CINXE.COM
Search results for: biological properties
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: biological properties</title> <meta name="description" content="Search results for: biological properties"> <meta name="keywords" content="biological properties"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="biological properties" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="biological properties"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10772</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: biological properties</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10772</span> Mechanical Properties of Biological Tissues</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20June%20Yoon">Young June Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We will present four different topics in estimating the mechanical properties of biological tissues. First we elucidate the viscoelastic behavior of collagen molecules whose diameter is a couple of nanometers. By using the molecular dynamics simulation, we observed the viscoelastic behavior in different pulling velocity. Second, the protein layer, so called ‘sheath’ in enamel microstructure reduces the stress concentration in enamel minerals. We examined the result by using the finite element methods. Third, the anisotropic elastic constants of dentin are estimated by micromechanical analysis and estimated results are close to the experimentally measured data. Last, new formulation between the fabric tensor and the wave velocity is established for calcaneus by employing the poroelasticity. This formulation can be simply used for future experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tissues" title="tissues">tissues</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanics" title=" mechanics"> mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation" title=" wave propagation"> wave propagation</a> </p> <a href="https://publications.waset.org/abstracts/34027/mechanical-properties-of-biological-tissues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10771</span> Preparation of Essential Oil Capsule (Carum Copticum) In Chitosan Nanoparticles and Investigation of Its Biological Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Esmaeili">Akbar Esmaeili</a>, <a href="https://publications.waset.org/abstracts/search?q=Azadeh%20Asgari"> Azadeh Asgari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Essential oils’ unique and practical properties have been widely reported in recent years. Still, the sensitivity of critical oils to environmental factors and their poor solubility in aqueous solutions have limited their use in industries. Therefore, we encapsulated C. copticum essential oil in chitosan nanoparticles by emulsion-ionic gelation with sodium tripolyphosphate and sodium hexametaphosphate cross-linkers. The nanoparticles showed a round shape with an average size of 30-80 nm and a regular distribution. The release profile in the laboratory environment showed a burst in the initial release and then a stable release of C. copticum essential oil from chitosan nanoparticles at different pH. Antioxidant and antibacterial properties of C. copticum essential oil before and after the encapsulation process were evaluated by 2,2-diphenyl-1-picrylhydrazyl radical and disc diffusion methods, respectively. The results showed that the encapsulation of C. copticum essential oil in chitosan nanoparticles could protect its quality and bioactive compounds and improve the properties of the crucial oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title="essential oils">essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=Carum%20copticum" title=" Carum copticum"> Carum copticum</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20activities" title=" biological activities"> biological activities</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/167505/preparation-of-essential-oil-capsule-carum-copticum-in-chitosan-nanoparticles-and-investigation-of-its-biological-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10770</span> An Ultrasonic Approach to Investigate the Effect of Aeration on Rheological Properties of Soft Biological Materials with Bubbles Embedded</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussein%20M.%20Elmehdi">Hussein M. Elmehdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present the results of our recent experiments done to examine the effect of air bubbles, which were introduced to bio-samples during preparation, on the rheological properties of soft biological materials. To effectively achieve this, we three samples each prepared with differently. Our soft biological systems comprised of three types of flour dough systems made from different flour varieties with variable protein concentrations. The samples were investigated using ultrasonic waves operated at low frequency in transmission mode. The sample investigated included dough made from bread flour, wheat flour and all-purpose flour. During mixing, the main ingredient of the samples (the flour) was transformed into cohesive dough comprised of the continuous dough matrix and air pebbles. The rheological properties of such materials determine the quality of the end cereal product. Two ultrasonic parameters, the longitudinal velocity and attenuation coefficient were found to be very sensitive to properties such as the size of the occluded bubbles, and hence have great potential of providing quantitative evaluation of the properties of such materials. The results showed that the magnitudes of the ultrasonic velocity and attenuation coefficient peaked at optimum mixing times; the latter of which is taken as an indication of the end of the mixing process. There was an agreement between the results obtained by conventional rheology and ultrasound measurements, thus showing the potential of the use of ultrasound as an on-line quality control technique for dough-based products. The results of this work are explained with respect to the molecular changes occurring in the dough system as the mixing process proceeds; particular emphasis is placed on the presence of free water and bound water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title="ultrasound">ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20biological%20materials" title=" soft biological materials"> soft biological materials</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity"> velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=attenuation" title=" attenuation"> attenuation</a> </p> <a href="https://publications.waset.org/abstracts/47328/an-ultrasonic-approach-to-investigate-the-effect-of-aeration-on-rheological-properties-of-soft-biological-materials-with-bubbles-embedded" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10769</span> Sorption Properties of Biological Waste for Lead Ions from Aqueous Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucia%20Rozumov%C3%A1">Lucia Rozumová</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivo%20%C5%A0afa%C5%99%C3%ADk"> Ivo Šafařík</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Seidlerov%C3%A1"> Jana Seidlerová</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20K%C5%AFs"> Pavel Kůs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosorption by biological waste materials from agriculture industry could be a cost-effective technique for removing metal ions from wastewater. The performance of new biosorbent systems, consisting of the waste matrixes which were magnetically modified by iron oxide nanoparticles, for the removal of lead ions from an aqueous solution was tested. The use of low-cost and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods. This article deals with the removal of metal ions from aqueous solutions by modified waste products - orange peels, sawdust, peanuts husks, used tea leaves and ground coffee sediment. Magnetically modified waste materials were suspended in methanol and then was added ferrofluid (magnetic iron oxide nanoparticles). This modification process gives the predictions for the formation of the smart materials with new properties. Prepared material was characterized by using scanning electron microscopy, specific surface area and pore size analyzer. Studies were focused on the sorption and desorption properties. The changes of iron content in magnetically modified materials after treatment were observed as well. Adsorption process has been modelled by adsorption isotherms. The results show that magnetically modified materials during the dynamic sorption and desorption are stable at the high adsorbed amount of lead ions. The results of this study indicate that the biological waste materials as sorbent with new properties are highly effective for the treatment of wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20waste" title="biological waste">biological waste</a>, <a href="https://publications.waset.org/abstracts/search?q=sorption" title=" sorption"> sorption</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ions" title=" metal ions"> metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrofluid" title=" ferrofluid"> ferrofluid</a> </p> <a href="https://publications.waset.org/abstracts/84031/sorption-properties-of-biological-waste-for-lead-ions-from-aqueous-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10768</span> Degradation Mechanism of