CINXE.COM

Search results for: Laplacian eigenvalues

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Laplacian eigenvalues</title> <meta name="description" content="Search results for: Laplacian eigenvalues"> <meta name="keywords" content="Laplacian eigenvalues"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Laplacian eigenvalues" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Laplacian eigenvalues"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 98</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Laplacian eigenvalues</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Bounds on the Laplacian Vertex PI Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezgi%20Kaya">Ezgi Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dilek%20Maden"> A. Dilek Maden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A topological index is a number related to graph which is invariant under graph isomorphism. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds. Let G be a graph with n vertices and m edges. For a given edge uv, the quantity nu(e) denotes the number of vertices closer to u than v, the quantity nv(e) is defined analogously. The vertex PI index defined as the sum of the nu(e) and nv(e). Here the sum is taken over all edges of G. The energy of a graph is defined as the sum of the eigenvalues of adjacency matrix of G and the Laplacian energy of a graph is defined as the sum of the absolute value of difference of laplacian eigenvalues and average degree of G. In theoretical chemistry, the π-electron energy of a conjugated carbon molecule, computed using the Hückel theory, coincides with the energy. Hence results on graph energy assume special significance. The Laplacian matrix of a graph G weighted by the vertex PI weighting is the Laplacian vertex PI matrix and the Laplacian vertex PI eigenvalues of a connected graph G are the eigenvalues of its Laplacian vertex PI matrix. In this study, Laplacian vertex PI energy of a graph is defined of G. We also give some bounds for the Laplacian vertex PI energy of graphs in terms of vertex PI index, the sum of the squares of entries in the Laplacian vertex PI matrix and the absolute value of the determinant of the Laplacian vertex PI matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20energy" title=" Laplacian energy"> Laplacian energy</a>, <a href="https://publications.waset.org/abstracts/search?q=laplacian%20vertex%20PI%20eigenvalues" title=" laplacian vertex PI eigenvalues"> laplacian vertex PI eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20vertex%20PI%20energy" title=" Laplacian vertex PI energy"> Laplacian vertex PI energy</a>, <a href="https://publications.waset.org/abstracts/search?q=vertex%20PI%20index" title=" vertex PI index"> vertex PI index</a> </p> <a href="https://publications.waset.org/abstracts/73194/bounds-on-the-laplacian-vertex-pi-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Extremal Laplacian Energy of Threshold Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ahmad%20Mojallal">Seyed Ahmad Mojallal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let G be a connected threshold graph of order n with m edges and trace T. In this talk we give a lower bound on Laplacian energy in terms of n, m, and T of G. From this we determine the threshold graphs with the first four minimal Laplacian energies. We also list the first 20 minimal Laplacian energies among threshold graphs. Let σ=σ(G) be the number of Laplacian eigenvalues greater than or equal to average degree of graph G. Using this concept, we obtain the threshold graphs with the largest and the second largest Laplacian energies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20eigenvalues" title="Laplacian eigenvalues">Laplacian eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20energy" title=" Laplacian energy"> Laplacian energy</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20graphs" title=" threshold graphs"> threshold graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=extremal%20graphs" title=" extremal graphs"> extremal graphs</a> </p> <a href="https://publications.waset.org/abstracts/41332/extremal-laplacian-energy-of-threshold-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Normalized Laplacian Eigenvalues of Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaowei%20Sun">Shaowei Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let G be a graph with vertex set V(G)={v_1,v_2,...,v_n} and edge set E(G). For any vertex v belong to V(G), let d_v denote the degree of v. The normalized Laplacian matrix of the graph G is the matrix where the non-diagonal (i,j)-th entry is -1/(d_id_j) when vertex i is adjacent to vertex j and 0 when they are not adjacent, and the diagonal (i,i)-th entry is the di. In this paper, we discuss some bounds on the largest and the second smallest normalized Laplacian eigenvalue of trees and graphs. As following, we found some new bounds on the second smallest normalized Laplacian eigenvalue of tree T in terms of graph parameters. Moreover, we use Sage to give some conjectures on the second largest and the third smallest normalized eigenvalues of graph. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph" title="graph">graph</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20Laplacian%20eigenvalues" title=" normalized Laplacian eigenvalues"> normalized Laplacian eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20Laplacian%20matrix" title=" normalized Laplacian matrix"> normalized Laplacian matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=tree" title=" tree"> tree</a> </p> <a href="https://publications.waset.org/abstracts/41326/normalized-laplacian-eigenvalues-of-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> The Second Smallest Eigenvalue of Complete Tripartite Hypergraph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alfi%20Y.%20Zakiyyah">Alfi Y. Zakiyyah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanni%20Garminia"> Hanni Garminia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Salman"> M. Salman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Irawati"> A. N. Irawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the terminology of the hypergraph, there is a relation with the terminology graph. In the theory of graph, the edges connected two vertices. In otherwise, in hypergraph, the edges can connect more than two vertices. There is representation matrix of a graph such as adjacency matrix, Laplacian matrix, and incidence matrix. The adjacency matrix is symmetry matrix so that all eigenvalues is real. This matrix is a nonnegative matrix. The all diagonal entry from adjacency matrix is zero so that the trace is zero. Another representation matrix of the graph is the Laplacian matrix. Laplacian matrix is symmetry matrix and semidefinite positive so that all eigenvalues are real and non-negative. According to the spectral study in the graph, some that result is generalized to hypergraph. A hypergraph can be represented by a matrix such as adjacency, incidence, and Laplacian matrix. Throughout for this term, we use Laplacian matrix to represent a complete tripartite hypergraph. The aim from this research is to determine second smallest eigenvalues from this matrix and find a relation this eigenvalue with the connectivity of that hypergraph. