CINXE.COM

Search results for: Natural language processing

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Natural language processing</title> <meta name="description" content="Search results for: Natural language processing"> <meta name="keywords" content="Natural language processing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Natural language processing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Natural language processing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3671</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Natural language processing</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3671</span> Role of Natural Language Processing in Information Retrieval; Challenges and Opportunities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Khaled%20M.%20Alhawiti">Khaled M. Alhawiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper aims to analyze the role of natural language processing (NLP). The paper will discuss the role in the context of automated data retrieval, automated question answer, and text structuring. NLP techniques are gaining wider acceptance in real life applications and industrial concerns. There are various complexities involved in processing the text of natural language that could satisfy the need of decision makers. This paper begins with the description of the qualities of NLP practices. The paper then focuses on the challenges in natural language processing. The paper also discusses major techniques of NLP. The last section describes opportunities and challenges for future research.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Data%20Retrieval" title="Data Retrieval">Data Retrieval</a>, <a href="https://publications.waset.org/search?q=Information%20retrieval" title=" Information retrieval"> Information retrieval</a>, <a href="https://publications.waset.org/search?q=Natural%0D%0ALanguage%20Processing" title=" Natural Language Processing"> Natural Language Processing</a>, <a href="https://publications.waset.org/search?q=Text%20Structuring." title=" Text Structuring."> Text Structuring.</a> </p> <a href="https://publications.waset.org/10000118/role-of-natural-language-processing-in-information-retrieval-challenges-and-opportunities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000118/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000118/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000118/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000118/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000118/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000118/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000118/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000118/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000118/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000118/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2834</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3670</span> Natural Language Database Interface for Selection of Data Using Grammar and Parsing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20D.%20Karande">N. D. Karande</a>, <a href="https://publications.waset.org/search?q=G.%20A.%20Patil"> G. A. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Databases have become ubiquitous. Almost all IT applications are storing into and retrieving information from databases. Retrieving information from the database requires knowledge of technical languages such as Structured Query Language (SQL). However majority of the users who interact with the databases do not have a technical background and are intimidated by the idea of using languages such as SQL. This has led to the development of a few Natural Language Database Interfaces (NLDBIs). A NLDBI allows the user to query the database in a natural language. This paper highlights on architecture of new NLDBI system, its implementation and discusses on results obtained. In most of the typical NLDBI systems the natural language statement is converted into an internal representation based on the syntactic and semantic knowledge of the natural language. This representation is then converted into queries using a representation converter. A natural language query is translated to an equivalent SQL query after processing through various stages. The work has been experimented on primitive database queries with certain constraints.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Natural%20language%20database%20interface" title="Natural language database interface">Natural language database interface</a>, <a href="https://publications.waset.org/search?q=representation%20converter" title=" representation converter"> representation converter</a>, <a href="https://publications.waset.org/search?q=syntactic%20and%20semantic%20knowledge" title=" syntactic and semantic knowledge"> syntactic and semantic knowledge</a> </p> <a href="https://publications.waset.org/1172/natural-language-database-interface-for-selection-of-data-using-grammar-and-parsing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1172/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1172/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1172/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1172/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1172/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1172/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1172/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1172/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1172/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1172/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2705</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3669</span> Context Detection in Spreadsheets Based on Automatically Inferred Table Schema</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Alexander%20Wachtel">Alexander Wachtel</a>, <a href="https://publications.waset.org/search?q=Michael%20T.%20Franzen"> Michael T. Franzen</a>, <a href="https://publications.waset.org/search?q=Walter%20F.%20Tichy"> Walter F. Tichy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Programming requires years of training. With natural language and end user development methods, programming could become available to everyone. It enables end users to program their own devices and extend the functionality of the existing system without any knowledge of programming languages. In this paper, we describe an Interactive Spreadsheet Processing Module (ISPM), a natural language interface to spreadsheets that allows users to address ranges within the spreadsheet based on inferred table schema. Using the ISPM, end users are able to search for values in the schema of the table and to address the data in spreadsheets implicitly. Furthermore, it enables them to select and sort the spreadsheet data by using natural language. ISPM uses a machine learning technique to automatically infer areas within a spreadsheet, including different kinds of headers and data ranges. Since ranges can be identified from natural language queries, the end users can query the data using natural language. During the evaluation 12 undergraduate students were asked to perform operations (sum, sort, group and select) using the system and also Excel without ISPM interface, and the time taken for task completion was compared across the two systems. Only for the selection task did users take less time in Excel (since they directly selected the cells using the mouse) than in ISPM, by using natural language for end user software engineering, to overcome the present bottleneck of professional developers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Natural%20language%20processing" title="Natural language processing">Natural language processing</a>, <a href="https://publications.waset.org/search?q=end%20user%20development%3B%20natural%20language%20interfaces" title=" end user development; natural language interfaces"> end user development; natural language interfaces</a>, <a href="https://publications.waset.org/search?q=human%20computer%20interaction" title=" human computer interaction"> human computer interaction</a>, <a href="https://publications.waset.org/search?q=data%20recognition" title=" data recognition"> data recognition</a>, <a href="https://publications.waset.org/search?q=dialog%20systems" title=" dialog systems"> dialog systems</a>, <a href="https://publications.waset.org/search?q=spreadsheet." title=" spreadsheet."> spreadsheet.</a> </p> <a href="https://publications.waset.org/10005939/context-detection-in-spreadsheets-based-on-automatically-inferred-table-schema" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005939/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005939/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005939/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005939/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005939/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005939/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005939/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005939/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005939/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005939/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1122</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3668</span> Structural Parsing of Natural Language Text in Tamil Using Phrase Structure Hybrid Language Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Selvam%20M">Selvam M</a>, <a href="https://publications.waset.org/search?q=Natarajan.