Automotive Refinish Coatings Exposed to Biological Substances: The Role of Cross-Linking Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mahdavi">M. Mahdavi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mohseni"> M. Mohseni</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rafiei"> R. Rafiei</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yari"> H. Yari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental factors can deteriorate the automotive coatings significantly. Such as UV radiations, humidity, hot-cold shock and destructive chemical compounds. Furthermore, some natural materials such as bird droppings and tree gums have the potential to degrade the coatings as well. The present work aims to study the mechanism of degradation for two automotive refinish coating (PU based) systems exposed to two types of biological materials, i.e. Arabic gum and the simulated bird dropping, pancreatin. To reach this goal, effects of these biological materials on surface properties and appearance were studied using different techniques including digital camera, FT-IR spectroscopy, optical microscopy, and gloss measurements. In addition, the thermo-mechanical behavior of coatings was examined by DMTA. It was found that cross-linking had a crucial role on the biological resistance of clear coat. The higher cross-linking enhanced biological resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=refinish%20clear%20coat" title="refinish clear coat">refinish clear coat</a>, <a href="https://publications.waset.org/abstracts/search?q=pancreatin" title=" pancreatin"> pancreatin</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabic%20gum" title=" Arabic gum"> Arabic gum</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-linking" title=" cross-linking"> cross-linking</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20degradation" title=" biological degradation"> biological degradation</a> </p> <a href="https://publications.waset.org/abstracts/18510/degradation-mechanism-of-automotive-refinish-coatings-exposed-to-biological-substances-the-role-of-cross-linking-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10767</span> Review on Green Synthesis of Gold Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shabnam">Shabnam</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagdeep%20Kumar"> Jagdeep Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because of the impact of their greater surface area and smaller quantum sizes in comparison with other metal atoms or bulk metals, metal nanoparticles, such as those formed of gold, exhibit a variety of unusual chemical and physical properties. The size- and shape-dependent properties of gold nanoparticles (GNPs) are particularly notable. Metal nanoparticles have received a lot of attention due to their unique properties and exciting prospective uses in photonics, electronics, biological sensing, and imaging. The latest developments in GNP synthesis are discussed in this review. Green chemistry measures were used to assess the production of gold nanoparticles, with a focus on Process Mass Intensity (PMI). Based on these measurements, opportunities for improving synthetic approaches were found. With PMIs that were often in the thousands, solvent usage was found to be the main obstacle for nanoparticle synthesis, even ones that were otherwise considered to be environmentally friendly. Since ligated metal nanoparticles are the most industrially relevant but least environmentally friendly, their synthesis by arrested precipitation was chosen as the best chance for significant advances. Gold nanoparticles of small sizes and bio-stability are produced biochemically, and they are used in many biological applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold" title="gold">gold</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title=" green synthesis"> green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=AuNP" title=" AuNP"> AuNP</a> </p> <a href="https://publications.waset.org/abstracts/165149/review-on-green-synthesis-of-gold-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10766</span> Chemical Composition and Biological Properties of Algerian Honeys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouchemoukh%20Salim">Ouchemoukh Salim</a>, <a href="https://publications.waset.org/abstracts/search?q=Amessis-Ouchemoukh%20Nadia"> Amessis-Ouchemoukh Nadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Guenaoui%20Nawel"> Guenaoui Nawel</a>, <a href="https://publications.waset.org/abstracts/search?q=Moumeni%20Lynda"> Moumeni Lynda</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaidi%20Hicham"> Zaidi Hicham</a>, <a href="https://publications.waset.org/abstracts/search?q=Otmani%20Amar"> Otmani Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadou%20Dyhia">Sadou Dyhia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Honey is a hive food rich in carbohydrates and water and it also has a lot of nutrients (enzymes, minerals, organic acids, phytochemicals...). It is used in different nutritional and therapeutic fields. Algerian honey was studied for its physicochemical parameters, nutritional values (moisture, brix, pH, electrical conductivity, and amounts of HMF, proteins, proline, total phenolic compounds and flavonoids) and some biological activities (antioxidant, anti-inflammatory and enzymatic anti-browning). The antioxidant activities of the samples were estimated using different methods (ABTS, DPPH free radicals scavenging, reducing power, and chelating ferrous activity). All honeys were acidic (3.45≤pH≤4.65). The color varied from mimosa yellow to dark brown. The specific rotation was levorotatory in most honey samples, and the electrical conductivity, hydroxymethylfurfural, and proline values agreed with the international honey requirements. For anti-inflammatory activity, the results showed that the inhibiting capacity of the denaturation of the BSA of the honey analyzed varied from 15 to 75 % with a maximum of activity at the concentration of 0,5 mg/ml. All honey exhibited enzymatic anti-browning on different slices of fruits. In fact, the results showed that the controls have the greatest browning unit compared to the honeys studied and PPO and POD enzymes had the lowest enzyme activity. High significant correlations were found between the color of honey, its antioxidant content and its biological activities (antioxidant, anti-inflammatory and enzymatic anti-browning). The dark color of honey is a good indicator of the best biological properties, therefore, the best nutritional and therapeutic values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honey" title="honey">honey</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-chemical%20parameters" title=" physico-chemical parameters"> physico-chemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title=" bioactive compounds"> bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20properties" title=" biological properties"> biological properties</a> </p> <a href="https://publications.waset.org/abstracts/185000/chemical-composition-and-biological-properties-of-algerian-honeys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10765</span> Synthesis, Characterization and Biological Activites of Azomethine Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lynda%20Golea">Lynda Golea</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Chebaki"> Rachid Chebaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Schiff bases contain heterocyclic structural units with N and O donor atoms which plays an important role in coordination chemistry. Azomethine groups are a broad class of widely used compounds with applications in many fields, including analytical, inorganic chemistry and biological. Schiff's base is of promising research interest due to the widespread antibacterial resistance in medical science. In addition, the research is essential to generate Schiff base metal complexes with various applications. Schiff complexes have been used as drugs and have antibacterial, antifungal, antiviral, and anti-inflammatory properties. The various donor atoms they contain offer a special ability for metal binding. In this research on the physicochemical properties of azomethine groups, we synthesized and studied the Schiff base compounds by a condensation reaction of tryptamines and acetophenone in ethanol. The structure of the prepared compound was interpreted using 1H NMR, 13C NMR, UV-vis and FT-IR. A computational analysis at the level of DFT with functional B3LYP in conjunction with the base 6-311+G (d, p) was conducted to study its electronic and molecular structure. The biological study was performed on three bacterial strains usually causing infection, including Gram-positive and Gram-negative, for antibacterial activity. Results showed moderate biological activity and proportional activity with increasing concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azomethine" title="azomethine">azomethine</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO" title=" HOMO"> HOMO</a>, <a href="https://publications.waset.org/abstracts/search?q=LUMO" title=" LUMO"> LUMO</a>, <a href="https://publications.waset.org/abstracts/search?q=RMN" title=" RMN"> RMN</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a> </p> <a