CINXE.COM
Petter Minnhagen | Umeå University - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Petter Minnhagen | Umeå University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="4CgTkGNxBhSaLa+8l9oO/ZHd6Det6TSNSXSOCnLzGGK+GcaUpLeiHVNAfyzlJCIMfsgYFjWfZNq/ZVkUsqv9xA==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="petter minnhagen" /> <meta name="description" content="Petter Minnhagen, Umeå University: 20 Followers, 3 Following, 210 Research papers. Research interests: Optical Networks, Dynamical systems and Chaos, and Solar…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '9387f500ddcbb8d05c67bef28a2fe0334f1aafb8'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15268,"monthly_visitors":"113 million","monthly_visitor_count":113692424,"monthly_visitor_count_in_millions":113,"user_count":277719154,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1733017818000); window.Aedu.timeDifference = new Date().getTime() - 1733017818000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-3e572e3b706c3ed2ec5b2c1cb44a411fadc81f62a97963cb7bd9c327a0a9d5f2.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-2e8d3f30eaaddd1debd6ce4630b3453b23a23c91ac7c823ddf8822879835b029.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://umu.academia.edu/PetterMinnhagen" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-ae3d0ee232cd83d11499343688b0160a3c7db15e95cb2d0844cae78d49ea53f1.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":44115,"name":"Department of Physics","url":"https://umu.academia.edu/Departments/Department_of_Physics/Documents","university":{"id":1560,"name":"Umeå University","url":"https://umu.academia.edu/"}},"position":"Emeritus","position_id":6,"is_analytics_public":false,"interests":[{"id":13569,"name":"Optical Networks","url":"https://www.academia.edu/Documents/in/Optical_Networks"},{"id":23922,"name":"Dynamical systems and Chaos","url":"https://www.academia.edu/Documents/in/Dynamical_systems_and_Chaos"},{"id":33557,"name":"Solar Cells","url":"https://www.academia.edu/Documents/in/Solar_Cells"},{"id":36172,"name":"Amitav Ghosh","url":"https://www.academia.edu/Documents/in/Amitav_Ghosh"},{"id":10927,"name":"Convex Optimization","url":"https://www.academia.edu/Documents/in/Convex_Optimization"},{"id":12553,"name":"History of Physics","url":"https://www.academia.edu/Documents/in/History_of_Physics"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://umu.academia.edu/PetterMinnhagen?swp=tc-au-66668113","location":"/PetterMinnhagen?swp=tc-au-66668113","scheme":"https","host":"umu.academia.edu","port":null,"pathname":"/PetterMinnhagen","search":"swp=tc-au-66668113","httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-a82880ba-b7d9-4734-8b3e-9424cbbad40c"></div> <div id="ProfileCheckPaperUpdate-react-component-a82880ba-b7d9-4734-8b3e-9424cbbad40c"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Petter Minnhagen</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://umu.academia.edu/">Umeå University</a>, <a class="u-tcGrayDarker" href="https://umu.academia.edu/Departments/Department_of_Physics/Documents">Department of Physics</a>, <span class="u-tcGrayDarker">Emeritus</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Petter" data-follow-user-id="35870771" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="35870771"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">20</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">3</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">3</p></div></a><a href="/PetterMinnhagen/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="35870771">View All (6)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="35870771" href="https://www.academia.edu/Documents/in/Optical_Networks"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://umu.academia.edu/PetterMinnhagen?swp=tc-au-66668113","location":"/PetterMinnhagen?swp=tc-au-66668113","scheme":"https","host":"umu.academia.edu","port":null,"pathname":"/PetterMinnhagen","search":"swp=tc-au-66668113","httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Optical Networks"]}" data-trace="false" data-dom-id="Pill-react-component-18e416cd-1d00-486d-a842-63c588c9b53f"></div> <div id="Pill-react-component-18e416cd-1d00-486d-a842-63c588c9b53f"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="35870771" href="https://www.academia.edu/Documents/in/Dynamical_systems_and_Chaos"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Dynamical systems and Chaos"]}" data-trace="false" data-dom-id="Pill-react-component-8fe3165a-4d10-4bed-ba01-27967acc2213"></div> <div id="Pill-react-component-8fe3165a-4d10-4bed-ba01-27967acc2213"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="35870771" href="https://www.academia.edu/Documents/in/Solar_Cells"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Solar Cells"]}" data-trace="false" data-dom-id="Pill-react-component-558aee5b-669e-420f-b34a-caa53436a310"></div> <div id="Pill-react-component-558aee5b-669e-420f-b34a-caa53436a310"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="35870771" href="https://www.academia.edu/Documents/in/Amitav_Ghosh"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Amitav Ghosh"]}" data-trace="false" data-dom-id="Pill-react-component-3303da5c-02bf-4870-a551-2df1be558f86"></div> <div id="Pill-react-component-3303da5c-02bf-4870-a551-2df1be558f86"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="35870771" href="https://www.academia.edu/Documents/in/Convex_Optimization"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Convex Optimization"]}" data-trace="false" data-dom-id="Pill-react-component-2154a0ea-b8fe-4301-a376-35d2ac75ad10"></div> <div id="Pill-react-component-2154a0ea-b8fe-4301-a376-35d2ac75ad10"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Petter Minnhagen</h3></div><div class="js-work-strip profile--work_container" data-work-id="93603213"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/93603213/Consistency_test_of_the_multiple_meaning_model"><img alt="Research paper thumbnail of Consistency test of the multiple meaning model" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/93603213/Consistency_test_of_the_multiple_meaning_model">Consistency test of the multiple meaning model</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">&lt;p&gt;According to the multiple meaning model the parameter &lt;i&gt;d&lt;/i&gt; (see &lt;a hr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">&lt;p&gt;According to the multiple meaning model the parameter &lt;i&gt;d&lt;/i&gt; (see &lt;a href=&quot;<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t002&quot" rel="nofollow">http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t002&quot</a>; target=&quot;_blank&quot;&gt;Table 2&lt;/a&gt;) should give a sensible approximative estimate of the average number of multiple meanings per character within a text &lt; &lt;i&gt;f&lt;/i&gt; &gt;. The figure shows that &lt; &lt;i&gt;f&lt;/i&gt; &gt; increases with the size of the text &lt;i&gt;M&lt;/i&gt;. This is consistent with the fact the number of uses of a character increases and hence the chance that more of its multiples meanings appears in the text. For the same reason &lt; &lt;i&gt;f&lt;/i&gt; &gt; increases with the average number of uses of a character &lt; &lt;i&gt;k&lt;/i&gt; &gt;. In addition the chance for a larger number of dictionary meanings is larger for a more frequent character (see &lt;a href=&quot;<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.g006&quot" rel="nofollow">http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.g006&quot</a>; target=&quot;_blank&quot;&gt;Fig 6&lt;/a&gt;). The inset shows how &lt; &lt;i&gt;k&lt;/i&gt; &gt; increases with &lt;i&gt;M&lt;/i&gt;.&lt;/p</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="93603213"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="93603213"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 93603213; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=93603213]").text(description); $(".js-view-count[data-work-id=93603213]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 93603213; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='93603213']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 93603213, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=93603213]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":93603213,"title":"Consistency test of the multiple meaning model","translated_title":"","metadata":{"abstract":"\u0026lt;p\u0026gt;According to the multiple meaning model the parameter \u0026lt;i\u0026gt;d\u0026lt;/i\u0026gt; (see \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t002\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Table 2\u0026lt;/a\u0026gt;) should give a sensible approximative estimate of the average number of multiple meanings per character within a text \u0026lt; \u0026lt;i\u0026gt;f\u0026lt;/i\u0026gt; \u0026gt;. The figure shows that \u0026lt; \u0026lt;i\u0026gt;f\u0026lt;/i\u0026gt; \u0026gt; increases with the size of the text \u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;. This is consistent with the fact the number of uses of a character increases and hence the chance that more of its multiples meanings appears in the text. For the same reason \u0026lt; \u0026lt;i\u0026gt;f\u0026lt;/i\u0026gt; \u0026gt; increases with the average number of uses of a character \u0026lt; \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt; \u0026gt;. In addition the chance for a larger number of dictionary meanings is larger for a more frequent character (see \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.g006\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Fig 6\u0026lt;/a\u0026gt;). The inset shows how \u0026lt; \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt; \u0026gt; increases with \u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;.\u0026lt;/p","publication_date":{"day":8,"month":5,"year":2015,"errors":{}}},"translated_abstract":"\u0026lt;p\u0026gt;According to the multiple meaning model the parameter \u0026lt;i\u0026gt;d\u0026lt;/i\u0026gt; (see \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t002\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Table 2\u0026lt;/a\u0026gt;) should give a sensible approximative estimate of the average number of multiple meanings per character within a text \u0026lt; \u0026lt;i\u0026gt;f\u0026lt;/i\u0026gt; \u0026gt;. The figure shows that \u0026lt; \u0026lt;i\u0026gt;f\u0026lt;/i\u0026gt; \u0026gt; increases with the size of the text \u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;. This is consistent with the fact the number of uses of a character increases and hence the chance that more of its multiples meanings appears in the text. For the same reason \u0026lt; \u0026lt;i\u0026gt;f\u0026lt;/i\u0026gt; \u0026gt; increases with the average number of uses of a character \u0026lt; \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt; \u0026gt;. In addition the chance for a larger number of dictionary meanings is larger for a more frequent character (see \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.g006\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Fig 6\u0026lt;/a\u0026gt;). The inset shows how \u0026lt; \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt; \u0026gt; increases with \u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;.\u0026lt;/p","internal_url":"https://www.academia.edu/93603213/Consistency_test_of_the_multiple_meaning_model","translated_internal_url":"","created_at":"2022-12-24T07:11:26.049-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Consistency_test_of_the_multiple_meaning_model","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":17960,"name":"Infectious Diseases","url":"https://www.academia.edu/Documents/in/Infectious_Diseases"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":265214,"name":"Rgf","url":"https://www.academia.edu/Documents/in/Rgf"},{"id":543930,"name":"Chinese Characters","url":"https://www.academia.edu/Documents/in/Chinese_Characters"},{"id":1037447,"name":"Deviation","url":"https://www.academia.edu/Documents/in/Deviation"}],"urls":[{"id":27386563,"url":"https://figshare.com/articles/Consistency_test_of_the_multiple_meaning_model_/2669068"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="93603212"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/93603212/Test_of_RGF_including_multiple_meaning_constraints"><img alt="Research paper thumbnail of Test of RGF including multiple meaning constraints" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/93603212/Test_of_RGF_including_multiple_meaning_constraints">Test of RGF including multiple meaning constraints</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">&lt;p&gt;The RGF is in each case predicted from the quadruple of state variables (&lt;i&gt;M&lt;/...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">&lt;p&gt;The RGF is in each case predicted from the quadruple of state variables (&lt;i&gt;M&lt;/i&gt;, &lt;i&gt;N&lt;/i&gt;, &lt;i&gt;k&lt;/i&gt;&lt;sub&gt;&lt;i&gt;max&lt;/i&gt;&lt;/sub&gt;, &lt;i&gt;S&lt;/i&gt;). The data is from three novels in Chinese (see &lt;a href=&quot;<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t002&quot" rel="nofollow">http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t002&quot</a>; target=&quot;_blank&quot;&gt;Table 2&lt;/a&gt;). The RGF predictions with multiple meaning constraint are given by the dashed curves. The RGF &lt;i&gt;without&lt;/i&gt; the multiple meaning constraint is predicted from the state variable triple (&lt;i&gt;M&lt;/i&gt;, &lt;i&gt;N&lt;/i&gt;, &lt;i&gt;k&lt;/i&gt;&lt;sub&gt;&lt;i&gt;max&lt;/i&gt;&lt;/sub&gt;) and corresponds to the dotted curves. Only when the multiple meaning constraint significantly improves the RGF-prediction can some specific interpretation be associated with it. As seen from the figure the significance increases with increasing length of the novel.