%20A%20M"> Natarajan. A M</a>, <a href="https://publications.waset.org/search?q=Thangarajan%20R"> Thangarajan R</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parsing is important in Linguistics and Natural Language Processing to understand the syntax and semantics of a natural language grammar. Parsing natural language text is challenging because of the problems like ambiguity and inefficiency. Also the interpretation of natural language text depends on context based techniques. A probabilistic component is essential to resolve ambiguity in both syntax and semantics thereby increasing accuracy and efficiency of the parser. Tamil language has some inherent features which are more challenging. In order to obtain the solutions, lexicalized and statistical approach is to be applied in the parsing with the aid of a language model. Statistical models mainly focus on semantics of the language which are suitable for large vocabulary tasks where as structural methods focus on syntax which models small vocabulary tasks. A statistical language model based on Trigram for Tamil language with medium vocabulary of 5000 words has been built. Though statistical parsing gives better performance through tri-gram probabilities and large vocabulary size, it has some disadvantages like focus on semantics rather than syntax, lack of support in free ordering of words and long term relationship. To overcome the disadvantages a structural component is to be incorporated in statistical language models which leads to the implementation of hybrid language models. This paper has attempted to build phrase structured hybrid language model which resolves above mentioned disadvantages. In the development of hybrid language model, new part of speech tag set for Tamil language has been developed with more than 500 tags which have the wider coverage. A phrase structured Treebank has been developed with 326 Tamil sentences which covers more than 5000 words. A hybrid language model has been trained with the phrase structured Treebank using immediate head parsing technique. Lexicalized and statistical parser which employs this hybrid language model and immediate head parsing technique gives better results than pure grammar and trigram based model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hybrid%20Language%20Model" title="Hybrid Language Model">Hybrid Language Model</a>, <a href="https://publications.waset.org/search?q=Immediate%20Head%20Parsing" title=" Immediate Head Parsing"> Immediate Head Parsing</a>, <a href="https://publications.waset.org/search?q=Lexicalized%20and%20Statistical%20Parsing" title=" Lexicalized and Statistical Parsing"> Lexicalized and Statistical Parsing</a>, <a href="https://publications.waset.org/search?q=Natural%20Language%20Processing" title=" Natural Language Processing"> Natural Language Processing</a>, <a href="https://publications.waset.org/search?q=Parts%20of%20Speech" title=" Parts of Speech"> Parts of Speech</a>, <a href="https://publications.waset.org/search?q=Probabilistic%20Context%20Free%20Grammar" title=" Probabilistic Context Free Grammar"> Probabilistic Context Free Grammar</a>, <a href="https://publications.waset.org/search?q=Tamil%0ALanguage" title=" Tamil Language"> Tamil Language</a>, <a href="https://publications.waset.org/search?q=Tree%20Bank." title=" Tree Bank."> Tree Bank.</a> </p> <a href="https://publications.waset.org/374/structural-parsing-of-natural-language-text-in-tamil-using-phrase-structure-hybrid-language-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/374/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/374/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/374/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/374/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/374/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/374/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/374/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/374/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/374/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/374/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3643</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3667</span> Humanoid Personalized Avatar Through Multiple Natural Language Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jin%20Hou">Jin Hou</a>, <a href="https://publications.waset.org/search?q=Xia%20Wang"> Xia Wang</a>, <a href="https://publications.waset.org/search?q=Fang%20Xu"> Fang Xu</a>, <a href="https://publications.waset.org/search?q=Viet%20Dung%20Nguyen"> Viet Dung Nguyen</a>, <a href="https://publications.waset.org/search?q=Ling%20Wu"> Ling Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>There has been a growing interest in implementing humanoid avatars in networked virtual environment. However, most existing avatar communication systems do not take avatars- social backgrounds into consideration. This paper proposes a novel humanoid avatar animation system to represent personalities and facial emotions of avatars based on culture, profession, mood, age, taste, and so forth. We extract semantic keywords from the input text through natural language processing, and then the animations of personalized avatars are retrieved and displayed according to the order of the keywords. Our primary work is focused on giving avatars runtime instruction from multiple natural languages. Experiments with Chinese, Japanese and English input based on the prototype show that interactive avatar animations can be displayed in real time and be made available online. This system provides a more natural and interesting means of human communication, and therefore is expected to be used for cross-cultural communication, multiuser online games, and other entertainment applications.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=personalized%20avatar" title="personalized avatar">personalized avatar</a>, <a href="https://publications.waset.org/search?q=mutiple%20natural%20luanguage%20processing" title=" mutiple natural luanguage processing"> mutiple natural luanguage processing</a>, <a href="https://publications.waset.org/search?q=social%20backgrounds" title=" social backgrounds"> social backgrounds</a>, <a href="https://publications.waset.org/search?q=anmimation" title=" anmimation"> anmimation</a>, <a href="https://publications.waset.org/search?q=human%20computer%20interaction" title=" human computer interaction"> human computer interaction</a> </p> <a href="https://publications.waset.org/13837/humanoid-personalized-avatar-through-multiple-natural-language-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13837/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13837/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13837/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13837/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13837/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13837/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13837/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13837/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13837/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13837/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1970</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3666</span> An Integrated Natural Language Processing Approach for Conversation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zhi%20Teng">Zhi Teng</a>, <a href="https://publications.waset.org/search?q=Ye%20Liu"> Ye Liu</a>, <a href="https://publications.waset.org/search?q=Fuji%20Ren"> Fuji Ren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The main aim of this research is to investigate a novel technique for implementing a more natural and intelligent conversation system. Conversation systems are designed to converse like a human as much as their intelligent allows. Sometimes, we can think that they are the embodiment of Turing-s vision. It usually to return a predetermined answer in a predetermined order, but conversations abound with uncertainties of various kinds. This research will focus on an integrated natural language processing approach. This approach includes an integrated knowledge-base construction module, a conversation understanding and generator module, and a state manager module. We discuss effectiveness of this approach based on an experiment.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Conversation%20System" title="Conversation System">Conversation System</a>, <a href="https://publications.waset.org/search?q=integrated%20knowledge-base%20construction" title=" integrated knowledge-base construction"> integrated knowledge-base construction</a>, <a href="https://publications.waset.org/search?q=conversation%20understanding%20and%20generator" title=" conversation understanding and generator"> conversation understanding and generator</a>, <a href="https://publications.waset.org/search?q=state%20manager" title=" state manager"> state manager</a> </p> <a href="https://publications.waset.org/4953/an-integrated-natural-language-processing-approach-for-conversation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4953/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4953/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4953/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4953/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4953/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4953/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4953/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4953/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4953/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4953/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1729</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3665</span> Models and Metamodels for Computer-Assisted Natural Language Grammar Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Evgeny%20Pyshkin">Evgeny Pyshkin</a>, <a href="https://publications.waset.org/search?q=Maxim%20Mozgovoy"> Maxim Mozgovoy</a>, <a href="https://publications.waset.org/search?q=Vladislav%20Volkov"> Vladislav Volkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The paper follows a discourse on computer-assisted language learning. We examine problems of foreign language teaching and learning and introduce a metamodel that can be used to define learning models of language grammar structures in order to support teacher/student interaction. Special attention is paid to the concept of a virtual language lab. Our approach to language education assumes to encourage learners to experiment with a language and to learn by discovering patterns of grammatically correct structures created and managed by a language expert.