href="https://publications.waset.org/abstracts/167598/synthesis-characterization-and-biological-activites-of-azomethine-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10764</span> Investigation on Properties and Applications of Graphene as Single Layer of Carbon Atoms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ashjaran">Ali Ashjaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene is undoubtedly emerging as one of the most promising materials because of its unique combination of superb properties, which opens a way for its exploitation in a wide spectrum of applications ranging from electronics to optics, sensors, and biodevices. In addition, Graphene-based nanomaterials have many promising applications in energy-related areas. Graphene a single layer of carbon atoms, combines several exceptional properties, which makes it uniquely suited as a coating material: transparency, excellent mechanical stability, low chemical reactivity, Optical, impermeability to most gases, flexibility, and very high thermal and electrical conductivity. Graphene is a material that can be utilized in numerous disciplines including, but not limited to: bioengineering, composite materials, energy technology and nanotechnology, biological engineering, optical electronics, ultrafiltration, photovoltaic cells. This review aims to provide an overiew of graphene structure, properties and some applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=anti%20corrosion" title=" anti corrosion"> anti corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20and%20electrical%20properties" title=" optical and electrical properties"> optical and electrical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a> </p> <a href="https://publications.waset.org/abstracts/41835/investigation-on-properties-and-applications-of-graphene-as-single-layer-of-carbon-atoms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10763</span> On the Thermodynamics of Biological Cell Adhesion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ben%20Nadler">Ben Nadler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell adhesion plays a vital role in many cell activities. The motivation to model cell adhesion is to study important biological processes, such as cell spreading, cell aggregation, tissue formation, and cell adhesion, which are very challenging to study by experimental methods alone. This study provides important insight into cell adhesion, which can lead to improve regenerative medicine and tissue formation techniques. In this presentation the biological cells adhesion is mediated by receptors–ligands binding and the diffusivity of the receptor on the cell membrane surface. The ability of receptors to diffuse on the cell membrane surface yields a very unique and complicated adhesion mechanism, which is exclusive to cells. The phospholipid bilayer, which is the main component in the cell membrane, shows fluid-like behavior associated with the molecules’ diffusivity. The biological cell is modeled as a fluid-like membrane with negligible bending stiffness enclosing the cytoplasm fluid. The in-plane mechanical behavior of the cell membrane is assumed to depend only on the area change, which is motivated by the fluidity of the phospholipid bilayer. In addition, the presence of receptors influences on the local mechanical properties of the cell membrane is accounted for by including stress-free area change, which depends on the receptor density. Based on the physical properties of the receptors and ligands the attraction between the receptors and ligands is modeled as a charged-nonpolar which is a noncovalent interaction. Such interaction is a short-range type, which decays fast with distance. The mobility of the receptor on the cell membrane is modeled using the diffusion equation and Fick’s law is used to model the receptor–receptor interactions. The resultant interaction force, which includes receptor–ligand and receptor–receptor interaction, is decomposed into tangential part, which governs the receptor diffusion, and normal part, which governs the cell deformation and adhesion. The formulation of the governing equations and numerical simulations will be presented. Analysis of the adhesion characteristic and properties are discussed. The roles of various thermomechanical properties of the cell, receptors and ligands on the cell adhesion are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20adhesion" title="cell adhesion">cell adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20membrane" title=" cell membrane"> cell membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=receptor-ligand%20interaction" title=" receptor-ligand interaction"> receptor-ligand interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=receptor%20diffusion" title=" receptor diffusion"> receptor diffusion</a> </p> <a href="https://publications.waset.org/abstracts/37546/on-the-thermodynamics-of-biological-cell-adhesion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10762</span> Health Promoting Properties of Phytochemicals from Rosemary (Rosmarinus officinalis) for Cancer and Inflammatory Bowel Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeremy%20J.%20Johnson">Jeremy J. Johnson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mediterranean herbs including rosemary (Rosmarinus officinalis) contain a variety of phytochemicals including diterpenes that possess extensive biological activity. Applications of diterpenes, including the more abundant forms carnosol and carnosic acid, have been shown to possess anti-cancer, anti-inflammatory, anti-oxidant, and anti-proliferation properties. To confirm these properties, we have evaluated rosemary extract and selected diterpenes for biological activity in cancer and inflammatory models. Our preliminary data have revealed that select diterpenes can disrupt androgen receptor functionality in prostate and breast cancer cells. This property is unique among natural products for hormone-responsive cancers. The second area of interest has been evaluating rosemary extract and selected diterpenes for activation of sestrin-2, an antioxidant protein, in colon cancer cells. A combination of in vitro and in vivo approaches have been utilized to characterize the activity of rosemary diterpenes in rosemary. Taken together, these results suggest that phytochemicals found in rosemary have distinct pharmacological actions for disrupting cell-signaling pathways in cancer and inflammatory bowel disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rosemary" title="rosemary">rosemary</a>, <a href="https://publications.waset.org/abstracts/search?q=diterpene" title=" diterpene"> diterpene</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a> </p> <a href="https://publications.waset.org/abstracts/106363/health-promoting-properties-of-phytochemicals-from-rosemary-rosmarinus-officinalis-for-cancer-and-inflammatory-bowel-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10761</span> The Effect of Biochar, Inoculated Biochar and Compost Biological Component of the Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helena%20Dvo%C5%99%C3%A1%C4%8Dkov%C3%A1">Helena Dvořáčková</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikajlo%20Irina"> Mikajlo Irina</a>, <a href="https://publications.waset.org/abstracts/search?q=Z%C3%A1hora%20Jaroslav"> Záhora Jaroslav</a>, <a href="https://publications.waset.org/abstracts/search?q=Elbl%20Jakub"> Elbl Jakub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biochar can be produced from the waste matter and its application has been associated with returning of carbon in large amounts into the soil. The impacts of this material on physical and chemical properties of soil have been described. The biggest part of the research work is dedicated to the hypothesis of this material’s toxic effects on the soil life regarding its effect on the soil biological component. At present, it has been worked on methods which could eliminate these undesirable properties of biochar. One of the possibilities is to mix biochar with organic material, such as compost, or focusing on the natural processes acceleration in the soil. In the experiment has been used as the addition of compost as well as the elimination of toxic substances by promoting microbial activity in aerated water environment. Biochar was aerated for 7 days in a container with a volume of 20 l. This way modified biochar had six times higher biomass production and reduce mineral nitrogen leaching. Better results have been achieved by mixing biochar with compost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaching%20of%20nitrogen" title="leaching of nitrogen">leaching of nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=biochar" title=" biochar"> biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a> </p> <a href="https://publications.waset.org/abstracts/42873/the-effect-of-biochar-inoculated-biochar-and-compost-biological-component-of-the-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10760</span> Microfluidic Device for Real-Time Electrical Impedance Measurements of Biological Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20Koklu">Anil Koklu</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Mansoorifar"> Amin Mansoorifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Beskok"> Ali Beskok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dielectric spectroscopy (DS) is a noninvasive, label free technique