&lt;/p</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="93603212"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="93603212"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 93603212; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=93603212]").text(description); $(".js-view-count[data-work-id=93603212]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 93603212; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='93603212']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 93603212, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=93603212]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":93603212,"title":"Test of RGF including multiple meaning constraints","translated_title":"","metadata":{"abstract":"\u0026lt;p\u0026gt;The RGF is in each case predicted from the quadruple of state variables (\u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;N\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;\u0026lt;sub\u0026gt;\u0026lt;i\u0026gt;max\u0026lt;/i\u0026gt;\u0026lt;/sub\u0026gt;, \u0026lt;i\u0026gt;S\u0026lt;/i\u0026gt;). The data is from three novels in Chinese (see \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t002\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Table 2\u0026lt;/a\u0026gt;). The RGF predictions with multiple meaning constraint are given by the dashed curves. The RGF \u0026lt;i\u0026gt;without\u0026lt;/i\u0026gt; the multiple meaning constraint is predicted from the state variable triple (\u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;N\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;\u0026lt;sub\u0026gt;\u0026lt;i\u0026gt;max\u0026lt;/i\u0026gt;\u0026lt;/sub\u0026gt;) and corresponds to the dotted curves. Only when the multiple meaning constraint significantly improves the RGF-prediction can some specific interpretation be associated with it. As seen from the figure the significance increases with increasing length of the novel.\u0026lt;/p","publication_date":{"day":8,"month":5,"year":2015,"errors":{}}},"translated_abstract":"\u0026lt;p\u0026gt;The RGF is in each case predicted from the quadruple of state variables (\u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;N\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;\u0026lt;sub\u0026gt;\u0026lt;i\u0026gt;max\u0026lt;/i\u0026gt;\u0026lt;/sub\u0026gt;, \u0026lt;i\u0026gt;S\u0026lt;/i\u0026gt;). The data is from three novels in Chinese (see \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t002\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Table 2\u0026lt;/a\u0026gt;). The RGF predictions with multiple meaning constraint are given by the dashed curves. The RGF \u0026lt;i\u0026gt;without\u0026lt;/i\u0026gt; the multiple meaning constraint is predicted from the state variable triple (\u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;N\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;\u0026lt;sub\u0026gt;\u0026lt;i\u0026gt;max\u0026lt;/i\u0026gt;\u0026lt;/sub\u0026gt;) and corresponds to the dotted curves. Only when the multiple meaning constraint significantly improves the RGF-prediction can some specific interpretation be associated with it. As seen from the figure the significance increases with increasing length of the novel.\u0026lt;/p","internal_url":"https://www.academia.edu/93603212/Test_of_RGF_including_multiple_meaning_constraints","translated_internal_url":"","created_at":"2022-12-24T07:11:25.889-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Test_of_RGF_including_multiple_meaning_constraints","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":17960,"name":"Infectious Diseases","url":"https://www.academia.edu/Documents/in/Infectious_Diseases"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":265214,"name":"Rgf","url":"https://www.academia.edu/Documents/in/Rgf"},{"id":543930,"name":"Chinese Characters","url":"https://www.academia.edu/Documents/in/Chinese_Characters"},{"id":1037447,"name":"Deviation","url":"https://www.academia.edu/Documents/in/Deviation"}],"urls":[{"id":27386562,"url":"https://figshare.com/articles/Test_of_RGF_including_multiple_meaning_constraints_/2669065"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="93603211"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/93603211/Comparison_between_Chinese_texts_in_characters_and_words"><img alt="Research paper thumbnail of Comparison between Chinese texts in characters and words" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/93603211/Comparison_between_Chinese_texts_in_characters_and_words">Comparison between Chinese texts in characters and words</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">&lt;p&gt;(a) Comparison between characters and words for the novel &lt;i&gt;A Q Zheng Zhuan&lt;/i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">&lt;p&gt;(a) Comparison between characters and words for the novel &lt;i&gt;A Q Zheng Zhuan&lt;/i&gt; by Xun Lu together with the respective RGF-predictions. (b) The same comparison for the novel &lt;i&gt;Ping Fan De Shi Jie&lt;/i&gt; by Yao Lu. Filled dots correspond to the binned data for Chinese characters and filled triangles the data for words. Full and dashed curves correspond to the respective RGF-predictions and dotted straight lines are the Zipf’s law expectations for the word-frequency distribution. The respective “state”-variables (&lt;i&gt;M&lt;/i&gt;, &lt;i&gt;N&lt;/i&gt;, &lt;i&gt;k&lt;/i&gt;&lt;sub&gt;&lt;i&gt;max&lt;/i&gt;&lt;/sub&gt;) and the corresponding RGF-predictions are given in &lt;a href=&quot;<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t001&quot" rel="nofollow">http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t001&quot</a>; target=&quot;_blank&quot;&gt;Table 1&lt;/a&gt;. Note that the translation between words and characters is a deterministic process. Yet the “state”-variables (&lt;i&gt;M&lt;/i&gt;, &lt;i&gt;N&lt;/i&gt;, &lt;i&gt;k&lt;/i&gt;&lt;sub&gt;&lt;i&gt;max&lt;/i&gt;&lt;/sub&gt;) suffice to predict the change in frequency distribution caused by the translation between words and characters.&lt;/p</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="93603211"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="93603211"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 93603211; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=93603211]").text(description); $(".js-view-count[data-work-id=93603211]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 93603211; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='93603211']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 93603211, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=93603211]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":93603211,"title":"Comparison between Chinese texts in characters and words","translated_title":"","metadata":{"abstract":"\u0026lt;p\u0026gt;(a) Comparison between characters and words for the novel \u0026lt;i\u0026gt;A Q Zheng Zhuan\u0026lt;/i\u0026gt; by Xun Lu together with the respective RGF-predictions. (b) The same comparison for the novel \u0026lt;i\u0026gt;Ping Fan De Shi Jie\u0026lt;/i\u0026gt; by Yao Lu. Filled dots correspond to the binned data for Chinese characters and filled triangles the data for words. Full and dashed curves correspond to the respective RGF-predictions and dotted straight lines are the Zipf’s law expectations for the word-frequency distribution. The respective “state”-variables (\u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;N\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;\u0026lt;sub\u0026gt;\u0026lt;i\u0026gt;max\u0026lt;/i\u0026gt;\u0026lt;/sub\u0026gt;) and the corresponding RGF-predictions are given in \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t001\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Table 1\u0026lt;/a\u0026gt;. Note that the translation between words and characters is a deterministic process. Yet the “state”-variables (\u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;N\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;\u0026lt;sub\u0026gt;\u0026lt;i\u0026gt;max\u0026lt;/i\u0026gt;\u0026lt;/sub\u0026gt;) suffice to predict the change in frequency distribution caused by the translation between words and characters.\u0026lt;/p","publication_date":{"day":8,"month":5,"year":2015,"errors":{}}},"translated_abstract":"\u0026lt;p\u0026gt;(a) Comparison between characters and words for the novel \u0026lt;i\u0026gt;A Q Zheng Zhuan\u0026lt;/i\u0026gt; by Xun Lu together with the respective RGF-predictions. (b) The same comparison for the novel \u0026lt;i\u0026gt;Ping Fan De Shi Jie\u0026lt;/i\u0026gt; by Yao Lu. Filled dots correspond to the binned data for Chinese characters and filled triangles the data for words. Full and dashed curves correspond to the respective RGF-predictions and dotted straight lines are the Zipf’s law expectations for the word-frequency distribution. The respective “state”-variables (\u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;N\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;\u0026lt;sub\u0026gt;\u0026lt;i\u0026gt;max\u0026lt;/i\u0026gt;\u0026lt;/sub\u0026gt;) and the corresponding RGF-predictions are given in \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t001\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Table 1\u0026lt;/a\u0026gt;. Note that the translation between words and characters is a deterministic process. Yet the “state”-variables (\u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;N\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;\u0026lt;sub\u0026gt;\u0026lt;i\u0026gt;max\u0026lt;/i\u0026gt;\u0026lt;/sub\u0026gt;) suffice to predict the change in frequency distribution caused by the translation between words and characters.\u0026lt;/p","internal_url":"https://www.academia.edu/93603211/Comparison_between_Chinese_texts_in_characters_and_words","translated_internal_url":"","created_at":"2022-12-24T07:11:25.718-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Comparison_between_Chinese_texts_in_characters_and_words","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":17960,"name":"Infectious Diseases","url":"https://www.academia.edu/Documents/in/Infectious_Diseases"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":265214,"name":"Rgf","url":"https://www.academia.edu/Documents/in/Rgf"},{"id":543930,"name":"Chinese Characters","url":"https://www.academia.edu/Documents/in/Chinese_Characters"},{"id":1037447,"name":"Deviation","url":"https://www.academia.edu/Documents/in/Deviation"}],"urls":[{"id":27386561,"url":"https://figshare.com/articles/Comparison_between_Chinese_texts_in_characters_and_words_/2668996"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="93603210"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/93603210/Size_dependence_of_novels_written_in_Chinese_characters"><img alt="Research paper thumbnail of Size dependence of novels written in Chinese characters" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/93603210/Size_dependence_of_novels_written_in_Chinese_characters">Size dependence of novels written in Chinese characters</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">&lt;p&gt;The same two novels as in &lt;a href=&quot;http://www.plosone.org/article/info:doi/10.13...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">&lt;p&gt;The same two novels as in &lt;a href=&quot;<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.g002&quot" rel="nofollow">http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.g002&quot</a>; target=&quot;_blank&quot;&gt;Fig 2&lt;/a&gt; are divided into parts. The frequency distribution of a full novel is compared to the one of a part. (a) &lt;i&gt;P&lt;/i&gt;(&lt;i&gt;k&lt;/i&gt;) for &lt;i&gt;A Q Zheng Zhuan&lt;/i&gt; (filled dots) is compared to the distribution for a typical 10&lt;sup&gt;&lt;i&gt;th&lt;/i&gt;&lt;/sup&gt;-part (filled triangles). Here the word &lt;i&gt;typical&lt;/i&gt; means an average distribution obtained by taking many different 10&lt;sup&gt;&lt;i&gt;th&lt;/i&gt;&lt;/sup&gt; with different starting points. These two functions have quite different shapes. However, the shapes of both are equally well predicted by RGF (curves with dashed and full lines). (b) The distribution of the 10&lt;sup&gt;&lt;i&gt;th&lt;/i&gt;&lt;/sup&gt;-part, which can to very good approximation be trivially obtained from the full book by just &lt;i&gt;randomly&lt;/i&gt; removing 90% of the words from the full book. This corresponds to the dashed curve which is almost identical to the RGF-prediction and both correspond very well to the data. (c-d) The same features for the novel &lt;i&gt;Ping Fan De Shi Jie&lt;/i&gt;. Note that the 10&lt;sup&gt;&lt;i&gt;th&lt;/i&gt;&lt;/sup&gt;-part agrees better with RGF than the full novel.