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computer-assisted%20instruction" title="Computer-assisted instruction">Computer-assisted instruction</a>, <a href="https://publications.waset.org/search?q=Language%20learning" title=" Language learning"> Language learning</a>, <a href="https://publications.waset.org/search?q=Natural%20language%20grammar%20models" title=" Natural language grammar models"> Natural language grammar models</a>, <a href="https://publications.waset.org/search?q=HCI." title=" HCI."> HCI.</a> </p> <a href="https://publications.waset.org/10000114/models-and-metamodels-for-computer-assisted-natural-language-grammar-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000114/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000114/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000114/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000114/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000114/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000114/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000114/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000114/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000114/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000114/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2193</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3664</span> A Survey of the Applications of Sentiment Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pingping%20Lin">Pingping Lin</a>, <a href="https://publications.waset.org/search?q=Xudong%20Luo"> Xudong Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural language often conveys emotions of speakers. Therefore, sentiment analysis on what people say is prevalent in the field of natural language process and has great application value in many practical problems. Thus, to help people understand its application value, in this paper, we survey various applications of sentiment analysis, including the ones in online business and offline business as well as other types of its applications. In particular, we give some application examples in intelligent customer service systems in China. Besides, we compare the applications of sentiment analysis on Twitter, Weibo, Taobao and Facebook, and discuss some challenges. Finally, we point out the challenges faced in the applications of sentiment analysis and the work that is worth being studied in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Natural%20language%20processing" title="Natural language processing">Natural language processing</a>, <a href="https://publications.waset.org/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a>, <a href="https://publications.waset.org/search?q=application" title=" application"> application</a>, <a href="https://publications.waset.org/search?q=online%20comments." title=" online comments."> online comments.</a> </p> <a href="https://publications.waset.org/10011530/a-survey-of-the-applications-of-sentiment-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011530/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011530/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011530/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011530/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011530/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011530/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011530/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011530/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011530/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011530/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">953</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3663</span> Part of Speech Tagging Using Statistical Approach for Nepali Text</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Archit%20Yajnik">Archit Yajnik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Part of Speech Tagging has always been a challenging task in the era of Natural Language Processing. This article presents POS tagging for Nepali text using Hidden Markov Model and Viterbi algorithm. From the Nepali text, annotated corpus training and testing data set are randomly separated. Both methods are employed on the data sets. Viterbi algorithm is found to be computationally faster and accurate as compared to HMM. The accuracy of 95.43% is achieved using Viterbi algorithm. Error analysis where the mismatches took place is elaborately discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hidden%20Markov%20model" title="Hidden Markov model">Hidden Markov model</a>, <a href="https://publications.waset.org/search?q=Viterbi%20algorithm" title=" Viterbi algorithm"> Viterbi algorithm</a>, <a href="https://publications.waset.org/search?q=POS%20tagging" title=" POS tagging"> POS tagging</a>, <a href="https://publications.waset.org/search?q=natural%20language%20processing." title=" natural language processing. "> natural language processing. </a> </p> <a href="https://publications.waset.org/10006246/part-of-speech-tagging-using-statistical-approach-for-nepali-text" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006246/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006246/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006246/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006246/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006246/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006246/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006246/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006246/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006246/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006246/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1708</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3662</span> JaCoText: A Pretrained Model for Java Code-Text Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jessica%20L%C3%B2pez%20Espejel">Jessica Lòpez Espejel</a>, <a href="https://publications.waset.org/search?q=Mahaman%20Sanoussi%20Yahaya%20Alassan"> Mahaman Sanoussi Yahaya Alassan</a>, <a href="https://publications.waset.org/search?q=Walid%20Dahhane"> Walid Dahhane</a>, <a href="https://publications.waset.org/search?q=El%20Hassane%20Ettifouri"> El Hassane Ettifouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Pretrained transformer-based models have shown high performance in natural language generation task. However, a new wave of interest has surged: automatic programming language generation. This task consists of translating natural language instructions to a programming code. Despite the fact that well-known pretrained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformers neural network. It aims to generate java source code from natural language text. JaCoText leverages advantages of both natural language and code generation models. More specifically, we study some findings from the state of the art and use them to (1) initialize our model from powerful pretrained models, (2) explore additional pretraining on our java dataset, (3) carry out experiments combining the unimodal and bimodal data in the training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Java%20code%20generation" title="Java code generation">Java code generation</a>, <a href="https://publications.waset.org/search?q=Natural%20Language%20Processing" title=" Natural Language Processing"> Natural Language Processing</a>, <a href="https://publications.waset.org/search?q=Sequence-to-sequence%20Models" title=" Sequence-to-sequence Models"> Sequence-to-sequence Models</a>, <a href="https://publications.waset.org/search?q=Transformers%20Neural%20Networks." title=" Transformers Neural Networks."> Transformers Neural Networks.