for a long term real-time measurements of the impedance spectra of biological cells. DS enables characterization of cellular dielectric properties such as membrane capacitance and cytoplasmic conductivity. We have developed a lab-on-a-chip device that uses an electro-activated microwells array for loading, DS measurements, and unloading of biological cells. We utilized from dielectrophoresis (DEP) to capture target cells inside the wells and release them after DS measurement. DEP is a label-free technique that exploits differences among dielectric properties of the particles. In detail, DEP is the motion of polarizable particles suspended in an ionic solution and subjected to a spatially non-uniform external electric field. To the best of our knowledge, this is the first microfluidic chip that combines DEP and DS to analyze biological cells using electro-activated wells. Device performance is tested using two different cell lines of prostate cancer cells (RV122, PC-3). Impedance measurements were conducted at 0.2 V in the 10 kHz to 40 MHz range with 6 s time resolution. An equivalent circuit model was developed to extract the cell membrane capacitance and cell cytoplasmic conductivity from the impedance spectra. We report the time course of the variations in dielectric properties of PC-3 and RV122 cells suspended in low conductivity medium (LCB), which enhances dielectrophoretic and impedance responses, and their response to sudden pH change from a pH of 7.3 to a pH of 5.8. It is shown that microfluidic chip allowed online measurements of dielectric properties of prostate cancer cells and the assessment of the cellular level variations under external stimuli such as different buffer conductivity and pH. Based on these data, we intend to deploy the current device for single cell measurements by fabricating separately addressable N × N electrode platforms. Such a device will allow time-dependent dielectric response measurements for individual cells with the ability of selectively releasing them using negative-DEP and pressure driven flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidic" title="microfluidic">microfluidic</a>, <a href="https://publications.waset.org/abstracts/search?q=microfabrication" title=" microfabrication"> microfabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=lab%20on%20a%20chip" title=" lab on a chip"> lab on a chip</a>, <a href="https://publications.waset.org/abstracts/search?q=AC%20electrokinetics" title=" AC electrokinetics"> AC electrokinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20spectroscopy" title=" dielectric spectroscopy"> dielectric spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/95063/microfluidic-device-for-real-time-electrical-impedance-measurements-of-biological-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10759</span> Structural and Thermodynamic Properties of MnNi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Benkhettoua">N. Benkhettoua</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Barkata"> Y. Barkata </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present first-principles studies of structural and thermodynamic properties of MnNi According to the calculated total energies, by using an all-electron full-potential linear muffin–tin orbital method (FP-LMTO) within LDA and the quasi-harmonic Debye model implemented in the Gibbs program is used for the temperature effect on structural and calorific properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20materials" title="magnetic materials">magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20properties" title=" structural properties"> structural properties</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20properties" title=" thermodynamic properties"> thermodynamic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20and%20materials%20engineering" title=" metallurgical and materials engineering"> metallurgical and materials engineering</a> </p> <a href="https://publications.waset.org/abstracts/14206/structural-and-thermodynamic-properties-of-mnni" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10758</span> Spectroscopic (Ir, Raman, Uv-Vis) and Biological Study of Copper and Zinc Complexes and Sodium Salt with Cichoric Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renata%20Swislocka">Renata Swislocka</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Swiderski"> Grzegorz Swiderski</a>, <a href="https://publications.waset.org/abstracts/search?q=Agata%20Jablonska-Trypuc"> Agata Jablonska-Trypuc</a>, <a href="https://publications.waset.org/abstracts/search?q=Wlodzimierz%20Lewandowski"> Wlodzimierz Lewandowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forming a complex of a phenolic compound with a metal not only alters the physicochemical properties of the ligand (including increase in stability or changes in lipophilicity), but also its biological activity, including antioxidant, antimicrobial and many others. As part of our previous projects, we examined the physicochemical and antimicrobial properties of phenolic acids and their complexes with metals naturally occurring in foods. Previously we studied the complexes of manganese(II), copper(II), cadmium(II) and alkali metals with ferulic, caffeic and p-coumaric acids. In the framework of this study, the physicochemical and biological properties of cicoric acid, its sodium salt, and complexes with copper and zinc were investigated. Cichoric acid is a derivative of both caffeic acid and tartaric acid. It has first been isolated from Cichorium intybus (chicory) but also it occurs in significant amounts in Echinacea, particularly E. purpurea, dandelion leaves, basil, lemon balm and in aquatic plants, including algae and sea grasses. For the study of spectroscopic and biological properties of cicoric acid, its sodium salt, and complexes with zinc and copper a variety of methods were used. Studies of antioxidant properties were carried out in relation to selected stable radicals (method of reduction of DPPH and reduction of FRAP). As a result, the structure and spectroscopic properties of cicoric acid and its complexes with selected metals in the solid state and in the solutions were defined. The IR and Raman spectra of cicoric acid displayed a number of bands that were derived from vibrations of caffeic and tartaric acids moieties. At 1746 and 1716 cm-1 the bands assigned to the vibrations of the carbonyl group of tartaric acid occurred. In the spectra of metal complexes with cichoric these bands disappeared what indicated that metal ion was coordinated by the carboxylic groups of tartaric acid. In the spectra of the sodium salt, a characteristic wide-band vibrations of carboxylate anion occurred. In the spectra of cicoric acid and its salt and complexes, a number of bands derived from the vibrations of the aromatic ring (caffeic acid) were assigned. Upon metal-ligand attachment, the changes in the values of the wavenumbers of these bands occurred. The impact of metals on the antioxidant properties of cicoric acid was also examined. Cichoric acid has a high antioxidant potential. Complexation by metals (zinc, copper) did not significantly affect its antioxidant capacity. The work was supported by the National Science Centre, Poland (grant no. 2015/17/B/NZ9/03581). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chicoric%20acid" title="chicoric acid">chicoric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20complexes" title=" metal complexes"> metal complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20antioxidant" title=" natural antioxidant"> natural antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20acids" title=" phenolic acids"> phenolic acids</a> </p> <a href="https://publications.waset.org/abstracts/63647/spectroscopic-ir-raman-uv-vis-and-biological-study-of-copper-and-zinc-complexes-and-sodium-salt-with-cichoric-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10757</span> Physicochemical Investigation of Caffeic Acid and Caffeinates with Chosen Metals (Na, Mg, Al, Fe, Ru, Os)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W%C5%82odzimierz%20Lewandowski">Włodzimierz Lewandowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Renata%20%C5%9Awis%C5%82ocka"> Renata Świsłocka</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20Golonko"> Aleksandra Golonko</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20%C5%9Awiderski"> Grzegorz Świderski</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Kalinowska"> Monika Kalinowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Caffeic acid (3,4-dihydroxycinnamic) is distributed in a free form or as ester conjugates in many fruits, vegetables and seasonings including plants used for medical purpose. Caffeic acid is present in propolis – a substance with exceptional healing properties used in natural medicine since ancient times. The antioxidant, antibacterial, antiinflammatory and anticarcinogenic properties of caffeic acid are widely described in the literature. The biological activity of chemical compounds can be modified by the synthesis of their derivatives or metal complexes. The structure of the compounds determines their biological properties. This work is a continuation of the broader topic concerning the investigation of the correlation between the electronic charge distribution and biological (anticancer and