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connectivity" title="connectivity">connectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=graph" title=" graph"> graph</a>, <a href="https://publications.waset.org/abstracts/search?q=hypergraph" title=" hypergraph"> hypergraph</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20matrix" title=" Laplacian matrix"> Laplacian matrix</a> </p> <a href="https://publications.waset.org/abstracts/34000/the-second-smallest-eigenvalue-of-complete-tripartite-hypergraph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Some New Bounds for a Real Power of the Normalized Laplacian Eigenvalues</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Fe%20Dilek%20Maden">Ayşe Dilek Maden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For a given a simple connected graph, we present some new bounds via a new approach for a special topological index given by the sum of the real number power of the non-zero normalized Laplacian eigenvalues. To use this approach presents an advantage not only to derive old and new bounds on this topic but also gives an idea how some previous results in similar area can be developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degree%20Kirchhoff%20index" title="degree Kirchhoff index">degree Kirchhoff index</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20Laplacian%20eigenvalue" title=" normalized Laplacian eigenvalue"> normalized Laplacian eigenvalue</a>, <a href="https://publications.waset.org/abstracts/search?q=spanning%20tree" title=" spanning tree"> spanning tree</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20connected%20graph" title=" simple connected graph"> simple connected graph</a> </p> <a href="https://publications.waset.org/abstracts/13999/some-new-bounds-for-a-real-power-of-the-normalized-laplacian-eigenvalues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Geometric and Algebraic Properties of the Eigenvalues of Monotone Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brando%20Vagenende">Brando Vagenende</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie-Anne%20Guerry"> Marie-Anne Guerry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For stochastic matrices of any order, the geometric description of the convex set of eigenvalues is completely known. The purpose of this study is to investigate the subset of the monotone matrices. This type of matrix appears in contexts such as intergenerational occupational mobility, equal-input modeling, and credit ratings-based systems. Monotone matrices are stochastic matrices in which each row stochastically dominates the previous row. The monotonicity property of a stochastic matrix can be expressed by a nonnegative lower-order matrix with the same eigenvalues as the original monotone matrix (except for the eigenvalue 1). Specifically, the aim of this research is to focus on the properties of eigenvalues of monotone matrices. For those matrices up to order 3, there already exists a complete description of the convex set of eigenvalues. For monotone matrices of order at least 4, this study gives, through simulations, more insight into the geometric description of their eigenvalues. Furthermore, this research treats in a geometric and algebraic way the properties of eigenvalues of monotone matrices of order at least 4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eigenvalues%20of%20matrices" title="eigenvalues of matrices">eigenvalues of matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20Markov%20chains" title=" finite Markov chains"> finite Markov chains</a>, <a href="https://publications.waset.org/abstracts/search?q=monotone%20matrices" title=" monotone matrices"> monotone matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=nonnegative%20matrices" title=" nonnegative matrices"> nonnegative matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20matrices" title=" stochastic matrices"> stochastic matrices</a> </p> <a href="https://publications.waset.org/abstracts/179294/geometric-and-algebraic-properties-of-the-eigenvalues-of-monotone-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Kirchoff Type Equation Involving the p-Laplacian on the Sierpinski Gasket Using Nehari Manifold Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhilash%20Sahu">Abhilash Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Priyadarshi"> Amit Priyadarshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we will discuss the existence of weak solutions of the Kirchhoff type boundary value problem on the Sierpinski gasket. Where S denotes the Sierpinski gasket in R² and S₀ is the intrinsic boundary of the Sierpinski gasket. M: R → R is a positive function and h: S × R → R is a suitable function which is a part of our main equation. ∆p denotes the p-Laplacian, where p > 1. First of all, we will define a weak solution for our problem and then we will show the existence of at least two solutions for the above problem under suitable conditions. There is no well-known concept of a generalized derivative of a function on a fractal domain. Recently, the notion of differential operators such as the Laplacian and the p-Laplacian on fractal domains has been defined. We recall the result first then we will address the above problem. In view of literature, Laplacian and p-Laplacian equations are studied extensively on regular domains (open connected domains) in contrast to fractal domains. In fractal domains, people have studied Laplacian equations more than p-Laplacian probably because in that case, the corresponding function space is reflexive and many minimax theorems which work for regular domains is applicable there which is not the case for the p-Laplacian. This motivates us to study equations involving p-Laplacian on the Sierpinski gasket. Problems on fractal domains lead to nonlinear models such as reaction-diffusion equations on fractals, problems on elastic fractal media and fluid flow through fractal regions etc. We have studied the above p-Laplacian equations on the Sierpinski gasket using fibering map technique on the Nehari manifold. Many authors have studied the Laplacian and p-Laplacian equations on regular domains using this Nehari manifold technique. In general Euler functional associated with such a problem is Frechet or Gateaux differentiable. So, a critical point becomes a solution to the problem. Also, the function space they consider is reflexive and hence we can extract a weakly convergent subsequence from a bounded sequence. But in our case neither the Euler functional is differentiable nor the function space is known to be reflexive. Overcoming these issues we are still able to prove the existence of at least two solutions of the given equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Euler%20functional" title="Euler functional">Euler functional</a>, <a