</a> </p> <a href="https://publications.waset.org/10012935/jacotext-a-pretrained-model-for-java-code-text-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012935/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012935/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012935/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012935/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012935/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012935/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012935/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012935/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012935/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012935/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">855</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3661</span> Morpho-Phonological Modelling in Natural Language Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Eleni%20Galiotou">Eleni Galiotou</a>, <a href="https://publications.waset.org/search?q=Angela%20Ralli"> Angela Ralli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper we propose a computational model for the representation and processing of morpho-phonological phenomena in a natural language, like Modern Greek. We aim at a unified treatment of inflection, compounding, and word-internal phonological changes, in a model that is used for both analysis and generation. After discussing certain difficulties cuase by well-known finitestate approaches, such as Koskenniemi-s two-level model [7] when applied to a computational treatment of compounding, we argue that a morphology-based model provides a more adequate account of word-internal phenomena. Contrary to the finite state approaches that cannot handle hierarchical word constituency in a satisfactory way, we propose a unification-based word grammar, as the nucleus of our strategy, which takes into consideration word representations that are based on affixation and [stem stem] or [stem word] compounds. In our formalism, feature-passing operations are formulated with the use of the unification device, and phonological rules modeling the correspondence between lexical and surface forms apply at morpheme boundaries. In the paper, examples from Modern Greek illustrate our approach. Morpheme structures, stress, and morphologically conditioned phoneme changes are analyzed and generated in a principled way.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Morpho-Phonology" title="Morpho-Phonology">Morpho-Phonology</a>, <a href="https://publications.waset.org/search?q=Natural%20Language%20Processing." title=" Natural Language Processing."> Natural Language Processing.</a> </p> <a href="https://publications.waset.org/7143/morpho-phonological-modelling-in-natural-language-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7143/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7143/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7143/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7143/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7143/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7143/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7143/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7143/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7143/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7143/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2129</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3660</span> Implementing a Database from a Requirement Specification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Omer">M. Omer</a>, <a href="https://publications.waset.org/search?q=D.%20Wilson"> D. Wilson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Creating a database scheme is essentially a manual process. From a requirement specification the information contained within has to be analyzed and reduced into a set of tables, attributes and relationships. This is a time consuming process that has to go through several stages before an acceptable database schema is achieved. The purpose of this paper is to implement a Natural Language Processing (NLP) based tool to produce a relational database from a requirement specification. The Stanford CoreNLP version 3.3.1 and the Java programming were used to implement the proposed model. The outcome of this study indicates that a first draft of a relational database schema can be extracted from a requirement specification by using NLP tools and techniques with minimum user intervention. Therefore this method is a step forward in finding a solution that requires little or no user intervention.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Information%20Extraction" title="Information Extraction">Information Extraction</a>, <a href="https://publications.waset.org/search?q=Natural%20Language%0D%0AProcessing" title=" Natural Language Processing"> Natural Language Processing</a>, <a href="https://publications.waset.org/search?q=Relation%20Extraction." title=" Relation Extraction."> Relation Extraction.</a> </p> <a href="https://publications.waset.org/10000138/implementing-a-database-from-a-requirement-specification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000138/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000138/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000138/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000138/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000138/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000138/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000138/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000138/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000138/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000138/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2226</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3659</span> A NXM Version of 5X5 Playfair Cipher for any Natural Language (Urdu as Special Case)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Muhammad%20Salam">Muhammad Salam</a>, <a href="https://publications.waset.org/search?q=Nasir%20Rashid"> Nasir Rashid</a>, <a href="https://publications.waset.org/search?q=Shah%20Khalid"> Shah Khalid</a>, <a href="https://publications.waset.org/search?q=Muhammad%20Raees%20Khan"> Muhammad Raees Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper a modified version NXM of traditional 5X5 playfair cipher is introduced which enable the user to encrypt message of any Natural language by taking appropriate size of the matrix depending upon the size of the natural language. 5X5 matrix has the capability of storing only 26 characters of English language and unable to store characters of any language having more than 26 characters. To overcome this limitation NXM matrix is introduced which solve this limitation. In this paper a special case of Urdu language is discussed. Where # is used for completing odd pair and * is used for repeating letters.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=cryptography" title="cryptography">cryptography</a>, <a href="https://publications.waset.org/search?q=decryption" title=" decryption"> decryption</a>, <a href="https://publications.waset.org/search?q=encryption" title=" encryption"> encryption</a>, <a href="https://publications.waset.org/search?q=playfair%0D%0Acipher" title=" playfair cipher"> playfair cipher</a>, <a href="https://publications.waset.org/search?q=traditional%20cipher." title=" traditional cipher."> traditional cipher.</a> </p> <a href="https://publications.waset.org/9796/a-nxm-version-of-5x5-playfair-cipher-for-any-natural-language-urdu-as-special-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9796/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9796/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9796/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9796/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9796/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9796/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9796/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9796/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9796/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9796/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2164</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3658</span> Detecting Fake News: A Natural Language Processing, Reinforcement Learning, and Blockchain Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ashly%20Joseph">Ashly Joseph</a>, <a href="https://publications.waset.org/search?q=Jithu%20Paulose"> Jithu Paulose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In an era where misleading information may quickly circulate on digital news channels, it is crucial to have efficient and trustworthy methods to detect and reduce the impact of misinformation. This research proposes an innovative framework that combines Natural Language Processing (NLP), Reinforcement Learning (RL), and Blockchain technologies to precisely detect and minimize the spread of false information in news articles on social media. The framework starts by gathering a variety of news items from different social media sites and performing preprocessing on the data to ensure its quality and uniformity. NLP methods are utilized to extract complete linguistic and semantic characteristics, effectively capturing the subtleties and contextual aspects of the language used. These features are utilized as input for a RL model. This model acquires the most effective tactics for detecting and mitigating the impact of false material by modeling the intricate dynamics of user engagements and incentives on social media platforms. The integration of blockchain technology establishes a decentralized and transparent method for storing and verifying the accuracy of information. The Blockchain component guarantees the unchangeability and safety of verified news records, while encouraging user engagement for detecting and fighting false information through an incentive system based on tokens. The suggested framework seeks to provide a thorough and resilient solution to the problems presented by misinformation in social media articles.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Natural%20Language%20Processing" title="Natural Language Processing">Natural Language Processing</a>, <a href="https://publications.waset.org/search?q=Reinforcement%20Learning" title=" Reinforcement Learning"> Reinforcement Learning</a>, <a href="https://publications.waset.org/search?q=Blockchain" title=" Blockchain"> Blockchain</a>, <a href="https://publications.waset.org/search?q=fake%20news%20mitigation" title=" fake news mitigation"> fake news mitigation</a>, <a href="https://publications.waset.org/search?q=misinformation%20detection." title=" misinformation detection."