The good news is that there are many paths a property owner can take to become green. The bad news is that there are many paths a property owner can take to become green, and they need to choose which direction to take. Certification of a building used to be the highest achievement in the Green building world. Now there are so many variables and laws with which a property owner must comply, and the legal analysis has mushroomed. Operation and Maintenance have also become one of the most important functions for a prudent Green Building owner. So adding to the “development/retrofit” parties involved in the sustainable building legal world, we now need to include all those people who keep the building green, and there are a lot of them! <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20building" title="green building">green building</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=legal%20issues" title=" legal issues"> legal issues</a>, <a href="https://publications.waset.org/abstracts/search?q=greenwashing" title=" greenwashing"> greenwashing</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20cleaning" title=" green cleaning"> green cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=compliance" title=" compliance"> compliance</a>, <a href="https://publications.waset.org/abstracts/search?q=ESQ" title=" ESQ"> ESQ</a> </p> <a href="https://publications.waset.org/abstracts/154541/sustainable-building-law-the-legal-issues-abound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2159</span> Using a GIS-Based Method for Green Infrastructure Accessibility of Different Socio-Economic Groups in Auckland, New Zealand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Ma">Jing Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Xindong%20An"> Xindong An</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green infrastructure, the most important aspect of improving the quality of life, has been a crucial element of the liveability measurement. With demanding of more liveable urban environment from increasing population in city area, access to green infrastructure in walking distance should be taken into consideration. This article exemplifies the study on accessibility measurement of green infrastructure in central Auckland (New Zealand), using network analysis tool on the basis of GIS, to verify the accessibility levels of green infrastructure. It analyses the overall situation of green infrastructure and draws some conclusions on the city’s different levels of accessibility according to the categories and facilities distribution, which provides valuable references and guidance for the future facility improvement in planning strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title="quality of life">quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20infrastructure" title=" green infrastructure"> green infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=accessibility" title=" accessibility"> accessibility</a> </p> <a href="https://publications.waset.org/abstracts/40617/using-a-gis-based-method-for-green-infrastructure-accessibility-of-different-socio-economic-groups-in-auckland-new-zealand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2158</span> A Framework for Green Use and Disposal of Information Communication Technology Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frezer%20Alem%20Kebede">Frezer Alem Kebede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The notion of viewing ICT as merely support for the business process has shifted towards viewing ICT as a critical business enabler. As such, the need for ICT devices has increased, contributing to high electronic equipment acquisition and disposal. Hence, its use and disposal must be seen in light of environmental sustainability, i.e., in terms of green use and disposal. However, there are limited studies on green Use and Disposal framework to be used as guiding lens by organizations in developing countries. And this study endeavors to address that need taking one of the largest multinational ICT intensive company in the country. The design and development of this framework passed through several stages, initially factors affecting green use and disposal were identified after quantitative and qualitative data analysis then there were multiple brainstorming sessions for the design enhancement as participative modelling was employed. Given the difference in scope and magnitude of the challenges identified, the proposed framework approaches green use and disposal in four imperatives; strategically, tactically, operationally and through continuous improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20disposal" title=" green disposal"> green disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20ICT" title=" green ICT"> green ICT</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20use" title=" green use"> green use</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20use%20and%20disposal%20framework" title=" green use and disposal framework"> green use and disposal framework</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/123464/a-framework-for-green-use-and-disposal-of-information-communication-technology-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2157</span> Analytic Hierarchy Process Method for Supplier Selection Considering Green Logistics: Case Study of Aluminum Production Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Erbiyik">H. Erbiyik</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bal"> A. Bal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sirakaya"> M. Sirakaya</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96.