href="https://publications.waset.org/abstracts/search?q=p-Laplacian" title=" p-Laplacian"> p-Laplacian</a>, <a href="https://publications.waset.org/abstracts/search?q=p-energy" title=" p-energy"> p-energy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sierpinski%20gasket" title=" Sierpinski gasket"> Sierpinski gasket</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20solution" title=" weak solution"> weak solution</a> </p> <a href="https://publications.waset.org/abstracts/89044/kirchoff-type-equation-involving-the-p-laplacian-on-the-sierpinski-gasket-using-nehari-manifold-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Using Eigenvalues and Eigenvectors in Population Growth and Stability Obtaining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abubakar%20Sadiq%20Mensah">Abubakar Sadiq Mensah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Knowledge of the population growth of a nation is paramount to national planning. The population of a place is studied and a model developed over a period of time, Matrices is used to form model for population growth. The eigenvalue ƛ of the matrix A and its corresponding eigenvector X is such that AX = ƛX is calculated. The stable age distribution of the population is obtained using the eigenvalue and the characteristic polynomial. Hence, estimation could be made using eigenvalues and eigenvectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title="eigenvalues">eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvectors" title=" eigenvectors"> eigenvectors</a>, <a href="https://publications.waset.org/abstracts/search?q=population" title=" population"> population</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%2Fstability" title=" growth/stability"> growth/stability</a> </p> <a href="https://publications.waset.org/abstracts/49175/using-eigenvalues-and-eigenvectors-in-population-growth-and-stability-obtaining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Inverse Scattering for a Second-Order Discrete System via Transmission Eigenvalues</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdon%20Choque-Rivero">Abdon Choque-Rivero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Jacobi system with the Dirichlet boundary condition is considered on a half-line lattice when the coefficients are real valued. The inverse problem of recovery of the coefficients from various data sets containing the so-called transmission eigenvalues is analyzed. The Marchenko method is utilized to solve the corresponding inverse problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%20scattering" title="inverse scattering">inverse scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20system" title=" discrete system"> discrete system</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20eigenvalues" title=" transmission eigenvalues"> transmission eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=Marchenko%20method" title=" Marchenko method"> Marchenko method</a> </p> <a href="https://publications.waset.org/abstracts/125118/inverse-scattering-for-a-second-order-discrete-system-via-transmission-eigenvalues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Normalized P-Laplacian: From Stochastic Game to Image Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderrahim%20Elmoataz">Abderrahim Elmoataz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=normalized%20p-laplacian" title="normalized p-laplacian">normalized p-laplacian</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20game" title=" stochastic game"> stochastic game</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problems" title=" inverse problems"> inverse problems</a> </p> <a href="https://publications.waset.org/abstracts/24175/normalized-p-laplacian-from-stochastic-game-to-image-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Fundamental Solutions for Discrete Dynamical Systems Involving the Fractional Laplacian</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Gonzalez%20Camus">Jorge Gonzalez Camus</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentin%20Keyantuo"> Valentin Keyantuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahamadi%20Warma"> Mahamadi Warma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we obtain representation results for solutions of a time-fractional differential equation involving the discrete fractional Laplace operator in terms of generalized Wright functions. Such equations arise in the modeling of many physical systems, for example, chain processes in chemistry and radioactivity. The focus is on the linear problem of the simplified Moore - Gibson - Thompson equation, where the discrete fractional Laplacian and the Caputo fractional derivate of order on (0,2] are involved. As a particular case, we obtain the explicit solution for the discrete heat equation and discrete wave equation. Furthermore, we show the explicit solution for the equation involving the perturbed Laplacian by the identity operator. The main tool for obtaining the explicit solution are the Laplace and discrete Fourier transforms, and Stirling's formula. The methodology mainly is to apply both transforms in the equation, to find the inverse of each transform, and to prove that this solution is well defined, using Stirling´s formula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20fractional%20Laplacian" title="discrete fractional Laplacian">discrete fractional Laplacian</a>, <a href="https://publications.waset.org/abstracts/search?q=explicit%20representation%20of%20solutions" title=" explicit representation of solutions"> explicit representation of solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20heat%20and%20wave%20equations" title=" fractional heat and wave equations"> fractional heat and wave equations</a>, <a href="https://publications.waset.org/abstracts/search?q=fundamental" title=" fundamental"> fundamental</a> </p> <a href="https://publications.waset.org/abstracts/99922/fundamental-solutions-for-discrete-dynamical-systems-involving-the-fractional-laplacian" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> FPGA Implementation of Novel Triangular Systolic Array Based Architecture for Determining the Eigenvalues of Matrix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soumitr%20Sanjay%20Dubey">Soumitr Sanjay Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubhajit%20Roy%20Chowdhury"> Shubhajit Roy Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Shrestha"> Rahul Shrestha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have presented a novel approach of calculating eigenvalues of any matrix for the first time on Field Programmable Gate Array (FPGA) using Triangular Systolic Arra (TSA) architecture. Conventionally, additional computation unit is required in the architecture which is compliant to the algorithm for determining the eigenvalues and this in return enhances the delay and power consumption. However, recently reported works are only dedicated for symmetric matrices or some specific case of matrix. This works presents an architecture to calculate eigenvalues of any matrix based on QR algorithm which is fully implementable on FPGA. For