&lt;/p</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="93603210"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="93603210"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 93603210; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=93603210]").text(description); $(".js-view-count[data-work-id=93603210]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 93603210; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='93603210']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 93603210, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=93603210]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":93603210,"title":"Size dependence of novels written in Chinese characters","translated_title":"","metadata":{"abstract":"\u0026lt;p\u0026gt;The same two novels as in \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.g002\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Fig 2\u0026lt;/a\u0026gt; are divided into parts. The frequency distribution of a full novel is compared to the one of a part. (a) \u0026lt;i\u0026gt;P\u0026lt;/i\u0026gt;(\u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;) for \u0026lt;i\u0026gt;A Q Zheng Zhuan\u0026lt;/i\u0026gt; (filled dots) is compared to the distribution for a typical 10\u0026lt;sup\u0026gt;\u0026lt;i\u0026gt;th\u0026lt;/i\u0026gt;\u0026lt;/sup\u0026gt;-part (filled triangles). Here the word \u0026lt;i\u0026gt;typical\u0026lt;/i\u0026gt; means an average distribution obtained by taking many different 10\u0026lt;sup\u0026gt;\u0026lt;i\u0026gt;th\u0026lt;/i\u0026gt;\u0026lt;/sup\u0026gt; with different starting points. These two functions have quite different shapes. However, the shapes of both are equally well predicted by RGF (curves with dashed and full lines). (b) The distribution of the 10\u0026lt;sup\u0026gt;\u0026lt;i\u0026gt;th\u0026lt;/i\u0026gt;\u0026lt;/sup\u0026gt;-part, which can to very good approximation be trivially obtained from the full book by just \u0026lt;i\u0026gt;randomly\u0026lt;/i\u0026gt; removing 90% of the words from the full book. This corresponds to the dashed curve which is almost identical to the RGF-prediction and both correspond very well to the data. (c-d) The same features for the novel \u0026lt;i\u0026gt;Ping Fan De Shi Jie\u0026lt;/i\u0026gt;. Note that the 10\u0026lt;sup\u0026gt;\u0026lt;i\u0026gt;th\u0026lt;/i\u0026gt;\u0026lt;/sup\u0026gt;-part agrees better with RGF than the full novel.\u0026lt;/p","publication_date":{"day":8,"month":5,"year":2015,"errors":{}}},"translated_abstract":"\u0026lt;p\u0026gt;The same two novels as in \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.g002\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Fig 2\u0026lt;/a\u0026gt; are divided into parts. The frequency distribution of a full novel is compared to the one of a part. (a) \u0026lt;i\u0026gt;P\u0026lt;/i\u0026gt;(\u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;) for \u0026lt;i\u0026gt;A Q Zheng Zhuan\u0026lt;/i\u0026gt; (filled dots) is compared to the distribution for a typical 10\u0026lt;sup\u0026gt;\u0026lt;i\u0026gt;th\u0026lt;/i\u0026gt;\u0026lt;/sup\u0026gt;-part (filled triangles). Here the word \u0026lt;i\u0026gt;typical\u0026lt;/i\u0026gt; means an average distribution obtained by taking many different 10\u0026lt;sup\u0026gt;\u0026lt;i\u0026gt;th\u0026lt;/i\u0026gt;\u0026lt;/sup\u0026gt; with different starting points. These two functions have quite different shapes. However, the shapes of both are equally well predicted by RGF (curves with dashed and full lines). (b) The distribution of the 10\u0026lt;sup\u0026gt;\u0026lt;i\u0026gt;th\u0026lt;/i\u0026gt;\u0026lt;/sup\u0026gt;-part, which can to very good approximation be trivially obtained from the full book by just \u0026lt;i\u0026gt;randomly\u0026lt;/i\u0026gt; removing 90% of the words from the full book. This corresponds to the dashed curve which is almost identical to the RGF-prediction and both correspond very well to the data. (c-d) The same features for the novel \u0026lt;i\u0026gt;Ping Fan De Shi Jie\u0026lt;/i\u0026gt;. Note that the 10\u0026lt;sup\u0026gt;\u0026lt;i\u0026gt;th\u0026lt;/i\u0026gt;\u0026lt;/sup\u0026gt;-part agrees better with RGF than the full novel.\u0026lt;/p","internal_url":"https://www.academia.edu/93603210/Size_dependence_of_novels_written_in_Chinese_characters","translated_internal_url":"","created_at":"2022-12-24T07:11:25.536-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Size_dependence_of_novels_written_in_Chinese_characters","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":17960,"name":"Infectious Diseases","url":"https://www.academia.edu/Documents/in/Infectious_Diseases"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":265214,"name":"Rgf","url":"https://www.academia.edu/Documents/in/Rgf"},{"id":543930,"name":"Chinese Characters","url":"https://www.academia.edu/Documents/in/Chinese_Characters"},{"id":1037447,"name":"Deviation","url":"https://www.academia.edu/Documents/in/Deviation"}],"urls":[{"id":27386560,"url":"https://figshare.com/articles/Size_dependence_of_novels_written_in_Chinese_characters_/2669032"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="93603209"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/93603209/Nonuniversal_Jumps_and_the_Kosterlitz_Thouless_Transition"><img alt="Research paper thumbnail of Nonuniversal Jumps and the Kosterlitz-Thouless Transition" class="work-thumbnail" src="https://attachments.academia-assets.com/96296030/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/93603209/Nonuniversal_Jumps_and_the_Kosterlitz_Thouless_Transition">Nonuniversal Jumps and the Kosterlitz-Thouless Transition</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, 1985</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="47f7b4982b306469c2779de4720f2f5d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96296030,"asset_id":93603209,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96296030/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="93603209"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="93603209"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 93603209; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=93603209]").text(description); $(".js-view-count[data-work-id=93603209]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 93603209; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='93603209']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 93603209, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "47f7b4982b306469c2779de4720f2f5d" } } $('.js-work-strip[data-work-id=93603209]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":93603209,"title":"Nonuniversal Jumps and the Kosterlitz-Thouless Transition","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","grobid_abstract":"A new set of renormalization equations for the two-dimensional Coulomb gas is derived. Within this new description, the prediction of a universal jump or the prediction that the exponent q is 4 at the critical line breaks down below a certain temperature. Consequently it should be possible to have a Kosterlitz-Thouless transition without a universal jump. A realization is suggested.","publication_date":{"day":null,"month":null,"year":1985,"errors":{}},"publication_name":"Physical Review Letters","grobid_abstract_attachment_id":96296030},"translated_abstract":null,"internal_url":"https://www.academia.edu/93603209/Nonuniversal_Jumps_and_the_Kosterlitz_Thouless_Transition","translated_internal_url":"","created_at":"2022-12-24T07:11:25.358-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96296030,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96296030/thumbnails/1.jpg","file_name":"fulltext.pdf","download_url":"https://www.academia.edu/attachments/96296030/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nonuniversal_Jumps_and_the_Kosterlitz_Th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96296030/fulltext-libre.pdf?1671897481=\u0026response-content-disposition=attachment%3B+filename%3DNonuniversal_Jumps_and_the_Kosterlitz_Th.pdf\u0026Expires=1733021417\u0026Signature=XDGITV~X3ZHGg8KJrz6MGRdDMHH1rdJLlHU-JnZXvEYOQ8v2UsILhtYXU90nG0cNffU0rIg8t8MWgvskwcUrVij7ALvjO6UiqBxT2ES4eYVh80Q~vmTvnZ~3noJMTmZRTO6IoE3wz7MRCL2scUOyhMQgWDRGNGi74r-iij9ZDrd-4K2B256Y2x81qVuJEhaIe3w8I7X6FKA8N6BM3oDwG-GkCgUGLOk1d0DBRPe1Y-rLnSdHOhQFL3uhrVviSSDBMxIVeT79jwR~PmKLdufwtYJvoHPEei25I7qYHymR72U4a~RwwxTULxdWnRiSCY54Eo9sfrr5fDAiCl8pAnr42w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Nonuniversal_Jumps_and_the_Kosterlitz_Thouless_Transition","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":96296030,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96296030/thumbnails/1.jpg","file_name":"fulltext.pdf","download_url":"https://www.academia.edu/attachments/96296030/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nonuniversal_Jumps_and_the_Kosterlitz_Th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96296030/fulltext-libre.pdf?1671897481=\u0026response-content-disposition=attachment%3B+filename%3DNonuniversal_Jumps_and_the_Kosterlitz_Th.pdf\u0026Expires=1733021417\u0026Signature=XDGITV~X3ZHGg8KJrz6MGRdDMHH1rdJLlHU-JnZXvEYOQ8v2UsILhtYXU90nG0cNffU0rIg8t8MWgvskwcUrVij7ALvjO6UiqBxT2ES4eYVh80Q~vmTvnZ~3noJMTmZRTO6IoE3wz7MRCL2scUOyhMQgWDRGNGi74r-iij9ZDrd-4K2B256Y2x81qVuJEhaIe3w8I7X6FKA8N6BM3oDwG-GkCgUGLOk1d0DBRPe1Y-rLnSdHOhQFL3uhrVviSSDBMxIVeT79jwR~PmKLdufwtYJvoHPEei25I7qYHymR72U4a~RwwxTULxdWnRiSCY54Eo9sfrr5fDAiCl8pAnr42w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":201464,"name":"Renormalization","url":"https://www.academia.edu/Documents/in/Renormalization"},{"id":288502,"name":"Jump","url":"https://www.academia.edu/Documents/in/Jump"},{"id":288867,"name":"Coulomb","url":"https://www.academia.edu/Documents/in/Coulomb"}],"urls":[{"id":27386559,"url":"http://link.aps.org/article/10.1103/PhysRevLett.54.2351"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="93603154"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/93603154/New_renormalization_equations_for_the_Kosterlitz_Thouless_transition"><img alt="Research paper thumbnail of New renormalization equations for the Kosterlitz-Thouless transition" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/93603154/New_renormalization_equations_for_the_Kosterlitz_Thouless_transition">New renormalization equations for the Kosterlitz-Thouless transition</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, 1985</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A new set of renormalization equations for the two-dimensional Coulomb gas is derived and solved ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A new set of renormalization equations for the two-dimensional Coulomb gas is derived and solved numerically. These equations give a new picture of the Kosterlitz-Thouless transition. A new temperature T* is found. Above T* the value of the dielectric constant at the transition is εc=1/(4Tc) as before whereas below T* the new result εc&amp;amp;amp;amp;amp;amp;lt;1/(4Tc) is obtained. The singular behavior at</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="93603154"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="93603154"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 93603154; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=93603154]").text(description); $(".js-view-count[data-work-id=93603154]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 93603154; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='93603154']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 93603154, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=93603154]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":93603154,"title":"New renormalization equations for the Kosterlitz-Thouless transition","translated_title":"","metadata":{"abstract":"A new set of renormalization equations for the two-dimensional Coulomb gas is derived and solved numerically. These equations give a new picture of the Kosterlitz-Thouless transition. A new temperature T* is found. Above T* the value of the dielectric constant at the transition is εc=1/(4Tc) as before whereas below T* the new result εc\u0026amp;amp;amp;amp;amp;amp;lt;1/(4Tc) is obtained. The singular behavior at","publisher":"American Physical Society (APS)","publication_date":{"day":null,"month":null,"year":1985,"errors":{}},"publication_name":"Physical Review B"},"translated_abstract":"A new set of renormalization equations for the two-dimensional Coulomb gas is derived and solved numerically. These equations give a new picture of the Kosterlitz-Thouless transition. A new temperature T* is found. Above T* the value of the dielectric constant at the transition is εc=1/(4Tc) as before whereas below T* the new result εc\u0026amp;amp;amp;amp;amp;amp;lt;1/(4Tc) is obtained. The singular behavior at","internal_url":"https://www.academia.edu/93603154/New_renormalization_equations_for_the_Kosterlitz_Thouless_transition","translated_internal_url":"","created_at":"2022-12-24T07:09:27.159-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"New_renormalization_equations_for_the_Kosterlitz_Thouless_transition","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":192257,"name":"Physical","url":"https://www.academia.edu/Documents/in/Physical"},{"id":201464,"name":"Renormalization","url":"https://www.academia.edu/Documents/in/Renormalization"},{"id":288867,"name":"Coulomb","url":"https://www.academia.edu/Documents/in/Coulomb"},{"id":389578,"name":"Dielectric Constant","url":"https://www.academia.edu/Documents/in/Dielectric_Constant"},{"id":434746,"name":"Model System","url":"https://www.academia.edu/Documents/in/Model_System"},{"id":494966,"name":"Renormalization Group","url":"https://www.academia.edu/Documents/in/Renormalization_Group"},{"id":1130298,"name":"Critical Point","url":"https://www.academia.edu/Documents/in/Critical_Point"},{"id":1394433,"name":"Critical Temperature","url":"https://www.academia.edu/Documents/in/Critical_Temperature"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88930895"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88930895/The_two_dimensional_Coulomb_gas_vortex_unbinding_and_superfluid_superconducting_films"><img alt="Research paper thumbnail of The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films" class="work-thumbnail" src="https://attachments.academia-assets.com/92819037/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88930895/The_two_dimensional_Coulomb_gas_vortex_unbinding_and_superfluid_superconducting_films">The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films</a></div><div class="wp-workCard_item"><span>Reviews of Modern Physics</span><span>, 