antioxidant) activity of the chosen phenolic acids and their metal complexes. In the framework of this study the synthesis of new metal complexes of sodium, magnesium, aluminium, iron (III) ruthenium (III) and osmium (III) with caffeic acid was performed. The spectroscopic properties of these compounds were studied by means of FT-IR, FT-Raman, UV-Vis, ¹H and ¹³C NMR. The quantum-chemical calculations (at B3LYP/LAN L2DZ level) of caffeic acid and selected complexes were done. Moreover the antioxidant properties of synthesized complexes were studied in relation to selected stable radicals (method of reduction of DPPH and method of reduction of ABTS). On the basis of the differences in the number, intensity and locations of the bands from the IR, Raman, UV/Vis and NMR spectra of caffeic acid and its metal complexes the effect of metal cations on the electronic system of ligand was discussed. The geometry, theoretical spectra and electronic charge distribution were calculated by the use of Gaussian 09 programme. The geometric aromaticity indices (Aj – normalized function of the variance in bond lengths; BAC - bond alternation coefficient; HOMA – harmonic oscillator model of aromaticity and I₆ – Bird’s index) were calculated and the changes in the aromaticity of caffeic acid and its complexes was discussed. This work was financially supported by National Science Centre, Poland, under the research project number 2014/13/B/NZ7/02-352. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20properties" title="antioxidant properties">antioxidant properties</a>, <a href="https://publications.waset.org/abstracts/search?q=caffeic%20acid" title=" caffeic acid"> caffeic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20complexes" title=" metal complexes"> metal complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopic%20methods" title=" spectroscopic methods"> spectroscopic methods</a> </p> <a href="https://publications.waset.org/abstracts/63743/physicochemical-investigation-of-caffeic-acid-and-caffeinates-with-chosen-metals-na-mg-al-fe-ru-os" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10756</span> Theoretical Study on the Nonlinear Optical Responses of Peptide Bonds Created between Alanine and Some Unnatural Amino Acids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Derrar">S. N. Derrar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sekkal-Rahal"> M. Sekkal-Rahal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Nonlinear optics (NLO) technique is widely used in the field of biological imaging. In fact, grafting biological entities with a high NLO response on tissues and cells enhances the NLO responses of these latter, and ameliorates, consequently, their biological imaging quality. In this optics, we carried out a theoretical study, in the aim of analyzing the peptide bonds created between alanine amino acid and both unnatural amino acids: L-Dopa and Azatryptophan, respectively. Ramachandran plots have been performed for these systems, and their structural parameters have been analyzed. The NLO responses of these peptides have been reported by calculating the first hyperpolarizability values of all the minima found on the plots. The use of such unnatural amino acids as endogenous probing molecules has been investigated through this study. The Density Functional Theory (DFT) has been used for structural properties, while the Second-order Møller-Plesset Perturbation Theory (MP2) has been employed for the NLO calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20imaging" title="biological imaging">biological imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperpolarizability" title=" hyperpolarizability"> hyperpolarizability</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title=" nonlinear optics"> nonlinear optics</a>, <a href="https://publications.waset.org/abstracts/search?q=probing%20molecule" title=" probing molecule"> probing molecule</a> </p> <a href="https://publications.waset.org/abstracts/22238/theoretical-study-on-the-nonlinear-optical-responses-of-peptide-bonds-created-between-alanine-and-some-unnatural-amino-acids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10755</span> Comparison of the Toxicity of Silver and Gold Nanoparticles in Murine Fibroblasts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%A0%C3%A1rka%20Hradilov%C3%A1">Šárka Hradilová</a>, <a href="https://publications.waset.org/abstracts/search?q=Ale%C5%A1%20Pan%C3%A1%C4%8Dek"> Aleš Panáček</a>, <a href="https://publications.waset.org/abstracts/search?q=Radek%20Zbo%C5%99il"> Radek Zbořil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanotechnologies are considered the most promising fields with high added value, brings new possibilities in various sectors from industry to medicine. With the growing of interest in nanomaterials and their applications, increasing nanoparticle production leads to increased exposure of people and environment with ‘human made’ nanoparticles. Nanoparticles (NPs) are clusters of atoms in the size range of 1–100 nm. Metal nanoparticles represent one of the most important and frequently used types of NPs due to their unique physical, chemical and biological properties, which significantly differ from those of bulk material. Biological properties including toxicity of metal nanoparticles are generally determined by their size, size distribution, shape, surface area, surface charge, surface chemistry, stability in the environment and ability to release metal ions. Therefore, the biological behavior of NPs and their possible adverse effect cannot be derived from the bulk form of material because nanoparticles show unique properties and interactions with biological systems just due to their nanodimensions. Silver and gold NPs are intensively studied and used. Both can be used for instance in surface enhanced Raman spectroscopy, a considerable number of applications of silver NPs is associated with antibacterial effects, while gold NPs are associated with cancer treatment and bio imaging. Antibacterial effects of silver ions are known for centuries. Silver ions and silver-based compounds are highly toxic to microorganisms. Toxic properties of silver NPs are intensively studied, but the mechanism of cytoxicity is not fully understood. While silver NPs are considered toxic, gold NPs are referred to as toxic but also innocuous for eukaryotic cells. Therefore, gold NPs are used in various biological applications without a risk of cell damaging, even when we want to suppress the growth of cancer cells. Thus, gold NPs are toxic or harmless. Because most studies comparing particles of various sizes prepared in various ways, and testing is performed on different cell lines, it is very difficult to generalize. The novelty and significance of our research is focused to the complex biological effects of silver and gold NPs prepared by the same method, have the same parameters and the same stabilizer. That is why we can compare the biological effects of pure nanometals themselves based on their chemical nature without the influence of other variable. Aim of our study therefore is to compare the cytotoxic effect of two types of noble metal NPs focusing on the mechanisms that contribute to cytotoxicity. The study was conducted on murine fibroblasts by selected common used tests. Each of these tests monitors the selected area related to toxicity and together provides a comprehensive view on the issue of interactions of nanoparticles and living cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title="cytotoxicity">cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism%20of%20cytotoxicity" title=" mechanism of cytotoxicity"> mechanism of cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/41976/comparison-of-the-toxicity-of-silver-and-gold-nanoparticles-in-murine-fibroblasts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10754</span> Antibacterial Property of ZnO Nanoparticles: Effect of Intrinsic Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Kumar%20Verma">Suresh Kumar Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Jugal%20Kishore%20Das"> Jugal Kishore Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Ealisha%20Jha"> Ealisha Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mrutyunjay%20Suar"> Mrutyunjay Suar</a>, <a href="https://publications.waset.org/abstracts/search?q=SKS%20Parashar"> SKS Parashar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years nanoforms of inorganic metallic oxides has attracted a lot of interest due to their small size and significantly improved physical, chemical and biological properties compared to their molecular precursor. Some of the inorganic materials such as TiO2, ZnO, MgO, CaO, Al2O3 have been extensively used in biological applications. Zinc Oxide is a Wurtzite-type semiconductor and piezo-electric material exhibiting excellent electrical, optical and chemical properties with a band energy gap of 3.1-3.4 eV. Nanoforms of Zinc Oxide (ZnO) are increasingly recognised for their utility in biological application. The significant physical parameters such as surface area, particle size, surface charge and Zeta potential of Zinc Oxide (ZnO) nanoparticles makes it suitable for the uptake, persistance, biological, and chemical activities inside the living cells. The present study shows the effect of intrinsic defects of ZnO nanocrystals synthesized by