the implementation of QR algorithm we have used TSA architecture, which is further utilising CORDIC (CO-ordinate Rotation DIgital Computer) algorithm, to calculate various trigonometric and arithmetic functions involved in the procedure. The proposed architecture gives an error in the range of 10−4. Power consumption by the design is 0.598W. It can work at the frequency of 900 MHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coordinate%20rotation%20digital%20computer" title="coordinate rotation digital computer">coordinate rotation digital computer</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20angle%20complex%20rotation" title=" three angle complex rotation"> three angle complex rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=triangular%20systolic%20array" title=" triangular systolic array"> triangular systolic array</a>, <a href="https://publications.waset.org/abstracts/search?q=QR%20algorithm" title=" QR algorithm "> QR algorithm </a> </p> <a href="https://publications.waset.org/abstracts/40252/fpga-implementation-of-novel-triangular-systolic-array-based-architecture-for-determining-the-eigenvalues-of-matrix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Matrix Valued Difference Equations with Spectral Singularities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serifenur%20Cebesoy">Serifenur Cebesoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Yelda%20Aygar"> Yelda Aygar</a>, <a href="https://publications.waset.org/abstracts/search?q=Elgiz%20Bairamov"> Elgiz Bairamov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotics" title="asymptotics">asymptotics</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20spectrum" title=" continuous spectrum"> continuous spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=difference%20equations" title=" difference equations"> difference equations</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title=" eigenvalues"> eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=jost%20functions" title=" jost functions"> jost functions</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20singularities" title=" spectral singularities"> spectral singularities</a> </p> <a href="https://publications.waset.org/abstracts/32256/matrix-valued-difference-equations-with-spectral-singularities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Quantum Graph Approach for Energy and Information Transfer through Networks of Cables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mubarack%20Ahmed">Mubarack Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriele%20Gradoni"> Gabriele Gradoni</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20C.%20Creagh"> Stephen C. Creagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gregor%20Tanner"> Gregor Tanner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-frequency cables commonly connect modern devices and sensors. Interestingly, the proportion of electric components is rising fast in an attempt to achieve lighter and greener devices. Modelling the propagation of signals through these cable networks in the presence of parameter uncertainty is a daunting task. In this work, we study the response of high-frequency cable networks using both Transmission Line and Quantum Graph (QG) theories. We have successfully compared the two theories in terms of reflection spectra using measurements on real, lossy cables. We have derived a generalisation of the vertex scattering matrix to include non-uniform networks – networks of cables with different characteristic impedances and propagation constants. The QG model implicitly takes into account the pseudo-chaotic behavior, at the vertices, of the propagating electric signal. We have successfully compared the asymptotic growth of eigenvalues of the Laplacian with the predictions of Weyl law. We investigate the nearest-neighbour level-spacing distribution of the resonances and compare our results with the predictions of Random Matrix Theory (RMT). To achieve this, we will compare our graphs with the generalisation of Wigner distribution for open systems. The problem of scattering from networks of cables can also provide an analogue model for wireless communication in highly reverberant environments. In this context, we provide a preliminary analysis of the statistics of communication capacity for communication across cable networks, whose eventual aim is to enable detailed laboratory testing of information transfer rates using software defined radio. We specialise this analysis in particular for the case of MIMO (Multiple-Input Multiple-Output) protocols. We have successfully validated our QG model with both TL model and laboratory measurements. The growth of Eigenvalues compares well with Weyl’s law and the level-spacing distribution agrees so well RMT predictions. The results we achieved in the MIMO application compares favourably with the prediction of a parallel on-going research (sponsored by NEMF21.) <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title="eigenvalues">eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-input%20multiple-output" title=" multiple-input multiple-output"> multiple-input multiple-output</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20graph" title=" quantum graph"> quantum graph</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20matrix%20theory" title=" random matrix theory"> random matrix theory</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20line" title=" transmission line"> transmission line</a> </p> <a href="https://publications.waset.org/abstracts/95020/quantum-graph-approach-for-energy-and-information-transfer-through-networks-of-cables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elnaz%20Lashgari">Elnaz Lashgari</a>, <a href="https://publications.waset.org/abstracts/search?q=Emel%20Demircan"> Emel Demircan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle&rsquo;s pattern during walking and running is vital for improving the quality of a patient&rsquo;s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87&plusmn;0.69 for sensitivity and 88.37&plusmn;0.79 for specificity with 97.07&plusmn;0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromyography" title="electromyography">electromyography</a>, <a href="https://publications.waset.org/abstracts/search?q=manifold%20learning" title=" manifold learning"> manifold learning</a>, <a href="https://publications.waset.org/abstracts/search?q=ISOMAP" title=" ISOMAP"> ISOMAP</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20Eigenmaps" title=" Laplacian Eigenmaps"> Laplacian Eigenmaps</a>, <a href="https://publications.waset.org/abstracts/search?q=locally%20linear%20embedding" title=" locally linear embedding"> locally linear embedding</a> </p> <a href="https://publications.waset.org/abstracts/61632/electromyography-pattern-classification-with-laplacian-eigenmaps-in-human-running" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Edge Detection in Low Contrast Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koushlendra%20Kumar%20Singh">Koushlendra Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar%20Bajpai"> Manish Kumar Bajpai</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20K.