1987</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b5519d9eccc713d81a0f559c24a0a12c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":92819037,"asset_id":88930895,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/92819037/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88930895"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88930895"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88930895; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88930895]").text(description); $(".js-view-count[data-work-id=88930895]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88930895; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88930895']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88930895, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b5519d9eccc713d81a0f559c24a0a12c" } } $('.js-work-strip[data-work-id=88930895]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88930895,"title":"The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","grobid_abstract":"The article reviews the two-dimensional Coulomb gas model and its connection to vortex fluctuations for a two-dimensional superfluid. The neutral and non-neutral versions of the Coulomb gas are discussed and the relation to an equivalent sine-Gordon field theory is given. The charge-unbinding picture is used to elucidate some essential properties of the Coulomb gas. Derivations of approximate renormalization equations are sketched and the phase transition for the neutral two-dimensional Coulomb gas is described. The Kosterlitz renormalization-group equations are reviewed in some detail. The vortex-Coulomb gas charge analogy is carefully explained. The connections between experiments for 4He films and superconducting films and the neutral and non-neutral versions of the Coulomb gas are outlined using concepts like the universal jurnp and the Coulomb gas scaling relations. The properties of a dynamical version of the Coulomb gas, corresponding to vortex dynamics, are discussed and related to experiments. An analogy with Maxwell's equations in two dimensions is also given.","publication_date":{"day":null,"month":null,"year":1987,"errors":{}},"publication_name":"Reviews of Modern Physics","grobid_abstract_attachment_id":92819037},"translated_abstract":null,"internal_url":"https://www.academia.edu/88930895/The_two_dimensional_Coulomb_gas_vortex_unbinding_and_superfluid_superconducting_films","translated_internal_url":"","created_at":"2022-10-21T10:34:55.233-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92819037,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92819037/thumbnails/1.jpg","file_name":"fulltext.pdf","download_url":"https://www.academia.edu/attachments/92819037/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_two_dimensional_Coulomb_gas_vortex_u.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92819037/fulltext-libre.pdf?1666377608=\u0026response-content-disposition=attachment%3B+filename%3DThe_two_dimensional_Coulomb_gas_vortex_u.pdf\u0026Expires=1733021417\u0026Signature=YQCGoMlaWtbjIyQj4uVg0irq-G4gJ~gK5BM9M4rRZWHKwta5ZOGkTTcltOS7BMRxFjXVneHYirE-JARcgHPD7OvBR1Vrjot-eeJzc7WOP4FBchQ88FErW3Krs3zyj76xGNVhfEbVvPOmt2xiWcXoXaiTvFDuz4hMa9V-DMOcUEMWfZq~siSr59A6s~nkns1Y-VMHwctdqZvD~D1mRMBYZMAEh3g3qfw2iMUgdYauiTOLR7QZJUDI2uKm6MGX2viaiSQTNosMHicSS3I3s22veaeOBlVihqRrgKsPTSg4QKy84Se5LyOfYZNhJW74XvYQSXxo89ltF0CzFgnKyTx37g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_two_dimensional_Coulomb_gas_vortex_unbinding_and_superfluid_superconducting_films","translated_slug":"","page_count":66,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":92819037,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92819037/thumbnails/1.jpg","file_name":"fulltext.pdf","download_url":"https://www.academia.edu/attachments/92819037/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_two_dimensional_Coulomb_gas_vortex_u.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92819037/fulltext-libre.pdf?1666377608=\u0026response-content-disposition=attachment%3B+filename%3DThe_two_dimensional_Coulomb_gas_vortex_u.pdf\u0026Expires=1733021417\u0026Signature=YQCGoMlaWtbjIyQj4uVg0irq-G4gJ~gK5BM9M4rRZWHKwta5ZOGkTTcltOS7BMRxFjXVneHYirE-JARcgHPD7OvBR1Vrjot-eeJzc7WOP4FBchQ88FErW3Krs3zyj76xGNVhfEbVvPOmt2xiWcXoXaiTvFDuz4hMa9V-DMOcUEMWfZq~siSr59A6s~nkns1Y-VMHwctdqZvD~D1mRMBYZMAEh3g3qfw2iMUgdYauiTOLR7QZJUDI2uKm6MGX2viaiSQTNosMHicSS3I3s22veaeOBlVihqRrgKsPTSg4QKy84Se5LyOfYZNhJW74XvYQSXxo89ltF0CzFgnKyTx37g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":333,"name":"Field Theory","url":"https://www.academia.edu/Documents/in/Field_Theory"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":5496,"name":"Superfluidity","url":"https://www.academia.edu/Documents/in/Superfluidity"},{"id":6469,"name":"Superconductivity","url":"https://www.academia.edu/Documents/in/Superconductivity"},{"id":7936,"name":"Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Quantum_Mechanics"},{"id":27080,"name":"Vortex dynamics","url":"https://www.academia.edu/Documents/in/Vortex_dynamics"},{"id":34622,"name":"Modern physics","url":"https://www.academia.edu/Documents/in/Modern_physics"},{"id":101573,"name":"Thin Film","url":"https://www.academia.edu/Documents/in/Thin_Film"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":225310,"name":"Vortex","url":"https://www.academia.edu/Documents/in/Vortex"},{"id":288867,"name":"Coulomb","url":"https://www.academia.edu/Documents/in/Coulomb"},{"id":308420,"name":"Phase Transformation","url":"https://www.academia.edu/Documents/in/Phase_Transformation"},{"id":556555,"name":"Partition Function","url":"https://www.academia.edu/Documents/in/Partition_Function"},{"id":765146,"name":"Differential equation","url":"https://www.academia.edu/Documents/in/Differential_equation"},{"id":778976,"name":"Scaling Law","url":"https://www.academia.edu/Documents/in/Scaling_Law"},{"id":970277,"name":"Two Dimensions","url":"https://www.academia.edu/Documents/in/Two_Dimensions"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"}],"urls":[{"id":24999754,"url":"http://link.aps.org/article/10.1103/RevModPhys.59.1001"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85183368"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/85183368/Searchability_of_networks"><img alt="Research paper thumbnail of Searchability of networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/85183368/Searchability_of_networks">Searchability of networks</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85183368"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85183368"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85183368; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85183368]").text(description); $(".js-view-count[data-work-id=85183368]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85183368; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85183368']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85183368, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85183368]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85183368,"title":"Searchability of networks","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/85183368/Searchability_of_networks","translated_internal_url":"","created_at":"2022-08-19T21:58:01.332-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Searchability_of_networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85183367"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85183367/Networks_and_Cities_An_Information_Perspective"><img alt="Research paper thumbnail of Networks and Cities: An Information Perspective" class="work-thumbnail" src="https://attachments.academia-assets.com/89961022/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85183367/Networks_and_Cities_An_Information_Perspective">Networks and Cities: An Information Perspective</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f0f6a38c27a003a7bd12c54e5e984655" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89961022,"asset_id":85183367,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89961022/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85183367"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85183367"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85183367; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85183367]").text(description); $(".js-view-count[data-work-id=85183367]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85183367; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85183367']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85183367, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f0f6a38c27a003a7bd12c54e5e984655" } } $('.js-work-strip[data-work-id=85183367]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85183367,"title":"Networks and Cities: An Information Perspective","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","ai_title_tag":"Mapping Urban Traffic as Information Networks","grobid_abstract":"Traffic is constrained by the information involved in locating the receiver and the physical distance between sender and receiver. We here focus on the former, and investigate traffic in the perspective of information handling. We re-plot the road map of cities in terms of the information needed to locate specific addresses and create information city networks with roads mapped to nodes and intersections to links between nodes. These networks have the broad degree distribution found in many other complex networks. The mapping to an information city network makes it possible to quantify the information associated with locating specific addresses.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Physical Review Letters","grobid_abstract_attachment_id":89961022},"translated_abstract":null,"internal_url":"https://www.academia.edu/85183367/Networks_and_Cities_An_Information_Perspective","translated_internal_url":"","created_at":"2022-08-19T21:58:01.075-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89961022,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961022/thumbnails/1.jpg","file_name":"0407054.pdf","download_url":"https://www.academia.edu/attachments/89961022/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Networks_and_Cities_An_Information_Persp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961022/0407054-libre.pdf?1660973070=\u0026response-content-disposition=attachment%3B+filename%3DNetworks_and_Cities_An_Information_Persp.pdf\u0026Expires=1733021417\u0026Signature=PRbKylGkWi3Kcgo6IZp71nkvNdrm0YMRAkcy2SZmT0fqgcJBJn7G2gpOz2xX9r67xBaeke7L43Z~zWXowMPGoaX6RBE~nU2e372~GNGokkL455nHxO5WIG7pzHZcj7C7d3PLFA7QQbvS-pm0WwllfHKdrX6WIAzQRJJxsARgmtOoFDTJ3b2KHwhoUNZW-Kj5Ia3ctc-7LRruS4eYG4kciJKVw5-pHSHxvwBDIuWWgGBNFIA3JLTC-vjFRTP3prNHgrX~FrKzVogL93biqlN-RbRafpO7cB5QrYxohxHZj8IDkb3eztfRg8w4jW~buD5s2dIll66b-DtnK-9VAvX2rw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Networks_and_Cities_An_Information_Perspective","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":89961022,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961022/thumbnails/1.jpg","file_name":"0407054.pdf","download_url":"https://www.academia.edu/attachments/89961022/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Networks_and_Cities_An_Information_Persp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961022/0407054-libre.pdf?1660973070=\u0026response-content-disposition=attachment%3B+filename%3DNetworks_and_Cities_An_Information_Persp.pdf\u0026Expires=1733021417\u0026Signature=PRbKylGkWi3Kcgo6IZp71nkvNdrm0YMRAkcy2SZmT0fqgcJBJn7G2gpOz2xX9r67xBaeke7L43Z~zWXowMPGoaX6RBE~nU2e372~GNGokkL455nHxO5WIG7pzHZcj7C7d3PLFA7QQbvS-pm0WwllfHKdrX6WIAzQRJJxsARgmtOoFDTJ3b2KHwhoUNZW-Kj5Ia3ctc-7LRruS4eYG4kciJKVw5-pHSHxvwBDIuWWgGBNFIA3JLTC-vjFRTP3prNHgrX~FrKzVogL93biqlN-RbRafpO7cB5QrYxohxHZj8IDkb3eztfRg8w4jW~buD5s2dIll66b-DtnK-9VAvX2rw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":1410,"name":"Information Theory","url":"https://www.academia.edu/Documents/in/Information_Theory"},{"id":4808,"name":"Urban Planning","url":"https://www.academia.edu/Documents/in/Urban_Planning"},{"id":11010,"name":"Communication Theory","url":"https://www.academia.edu/Documents/in/Communication_Theory"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":99499,"name":"Complex network","url":"https://www.academia.edu/Documents/in/Complex_network"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":403102,"name":"American physical society","url":"https://www.academia.edu/Documents/in/American_physical_society"}],"urls":[{"id":23142650,"url":"http://link.aps.org/article/10.1103/PhysRevLett.94.028701"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85183366"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85183366/Navigating_networks_with_limited_information"><img alt="Research paper thumbnail of Navigating networks with limited information" class="work-thumbnail" src="https://attachments.academia-assets.com/89961023/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85183366/Navigating_networks_with_limited_information">Navigating networks with limited information</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="59e69cb03a485c0d8d996a75c5dc07ca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89961023,"asset_id":85183366,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89961023/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85183366"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85183366"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85183366; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85183366]").text(description); $(".js-view-count[data-work-id=85183366]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85183366; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85183366']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85183366, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "59e69cb03a485c0d8d996a75c5dc07ca" } } $('.js-work-strip[data-work-id=85183366]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85183366,"title":"Navigating networks with limited information","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","grobid_abstract":"We study navigation with limited information in networks and demonstrate that many real-world networks have a structure which can be described as favoring communication at short distance at the cost of constraining communication at long distance. This feature, which is robust and more evident with limited than with complete information, reflects both topological and possibly functional design characteristics. For example, the characteristics of the networks studied derived from a city and from the Internet are manifested through modular network designs. We also observe that directed navigation in typical networks requires remarkably little information on the level of individual nodes. By studying navigation, or specific signaling, we take a complementary approach to the common studies of information transfer devoted to broadcasting of information in studies of virus spreading and the like.