> misinformation detection.</a> </p> <a href="https://publications.waset.org/10013792/detecting-fake-news-a-natural-language-processing-reinforcement-learning-and-blockchain-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013792/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013792/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013792/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013792/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013792/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013792/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013792/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013792/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013792/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013792/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3657</span> A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rim%20Messaoudi">Rim Messaoudi</a>, <a href="https://publications.waset.org/search?q=Nogaye-Gueye%20Gning"> Nogaye-Gueye Gning</a>, <a href="https://publications.waset.org/search?q=Fran%C3%A7ois%20Azelart"> François Azelart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Automatic text classification applies mostly natural language processing (NLP) and other artificial intelligence (AI)-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Machine%20learning" title="Machine learning">Machine learning</a>, <a href="https://publications.waset.org/search?q=text%20classification" title=" text classification"> text classification</a>, <a href="https://publications.waset.org/search?q=NLP%20techniques" title=" NLP techniques"> NLP techniques</a>, <a href="https://publications.waset.org/search?q=semantic%20representation." title=" semantic representation."> semantic representation.</a> </p> <a href="https://publications.waset.org/10013565/a-text-classification-approach-based-on-natural-language-processing-and-machine-learning-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013565/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013565/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013565/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013565/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013565/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013565/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013565/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013565/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013565/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013565/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3656</span> SMaTTS: Standard Malay Text to Speech System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Othman%20O.%20Khalifa">Othman O. Khalifa</a>, <a href="https://publications.waset.org/search?q=Zakiah%20Hanim%20Ahmad"> Zakiah Hanim Ahmad</a>, <a href="https://publications.waset.org/search?q=Teddy%20Surya%20Gunawan"> Teddy Surya Gunawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a rule-based text- to- speech (TTS) Synthesis System for Standard Malay, namely SMaTTS. The proposed system using sinusoidal method and some pre- recorded wave files in generating speech for the system. The use of phone database significantly decreases the amount of computer memory space used, thus making the system very light and embeddable. The overall system was comprised of two phases the Natural Language Processing (NLP) that consisted of the high-level processing of text analysis, phonetic analysis, text normalization and morphophonemic module. The module was designed specially for SM to overcome few problems in defining the rules for SM orthography system before it can be passed to the DSP module. The second phase is the Digital Signal Processing (DSP) which operated on the low-level process of the speech waveform generation. A developed an intelligible and adequately natural sounding formant-based speech synthesis system with a light and user-friendly Graphical User Interface (GUI) is introduced. A Standard Malay Language (SM) phoneme set and an inclusive set of phone database have been constructed carefully for this phone-based speech synthesizer. By applying the generative phonology, a comprehensive letter-to-sound (LTS) rules and a pronunciation lexicon have been invented for SMaTTS. As for the evaluation tests, a set of Diagnostic Rhyme Test (DRT) word list was compiled and several experiments have been performed to evaluate the quality of the synthesized speech by analyzing the Mean Opinion Score (MOS) obtained. The overall performance of the system as well as the room for improvements was thoroughly discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Natural%20Language%20Processing" title="Natural Language Processing">Natural Language Processing</a>, <a href="https://publications.waset.org/search?q=Text-To-Speech%0A%28TTS%29" title=" Text-To-Speech (TTS)"> Text-To-Speech (TTS)</a>, <a href="https://publications.waset.org/search?q=Diphone" title=" Diphone"> Diphone</a>, <a href="https://publications.waset.org/search?q=source%20filter" title=" source filter"> source filter</a>, <a href="https://publications.waset.org/search?q=low-%2F%20high-%20level%20synthesis." title=" low-/ high- level synthesis."> low-/ high- level synthesis.</a> </p> <a href="https://publications.waset.org/12430/smatts-standard-malay-text-to-speech-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12430/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12430/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12430/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12430/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12430/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12430/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12430/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12430/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12430/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12430/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1973</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3655</span> A Framework for Urdu Language Translation using LESSA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Imran%20Sarwar%20Bajwa">Imran Sarwar Bajwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Internet is one of the major sources of information for the person belonging to almost all the fields of life. Major language that is used to publish information on internet is language. This thing becomes a problem in a country like Pakistan, where Urdu is the national language. Only 10% of Pakistan mass can understand English. The reason is millions of people are deprived of precious information available on internet. This paper presents a system for translation from English to Urdu. A module LESSA is used that uses a rule based algorithm to read the input text in English language, understand it and translate it into Urdu language. The designed approach was further incorporated to translate the complete website from English language o Urdu language. An option appears in the browser to translate the webpage in a new window. The designed system will help the millions of users of internet to get benefit of the internet and approach the latest information and knowledge posted daily on internet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Natural%20Language%20Translation" title="Natural Language Translation">Natural Language Translation</a>, <a href="https://publications.waset.org/search?q=Text%20Understanding" title=" Text Understanding"> Text Understanding</a>, <a href="https://publications.waset.org/search?q=Knowledge%20extraction" title="Knowledge extraction">Knowledge extraction</a>, <a href="https://publications.waset.org/search?q=Text%20Processing" title=" Text Processing"> Text Processing</a> </p> <a href="https://publications.waset.org/15972/a-framework-for-urdu-language-translation-using-lessa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15972/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15972/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15972/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15972/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15972/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15972/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15972/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15972/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15972/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15972/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2666</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3654</span> An Enhanced Tool for Implementing Dialogue Forms in Conversational Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ilias%20Spais">Ilias Spais</a>, <a href="https://publications.waset.org/search?q=George%20Bafas"> George Bafas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Natural Language Understanding Systems (NLU) will not be widely deployed unless they are technically mature and cost effective to develop. Cost effective development hinges on the availability of tools and techniques enabling the rapid production of NLU applications through minimal human resources. Further, these tools and techniques should allow quick development of applications in a user friendly way and should be easy to upgrade in order to continuously follow the evolving technologies and standards. This paper presents a visual tool for the structuring and editing of dialog forms, the key element of driving conversation in NLU applications based on IBM technology. The main focus is given on the basic component used to describe Human &ndash; Machine interactions of that kind, the Dialogue Manager. In essence, the description of a tool that enables the visual representation of the Dialogue Manager mainly during the implementation phase is illustrated.