%20Pandey"> Rajesh K. Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The edges of low contrast images are not clearly distinguishable to the human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20contrast%20image" title="low contrast image">low contrast image</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20order%20differentiator" title="fractional order differentiator">fractional order differentiator</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20of%20Gaussian%20%28LoG%29%20method" title="Laplacian of Gaussian (LoG) method">Laplacian of Gaussian (LoG) method</a>, <a href="https://publications.waset.org/abstracts/search?q=chebyshev%20polynomial" title=" chebyshev polynomial"> chebyshev polynomial</a> </p> <a href="https://publications.waset.org/abstracts/21264/edge-detection-in-low-contrast-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">636</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> The Dynamics of a 3D Vibrating and Rotating Disc Gyroscope </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getachew%20T.%20Sedebo">Getachew T. Sedebo</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20V.%20Joubert"> Stephan V. Joubert</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Y.%20Shatalov"> Michael Y. Shatalov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional configuration of the vibratory disc gyroscope is based on in-plane non-axisymmetric vibrations of the disc with a prescribed circumferential wave number. Due to the Bryan's effect, the vibrating pattern of the disc becomes sensitive to the axial component of inertial rotation of the disc. Rotation of the vibrating pattern relative to the disc is proportional to the inertial angular rate and is measured by sensors. In the present paper, the authors investigate a possibility of making a 3D sensor on the basis of both in-plane and bending vibrations of the disc resonator. We derive equations of motion for the disc vibratory gyroscope, where both in-plane and bending vibrations are considered. Hamiltonian variational principle is used in setting up equations of motion and the corresponding boundary conditions. The theory of thin shells with the linear elasticity principles is used in formulating the problem and also the disc is assumed to be isotropic and obeys Hooke's Law. The governing equation for a specific mode is converted to an ODE to determine the eigenfunction. The resulting ODE has exact solution as a linear combination of Bessel and Neumann functions. We demonstrate how to obtain an explicit solution and hence the eigenvalues and corresponding eigenfunctions for annular disc with fixed inner boundary and free outer boundary. Finally, the characteristics equations are obtained and the corresponding eigenvalues are calculated. The eigenvalues are used for the calculation of tuning conditions of the 3D disc vibratory gyroscope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bryan%E2%80%99s%20effect" title="Bryan’s effect">Bryan’s effect</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20vibrations" title=" bending vibrations"> bending vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=disc%20gyroscope" title=" disc gyroscope"> disc gyroscope</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenfunctions" title=" eigenfunctions"> eigenfunctions</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title=" eigenvalues"> eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=tuning%20conditions" title=" tuning conditions"> tuning conditions</a> </p> <a href="https://publications.waset.org/abstracts/52286/the-dynamics-of-a-3d-vibrating-and-rotating-disc-gyroscope" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Chaos in a Stadium-Shaped 2-D Quantum Dot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roger%20Yu">Roger Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical scheme has been developed to solve wave equations for chaotic systems such as stadium-shaped cavity. The same numerical method can also be used for finding wave properties of rectangle cavities with randomly placed obstacles. About 30k eigenvalues have been obtained accurately on a normal circumstance. For comparison, we also initiated an experimental study which determines both eigenfrequencies and eigenfunctions of a stadium-shaped cavity using pulse and normal mode analyzing techniques. The acoustic cavity was made adjustable so that the transition from nonchaotic (circle) to chaotic (stadium) waves can be investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot" title="quantum dot">quantum dot</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20method" title=" numerical method"> numerical method</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title=" eigenvalues"> eigenvalues</a> </p> <a href="https://publications.waset.org/abstracts/148129/chaos-in-a-stadium-shaped-2-d-quantum-dot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Exact Energy Spectrum and Expectation Values of the Inverse Square Root Potential Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benedict%20Ita">Benedict Ita</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Okoi"> Peter Okoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the concept of the extended Nikiforov-Uvarov technique is discussed and employed to obtain the exact bound state energy eigenvalues and the corresponding normalized eigenfunctions of the inverse square root potential. With expressions for the exact energy eigenvalues and corresponding eigenfunctions, the expressions for the expectation values of the inverse separation-squared, kinetic energy, and the momentum-squared of the potential are presented using the Hellmann Feynman theorem. For visualization, algorithms written and implemented in Python language are used to generate tables and plots for l-states of the energy eigenvalues and some expectation values. The results obtained here may find suitable applications in areas like atomic and molecular physics, chemical physics, nuclear physics, and solid-state physics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schrodinger%20equation" title="Schrodinger equation">Schrodinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikoforov-Uvarov%20method" title=" Nikoforov-Uvarov method"> Nikoforov-Uvarov method</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20square%20root%20potential" title=" inverse square root potential"> inverse square root potential</a>, <a href="https://publications.waset.org/abstracts/search?q=diatomic%20molecules" title=" diatomic molecules"> diatomic molecules</a>, <a href="https://publications.waset.org/abstracts/search?q=Python%20programming" title=" Python programming"> Python programming</a>, <a href="https://publications.waset.org/abstracts/search?q=Hellmann-Feynman%20theorem" title=" Hellmann-Feynman theorem"> Hellmann-Feynman theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20order%20differential%20equation" title=" second order differential equation"> second order differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20algebra" title=" matrix algebra"> matrix algebra</a> </p> <a href="https://publications.waset.org/abstracts/192989/exact-energy-spectrum-and-expectation-values-of-the-inverse-square-root-potential-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> A Variant of a Double Structure-Preserving QR Algorithm for Symmetric and Hamiltonian Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Salam">Ahmed Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=Haithem%20Benkahla"> Haithem Benkahla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, an efficient backward-stable algorithm for computing eigenvalues and vectors of a symmetric and Hamiltonian matrix has been proposed. The method preserves the symmetric and Hamiltonian structures of the original matrix, during the whole process. In this paper, we revisit the method. We derive a way for implementing the reduction of the matrix to the appropriate condensed form. Then, we construct a novel version of the implicit QR-algorithm for computing the eigenvalues and vectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20implicit%20QR%20algorithm" title="block implicit QR algorithm">block implicit QR algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=preservation%20of%20a%20double%20structure" title=" preservation of a double structure"> preservation of a double structure</a>, <a href="https://publications.waset.org/abstracts/search?q=QR%20algorithm" title=" QR algorithm"> QR algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetric%20and%20Hamiltonian%20structures" title=" symmetric and Hamiltonian structures"> symmetric and Hamiltonian structures</a> </p> <a href="https://publications.waset.org/abstracts/61018/a-variant-of-a-double-structure-preserving-qr-algorithm-for-symmetric-and-hamiltonian-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> A Time-Reducible Approach to Compute Determinant |I-X|</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xingbo">Wang Xingbo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computation of determinant in the form |I-<em>X</em>| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-<em>X</em>|. The approach is derived from the Newton&rsquo;s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix <em>X</em>. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=determinant" title=" determinant"> determinant</a>, <a href="https://publications.waset.org/abstracts/search?q=computation" title=" computation"> computation</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalue" title=" eigenvalue"> eigenvalue</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20complexity" title=" time complexity"> time complexity</a> </p> <a href="https://publications.waset.org/abstracts/47622/a-time-reducible-approach-to-compute-determinant-i-x" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Vehicle to Vehicle Communication: Collision Avoidance Scenarios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Emad">Ahmed Emad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Salah"> Ahmed Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Magdy"> Abdelrahman Magdy</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Rashid"> Omar Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Adel"> Mohammed Adel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper discusses vehicle-to-vehicle technology as an important application of linear algebra. This communication technology represents an efficient and promising application to help to ensure the safety of the drivers by warning them when a crash possibility is close. The major link that combines our topic with linear algebra is the Laplacian matrix. Some main definitions used in the V2V were illustrated, such as VANET and its characteristics. The V2V technology could be applied in different applications with different traffic scenarios and various ways to warn car drivers. These scenarios were simulated programs such as MATLAB and Python to test how the V2V system would respond to the different scenarios and warn the car drivers exposed to the threat of collisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=V2V%20communication" title="V2V communication">V2V communication</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20to%20vehicle%20scenarios" title=" vehicle to vehicle scenarios"> vehicle to vehicle scenarios</a>, <a href="https://publications.waset.org/abstracts/search?q=VANET" title=" VANET"> VANET</a>, <a href="https://publications.waset.org/abstracts/search?q=FCW" title=" FCW"> FCW</a>, <a href="https://publications.waset.org/abstracts/search?q=EEBL" title=" EEBL"> EEBL</a>, <a href="https://publications.waset.org/abstracts/search?q=IMA" title=" IMA"> IMA</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20matrix" title=" Laplacian matrix"> Laplacian matrix</a> </p> <a href="https://publications.waset.org/abstracts/156914/vehicle-to-vehicle-communication-collision-avoidance-scenarios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Existence and Concentration of Solutions for a Class of Elliptic Partial Differential Equations Involving p-Biharmonic Operator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debajyoti%20Choudhuri">Debajyoti Choudhuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratan%20Kumar%20Giri"> Ratan Kumar Giri</a>, <a href="https://publications.waset.org/abstracts/search?q=Shesadev%20Pradhan"> Shesadev Pradhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The perturbed nonlinear Schrodinger equation involving the p-biharmonic and the p-Laplacian operators involving a real valued parameter and a continuous real valued potential function defined over the N- dimensional Euclidean space has been considered. By the variational technique, an existence result pertaining to a nontrivial solution to this non-linear partial differential equation has been proposed. Further, by the Concentration lemma, the concentration of solutions to the same problem defined on the set consisting of those elements where the potential function vanishes as the real parameter approaches to infinity has been addressed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=p-Laplacian" title="p-Laplacian">p-Laplacian</a>, <a href="https://publications.waset.org/abstracts/search?q=p-biharmonic" title=" p-biharmonic"> p-biharmonic</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20PDEs" title=" elliptic PDEs"> elliptic PDEs</a>, <a href="https://publications.waset.org/abstracts/search?q=Concentration%20lemma" title=" Concentration lemma"> Concentration lemma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sobolev%20space" title=" Sobolev space"> Sobolev space</a> </p> <a href="https://publications.waset.org/abstracts/58393/existence-and-concentration-of-solutions-for-a-class-of-elliptic-partial-differential-equations-involving-p-biharmonic-operator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Biologically Inspired Small Infrared Target Detection Using Local Contrast Mechanisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tian%20Xia">Tian Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang"> Yuan