high energy ball milling (HEBM) technique in their antibacterial activities. Bulk Zinc oxide purchased from market were ball milled for 7 h, 10 h, and 15 h respectively to produce nanosized Zinc Oxide. The structural and optical modification of such synthesized particles were determined by X-ray diffraction (XRD), Scanning Electron Microscopy and Electron Paramagnetic Resonance (EPR). The antibacterial property of synthesized Zinc Oxide nanoparticles was tested using well diffusion, minimum inhibitory Concentration, minimum bacteriocidal concentration, reactive oxygen species (ROS) estimation and membrane potential determination methods. In this study we observed that antibacterial activity of ZnO nanoparticles is because of the intrinsic defects that exist as a function of difference in size and milling time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20energy%20ball%20milling" title="high energy ball milling">high energy ball milling</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanoparticles" title=" ZnO nanoparticles"> ZnO nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=EPR" title=" EPR"> EPR</a>, <a href="https://publications.waset.org/abstracts/search?q=Antibacterial%20properties" title=" Antibacterial properties"> Antibacterial properties</a> </p> <a href="https://publications.waset.org/abstracts/22745/antibacterial-property-of-zno-nanoparticles-effect-of-intrinsic-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10753</span> Investigation of Interaction between Interferons and Polyethylene Glycol Using Molecular Dynamics Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Dehestani">M. Dehestani</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Kamali"> F. Kamali</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Klantari%20Pour"> M. Klantari Pour</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Zeidabadi-Nejad"> L. Zeidabadi-Nejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical bonding between polyethylene glycol (PEG) with pharmaceutical proteins called pegylation is one of the most effective methods of improving the pharmacological properties. The covalent attachment of polyethylene glycol (PEG) to proteins will increase their pharmacologic properties. For the formation of a combination of pegylated protein should first be activated PEG and connected to the protein. Interferons(IFNs) are a family of cytokines which show antiviral effects in front of the biological and are responsible for setting safety system. In this study, the nature and properties of the interaction between active positions of IFNs and polyethylene glycol have been investigated using molecular dynamics simulation. The main aspect of this theoretical work focuses on the achievement of valuable data on the reaction pathways of PEG-IFNs and the transition state energy. Our results provide a new perspective on the interactions, chemical properties and reaction pathways between IFNs and PEG. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interaction" title="interaction">interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=interferons" title=" interferons"> interferons</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20glycol" title=" polyethylene glycol"> polyethylene glycol</a> </p> <a href="https://publications.waset.org/abstracts/76764/investigation-of-interaction-between-interferons-and-polyethylene-glycol-using-molecular-dynamics-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10752</span> Impact of Biological Treatment Effluent on the Physico-Chemical Quality of a Receiving Stream in Ile-Ife, Southwest Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asibor%20Godwin">Asibor Godwin</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeniyi%20Funsho"> Adeniyi Funsho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was carried out to investigate the impact of biological treated effluent on the physico-chemical properties of receiving waterbodies and also to establish its suitability for other purposes. It focused on the changes of some physic-chemical variables as one move away from the point of discharge downstream of the waterbodies. Water samples were collected from 14 sampling stations made up of the untreated effluent, treated effluent and receiving streams (before and after treated effluent discharge) over a period of 6 months spanning the dry and rainy seasons. Analyses were carried out on the following: temperature, turbidity, pH, conductivity, major anions and cation, dissolved oxygen, percentage oxygen Saturation, biological oxygen demand (BOD), solids (total solids, suspended solids and dissolved solids), nitrates, phosphates, organic matter and flow discharge using standard analytical methods. The relationships between investigated sites with regards to their physico-chemical properties were analyzed using student-t statistics. Also changes in the treated effluent receiving streams after treated effluent outfall was discussed fully. The physico-chemical water quality of the receiving water bodies meets most of the general water requirements for both domestic and industrial uses. The untreated effluent quality was shown to be of biological origin based on the biological oxygen demand, chloride, dissolved oxygen, total solids, pH and organic matter. The treated effluent showed significant improvement over the raw untreated effluent based on most parameters assessed. There was a significant difference (p<0.05) between the physico-chemical quality of untreated effluent and the treated effluent for the most of the investigated physico-chemical quality. The difference between the discharged treated effluent and the unimpacted section of the receiving waterbodies was also significant (p<0.05) for the most of the physico-chemical parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eflluent" title="eflluent">eflluent</a>, <a href="https://publications.waset.org/abstracts/search?q=Opa%20River" title=" Opa River"> Opa River</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-chemical" title=" physico-chemical"> physico-chemical</a>, <a href="https://publications.waset.org/abstracts/search?q=waterbody" title=" waterbody"> waterbody</a> </p> <a href="https://publications.waset.org/abstracts/32089/impact-of-biological-treatment-effluent-on-the-physico-chemical-quality-of-a-receiving-stream-in-ile-ife-southwest-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10751</span> Microwave-Assisted Eradication of Wool </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Salama">M. Salama</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Haggag"> K. Haggag</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20El-Sayed"> H. El-Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An environmentally and ecologically acceptable method for eradication of wool fabrics based on microwave irradiation (MWI) was described. The process would be a suitable alternative for mothproofing of wool using toxic degradative chemical or biological methods. The effect of microwave irradiation and exposure time on the extent of eradication of wool fabrics from moth larvae was monitored. The inherent properties of the MW-irradiated wool fabrics; viz. tensile properties, alkali solubility, and yellowing index, were not adversely altered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave" title="microwave">microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=wool" title=" wool"> wool</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric" title=" fabric"> fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=moth" title=" moth"> moth</a>, <a href="https://publications.waset.org/abstracts/search?q=eradication" title=" eradication"> eradication</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/8504/microwave-assisted-eradication-of-wool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10750</span> Obtaining Bioactive Mg-hydroxyapatite Composite Ceramics From Phosphate Rock For Medical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Mercedes%20Barroso%20Pinz%C3%B3n">Sara Mercedes Barroso Pinzón</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Javier%20Sanch%C3%A9z%20Herencia"> Antonio Javier Sanchéz Herencia</a>, <a href="https://publications.waset.org/abstracts/search?q=Bego%C3%B1a%20Ferrari"> Begoña Ferrari</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81lvaro%20Jes%C3%BAs%20Castro"> Álvaro Jesús Castro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current need for durable implants and bone substitutes characterised by biocompatibility, bioactivity and mechanical properties, without immunological rejection, is a major challenge for scientists. Hydroxyapatite (HAp) has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure gives it very low mechanical and biological properties. In this sense, the objective of the research is to address the synthesis of hydroxyapatite with Mg from phosphate rock from sedimentary deposits in the central-eastern region of Colombia, taking advantage of the release of the species contained as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with mineralogical species of magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); as well as the evaluation of the surface physicochemical properties of zeta potential (PZC), with the aim of studying the surface behaviour of the microconstituents present in the phosphate rock and to