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Conversational%20Applications" title="Conversational Applications">Conversational Applications</a>, <a href="https://publications.waset.org/search?q=Forms%20Dialogue%20Manager%20%28FDM%29" title=" Forms Dialogue Manager (FDM)"> Forms Dialogue Manager (FDM)</a>, <a href="https://publications.waset.org/search?q=Natural%20Language%20Processing" title=" Natural Language Processing"> Natural Language Processing</a>, <a href="https://publications.waset.org/search?q=Natural%20Language%20Understanding." title=" Natural Language Understanding."> Natural Language Understanding.</a> </p> <a href="https://publications.waset.org/6726/an-enhanced-tool-for-implementing-dialogue-forms-in-conversational-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6726/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6726/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6726/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6726/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6726/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6726/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6726/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6726/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6726/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6726/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1453</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3653</span> Development of Fake News Model Using Machine Learning through Natural Language Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sajjad%20Ahmed">Sajjad Ahmed</a>, <a href="https://publications.waset.org/search?q=Knut%20Hinkelmann"> Knut Hinkelmann</a>, <a href="https://publications.waset.org/search?q=Flavio%20Corradini"> Flavio Corradini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Na&iuml;ve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fake%20news%20detection" title="Fake news detection">Fake news detection</a>, <a href="https://publications.waset.org/search?q=types%20of%20fake%20news" title=" types of fake news"> types of fake news</a>, <a href="https://publications.waset.org/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/search?q=classification%20techniques." title=" classification techniques. "> classification techniques. </a> </p> <a href="https://publications.waset.org/10011624/development-of-fake-news-model-using-machine-learning-through-natural-language-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011624/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011624/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011624/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011624/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011624/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011624/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011624/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011624/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011624/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011624/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1512</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3652</span> Sounds Alike Name Matching for Myanmar Language</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yuzana">Yuzana</a>, <a href="https://publications.waset.org/search?q=Khin%20Marlar%20Tun"> Khin Marlar Tun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Personal name matching system is the core of essential task in national citizen database, text and web mining, information retrieval, online library system, e-commerce and record linkage system. It has necessitated to the all embracing research in the vicinity of name matching. Traditional name matching methods are suitable for English and other Latin based language. Asian languages which have no word boundary such as Myanmar language still requires sounds alike matching system in Unicode based application. Hence we proposed matching algorithm to get analogous sounds alike (phonetic) pattern that is convenient for Myanmar character spelling. According to the nature of Myanmar character, we consider for word boundary fragmentation, collation of character. Thus we use pattern conversion algorithm which fabricates words in pattern with fragmented and collated. We create the Myanmar sounds alike phonetic group to help in the phonetic matching. The experimental results show that fragmentation accuracy in 99.32% and processing time in 1.72 ms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=natural%20language%20processing" title="natural language processing">natural language processing</a>, <a href="https://publications.waset.org/search?q=name%20matching" title=" name matching"> name matching</a>, <a href="https://publications.waset.org/search?q=phonetic%20matching" title="phonetic matching">phonetic matching</a> </p> <a href="https://publications.waset.org/2501/sounds-alike-name-matching-for-myanmar-language" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2501/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2501/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2501/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2501/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2501/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2501/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2501/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2501/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2501/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2501/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1798</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3651</span> Word Stemming Algorithms and Retrieval Effectiveness in Malay and Arabic Documents Retrieval Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tengku%20Mohd%20T.%20Sembok">Tengku Mohd T. Sembok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Documents retrieval in Information Retrieval Systems (IRS) is generally about understanding of information in the documents concern. The more the system able to understand the contents of documents the more effective will be the retrieval outcomes. But understanding of the contents is a very complex task. Conventional IRS apply algorithms that can only approximate the meaning of document contents through keywords approach using vector space model. Keywords may be unstemmed or stemmed. When keywords are stemmed and conflated in retrieving process, we are a step forwards in applying semantic technology in IRS. Word stemming is a process in morphological analysis under natural language processing, before syntactic and semantic analysis. We have developed algorithms for Malay and Arabic and incorporated stemming in our experimental systems in order to measure retrieval effectiveness. The results have shown that the retrieval effectiveness has increased when stemming is used in the systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Information%20Retrieval" title="Information Retrieval">Information Retrieval</a>, <a href="https://publications.waset.org/search?q=Natural%20Language%20Processing" title=" Natural Language Processing"> Natural Language Processing</a>, <a href="https://publications.waset.org/search?q=Artificial%20Intelligence." title="Artificial Intelligence.">Artificial Intelligence.</a> </p> <a href="https://publications.waset.org/10259/word-stemming-algorithms-and-retrieval-effectiveness-in-malay-and-arabic-documents-retrieval-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10259/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10259/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10259/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10259/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10259/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10259/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10259/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10259/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10259/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10259/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2258</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3650</span> Composite Kernels for Public Emotion Recognition from Twitter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chien-Hung%20Chen">Chien-Hung Chen</a>, <a href="https://publications.waset.org/search?q=Yan-Chun%20Hsing"> Yan-Chun Hsing</a>, <a href="https://publications.waset.org/search?q=Yung-Chun%20Chang"> Yung-Chun Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Public%20emotion%20recognition" title="Public emotion recognition">Public emotion recognition</a>, <a href="https://publications.waset.org/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/search?q=composite%20kernel" title=" composite kernel"> composite kernel</a>, <a href="https://publications.waset.org/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a>, <a href="https://publications.waset.org/search?q=text%20mining." title=" text mining."> text mining.