%20Yesildal"> Ö. Yesildal</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Yolcu"> E. Yolcu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The emergence of many environmental issues began with the Industrial Revolution. The depletion of natural resources and emerging environmental challenges over time requires enterprises and managers to take into consideration environmental factors while managing business. If we take notice of these causes; the design and implementation of environmentally friendly green purchasing, production and waste management systems become very important at green logistics systems. Companies can adopt green supply chain with the awareness of these facts. The concept of green supply chain constitutes from green purchasing, green production, green logistics, waste management and reverse logistics. In this study, we wanted to identify the concept of green supply chain and why green supply chain should be applied. In the practice part of the study an analytic hierarchy process (AHP) study is conducted on an aluminum production company to evaluate suppliers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20sector" title="aluminum sector">aluminum sector</a>, <a href="https://publications.waset.org/abstracts/search?q=analytic%20hierarchy%20process" title=" analytic hierarchy process"> analytic hierarchy process</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title=" decision making"> decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20logistics" title=" green logistics"> green logistics</a> </p> <a href="https://publications.waset.org/abstracts/53773/analytic-hierarchy-process-method-for-supplier-selection-considering-green-logistics-case-study-of-aluminum-production-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2156</span> Building Green Infrastructure Networks Based on Cadastral Parcels Using Network Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gon%20Park">Gon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seoul in South Korea established the 2030 Seoul City Master Plan that contains green-link projects to connect critical green areas within the city. However, the plan does not have detailed analyses for green infrastructure to incorporate land-cover information to many structural classes. This study maps green infrastructure networks of Seoul for complementing their green plans with identifying and raking green areas. Hubs and links of main elements of green infrastructure have been identified from incorporating cadastral data of 967,502 parcels to 135 of land use maps using geographic information system. Network analyses were used to rank hubs and links of a green infrastructure map with applying a force-directed algorithm, weighted values, and binary relationships that has metrics of density, distance, and centrality. The results indicate that network analyses using cadastral parcel data can be used as the framework to identify and rank hubs, links, and networks for the green infrastructure planning under a variable scenarios of green areas in cities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadastral%20data" title="cadastral data">cadastral data</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20Infrastructure" title=" green Infrastructure"> green Infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20analysis" title=" network analysis"> network analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=parcel%20data" title=" parcel data"> parcel data</a> </p> <a href="https://publications.waset.org/abstracts/96643/building-green-infrastructure-networks-based-on-cadastral-parcels-using-network-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2155</span> Magnitude of Green Computing in Trending IT World</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raghul%20Vignesh%20Kumar">Raghul Vignesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vadivel"> M. Vadivel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the recent years many industries and companies have turned their attention in realizing how going 'green' can benefit public relations, lower cost, and reduce global emissions from industrial manufacturing. Green Computing has become an originative way on how technology and ecology converge together. It is a growing import subject that creates an urgent need to train next generation computer scientists or practitioners to think ‘green’. However, green computing has not yet been well taught in computer science or computer engineering courses as a subject. In this modern IT world it’s impossible for an organization or common man to work without hardware like servers, desktop, IT devices, smartphones etc. But it is also important to consider the harmful impact of those devices and steps to achieve energy saving and environmental protection. This paper presents the magnitude of green computing and steps to be followed to go green. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20computing" title="green computing">green computing</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon-dioxide" title=" carbon-dioxide"> carbon-dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas" title=" greenhouse gas"> greenhouse gas</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20protection%20agency" title=" environmental protection agency"> environmental protection agency</a> </p> <a href="https://publications.waset.org/abstracts/5830/magnitude-of-green-computing-in-trending-it-world" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2154</span> The Gap of Green Consumption Behavior: Driving from Attitude to Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Du">Yu Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian-Guo%20Wang"> Jian-Guo Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green consumption is a key link to develop the ecological economy, and consumers are vital to carry out green consumption. With environmental awareness gradually being aroused, consumers often fail to turn their positive attitude into actual green consumption behavior. According to behavior reasoning theory, reasons for adoption have a direct (positive) influence on consumers’ attitude while reasons against adoption have a direct (negative) influence on consumers’ adoption intentions, the incongruous coexistence of which leads to the attitude-behavior gap of green consumption. Based on behavior reasoning theory, this research integrates reasons for adoption and reasons against adoption into a proposed model, in which reasons both for and against green consumption mediate the relationship between consumer’ values, attitudes, and behavioral intentions. It not only extends the conventional theory of reasoned action but also provides a reference for the government and enterprises to design the repairing strategy of green consumption attitude-behavior gap. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20product" title="green product">green product</a>, <a href="https://publications.waset.org/abstracts/search?q=attitude-behavior%20gap" title=" attitude-behavior gap"> attitude-behavior gap</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior%20reasoning%20theory" title=" behavior reasoning theory"> behavior reasoning theory</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20consumption" title=" green consumption"> green consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/67644/the-gap-of-green-consumption-behavior-driving-from-attitude-to-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2153</span> Ballistics of Main Seat Ejection Cartridges for Aircraft Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20A.%20Parate">B. A. Parate</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20D.%20Deodhar"> K. D. Deodhar</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Dixit"> V. K. Dixit</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Rao"> V. V. Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article outlines the ballistics of main seat ejection cartridges for aircraft application. The ballistics of main seat ejection cartridges plays a vital role during the ejection of the pilot in an emergency. The ballistic parameters such as maximum pressure, time is taken to reach the maximum pressure, and time required to reach half the maximum pressure contributes to the spinal injury of the pilot. Therefore, the evaluations of these parameters are very critical during various stages of development. Elaborate testing was carried out for main seat ejection cartridges on seat ejection tower (SET) at different operating temperatures considering physiological limits. As these trials are cumbersome in nature, a vented vessel (VV) testing facility was devised to lay down the performance parameters at hot and cold temperature conditions. Single base (SB) propellant having hepta-tubular configuration is selected as the main filling. Gun powder plays the role of a booster based on ballistic requirements. The evaluation methodology of various performance parameters of main seat ejection cartridges is explained in this paper. Physiological parameters such as maximum seat ejection velocity, acceleration, and rate of rising of acceleration are also experimentally determined on seat ejection tower. All the parameters are observed well within physiological limits. This paper addresses the internal ballistic of main seat ejection cartridges, propellant selection, its calculation, and evaluation of various performance parameters for an aircraft application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistics%20of%20seat%20ejection" title="ballistics of seat ejection">ballistics of seat ejection</a>, <a href="https://publications.waset.org/abstracts/search?q=ejection%20seat" title=" ejection seat"> ejection seat</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20generator" title=" gas generator"> gas generator</a>, <a href="https://publications.waset.org/abstracts/search?q=gun%20propulsion" title=" gun propulsion"> gun propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=main%20seat%20ejection%20cartridges" title=" main seat ejection cartridges"> main seat ejection cartridges</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20pressure" title=" maximum pressure"> maximum pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20parameters" title=" performance parameters"> performance parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=propellant" title=" propellant"> propellant</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20burning%20and%20vented%20vessel" title=" progressive burning and vented vessel"> progressive burning and vented vessel</a> </p> <a href="https://publications.waset.org/abstracts/131210/ballistics-of-main-seat-ejection-cartridges-for-aircraft-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2152</span> Removal of Brilliant Green in Environmental Samples by Poly Ethylene Terephthalate Granule</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Homayon%20Ahmad%20Panahi">Homayon Ahmad Panahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nika%20Shakerin"> Nika Shakerin</a>, <a href="https://publications.waset.org/abstracts/search?q=Farahnaz%20Zolriasatain"> Farahnaz Zolriasatain</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Moniri"> Elham Moniri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, poly-ethylene terephthalate granule was prepared from Tak Corporation. The granule was characterized by fourier transform infra-red spectroscopy. Then the effects of various parameters on brilliant green sorption such as pH, contact time were studied. The optimum pH value for sorption of brilliant green was 6. The sorption capacity of the granule for brilliant green was 4.6 mg g−1. The profile of brilliant green uptake on this sorbent reflects a good accessibility of the chelating sites in the poly-ethylene terephthalate granule. The developed method was utilized for the determination of brilliant green in environmental water samples by UV/Vis spectrophotometry with satisfactory results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poly-ethylene%20terephthalate%20granule" title="poly-ethylene terephthalate granule">poly-ethylene terephthalate granule</a>, <a href="https://publications.waset.org/abstracts/search?q=brilliant%20green" title=" brilliant green"> brilliant green</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20sample" title=" environmental sample"> environmental sample</a>, <a