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Physical Review E","grobid_abstract_attachment_id":89961023},"translated_abstract":null,"internal_url":"https://www.academia.edu/85183366/Navigating_networks_with_limited_information","translated_internal_url":"","created_at":"2022-08-19T21:58:00.834-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89961023,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961023/thumbnails/1.jpg","file_name":"0412051.pdf","download_url":"https://www.academia.edu/attachments/89961023/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Navigating_networks_with_limited_informa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961023/0412051-libre.pdf?1660973076=\u0026response-content-disposition=attachment%3B+filename%3DNavigating_networks_with_limited_informa.pdf\u0026Expires=1733021417\u0026Signature=DArjKg42Mv-8Q8AgUUZ2WsZogoxhgD-W6YggwPlFh0eIHnNlDo0lwI7uFfkBx3wpgFHPFPDAyiNgQkIi8f-DbOJu5oW~bqjO4DYZqlj3l4G~rKoIMjo0njaj8C13dPF3IHp7qj3FO54ZAHhwuvhQK97ledqEmJH1yZM6ziHesf04AUgPEX6xYunj4vVbIZs0T1qqykrr8MAjG5iM-YQtV9cSHW4Dr6T-XtXEJz2FtQNUHX25i0sZFgJuCahIO4Q9yEf2rpFANLwe0q1WbPNR7QypI96jzmSGGDqoMXWQcokO9H1QTCYNyFeUcBNaT2ZxuuHztyieyRf5mp8PzxsbOg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Navigating_networks_with_limited_information","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":89961023,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961023/thumbnails/1.jpg","file_name":"0412051.pdf","download_url":"https://www.academia.edu/attachments/89961023/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Navigating_networks_with_limited_informa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961023/0412051-libre.pdf?1660973076=\u0026response-content-disposition=attachment%3B+filename%3DNavigating_networks_with_limited_informa.pdf\u0026Expires=1733021417\u0026Signature=DArjKg42Mv-8Q8AgUUZ2WsZogoxhgD-W6YggwPlFh0eIHnNlDo0lwI7uFfkBx3wpgFHPFPDAyiNgQkIi8f-DbOJu5oW~bqjO4DYZqlj3l4G~rKoIMjo0njaj8C13dPF3IHp7qj3FO54ZAHhwuvhQK97ledqEmJH1yZM6ziHesf04AUgPEX6xYunj4vVbIZs0T1qqykrr8MAjG5iM-YQtV9cSHW4Dr6T-XtXEJz2FtQNUHX25i0sZFgJuCahIO4Q9yEf2rpFANLwe0q1WbPNR7QypI96jzmSGGDqoMXWQcokO9H1QTCYNyFeUcBNaT2ZxuuHztyieyRf5mp8PzxsbOg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":1410,"name":"Information Theory","url":"https://www.academia.edu/Documents/in/Information_Theory"},{"id":11010,"name":"Communication Theory","url":"https://www.academia.edu/Documents/in/Communication_Theory"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":54501,"name":"Complex System","url":"https://www.academia.edu/Documents/in/Complex_System"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":89305,"name":"Network Design","url":"https://www.academia.edu/Documents/in/Network_Design"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":118599,"name":"Information Transfer","url":"https://www.academia.edu/Documents/in/Information_Transfer"},{"id":574187,"name":"Tree Structure","url":"https://www.academia.edu/Documents/in/Tree_Structure"},{"id":1714028,"name":"Long Distance","url":"https://www.academia.edu/Documents/in/Long_Distance"}],"urls":[{"id":23142649,"url":"http://link.aps.org/article/10.1103/PhysRevE.71.066111"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85183365"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85183365/Correlations_in_Networks_Associated_to_Preferential_Growth"><img alt="Research paper thumbnail of Correlations in Networks Associated to Preferential Growth" class="work-thumbnail" src="https://attachments.academia-assets.com/89961011/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85183365/Correlations_in_Networks_Associated_to_Preferential_Growth">Correlations in Networks Associated to Preferential Growth</a></div><div class="wp-workCard_item"><span>Physica Scripta</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="356ffd494feea55aa26060ecd88c5a7d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89961011,"asset_id":85183365,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89961011/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85183365"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85183365"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85183365; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85183365]").text(description); $(".js-view-count[data-work-id=85183365]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85183365; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85183365']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85183365, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "356ffd494feea55aa26060ecd88c5a7d" } } $('.js-work-strip[data-work-id=85183365]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85183365,"title":"Correlations in Networks Associated to Preferential Growth","translated_title":"","metadata":{"publisher":"IOP Publishing","grobid_abstract":"Combinations of random and preferential growth for both on-growing and stationary networks are studied and a hierarchical topology is observed. Thus for real world scale-free networks which do not exhibit hierarchical features preferential growth is probably not the main ingredient in the growth process. An example of such real world networks includes the protein-protein interaction network in yeast, which exhibits pronounced anti-hierarchical features.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Physica Scripta","grobid_abstract_attachment_id":89961011},"translated_abstract":null,"internal_url":"https://www.academia.edu/85183365/Correlations_in_Networks_Associated_to_Preferential_Growth","translated_internal_url":"","created_at":"2022-08-19T21:58:00.615-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89961011,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961011/thumbnails/1.jpg","file_name":"0401537.pdf","download_url":"https://www.academia.edu/attachments/89961011/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Correlations_in_Networks_Associated_to_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961011/0401537-libre.pdf?1660973072=\u0026response-content-disposition=attachment%3B+filename%3DCorrelations_in_Networks_Associated_to_P.pdf\u0026Expires=1733021417\u0026Signature=QjxI4AsVWiUydtwhOjV1EH-HisN-mHfuVJ3qAG6fLZvZwPyQb4Psry0m2V1eHLODLihoadbyB8Ft3HiP6CMOBxqh5pVckPzj4oeQW3JR~7a~mTyvSbm6ALbFuK9BT0-CRFs6Ncfus7VPY2bzAbdVk7SvD9VKwTCsr27RE-h~3NaAZSG8E~0fh~Wvcr2WgZP2j1DAHHXXdOrQkDXHE5yQaD6SFQ5~R~HE0eJUaJc9eBu-Cj31Eka9AUV1oBG9ReVLnP-AbCJp5Et9fXGva3ynKiOK~9ybnGgxQLQpEY1tMLLSpkX29eH5U0FCOcjXlwhmB2EZ5qkQVXC4E4p8EhM~mw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Correlations_in_Networks_Associated_to_Preferential_Growth","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":89961011,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961011/thumbnails/1.jpg","file_name":"0401537.pdf","download_url":"https://www.academia.edu/attachments/89961011/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Correlations_in_Networks_Associated_to_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961011/0401537-libre.pdf?1660973072=\u0026response-content-disposition=attachment%3B+filename%3DCorrelations_in_Networks_Associated_to_P.pdf\u0026Expires=1733021417\u0026Signature=QjxI4AsVWiUydtwhOjV1EH-HisN-mHfuVJ3qAG6fLZvZwPyQb4Psry0m2V1eHLODLihoadbyB8Ft3HiP6CMOBxqh5pVckPzj4oeQW3JR~7a~mTyvSbm6ALbFuK9BT0-CRFs6Ncfus7VPY2bzAbdVk7SvD9VKwTCsr27RE-h~3NaAZSG8E~0fh~Wvcr2WgZP2j1DAHHXXdOrQkDXHE5yQaD6SFQ5~R~HE0eJUaJc9eBu-Cj31Eka9AUV1oBG9ReVLnP-AbCJp5Et9fXGva3ynKiOK~9ybnGgxQLQpEY1tMLLSpkX29eH5U0FCOcjXlwhmB2EZ5qkQVXC4E4p8EhM~mw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":219874,"name":"Scale free network","url":"https://www.academia.edu/Documents/in/Scale_free_network"},{"id":2639567,"name":"Growth Process","url":"https://www.academia.edu/Documents/in/Growth_Process"},{"id":2806988,"name":"Protein- Protein interaction network analysis","url":"https://www.academia.edu/Documents/in/Protein-_Protein_interaction_network_analysis"}],"urls":[{"id":23142648,"url":"http://stacks.iop.org/1402-4896/71/i=6/a=018/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85183364"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85183364/A_simple_model_for_self_organization_of_bipartite_networks"><img alt="Research paper thumbnail of A simple model for self-organization of bipartite networks" class="work-thumbnail" src="https://attachments.academia-assets.com/89961019/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85183364/A_simple_model_for_self_organization_of_bipartite_networks">A simple model for self-organization of bipartite networks</a></div><div class="wp-workCard_item"><span>Europhysics Letters (EPL)</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9159c9a599c544bfaad4cc1ddbb705e0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89961019,"asset_id":85183364,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89961019/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85183364"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85183364"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85183364; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85183364]").text(description); $(".js-view-count[data-work-id=85183364]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85183364; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85183364']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85183364, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9159c9a599c544bfaad4cc1ddbb705e0" } } $('.js-work-strip[data-work-id=85183364]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85183364,"title":"A simple model for self-organization of bipartite networks","translated_title":"","metadata":{"publisher":"IOP Publishing","grobid_abstract":"We suggest a minimalistic model for directed networks and suggest an application to injection and merging of magnetic field lines. We obtain a network of connected donor and acceptor vertices with degree distribution 1/s 2 , and with dynamical reconnection events of size ∆s occurring with frequency that scale as 1/∆s 3. This suggest that the model is in the same universality class as the model for self organization in the solar atmosphere suggested by Hughes et al. 5.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Europhysics Letters (EPL)","grobid_abstract_attachment_id":89961019},"translated_abstract":null,"internal_url":"https://www.academia.edu/85183364/A_simple_model_for_self_organization_of_bipartite_networks","translated_internal_url":"","created_at":"2022-08-19T21:58:00.453-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89961019,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961019/thumbnails/1.jpg","file_name":"0403005.pdf","download_url":"https://www.academia.edu/attachments/89961019/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_simple_model_for_self_organization_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961019/0403005-libre.pdf?1660973080=\u0026response-content-disposition=attachment%3B+filename%3DA_simple_model_for_self_organization_of.pdf\u0026Expires=1733021417\u0026Signature=Wqn0C5hKpKKTHnrKKtv6-y2-p3ArXtaPTFttmYxJ72MY15OBsXs6O4BFpzxVee5~RUnrZj0tMr-7y4-auTcz8mXVBxGCl1hAr89vuHCrUQevu2GzYO6ileeuhOi-RTklElB3yKZiKIRhwI9bmja5fjfNsv8AnpibxjlUMignosshMIY3tBXLLK1e1il~9gf3f5SJTiw2cSdy5hmtGMNuk1MbtYrlkccuhNOlpka12R1VCPqjh7EJNNnPu4~7ZnTh5Ut2ltsuLDIRO7z8PndkMjdrSy0srzqwkbioXVRgKULcyBwrrvZHq9Cqu0N44bDCvw-q9j2VU-v2AOe301CAeQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_simple_model_for_self_organization_of_bipartite_networks","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":89961019,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961019/thumbnails/1.jpg","file_name":"0403005.pdf","download_url":"https://www.academia.edu/attachments/89961019/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_simple_model_for_self_organization_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961019/0403005-libre.pdf?1660973080=\u0026response-content-disposition=attachment%3B+filename%3DA_simple_model_for_self_organization_of.pdf\u0026Expires=1733021417\u0026Signature=Wqn0C5hKpKKTHnrKKtv6-y2-p3ArXtaPTFttmYxJ72MY15OBsXs6O4BFpzxVee5~RUnrZj0tMr-7y4-auTcz8mXVBxGCl1hAr89vuHCrUQevu2GzYO6ileeuhOi-RTklElB3yKZiKIRhwI9bmja5fjfNsv8AnpibxjlUMignosshMIY3tBXLLK1e1il~9gf3f5SJTiw2cSdy5hmtGMNuk1MbtYrlkccuhNOlpka12R1VCPqjh7EJNNnPu4~7ZnTh5Ut2ltsuLDIRO7z8PndkMjdrSy0srzqwkbioXVRgKULcyBwrrvZHq9Cqu0N44bDCvw-q9j2VU-v2AOe301CAeQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":34754,"name":"Magnetic field","url":"https://www.academia.edu/Documents/in/Magnetic_field"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":148392,"name":"EPL","url":"https://www.academia.edu/Documents/in/EPL"},{"id":299563,"name":"Self