</a> </p> <a href="https://publications.waset.org/10009602/composite-kernels-for-public-emotion-recognition-from-twitter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009602/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009602/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009602/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009602/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009602/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009602/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009602/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009602/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009602/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009602/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">773</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3649</span> Emotional Analysis for Text Search Queries on Internet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Gemma%20Garc%C3%ADa%20L%C3%B3pez">Gemma García López</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Emotion%20classification" title="Emotion classification">Emotion classification</a>, <a href="https://publications.waset.org/search?q=text%20search%20queries" title=" text search queries"> text search queries</a>, <a href="https://publications.waset.org/search?q=emotional%20analysis" title=" emotional analysis"> emotional analysis</a>, <a href="https://publications.waset.org/search?q=sentiment%20analysis%20in%20text" title=" sentiment analysis in text"> sentiment analysis in text</a>, <a href="https://publications.waset.org/search?q=natural%20language%20processing." title=" natural language processing."> natural language processing.</a> </p> <a href="https://publications.waset.org/10009666/emotional-analysis-for-text-search-queries-on-internet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009666/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009666/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009666/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009666/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009666/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009666/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009666/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009666/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009666/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009666/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">713</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3648</span> Native Language Identification with Cross-Corpus Evaluation Using Social Media Data: &#039;Reddit&#039;</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yasmeen%20Bassas">Yasmeen Bassas</a>, <a href="https://publications.waset.org/search?q=Sandra%20Kuebler"> Sandra Kuebler</a>, <a href="https://publications.waset.org/search?q=Allen%20Riddell"> Allen Riddell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Native Language Identification is one of the growing subfields in Natural Language Processing (NLP). The task of Native Language Identification (NLI) is mainly concerned with predicting the native language of an author’s writing in a second language. In this paper, we investigate the performance of two types of features; content-based features vs. content independent features when they are evaluated on a different corpus (using social media data “Reddit”). In this NLI task, the predefined models are trained on one corpus (TOEFL) and then the trained models are evaluated on a different data using an external corpus (Reddit). Three classifiers are used in this task; the baseline, linear SVM, and Logistic Regression. Results show that content-based features are more accurate and robust than content independent ones when tested within corpus and across corpus.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=NLI" title="NLI">NLI</a>, <a href="https://publications.waset.org/search?q=NLP" title=" NLP"> NLP</a>, <a href="https://publications.waset.org/search?q=content-based%20features" title=" content-based features"> content-based features</a>, <a href="https://publications.waset.org/search?q=content%20independent%0D%0Afeatures" title=" content independent features"> content independent features</a>, <a href="https://publications.waset.org/search?q=social%20media%20corpus" title=" social media corpus"> social media corpus</a>, <a href="https://publications.waset.org/search?q=ML." title=" ML."> ML.</a> </p> <a href="https://publications.waset.org/10012918/native-language-identification-with-cross-corpus-evaluation-using-social-media-data-reddit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012918/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012918/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012918/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012918/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012918/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012918/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012918/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012918/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012918/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012918/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3647</span> Greek Compounds: A Challenging Case for the Parsing Techniques of PC-KIMMO v.2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Angela%20Ralli">Angela Ralli</a>, <a href="https://publications.waset.org/search?q=Eleni%20Galiotou"> Eleni Galiotou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper we describe the recognition process of Greek compound words using the PC-KIMMO software. We try to show certain limitations of the system with respect to the principles of compound formation in Greek. Moreover, we discuss the computational processing of phenomena such as stress and syllabification which are indispensable for the analysis of such constructions and we try to propose linguistically-acceptable solutions within the particular system.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Morpho-phonological%20parsing" title="Morpho-phonological parsing">Morpho-phonological parsing</a>, <a href="https://publications.waset.org/search?q=compound%20words" title=" compound words"> compound words</a>, <a href="https://publications.waset.org/search?q=two-level%20morphology" title=" two-level morphology"> two-level morphology</a>, <a href="https://publications.waset.org/search?q=natural%20language%20processing." title=" natural language processing."> natural language processing.</a> </p> <a href="https://publications.waset.org/10979/greek-compounds-a-challenging-case-for-the-parsing-techniques-of-pc-kimmo-v2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10979/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10979/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10979/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10979/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10979/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10979/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10979/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10979/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10979/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10979/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1609</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3646</span> Methodology for Developing an Intelligent Tutoring System Based on Marzano’s Taxonomy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Joaquin%20Navarro%20Perales">Joaquin Navarro Perales</a>, <a href="https://publications.waset.org/search?q=Ana%20Lidia%20Franzoni%20Vel%C3%A1zquez"> Ana Lidia Franzoni Velázquez</a>, <a href="https://publications.waset.org/search?q=Francisco%20Cervantes%20P%C3%A9rez"> Francisco Cervantes Pérez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The Mexican educational system faces diverse challenges related with the quality and coverage of education. The development of Intelligent Tutoring Systems (ITS) may help to solve some of them by helping teachers to customize their classes according to the performance of the students in online courses. In this work, we propose the adaptation of a functional ITS based on Bloom&rsquo;s taxonomy called <em>Sistema de Apoyo Generalizado para la Ense&ntilde;anza Individualizada</em> (SAGE), to measure student&rsquo;s metacognition and their emotional response based on Marzano&rsquo;s taxonomy. The students and the system will share the control over the advance in the course, so they can improve their metacognitive skills. The system will not allow students to get access to subjects not mastered yet. The interaction between the system and the student will be implemented through Natural Language Processing techniques, thus avoiding the use of sensors to evaluate student&rsquo;s response. The teacher will evaluate student&rsquo;s knowledge utilization, which is equivalent to the last cognitive level in Marzano&rsquo;s taxonomy.