Yan Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to obtain higher small target detection accuracy, this paper presents an effective algorithm inspired by the local contrast mechanism. The proposed method can enhance target signal and suppress background clutter simultaneously. In the first stage, a enhanced image is obtained using the proposed Weighted Laplacian of Gaussian. In the second stage, an adaptive threshold is adopted to segment the target. Experimental results on two changeling image sequences show that the proposed method can detect the bright and dark targets simultaneously, and is not sensitive to sea-sky line of the infrared image. So it is fit for IR small infrared target detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20target%20detection" title="small target detection">small target detection</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20contrast" title=" local contrast"> local contrast</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20vision%20system" title=" human vision system"> human vision system</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20of%20Gaussian" title=" Laplacian of Gaussian"> Laplacian of Gaussian</a> </p> <a href="https://publications.waset.org/abstracts/19199/biologically-inspired-small-infrared-target-detection-using-local-contrast-mechanisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Improvement a Lower Bound of Energy for Some Family of Graphs, Related to Determinant of Adjacency Matrix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saieed%20%20Akbari">Saieed Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Bagheri"> Yousef Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hossein%20Ghodrati"> Amir Hossein Ghodrati</a>, <a href="https://publications.waset.org/abstracts/search?q=Sima%20Saadat%20Akhtar"> Sima Saadat Akhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let G be a simple graph with the vertex set V (G) and with the adjacency matrix A (G). The energy E (G) of G is defined to be the sum of the absolute values of all eigenvalues of A (G). Also let n and m be number of edges and vertices of the graph respectively. A regular graph is a graph where each vertex has the same number of neighbours. Given a graph G, its line graph L(G) is a graph such that each vertex of L(G) represents an edge of G; and two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint in G. In this paper we show that for every regular graphs and also for every line graphs such that (G) 3 we have, E(G) 2nm + n 1. Also at the other part of the paper we prove that 2 (G) E(G) for an arbitrary graph G. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title="eigenvalues">eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20graphs" title=" line graphs"> line graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=matching%20number" title=" matching number"> matching number</a> </p> <a href="https://publications.waset.org/abstracts/99652/improvement-a-lower-bound-of-energy-for-some-family-of-graphs-related-to-determinant-of-adjacency-matrix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> 1D Klein-Gordon Equation in an Infinite Square Well with PT Symmetry Boundary Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suleiman%20Bashir%20Adamu">Suleiman Bashir Adamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lawan%20Sani%20Taura"> Lawan Sani Taura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the role of boundary conditions via -symmetric quantum mechanics, where denotes parity operator and denotes time reversal operator. Using the one-dimensional Schrödinger Hamiltonian for a free particle in an infinite square well, we introduce symmetric boundary conditions. We find solutions of the 1D Klein-Gordon equation for a free particle in an infinite square well with Hermitian boundary and symmetry boundary conditions, where in both cases the energy eigenvalues and eigenfunction, respectively, are obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eigenvalues" title="Eigenvalues">Eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=Eigenfunction" title=" Eigenfunction"> Eigenfunction</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamiltonian" title=" Hamiltonian"> Hamiltonian</a>, <a href="https://publications.waset.org/abstracts/search?q=Klein-%20Gordon%20equation" title=" Klein- Gordon equation"> Klein- Gordon equation</a>, <a href="https://publications.waset.org/abstracts/search?q=PT-symmetric%20quantum%20mechanics" title=" PT-symmetric quantum mechanics"> PT-symmetric quantum mechanics</a> </p> <a href="https://publications.waset.org/abstracts/50876/1d-klein-gordon-equation-in-an-infinite-square-well-with-pt-symmetry-boundary-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> A Contribution to the Polynomial Eigen Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malika%20Yaici">Malika Yaici</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Hariche"> Kamel Hariche</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Clarke"> Tim Clarke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relationship between eigenstructure (eigenvalues and eigenvectors) and latent structure (latent roots and latent vectors) is established. In control theory eigenstructure is associated with the state space description of a dynamic multi-variable system and a latent structure is associated with its matrix fraction description. Beginning with block controller and block observer state space forms and moving on to any general state space form, we develop the identities that relate eigenvectors and latent vectors in either direction. Numerical examples illustrate this result. A brief discussion of the potential of these identities in linear control system design follows. Additionally, we present a consequent result: a quick and easy method to solve the polynomial eigenvalue problem for regular matrix polynomials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eigenvalues%2Feigenvectors" title="eigenvalues/eigenvectors">eigenvalues/eigenvectors</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20values%2Fvectors" title=" latent values/vectors"> latent values/vectors</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20fraction%20description" title=" matrix fraction description"> matrix fraction description</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20space%20description" title=" state space description "> state space description </a> </p> <a href="https://publications.waset.org/abstracts/14247/a-contribution-to-the-polynomial-eigen-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Construction of Graph Signal Modulations via Graph Fourier Transform and Its Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xianwei%20Zheng">Xianwei Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang"> Yuan Yan Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classical window Fourier transform has been widely used in signal processing, image processing, machine learning and pattern recognition. The related Gabor transform is powerful enough to