Organization","url":"https://www.academia.edu/Documents/in/Self_Organization"},{"id":500214,"name":"Bipartite Graph","url":"https://www.academia.edu/Documents/in/Bipartite_Graph"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85183362"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85183362/Self_organized_scale_free_networks_from_merging_and_regeneration"><img alt="Research paper thumbnail of Self organized scale-free networks from merging and regeneration" class="work-thumbnail" src="https://attachments.academia-assets.com/89961088/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85183362/Self_organized_scale_free_networks_from_merging_and_regeneration">Self organized scale-free networks from merging and regeneration</a></div><div class="wp-workCard_item"><span>The European Physical Journal B</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="15682844c2258d59253d90137f2d5474" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89961088,"asset_id":85183362,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89961088/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85183362"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85183362"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85183362; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85183362]").text(description); $(".js-view-count[data-work-id=85183362]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85183362; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85183362']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85183362, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "15682844c2258d59253d90137f2d5474" } } $('.js-work-strip[data-work-id=85183362]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85183362,"title":"Self organized scale-free networks from merging and regeneration","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"We consider the self organizing process of merging and regeneration of vertices in complex networks and demonstrate that a scale-free degree distribution emerges in a steady state of such a dynamics. The merging of neighbor vertices in a network may be viewed as an optimization of efficiency by minimizing redundancy. It is also a mechanism to shorten the distance and thus decrease signaling times between vertices in a complex network. Thus the merging process will in particular be relevant for networks where these issues related to global signaling are of concern.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"The European Physical Journal B","grobid_abstract_attachment_id":89961088},"translated_abstract":null,"internal_url":"https://www.academia.edu/85183362/Self_organized_scale_free_networks_from_merging_and_regeneration","translated_internal_url":"","created_at":"2022-08-19T21:58:00.225-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89961088,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961088/thumbnails/1.jpg","file_name":"0403006.pdf","download_url":"https://www.academia.edu/attachments/89961088/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Self_organized_scale_free_networks_from.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961088/0403006-libre.pdf?1660973074=\u0026response-content-disposition=attachment%3B+filename%3DSelf_organized_scale_free_networks_from.pdf\u0026Expires=1733021417\u0026Signature=E0Y5k2nSdPePq12~c7gF8EVK3OORvFI4NwovzFExeFqGkgpDx2C23kPd3eczxdeA430HlPHMWSvyqRtr~tf-8-xWYRp4hDX~1-7bkwmf0l0S~DJXqXbR6mAaOGw--ZV3VK-XJgFZjb88aJ7W065IdyAeYFe3IGU29Qdd2XSii6Yain891GBCoLwUai8XlDAYfTC59p~B-H1ASDbxmPPY2W8iDkN0e5W58f2tctXeJawVqIfZuQuewqT88gPCjZpJXbtM7KjTpA49up-ef-KQi0i0DK7CDWPPCvjb1yIS3rxjPoqy0DV0nl6~A-XFHyh0Vpf0g7MJw6moPTb7rOlA6A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Self_organized_scale_free_networks_from_merging_and_regeneration","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":89961088,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961088/thumbnails/1.jpg","file_name":"0403006.pdf","download_url":"https://www.academia.edu/attachments/89961088/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Self_organized_scale_free_networks_from.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961088/0403006-libre.pdf?1660973074=\u0026response-content-disposition=attachment%3B+filename%3DSelf_organized_scale_free_networks_from.pdf\u0026Expires=1733021417\u0026Signature=E0Y5k2nSdPePq12~c7gF8EVK3OORvFI4NwovzFExeFqGkgpDx2C23kPd3eczxdeA430HlPHMWSvyqRtr~tf-8-xWYRp4hDX~1-7bkwmf0l0S~DJXqXbR6mAaOGw--ZV3VK-XJgFZjb88aJ7W065IdyAeYFe3IGU29Qdd2XSii6Yain891GBCoLwUai8XlDAYfTC59p~B-H1ASDbxmPPY2W8iDkN0e5W58f2tctXeJawVqIfZuQuewqT88gPCjZpJXbtM7KjTpA49up-ef-KQi0i0DK7CDWPPCvjb1yIS3rxjPoqy0DV0nl6~A-XFHyh0Vpf0g7MJw6moPTb7rOlA6A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":7150,"name":"Complex Systems","url":"https://www.academia.edu/Documents/in/Complex_Systems"},{"id":35921,"name":"Condensed Matter","url":"https://www.academia.edu/Documents/in/Condensed_Matter"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":99372,"name":"Theoretical Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Theoretical_Condensed_Matter_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":219874,"name":"Scale free network","url":"https://www.academia.edu/Documents/in/Scale_free_network"},{"id":234860,"name":"Steady state","url":"https://www.academia.edu/Documents/in/Steady_state"},{"id":299563,"name":"Self Organization","url":"https://www.academia.edu/Documents/in/Self_Organization"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83681077"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83681077/Self_organization_of_structures_and_networks_from_merging_and_small_scale_fluctuations"><img alt="Research paper thumbnail of Self-organization of structures and networks from merging and small-scale fluctuations" class="work-thumbnail" src="https://attachments.academia-assets.com/88946233/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83681077/Self_organization_of_structures_and_networks_from_merging_and_small_scale_fluctuations">Self-organization of structures and networks from merging and small-scale fluctuations</a></div><div class="wp-workCard_item"><span>Physica A: Statistical Mechanics and its Applications</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b87ff7330cd644a4cc63af7e0eb2a217" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":88946233,"asset_id":83681077,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/88946233/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83681077"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83681077"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83681077; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83681077]").text(description); $(".js-view-count[data-work-id=83681077]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83681077; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83681077']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83681077, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b87ff7330cd644a4cc63af7e0eb2a217" } } $('.js-work-strip[data-work-id=83681077]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83681077,"title":"Self-organization of structures and networks from merging and small-scale fluctuations","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"We discuss merging-and-creation as a self-organizing process for scale-free topologies in networks. Three power-law classes characterized by the power-law exponents 3/2, 2 and 5/2 are identified and the process is generalized to networks. In the network context the merging can be viewed as a consequence of optimization related to more efficient signaling.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Physica A: Statistical Mechanics and its Applications","grobid_abstract_attachment_id":88946233},"translated_abstract":null,"internal_url":"https://www.academia.edu/83681077/Self_organization_of_structures_and_networks_from_merging_and_small_scale_fluctuations","translated_internal_url":"","created_at":"2022-07-24T20:55:38.220-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":88946233,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88946233/thumbnails/1.jpg","file_name":"0406752.pdf","download_url":"https://www.academia.edu/attachments/88946233/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Self_organization_of_structures_and_netw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88946233/0406752-libre.pdf?1658722462=\u0026response-content-disposition=attachment%3B+filename%3DSelf_organization_of_structures_and_netw.pdf\u0026Expires=1733021417\u0026Signature=ILnwNQhSqSjLNPn2Mo4vDA6qHXH~jtaJa935dvuNqj-z-rJs2qQaGoxRoRWYos0l9~XNEuFPLvWaumhWzx6MhIP0wlNCyBYw3cYB4zzr5SGBJphu9XUNKli1mmEvQ6riQHOwA1AnbY6SnmBxbKGdSh5Rz67GZDNm3WvyC7Vp7RLwhJV1fSjrz6RC8WDbW3rMhaSiHovZOo2jnu02rSlu-yY9qRsQv~C7cFI1H6XJiGaDecgpE4SsRhIp2mX2NJ8VdK48y-DiO8YWBTSEmW68bQhwRsYcMlBHcmfpcTGD7NYyec9YVkhXC0V15wgNr2rxzKPB8rClOXJM1K~LhY5gLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Self_organization_of_structures_and_networks_from_merging_and_small_scale_fluctuations","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":88946233,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88946233/thumbnails/1.jpg","file_name":"0406752.pdf","download_url":"https://www.academia.edu/attachments/88946233/download_file?st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Self_organization_of_structures_and_netw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88946233/0406752-libre.pdf?1658722462=\u0026response-content-disposition=attachment%3B+filename%3DSelf_organization_of_structures_and_netw.pdf\u0026Expires=1733021417\u0026Signature=ILnwNQhSqSjLNPn2Mo4vDA6qHXH~jtaJa935dvuNqj-z-rJs2qQaGoxRoRWYos0l9~XNEuFPLvWaumhWzx6MhIP0wlNCyBYw3cYB4zzr5SGBJphu9XUNKli1mmEvQ6riQHOwA1AnbY6SnmBxbKGdSh5Rz67GZDNm3WvyC7Vp7RLwhJV1fSjrz6RC8WDbW3rMhaSiHovZOo2jnu02rSlu-yY9qRsQv~C7cFI1H6XJiGaDecgpE4SsRhIp2mX2NJ8VdK48y-DiO8YWBTSEmW68bQhwRsYcMlBHcmfpcTGD7NYyec9YVkhXC0V15wgNr2rxzKPB8rClOXJM1K~LhY5gLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":113890,"name":"Power Law","url":"https://www.academia.edu/Documents/in/Power_Law"},{"id":129770,"name":"Key words","url":"https://www.academia.edu/Documents/in/Key_words"},{"id":162351,"name":"Self-Organized Criticality","url":"https://www.academia.edu/Documents/in/Self-Organized_Criticality"},{"id":172954,"name":"Aggregation","url":"https://www.academia.edu/Documents/in/Aggregation"},{"id":219874,"name":"Scale free network","url":"https://www.academia.edu/Documents/in/Scale_free_network"},{"id":299563,"name":"Self Organization","url":"https://www.academia.edu/Documents/in/Self_Organization"},{"id":360413,"name":"Merging","url":"https://www.academia.edu/Documents/in/Merging"},{"id":3667507,"name":"Scale free Networks","url":"https://www.academia.edu/Documents/in/Scale_free_Networks"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77916434"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77916434/The_Ten_Thousand_Kims"><img alt="Research paper thumbnail of The Ten Thousand Kims" class="work-thumbnail" src="https://attachments.academia-assets.com/85144568/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77916434/The_Ten_Thousand_Kims">The Ten Thousand Kims</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="62e21835e0ff52f0300ef118ebe460fd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85144568,"asset_id":77916434,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85144568/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77916434"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77916434"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77916434; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77916434]").text(description); $(".js-view-count[data-work-id=77916434]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77916434; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77916434']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77916434, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "62e21835e0ff52f0300ef118ebe460fd" } } $('.js-work-strip[data-work-id=77916434]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77916434,"title":"The Ten Thousand Kims","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/77916434/The_Ten_Thousand_Kims","translated_internal_url":"","created_at":"2022-04-28T21:38:37.159-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85144568,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85144568/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/85144568/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Ten_Thousand_Kims.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85144568/download-libre.pdf?1651207875=\u0026response-content-disposition=attachment%3B+filename%3DThe_Ten_Thousand_Kims.pdf\u0026Expires=1733021417\u0026Signature=YR8P88zTBtpAOOXdm~UKyzg5UpyRiKykxViTl~CDmnKxn1-b4z7v~FN6D8b7ckce~UjFk1eWzuAr6MOz3ciroZ1Z9iQpOBd0Ce8j3FFfLXT39M8q8QFtHcvnX42-ECCh~j39hw1Eyluku6-gmUTwimVE7ya0m3i2MHgDnpBsq4KQ4btr14pOqScfnhlxTGZPYGKnXuhrGwgin0RE68f1L-1AH~FLp9Kmxj-PY63BbGtfviGujGuczy56NOac8ehrqF9kLoEcR4rhZF9Ah1lFofNDfdZfcch98RnpyoEUR8syylBqBKtH3eNma0Wu4iGbW0anFBvG5QitDdQum98Zvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Ten_Thousand_Kims","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":85144568,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85144568/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/85144568/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Ten_Thousand_Kims.