elucidate the synergistic mechanism between the minerals and establish the optimum conditions for the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on the morphometric parameters, mechanical and biological properties of the designed materials is evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphate%20rock" title="phosphate rock">phosphate rock</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a> </p> <a href="https://publications.waset.org/abstracts/184856/obtaining-bioactive-mg-hydroxyapatite-composite-ceramics-from-phosphate-rock-for-medical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10749</span> Non-Invasive Imaging of Human Tissue Using NIR Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwani%20Kumar">Ashwani Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of NIR light for imaging the biological tissue and to quantify its optical properties is a good choice over other invasive methods. Optical tomography involves two steps. One is the forward problem and the other is the reconstruction problem. The forward problem consists of finding the measurements of transmitted light through the tissue from source to detector, given the spatial distribution of absorption and scattering properties. The second step is the reconstruction problem. In X-ray tomography, there is standard method for reconstruction called filtered back projection method or the algebraic reconstruction methods. But this method cannot be applied as such, in optical tomography due to highly scattering nature of biological tissue. A hybrid algorithm for reconstruction has been implemented in this work which takes into account the highly scattered path taken by photons while back projecting the forward data obtained during Monte Carlo simulation. The reconstructed image suffers from blurring due to point spread function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NIR%20light" title="NIR light">NIR light</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue" title=" tissue"> tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=blurring" title=" blurring"> blurring</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/33453/non-invasive-imaging-of-human-tissue-using-nir-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10748</span> Asymmetric Synthesis and Biological Study of Suberosanes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Kousara">Mohammad Kousara</a>, <a href="https://publications.waset.org/abstracts/search?q=Fran%C3%A7oise%20Dumas"> Françoise Dumas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rama%20Ibrahim"> Rama Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%ABlle%20Dubois"> Joëlle Dubois</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%ABl%20Raingeaud"> Joël Raingeaud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Suberosanes are a small group of marine natural sesquiterpenes discovered since 1996 by Boyd, Sheu and Qi from three gorgonians. Their skeleton was previously found in quadranes produced by the terrestrial fungus Aspergillus terreus. Up to date, eleven suberosanes are described from which (-)-suberosanone and (-)-suberosenol A are reaching the picomolar cytotoxicity level on human solid tumors cell lines. Due to their impressive cytotoxic properties and their limited availability, we undertook an asymmetric synthesis of the most active members of this family in order to get insight into their absolute configurations and their biological properties. The challenge of their synthesis is the regio- and stereoselective elaboration of the compact bridged tricyclic skeleton with up to five all adjacent asymmetric centers, including a central quaternary carbon one. Our strategy is based on an aza-ene-synthesis key step which is regio-and stereo-controlled by the choice of a chiral amine enantiomer. it approach is concise and flexible, the enantiopur ABC tricyclic intermediate that have been synthesized being the common precursor of suberosanes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=suberosanes" title="suberosanes">suberosanes</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20synthesis" title=" asymmetric synthesis"> asymmetric synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=sesquiterpenes" title=" sesquiterpenes"> sesquiterpenes</a>, <a href="https://publications.waset.org/abstracts/search?q=quadranes" title=" quadranes"> quadranes</a> </p> <a href="https://publications.waset.org/abstracts/172533/asymmetric-synthesis-and-biological-study-of-suberosanes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10747</span> The High Strength Biocompatible Wires of Commercially Pure Titanium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Pal%C3%A1n">J. Palán</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zemko"> M. Zemko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> COMTES FHT has been active in a field of research and development of high-strength wires for quite some time. The main material was pure titanium. The primary goal of this effort is to develop a continuous production process for ultrafine and nanostructured materials with the aid of severe plastic deformation (SPD). This article outlines mechanical and microstructural properties of the materials and the options available for testing the components made of these materials. Ti Grade 2 and Grade 4 wires are the key products of interest. Ti Grade 2 with ultrafine to nano-sized grain shows ultimate strength of up to 1050 MPa. Ti Grade 4 reaches ultimate strengths of up to 1250 MPa. These values are twice or three times as higher as those found in the unprocessed material. For those fields of medicine where implantable metallic materials are used, bulk ultrafine to nanostructured titanium is available. It is manufactured by SPD techniques. These processes leave the chemical properties of the initial material unchanged but markedly improve its final mechanical properties, in particular, the strength. Ultrafine to nanostructured titanium retains all the significant and, from the biological viewpoint, desirable properties that are important for its use in medicine, i.e. those properties which made pure titanium the preferred material also for dental implants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CONFORM" title="CONFORM">CONFORM</a>, <a href="https://publications.waset.org/abstracts/search?q=ECAP" title=" ECAP"> ECAP</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary%20swaging" title=" rotary swaging"> rotary swaging</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a> </p> <a href="https://publications.waset.org/abstracts/73209/the-high-strength-biocompatible-wires-of-commercially-pure-titanium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10746</span> Dynamic Behavior of the Nanostructure of Load-Bearing Biological Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahan%20Qwamizadeh">Mahan Qwamizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun%20Zhou"> Kun Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuoqi%20Zhang"> Zuoqi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Wei%20Zhang"> Yong Wei Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Typical load-bearing biological materials like bone, mineralized tendon and shell, are biocomposites made from both organic (collagen) and inorganic (biomineral) materials. This amazing class of materials with intrinsic internally designed hierarchical structures show superior mechanical properties with regard to their weak components from which they are formed. Extensive investigations concentrating on static loading conditions have been done to study the biological materials failure. However, most of the damage and failure mechanisms in load-bearing biological materials will occur whenever their structures are exposed to dynamic loading conditions. The main question needed to be answered here is: What is the relation between the layout and architecture of the load-bearing biological materials and their dynamic behavior? In this work, a staggered model has been developed based on the structure of natural materials at nanoscale and Finite Element Analysis (FEA) has been used to study the dynamic behavior of the structure of load-bearing biological materials to answer why the staggered arrangement has been selected by nature to make the nanocomposite structure of most of the biological materials. The results showed that the staggered structures will efficiently attenuate the stress wave rather than the layered structure. Furthermore, such staggered architecture is effectively in charge of utilizing the capacity of the biostructure to resist both normal and shear loads. In this work, the geometrical parameters of the model like the thickness and aspect ratio of the mineral inclusions selected from the typical range of the experimentally observed feature sizes and layout dimensions of the biological materials such as bone and mineralized tendon. Furthermore, the numerical results validated with existing theoretical solutions. Findings of the present work emphasize on the significant effects of dynamic behavior on the natural evolution of load-bearing biological materials and can help scientists to design bioinspired materials in the laboratories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load-bearing%20biological%20materials" title="load-bearing biological materials">load-bearing biological