capture the texture information of any given dataset. Recently, in the emerging field of graph signal processing, researchers devoting themselves to develop a graph signal processing theory to handle the so-called graph signals. Among the new developing theory, windowed graph Fourier transform has been constructed to establish a time-frequency analysis framework of graph signals. The windowed graph Fourier transform is defined by using the translation and modulation operators of graph signals, following the similar calculations in classical windowed Fourier transform. Specifically, the translation and modulation operators of graph signals are defined by using the Laplacian eigenvectors as follows. For a given graph signal, its translation is defined by a similar manner as its definition in classical signal processing. Specifically, the translation operator can be defined by using the Fourier atoms; the graph signal translation is defined similarly by using the Laplacian eigenvectors. The modulation of the graph can also be established by using the Laplacian eigenvectors. The windowed graph Fourier transform based on these two operators has been applied to obtain time-frequency representations of graph signals. Fundamentally, the modulation operator is defined similarly to the classical modulation by multiplying a graph signal with the entries in each Fourier atom. However, a single Laplacian eigenvector entry cannot play a similar role as the Fourier atom. This definition ignored the relationship between the translation and modulation operators. In this paper, a new definition of the modulation operator is proposed and thus another time-frequency framework for graph signal is constructed. Specifically, the relationship between the translation and modulation operations can be established by the Fourier transform. Specifically, for any signal, the Fourier transform of its translation is the modulation of its Fourier transform. Thus, the modulation of any signal can be defined as the inverse Fourier transform of the translation of its Fourier transform. Therefore, similarly, the graph modulation of any graph signal can be defined as the inverse graph Fourier transform of the translation of its graph Fourier. The novel definition of the graph modulation operator established a relationship of the translation and modulation operations. The new modulation operation and the original translation operation are applied to construct a new framework of graph signal time-frequency analysis. Furthermore, a windowed graph Fourier frame theory is developed. Necessary and sufficient conditions for constructing windowed graph Fourier frames, tight frames and dual frames are presented in this paper. The novel graph signal time-frequency analysis framework is applied to signals defined on well-known graphs, e.g. Minnesota road graph and random graphs. Experimental results show that the novel framework captures new features of graph signals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20signals" title="graph signals">graph signals</a>, <a href="https://publications.waset.org/abstracts/search?q=windowed%20graph%20Fourier%20transform" title=" windowed graph Fourier transform"> windowed graph Fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=windowed%20graph%20Fourier%20frames" title=" windowed graph Fourier frames"> windowed graph Fourier frames</a>, <a href="https://publications.waset.org/abstracts/search?q=vertex%20frequency%20analysis" title=" vertex frequency analysis"> vertex frequency analysis</a> </p> <a href="https://publications.waset.org/abstracts/63133/construction-of-graph-signal-modulations-via-graph-fourier-transform-and-its-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Random Matrix Theory Analysis of Cross-Correlation in the Nigerian Stock Exchange</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chimezie%20P.%20Nnanwa">Chimezie P. Nnanwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20C.%20Urama"> Thomas C. Urama</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20O.%20Ezepue"> Patrick O. Ezepue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we use Random Matrix Theory to analyze the eigen-structure of the empirical correlations of 82 stocks which are consistently traded in the Nigerian Stock Exchange (NSE) over a 4-year study period 3 August 2009 to 26 August 2013. We apply the Marchenko-Pastur distribution of eigenvalues of a purely random matrix to investigate the presence of investment-pertinent information contained in the empirical correlation matrix of the selected stocks. We use hypothesised standard normal distribution of eigenvector components from RMT to assess deviations of the empirical eigenvectors to this distribution for different eigenvalues. We also use the Inverse Participation Ratio to measure the deviation of eigenvectors of the empirical correlation matrix from RMT results. These preliminary results on the dynamics of asset price correlations in the NSE are important for improving risk-return trade-offs associated with Markowitz’s portfolio optimization in the stock exchange, which is pursued in future work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation%20matrix" title="correlation matrix">correlation matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalue%20and%20eigenvector" title=" eigenvalue and eigenvector"> eigenvalue and eigenvector</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20participation%20ratio" title=" inverse participation ratio"> inverse participation ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=portfolio%20optimization" title=" portfolio optimization"> portfolio optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20matrix%20theory" title=" random matrix theory"> random matrix theory</a> </p> <a href="https://publications.waset.org/abstracts/68007/random-matrix-theory-analysis-of-cross-correlation-in-the-nigerian-stock-exchange" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> A Combined Error Control with Forward Euler Method for Dynamical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Vigneswaran">R. Vigneswaran</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Thilakanathan"> S. Thilakanathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptivity" title="adaptivity">adaptivity</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20point" title=" fixed point"> fixed point</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20time%20simulations" title=" long time simulations"> long time simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20system" title=" linear system"> linear system</a> </p> <a href="https://publications.waset.org/abstracts/48246/a-combined-error-control-with-forward-euler-method-for-dynamical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Laplacian%20eigenvalues&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Laplacian%20eigenvalues&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Laplacian%20eigenvalues&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Laplacian%20eigenvalues&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10