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85144568/download-libre.pdf?1651207875=\u0026response-content-disposition=attachment%3B+filename%3DThe_Ten_Thousand_Kims.pdf\u0026Expires=1733021417\u0026Signature=YR8P88zTBtpAOOXdm~UKyzg5UpyRiKykxViTl~CDmnKxn1-b4z7v~FN6D8b7ckce~UjFk1eWzuAr6MOz3ciroZ1Z9iQpOBd0Ce8j3FFfLXT39M8q8QFtHcvnX42-ECCh~j39hw1Eyluku6-gmUTwimVE7ya0m3i2MHgDnpBsq4KQ4btr14pOqScfnhlxTGZPYGKnXuhrGwgin0RE68f1L-1AH~FLp9Kmxj-PY63BbGtfviGujGuczy56NOac8ehrqF9kLoEcR4rhZF9Ah1lFofNDfdZfcch98RnpyoEUR8syylBqBKtH3eNma0Wu4iGbW0anFBvG5QitDdQum98Zvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":85144569,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85144569/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/85144569/download_file","bulk_download_file_name":"The_Ten_Thousand_Kims.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85144569/download-libre.pdf?1651207875=\u0026response-content-disposition=attachment%3B+filename%3DThe_Ten_Thousand_Kims.pdf\u0026Expires=1733021418\u0026Signature=MzNvUmOsHwMzBtVrFieF~s8Uij~-2X83s77VR0I~6VAnxdG34WPbk2Kj-jJbG7mbl2EyOw6HSE6IWoqdCLoslRCMXDxh~0nxCf9B14kXF-3D-jWiw52u7YCypcSkPSesbr0-kWXopS3HcYqe4~hb65jJYdzxYulTOgCmFZkzxDmHKzeLFsvaVqW9xGbVidyF0l0AAOqufEEsbj2Eg~y500C9qPBy9HxKF5WyUGWIz9qMBXYCgXBta0R6sIvGoI4HmYBeGajIaJsz4W8bInaqNCKw18oNRL~pJ2dOJ7zJDWmZqdarsM6IvzGtw~gs0FDqMDudIqhkoR7uvV2nouJ8RQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":701253,"name":"New Physics","url":"https://www.academia.edu/Documents/in/New_Physics"}],"urls":[{"id":20018862,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.768.1798\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75678809"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75678809/Exact_numerical_solutions_of_a_nozieres_de_dominicis_type_model_problem"><img alt="Research paper thumbnail of Exact numerical solutions of a nozieres-de dominicis-type model problem" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75678809/Exact_numerical_solutions_of_a_nozieres_de_dominicis_type_model_problem">Exact numerical solutions of a nozieres-de dominicis-type model problem</a></div><div class="wp-workCard_item"><span>Physics Letters A</span><span>, 1976</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We infer from a model calculation that, to a very good approximation, the XPS spectra from core e...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We infer from a model calculation that, to a very good approximation, the XPS spectra from core electrons in simple metals should follow the edge power law up to the first plasmon satellite. The power law indices obtained are in good agreement with recent experimental XPS values for Na, Mg and Al.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75678809"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75678809"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75678809; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75678809]").text(description); $(".js-view-count[data-work-id=75678809]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75678809; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75678809']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75678809, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75678809]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75678809,"title":"Exact numerical solutions of a nozieres-de dominicis-type model problem","translated_title":"","metadata":{"abstract":"We infer from a model calculation that, to a very good approximation, the XPS spectra from core electrons in simple metals should follow the edge power law up to the first plasmon satellite. The power law indices obtained are in good agreement with recent experimental XPS values for Na, Mg and Al.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":1976,"errors":{}},"publication_name":"Physics Letters A"},"translated_abstract":"We infer from a model calculation that, to a very good approximation, the XPS spectra from core electrons in simple metals should follow the edge power law up to the first plasmon satellite. The power law indices obtained are in good agreement with recent experimental XPS values for Na, Mg and Al.","internal_url":"https://www.academia.edu/75678809/Exact_numerical_solutions_of_a_nozieres_de_dominicis_type_model_problem","translated_internal_url":"","created_at":"2022-04-06T21:23:33.719-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Exact_numerical_solutions_of_a_nozieres_de_dominicis_type_model_problem","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":113890,"name":"Power Law","url":"https://www.academia.edu/Documents/in/Power_Law"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":896204,"name":"Numerical Solution","url":"https://www.academia.edu/Documents/in/Numerical_Solution"},{"id":3591712,"name":"Physics Letters A","url":"https://www.academia.edu/Documents/in/Physics_Letters_A"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72296061"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72296061/Phase_Transitions_in_the_Two_Dimensional_Random_Gauge_XY_Model"><img alt="Research paper thumbnail of Phase Transitions in the Two-Dimensional Random Gauge XY Model" class="work-thumbnail" src="https://attachments.academia-assets.com/81279599/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72296061/Phase_Transitions_in_the_Two_Dimensional_Random_Gauge_XY_Model">Phase Transitions in the Two-Dimensional Random Gauge XY Model</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The two-dimensional random gauge model, where the quenched random variables are magnetic bond ang...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The two-dimensional random gauge model, where the quenched random variables are magnetic bond angles uniformly distributed within [-rπ, rπ] (0 ≤ r ≤ 1), is studied via Monte Carlo simulations. We investigate the phase diagram in the plane of the temperature T and the disorder strength r, and infer, in contrast to a prevailing conclusion in many earlier studies, that the system is superconducting at any disorder strength r for sufficiently low T. It is also argued that the superconducting to normal transition has different nature at weak disorder and strong disorder: termed Kosterlitz-Thouless (KT) type and non-KT type, respectively. The results are compared to earlier works.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="54a26c453852e2aa17e3feea2627827c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81279599,"asset_id":72296061,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81279599/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72296061"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72296061"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72296061; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72296061]").text(description); $(".js-view-count[data-work-id=72296061]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72296061; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72296061']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 72296061, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "54a26c453852e2aa17e3feea2627827c" } } $('.js-work-strip[data-work-id=72296061]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72296061,"title":"Phase Transitions in the Two-Dimensional Random Gauge XY Model","translated_title":"","metadata":{"abstract":"The two-dimensional random gauge model, where the quenched random variables are magnetic bond angles uniformly distributed within [-rπ, rπ] (0 ≤ r ≤ 1), is studied via Monte Carlo simulations. We investigate the phase diagram in the plane of the temperature T and the disorder strength r, and infer, in contrast to a prevailing conclusion in many earlier studies, that the system is superconducting at any disorder strength r for sufficiently low T. It is also argued that the superconducting to normal transition has different nature at weak disorder and strong disorder: termed Kosterlitz-Thouless (KT) type and non-KT type, respectively. The results are compared to earlier works.","publication_date":{"day":16,"month":1,"year":2003,"errors":{}}},"translated_abstract":"The two-dimensional random gauge model, where the quenched random variables are magnetic bond angles uniformly distributed within [-rπ, rπ] (0 ≤ r ≤ 1), is studied via Monte Carlo simulations. We investigate the phase diagram in the plane of the temperature T and the disorder strength r, and infer, in contrast to a prevailing conclusion in many earlier studies, that the system is superconducting at any disorder strength r for sufficiently low T. It is also argued that the superconducting to normal transition has different nature at weak disorder and strong disorder: termed Kosterlitz-Thouless (KT) type and non-KT type, respectively. The results are compared to earlier works.","internal_url":"https://www.academia.edu/72296061/Phase_Transitions_in_the_Two_Dimensional_Random_Gauge_XY_Model","translated_internal_url":"","created_at":"2022-02-23T00:40:59.176-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81279599,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81279599/thumbnails/1.jpg","file_name":"cond-mat0301279.pdf","download_url":"https://www.academia.edu/attachments/81279599/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Phase_Transitions_in_the_Two_Dimensional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81279599/cond-mat0301279-libre.pdf?1645606883=\u0026response-content-disposition=attachment%3B+filename%3DPhase_Transitions_in_the_Two_Dimensional.pdf\u0026Expires=1733021418\u0026Signature=Cuws9syviTZostqQsSP0uriCyNU87l0iHhCZCAMZ7KaU6vfwz-Kts1CaWWBNyBpvR9wOkYuArwAIncyrCC8VQjGb97udxg50OHtXDt4LrmFyMA0pTRANjI2me6TgqscskwQUq0LNS0WPyoTQ-4nSksjtFF~i6qYKhon02DWv4QRBb-uws6wDu~kUC8M800BfoOkZ0b-WQWpxq7jRprXnqBikqL651JzZuIEg4~Qfs931pThdWherMtOXHQXrYjTaQLEcyLWMQ2SAX6DhchPaLZ~PzHtv63HSozOZSg2Qx-6uvZAqSJ1TVLGfPZXhmO~QhvigdAuB3XyFRAw3d6TVVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Phase_Transitions_in_the_Two_Dimensional_Random_Gauge_XY_Model","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":81279599,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81279599/thumbnails/1.jpg","file_name":"cond-mat0301279.pdf","download_url":"https://www.academia.edu/attachments/81279599/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Phase_Transitions_in_the_Two_Dimensional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81279599/cond-mat0301279-libre.pdf?1645606883=\u0026response-content-disposition=attachment%3B+filename%3DPhase_Transitions_in_the_Two_Dimensional.pdf\u0026Expires=1733021418\u0026Signature=Cuws9syviTZostqQsSP0uriCyNU87l0iHhCZCAMZ7KaU6vfwz-Kts1CaWWBNyBpvR9wOkYuArwAIncyrCC8VQjGb97udxg50OHtXDt4LrmFyMA0pTRANjI2me6TgqscskwQUq0LNS0WPyoTQ-4nSksjtFF~i6qYKhon02DWv4QRBb-uws6wDu~kUC8M800BfoOkZ0b-WQWpxq7jRprXnqBikqL651JzZuIEg4~Qfs931pThdWherMtOXHQXrYjTaQLEcyLWMQ2SAX6DhchPaLZ~PzHtv63HSozOZSg2Qx-6uvZAqSJ1TVLGfPZXhmO~QhvigdAuB3XyFRAw3d6TVVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81279600,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81279600/thumbnails/1.jpg","file_name":"cond-mat0301279.pdf","download_url":"https://www.academia.edu/attachments/81279600/download_file","bulk_download_file_name":"Phase_Transitions_in_the_Two_Dimensional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81279600/cond-mat0301279-libre.pdf?1645606882=\u0026response-content-disposition=attachment%3B+filename%3DPhase_Transitions_in_the_Two_Dimensional.pdf\u0026Expires=1733021418\u0026Signature=bIPipAmi~-Qj3uKjL8gzo6orAQDMZspN0iE8eUWQwtF2XrMrErCvyHMlYik2~lI3GzMogruJc3xKJCt8Xkzag9BxIrL-miOoiVyoMM5IrTjH5XHPzdCoz67I96sMYBOipRAOaXdXCsomRmLbx8skv9fYZ5ki4PiHLM3OHM6~XRi3uMzsi-ifoaupQnQlnSU0ATJLru4vgpDJ9XsObqHn3dMx9RjpQykI4BHcHvq70gNJY6CqkUujlVIsC1g90ZLWEG8Wr7j860uTtaawVbdol6DeTpvPzxyPCTUZkJwVdRW0H-X2kSjbFMUgo0UFiQMGjAyi02U40-nCciDUUEaFyQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":4392,"name":"Monte Carlo Simulation","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Simulation"},{"id":6974,"name":"Monte Carlo","url":"https://www.academia.edu/Documents/in/Monte_Carlo"},{"id":133177,"name":"Temperature","url":"https://www.academia.edu/Documents/in/Temperature"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":183513,"name":"Order","url":"https://www.academia.edu/Documents/in/Order"},{"id":339316,"name":"Spin Glass","url":"https://www.academia.edu/Documents/in/Spin_Glass"},{"id":611819,"name":"Discrete random variable","url":"https://www.academia.edu/Documents/in/Discrete_random_variable"},{"id":1199295,"name":"Flux Pinning","url":"https://www.academia.edu/Documents/in/Flux_Pinning"},{"id":2382100,"name":"Correlation function","url":"https://www.academia.edu/Documents/in/Correlation_function"}],"urls":[{"id":17969585,"url":"https://archive.org/download/arxiv-cond-mat0301279/cond-mat0301279.