materials</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=staggered%20structure" title=" staggered structure"> staggered structure</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20wave%20decay" title=" stress wave decay"> stress wave decay</a> </p> <a href="https://publications.waset.org/abstracts/31314/dynamic-behavior-of-the-nanostructure-of-load-bearing-biological-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10745</span> Effect of Repellent Coatings, Aerosol Protective Liners, and Lamination on the Properties of Chemical/Biological Protective Textiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalie%20Pomerantz">Natalie Pomerantz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Dugan"> Nicholas Dugan</a>, <a href="https://publications.waset.org/abstracts/search?q=Molly%20Richards"> Molly Richards</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20Zukas"> Walter Zukas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary research question to be answered for Chemical/Biological (CB) protective clothing, is how to protect wearers from a range of chemical and biological threats in liquid, vapor, and aerosol form, while reducing the thermal burden. Currently, CB protective garments are hot, heavy, and wearers are limited by short work times in order to prevent heat injury. This study demonstrates how to incorporate different levels of protection on a material level and modify fabric composites such that the thermal burden is reduced to such an extent it approaches that of a standard duty uniform with no CB protection. CB protective materials are usually comprised of several fabric layers: a cover fabric with a liquid repellent coating, a protective layer which is comprised of a carbon-based sorptive material or semi-permeable membrane, and a comfort next-to-skin liner. In order to reduce thermal burden, all of these layers were laminated together to form one fabric composite which had no insulative air gap in between layers. However, the elimination of the air gap also reduced the CB protection of the fabric composite. In order to increase protection in the laminated composite, different nonwoven aerosol protective liners were added, and a super repellent coating was applied to the cover fabric, prior to lamination. Different adhesive patterns were investigated to determine the durability of the laminate with the super repellent coating, and the effect on air permeation. After evaluating the thermal properties, textile properties and protective properties of the iterations of these fabric composites, it was found that the thermal burden of these materials was greatly reduced by decreasing the thermal resistance with the elimination of the air gap between layers. While the level of protection was reduced in laminate composites, the addition of a super repellent coating increased protection towards low volatility agents without impacting thermal burden. Similarly, the addition of aerosol protective liner increased protection without reducing water vapor transport, depending on the nonwoven used, however, the air permeability was significantly decreased. The balance of all these properties and exploration of the trade space between thermal burden and protection will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20protection" title="aerosol protection">aerosol protection</a>, <a href="https://publications.waset.org/abstracts/search?q=CBRNe%20protection" title=" CBRNe protection"> CBRNe protection</a>, <a href="https://publications.waset.org/abstracts/search?q=lamination" title=" lamination"> lamination</a>, <a href="https://publications.waset.org/abstracts/search?q=nonwovens" title=" nonwovens"> nonwovens</a>, <a href="https://publications.waset.org/abstracts/search?q=repellent%20coatings" title=" repellent coatings"> repellent coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20burden" title=" thermal burden"> thermal burden</a> </p> <a href="https://publications.waset.org/abstracts/67726/effect-of-repellent-coatings-aerosol-protective-liners-and-lamination-on-the-properties-of-chemicalbiological-protective-textiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10744</span> Development of Mg-Containing Hydroxyapatite-Based Bioceramics From Phosphate Rock for Bone Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Mercedes%20Barroso%20Pinz%C3%B3n">Sara Mercedes Barroso Pinzón</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81lvaro%20Jes%C3%BAs%20Caicedo%20Castro"> Álvaro Jesús Caicedo Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Javer%20S%C3%A1nchez%20Herencia"> Antonio Javer Sánchez Herencia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years there has been increased academic and industrial research into the development of orthopaedic implants with structural properties and functionality similar to mechanical strength, osseointegration, thermal stability and antibacterial capacity similar to bone structure. Hydroxyapatite has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure confers very low mechanical and biological properties. Under this scenario, the objective of the research is the synthesis of hydroxyapatite with Mg from the francolite mineral present in phosphate rock from the central-eastern region of Colombia, taking advantage of the extraction of mineral species as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); the optimum conditions were established using the acid leaching mechanism in the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on morphometric parameters, mechanical and biological properties in the formed materials is evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphate%20rock" title="phosphate rock">phosphate rock</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a> </p> <a href="https://publications.waset.org/abstracts/184860/development-of-mg-containing-hydroxyapatite-based-bioceramics-from-phosphate-rock-for-bone-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10743</span> Effect of Highway Construction on Soil Properties and Soil Organic Carbon (Soc) Along Lagos-Badagry Expressway, Lagos, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatai%20Olakunle%20Ogundele">Fatai Olakunle Ogundele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Road construction is increasingly common in today's world as human development expands and people increasingly rely on cars for transportation on a daily basis. The construction of a large network of roads has dramatically altered the landscape and impacted well-being in a number of deleterious ways. In addition, the road can also shift population demographics and be a source of pollution into the environment. Road construction activities normally result in changes in alteration of the soil's physical properties through soil compaction on the road itself and on adjacent areas and chemical and biological properties, among other effects. Understanding roadside soil properties that are influenced by road construction activities can serve as a basis for formulating conservation-based management strategies. Therefore, this study examined the effects of road construction on soil properties and soil organic carbon along Lagos Badagry Expressway, Lagos, Nigeria. The study adopted purposive sampling techniques and 40 soil samples were collected at a depth of 0 – 30cm from each of the identified road intersections and infrastructures using a soil auger. The soil samples collected were taken to the laboratory for soil properties and carbon stock analysis using standard methods. Both descriptive and inferential statistical techniques were applied to analyze the data obtained. The results revealed that soil compaction inhibits ecological succession on roadsides in that increased compaction suppresses plant growth as well as causes changes in soil quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=highway" title="highway">highway</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20properties" title=" soil properties"> soil properties</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20carbon" title=" organic carbon"> organic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20construction" title=" road construction"> road construction</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20degradation" title=" land degradation"> land degradation</a> </p> <a href="https://publications.waset.org/abstracts/161302/effect-of-highway-construction-on-soil-properties-and-soil-organic-carbon-soc-along-lagos-badagry-expressway-lagos-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20properties&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20properties&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20properties&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20properties&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20properties&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20properties&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20properties&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20properties&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20properties&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20properties&page=359">359</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20properties&page=360">360</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20properties&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>