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Intelligent%20tutoring%20systems" title="Intelligent tutoring systems">Intelligent tutoring systems</a>, <a href="https://publications.waset.org/search?q=student%20modelling" title=" student modelling"> student modelling</a>, <a href="https://publications.waset.org/search?q=metacognition" title=" metacognition"> metacognition</a>, <a href="https://publications.waset.org/search?q=affective%20computing" title=" affective computing"> affective computing</a>, <a href="https://publications.waset.org/search?q=natural%20language%20processing." title=" natural language processing. "> natural language processing. </a> </p> <a href="https://publications.waset.org/10009580/methodology-for-developing-an-intelligent-tutoring-system-based-on-marzanos-taxonomy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009580/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009580/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009580/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009580/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009580/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009580/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009580/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009580/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009580/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009580/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1010</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3645</span> Twitter Sentiment Analysis during the Lockdown on New Zealand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Smah%20Doeban%20Almotiri">Smah Doeban Almotiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2021, until April 4, 2021. Natural language processing (NLP), which is a form of Artificial intelligent was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applied machine learning sentimental method such as Crystal Feel and extended the size of the sample tweet by using multiple tweets over a longer period of time.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=sentiment%20analysis" title="sentiment analysis">sentiment analysis</a>, <a href="https://publications.waset.org/search?q=Twitter%20analysis" title=" Twitter analysis"> Twitter analysis</a>, <a href="https://publications.waset.org/search?q=lockdown" title=" lockdown"> lockdown</a>, <a href="https://publications.waset.org/search?q=Covid-19" title=" Covid-19"> Covid-19</a>, <a href="https://publications.waset.org/search?q=AFINN" title=" AFINN"> AFINN</a>, <a href="https://publications.waset.org/search?q=NodeJS" title=" NodeJS"> NodeJS</a> </p> <a href="https://publications.waset.org/10012359/twitter-sentiment-analysis-during-the-lockdown-on-new-zealand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012359/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012359/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012359/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012359/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012359/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012359/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012359/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012359/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012359/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012359/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">584</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3644</span> Language Processing of Seniors with Alzheimer’s Disease: From the Perspective of Temporal Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Lai%20Yi-Hsiu">Lai Yi-Hsiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The present paper aims to examine the language processing of Chinese-speaking seniors with Alzheimer&rsquo;s disease (AD) from the perspective of temporal cues. Twenty healthy adults, 17 healthy seniors, and 13 seniors with AD in Taiwan participated in this study to tell stories based on two sets of pictures. Nine temporal cues were fetched and analyzed. Oral productions in Mandarin Chinese were compared and discussed to examine to what extent and in what way these three groups of participants performed with significant differences. Results indicated that the age effects were significant in filled pauses. The dementia effects were significant in mean duration of pauses, empty pauses, filled pauses, lexical pauses, normalized mean duration of filled pauses and lexical pauses. The findings reported in the current paper help characterize the nature of language processing in seniors with or without AD, and contribute to the interactions between the AD neural mechanism and their temporal parameters.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Language%20processing" title="Language processing">Language processing</a>, <a href="https://publications.waset.org/search?q=Alzheimer%E2%80%99s%20disease" title=" Alzheimer’s disease"> Alzheimer’s disease</a>, <a href="https://publications.waset.org/search?q=Mandarin%20Chinese" title=" Mandarin Chinese"> Mandarin Chinese</a>, <a href="https://publications.waset.org/search?q=temporal%20cues." title=" temporal cues."> temporal cues.</a> </p> <a href="https://publications.waset.org/10007529/language-processing-of-seniors-with-alzheimers-disease-from-the-perspective-of-temporal-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007529/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007529/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007529/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007529/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007529/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007529/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007529/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007529/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007529/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007529/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1019</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3643</span> Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Raymond%20Xu">Raymond Xu</a>, <a href="https://publications.waset.org/search?q=Ashley%20Hua"> Ashley Hua</a>, <a href="https://publications.waset.org/search?q=Andrew%20Wang"> Andrew Wang</a>, <a href="https://publications.waset.org/search?q=Yuru%20Lin"> Yuru Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20intelligence" title="Artificial intelligence">Artificial intelligence</a>, <a href="https://publications.waset.org/search?q=depression%20detection" title=" depression detection"> depression detection</a>, <a href="https://publications.waset.org/search?q=facial%20emotion%20recognition" title=" facial emotion recognition"> facial emotion recognition</a>, <a href="https://publications.waset.org/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/search?q=mental%20disorder." title=" mental disorder."> mental disorder.</a> </p> <a href="https://publications.waset.org/10012110/early-depression-detection-for-young-adults-with-a-psychiatric-and-ai-interdisciplinary-multimodal-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012110/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012110/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012110/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012110/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012110/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012110/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012110/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012110/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012110/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012110/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1178</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3642</span> DocPro: A Framework for Processing Semantic and Layout Information in Business Documents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ming-Jen%20Huang">Ming-Jen Huang</a>, <a href="https://publications.waset.org/search?q=Chun-Fang%20Huang"> Chun-Fang Huang</a>, <a href="https://publications.waset.org/search?q=Chiching%20Wei"> Chiching Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Document%20processing" title="Document processing">Document processing</a>, <a href="https://publications.waset.org/search?q=framework" title=" framework"> framework</a>, <a href="https://publications.waset.org/search?q=formal%20definition" title=" formal definition"> formal definition</a>, <a href="https://publications.waset.org/search?q=machine%20learning." title=" machine learning."> machine learning.</a> </p> <a href="https://publications.waset.org/10011322/docpro-a-framework-for-processing-semantic-and-layout-information-in-business-documents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011322/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011322/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011322/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011322/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011322/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011322/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011322/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011322/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011322/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011322/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">637</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Natural%20language%20processing&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Natural%20language%20processing&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Natural%20language%20processing&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Natural%20language%20processing&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Natural%20language%20processing&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Natural%20language%20processing&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Natural%20language%20processing&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Natural%20language%20processing&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Natural%20language%20processing&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Natural%20language%20processing&amp;page=122">122</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Natural%20language%20processing&amp;page=123">123</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Natural%20language%20processing&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10