href="https://publications.waset.org/abstracts/search?q=removal" title=" removal"> removal</a> </p> <a href="https://publications.waset.org/abstracts/1520/removal-of-brilliant-green-in-environmental-samples-by-poly-ethylene-terephthalate-granule" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2151</span> Bi-Liquid Free Surface Flow Simulation of Liquid Atomization for Bi-Propellant Thrusters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junya%20Kouwa">Junya Kouwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinsuke%20Matsuno"> Shinsuke Matsuno</a>, <a href="https://publications.waset.org/abstracts/search?q=Chihiro%20Inoue"> Chihiro Inoue</a>, <a href="https://publications.waset.org/abstracts/search?q=Takehiro%20Himeno"> Takehiro Himeno</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshinori%20Watanabe"> Toshinori Watanabe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bi-propellant thrusters use impinging jet atomization to atomize liquid fuel and oxidizer. Atomized propellants are mixed and combusted due to auto-ignitions. Therefore, it is important for a prediction of thruster’s performance to simulate the primary atomization phenomenon; especially, the local mixture ratio can be used as indicator of thrust performance, so it is useful to evaluate it from numerical simulations. In this research, we propose a numerical method for considering bi-liquid and the mixture and install it to CIP-LSM which is a two-phase flow simulation solver with level-set and MARS method as an interfacial tracking method and can predict local mixture ratio distribution downstream from an impingement point. A new parameter, beta, which is defined as the volume fraction of one liquid in the mixed liquid within a cell is introduced and the solver calculates the advection of beta, inflow and outflow flux of beta to a cell. By validating this solver, we conducted a simple experiment and the same simulation by using the solver. From the result, the solver can predict the penetrating length of a liquid jet correctly and it is confirmed that the solver can simulate the mixing of liquids. Then we apply this solver to the numerical simulation of impinging jet atomization. From the result, the inclination angle of fan after the impingement in the bi-liquid condition reasonably agrees with the theoretical value. Also, it is seen that the mixture of liquids can be simulated in this result. Furthermore, simulation results clarify that the injecting condition affects the atomization process and local mixture ratio distribution downstream drastically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bi-propellant%20thrusters" title="bi-propellant thrusters">bi-propellant thrusters</a>, <a href="https://publications.waset.org/abstracts/search?q=CIP-LSM" title=" CIP-LSM"> CIP-LSM</a>, <a href="https://publications.waset.org/abstracts/search?q=free-surface%20flow%20simulation" title=" free-surface flow simulation"> free-surface flow simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=impinging%20jet%20atomization" title=" impinging jet atomization"> impinging jet atomization</a> </p> <a href="https://publications.waset.org/abstracts/43135/bi-liquid-free-surface-flow-simulation-of-liquid-atomization-for-bi-propellant-thrusters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2150</span> A Review on the Development and Challenges of Green Roof Systems in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Chow">M. F. Chow</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Abu%20Bakar"> M. F. Abu Bakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green roof system is considered a relatively new concept in Malaysia even though it has been implemented widely in the developed countries. Generally, green roofs provide many benefits such as enhancing aesthetical quality of the built environment, reduce urban heat island effect, reduce energy consumption, improve stormwater attenuation, and reduce noise pollution. A better understanding on the implementation of green roof system in Malaysia is crucial, as Malaysia’s climate is different if compared with the climate in temperate countries where most of the green roof studies have been conducted. This study has concentrated on the technical aspect of green roof system which focuses on i) types of plants and method of planting; ii) engineering design for green roof system; iii) its hydrological performance on reducing stormwater runoff; and iv) benefits of green roofs with respect to energy. Literature review has been conducted to identify the development and obstacles associated with green roofs systems in Malaysia. The study had identified the challenges and potentials of green roofs development in Malaysia. This study also provided the recommendations on standard design and strategies on the implementation of green roofs in Malaysia in the near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engineering%20design" title="engineering design">engineering design</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title=" green roof"> green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20countries" title=" tropical countries"> tropical countries</a> </p> <a href="https://publications.waset.org/abstracts/35264/a-review-on-the-development-and-challenges-of-green-roof-systems-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2149</span> The Relationship between Absorptive Capacity and Green Innovation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Hashim">R. Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Bock"> A. J. Bock</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Cooper"> S. Cooper </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Absorptive capacity generally facilitates the adoption of innovation. How does this relationship change when economic return is not the sole driver of innovation uptake? We investigate whether absorptive capacity facilitates the adoption of green innovation based on a survey of 79 construction companies in Scotland. Based on the results of multiple regression analyses, we confirm that existing knowledge utilisation (EKU), knowledge building (KB) and external knowledge acquisition (EKA) are significant predictors of green process GP), green administrative (GA) and green technical innovation (GT), respectively. We discuss the implications for theories of innovation adoption and knowledge enhancement associated with environmentally-friendly practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorptive%20capacity" title="absorptive capacity">absorptive capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20industry" title=" construction industry"> construction industry</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20innovation" title=" green innovation"> green innovation</a> </p> <a href="https://publications.waset.org/abstracts/18052/the-relationship-between-absorptive-capacity-and-green-innovation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2148</span> Clients’ Priorities in Design and Delivery of Green Projects: South African Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charles%20Mothobiso">Charles Mothobiso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study attempts to identify the client’s main priority when delivering green projects. The aim is to compare whether clients’ interests are similar when delivering conventional buildings as compared to green buildings. Private clients invest more in green buildings as compared to government and parastatal entities. Private clients prioritize on maximizing a return on investment and they mainly invest in energy-saving buildings that have low life cycle costs. Private clients are perceived to be more knowledgeable about the benefits of green building projects as compared to government and parastatal clients. A shortage of expertise and managerial skill leads to the low adaptation of green buildings in government and parastatal projects. Other factors that seem to prevent the adoption of green buildings are the preparedness of the supply chain within the industry and inappropriate procurement strategies adopted by clients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20clients" title="construction clients">construction clients</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20team" title=" design team"> design team</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20buildings" title=" green buildings"> green buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=procurement" title=" procurement"> procurement</a> </p> <a href="https://publications.waset.org/abstracts/55634/clients-priorities-in-design-and-delivery-of-green-projects-south-african-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2147</span> Economic Value Added of Green Marketing for Urban Commerical Center</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuo-Wei%20Hsu">Kuo-Wei Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yen-Ting"> Yen-Ting</a>, <a href="https://publications.waset.org/abstracts/search?q=Wu"> Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, green marketing issues have emerged as the developing direction for local governments and social enterprises. At the same time, many social enterprises have considered how to effectively create a low-carbon and sustainable environment. Local government has a role to play in promoting low-carbon life styles and creating a green sustainable environment within this green marketing trend. Therefore, urban commercial centers have implemented relevant plans such as: Green Store, Green Action Shops, Green Restaurants and Green Hotels. The purpose of these plans to select the commercial center organizations have potential energy saving demonstration and environmental greenification. These organizations are willing to provide assistance counseling and become a green demonstration district, thereby promoting the major shopping district to take the initiative to enhance its green competitiveness. Finally, they create a new landscape for the commercial center. Studies on green marketing in commercial centers are seen as less attractive and only a few studies for commercial centers have focused on green marketing strategies. There is no empirical evidence for how commercial center managers evaluate a commercial center green marketing strategy. This research investigated the major commercial centers in Taichung City and found green marketing helps to enhance the connection between the urban commercial center value and society value, shape corporate image with social responsibility and create brand value, and therefore impact the increase of economic value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20value%20added" title="economic value added">economic value added</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20marketing" title=" green marketing"> green marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20environment" title=" sustainable environment"> sustainable environment</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20commercial%20center." title=" urban commercial center."> urban commercial center.</a> </p> <a href="https://publications.waset.org/abstracts/40894/economic-value-added-of-green-marketing-for-urban-commerical-center" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20propellant&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20propellant&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20propellant&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20propellant&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20propellant&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20propellant&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20propellant&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20propellant&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20propellant&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20propellant&page=72">72</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20propellant&page=73">73</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20propellant&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>