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="66668113"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/66668113/Aspects_on_diagrammatic_expansion_for_models_related_to_a_homogeneous_electron_gas"><img alt="Research paper thumbnail of Aspects on diagrammatic expansion for models related to a homogeneous electron gas" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/66668113/Aspects_on_diagrammatic_expansion_for_models_related_to_a_homogeneous_electron_gas">Aspects on diagrammatic expansion for models related to a homogeneous electron gas</a></div><div class="wp-workCard_item"><span>Journal of Physics C: Solid State Physics</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="66668113"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="66668113"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66668113; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66668113]").text(description); $(".js-view-count[data-work-id=66668113]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66668113; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='66668113']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 66668113, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=66668113]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":66668113,"title":"Aspects on diagrammatic expansion for models related to a homogeneous electron gas","translated_title":"","metadata":{"abstract":"ABSTRACT","publisher":"IOP Publishing","publication_name":"Journal of Physics C: Solid State Physics"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/66668113/Aspects_on_diagrammatic_expansion_for_models_related_to_a_homogeneous_electron_gas","translated_internal_url":"","created_at":"2021-12-30T22:22:48.190-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Aspects_on_diagrammatic_expansion_for_models_related_to_a_homogeneous_electron_gas","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":347272,"name":"Second Order","url":"https://www.academia.edu/Documents/in/Second_Order"}],"urls":[{"id":15921996,"url":"http://stacks.iop.org/0022-3719/8/i=10/a=010/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="66668110"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/66668110/Excitation_probability_in_a_time_dependent_external_potential"><img alt="Research paper thumbnail of Excitation probability in a time-dependent external potential" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/66668110/Excitation_probability_in_a_time_dependent_external_potential">Excitation probability in a time-dependent external potential</a></div><div class="wp-workCard_item"><span>Journal of Physics C: Solid State Physics</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="66668110"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="66668110"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66668110; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66668110]").text(description); $(".js-view-count[data-work-id=66668110]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66668110; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='66668110']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 66668110, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=66668110]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":66668110,"title":"Excitation probability in a time-dependent external potential","translated_title":"","metadata":{"abstract":"ABSTRACT","publisher":"IOP Publishing","publication_name":"Journal of Physics C: Solid State Physics"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/66668110/Excitation_probability_in_a_time_dependent_external_potential","translated_internal_url":"","created_at":"2021-12-30T22:22:47.990-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Excitation_probability_in_a_time_dependent_external_potential","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":1993786,"name":"Cumulant","url":"https://www.academia.edu/Documents/in/Cumulant"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="66668108"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/66668108/On_the_quantitative_evaluation_of_XPS_lineshape_asymmetries_for_free_electron_like_metals"><img alt="Research paper thumbnail of On the quantitative evaluation of XPS lineshape asymmetries for free-electron-like metals" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/66668108/On_the_quantitative_evaluation_of_XPS_lineshape_asymmetries_for_free_electron_like_metals">On the quantitative evaluation of XPS lineshape asymmetries for free-electron-like metals</a></div><div class="wp-workCard_item"><span>Journal of Physics F: Metal Physics</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="66668108"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="66668108"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66668108; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66668108]").text(description); $(".js-view-count[data-work-id=66668108]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66668108; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='66668108']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 66668108, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=66668108]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":66668108,"title":"On the quantitative evaluation of XPS lineshape asymmetries for free-electron-like metals","translated_title":"","metadata":{"abstract":"ABSTRACT","publisher":"IOP Publishing","publication_name":"Journal of Physics F: Metal Physics"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/66668108/On_the_quantitative_evaluation_of_XPS_lineshape_asymmetries_for_free_electron_like_metals","translated_internal_url":"","created_at":"2021-12-30T22:22:47.807-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_the_quantitative_evaluation_of_XPS_lineshape_asymmetries_for_free_electron_like_metals","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[{"id":321836,"name":"Spectrum","url":"https://www.academia.edu/Documents/in/Spectrum"},{"id":749302,"name":"Indexation","url":"https://www.academia.edu/Documents/in/Indexation"}],"urls":[{"id":15921992,"url":"http://stacks.iop.org/0305-4608/7/i=11/a=026/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3705611" id="papers"><div class="js-work-strip profile--work_container" data-work-id="93603213"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/93603213/Consistency_test_of_the_multiple_meaning_model"><img alt="Research paper thumbnail of Consistency test of the multiple meaning model" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/93603213/Consistency_test_of_the_multiple_meaning_model">Consistency test of the multiple meaning model</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">&lt;p&gt;According to the multiple meaning model the parameter &lt;i&gt;d&lt;/i&gt; (see &lt;a hr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">&lt;p&gt;According to the multiple meaning model the parameter &lt;i&gt;d&lt;/i&gt; (see &lt;a href=&quot;<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t002&quot" rel="nofollow">http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t002&quot</a>; target=&quot;_blank&quot;&gt;Table 2&lt;/a&gt;) should give a sensible approximative estimate of the average number of multiple meanings per character within a text &lt; &lt;i&gt;f&lt;/i&gt; &gt;. The figure shows that &lt; &lt;i&gt;f&lt;/i&gt; &gt; increases with the size of the text &lt;i&gt;M&lt;/i&gt;. This is consistent with the fact the number of uses of a character increases and hence the chance that more of its multiples meanings appears in the text. For the same reason &lt; &lt;i&gt;f&lt;/i&gt; &gt; increases with the average number of uses of a character &lt; &lt;i&gt;k&lt;/i&gt; &gt;. In addition the chance for a larger number of dictionary meanings is larger for a more frequent character (see &lt;a href=&quot;<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.g006&quot" rel="nofollow">http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.g006&quot</a>; target=&quot;_blank&quot;&gt;Fig 6&lt;/a&gt;). The inset shows how &lt; &lt;i&gt;k&lt;/i&gt; &gt; increases with &lt;i&gt;M&lt;/i&gt;.&lt;/p</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="93603213"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="93603213"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 93603213; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=93603213]").text(description); $(".js-view-count[data-work-id=93603213]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 93603213; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='93603213']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 93603213, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=93603213]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":93603213,"title":"Consistency test of the multiple meaning model","translated_title":"","metadata":{"abstract":"\u0026lt;p\u0026gt;According to the multiple meaning model the parameter \u0026lt;i\u0026gt;d\u0026lt;/i\u0026gt; (see \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t002\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Table 2\u0026lt;/a\u0026gt;) should give a sensible approximative estimate of the average number of multiple meanings per character within a text \u0026lt; \u0026lt;i\u0026gt;f\u0026lt;/i\u0026gt; \u0026gt;. The figure shows that \u0026lt; \u0026lt;i\u0026gt;f\u0026lt;/i\u0026gt; \u0026gt; increases with the size of the text \u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;. This is consistent with the fact the number of uses of a character increases and hence the chance that more of its multiples meanings appears in the text. For the same reason \u0026lt; \u0026lt;i\u0026gt;f\u0026lt;/i\u0026gt; \u0026gt; increases with the average number of uses of a character \u0026lt; \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt; \u0026gt;. In addition the chance for a larger number of dictionary meanings is larger for a more frequent character (see \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.g006\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Fig 6\u0026lt;/a\u0026gt;). The inset shows how \u0026lt; \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt; \u0026gt; increases with \u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;.\u0026lt;/p","publication_date":{"day":8,"month":5,"year":2015,"errors":{}}},"translated_abstract":"\u0026lt;p\u0026gt;According to the multiple meaning model the parameter \u0026lt;i\u0026gt;d\u0026lt;/i\u0026gt; (see \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t002\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Table 2\u0026lt;/a\u0026gt;) should give a sensible approximative estimate of the average number of multiple meanings per character within a text \u0026lt; \u0026lt;i\u0026gt;f\u0026lt;/i\u0026gt; \u0026gt;. The figure shows that \u0026lt; \u0026lt;i\u0026gt;f\u0026lt;/i\u0026gt; \u0026gt; increases with the size of the text \u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;. This is consistent with the fact the number of uses of a character increases and hence the chance that more of its multiples meanings appears in the text. For the same reason \u0026lt; \u0026lt;i\u0026gt;f\u0026lt;/i\u0026gt; \u0026gt; increases with the average number of uses of a character \u0026lt; \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt; \u0026gt;. In addition the chance for a larger number of dictionary meanings is larger for a more frequent character (see \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.g006\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Fig 6\u0026lt;/a\u0026gt;). The inset shows how \u0026lt; \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt; \u0026gt; increases with \u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;.\u0026lt;/p","internal_url":"https://www.academia.edu/93603213/Consistency_test_of_the_multiple_meaning_model","translated_internal_url":"","created_at":"2022-12-24T07:11:26.049-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Consistency_test_of_the_multiple_meaning_model","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":17960,"name":"Infectious Diseases","url":"https://www.academia.edu/Documents/in/Infectious_Diseases"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":265214,"name":"Rgf","url":"https://www.academia.edu/Documents/in/Rgf"},{"id":543930,"name":"Chinese Characters","url":"https://www.academia.edu/Documents/in/Chinese_Characters"},{"id":1037447,"name":"Deviation","url":"https://www.academia.edu/Documents/in/Deviation"}],"urls":[{"id":27386563,"url":"https://figshare.com/articles/Consistency_test_of_the_multiple_meaning_model_/2669068"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="93603212"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/93603212/Test_of_RGF_including_multiple_meaning_constraints"><img alt="Research paper thumbnail of Test of RGF including multiple meaning constraints" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/93603212/Test_of_RGF_including_multiple_meaning_constraints">Test of RGF including multiple meaning constraints</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">&lt;p&gt;The RGF is in each case predicted from the quadruple of state variables (&lt;i&gt;M&lt;/...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">&lt;p&gt;The RGF is in each case predicted from the quadruple of state variables (&lt;i&gt;M&lt;/i&gt;, &lt;i&gt;N&lt;/i&gt;, &lt;i&gt;k&lt;/i&gt;&lt;sub&gt;&lt;i&gt;max&lt;/i&gt;&lt;/sub&gt;, &lt;i&gt;S&lt;/i&gt;). The data is from three novels in Chinese (see &lt;a href=&quot;<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t002&quot" rel="nofollow">http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t002&quot</a>; target=&quot;_blank&quot;&gt;Table 2&lt;/a&gt;). The RGF predictions with multiple meaning constraint are given by the dashed curves. The RGF &lt;i&gt;without&lt;/i&gt; the multiple meaning constraint is predicted from the state variable triple (&lt;i&gt;M&lt;/i&gt;, &lt;i&gt;N&lt;/i&gt;, &lt;i&gt;k&lt;/i&gt;&lt;sub&gt;&lt;i&gt;max&lt;/i&gt;&lt;/sub&gt;) and corresponds to the dotted curves. Only when the multiple meaning constraint significantly improves the RGF-prediction can some specific interpretation be associated with it. As seen from the figure the significance increases with increasing length of the novel.&lt;/p</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="93603212"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="93603212"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 93603212; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=93603212]").text(description); $(".js-view-count[data-work-id=93603212]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 93603212; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='93603212']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 93603212, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=93603212]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":93603212,"title":"Test of RGF including multiple meaning constraints","translated_title":"","metadata":{"abstract":"\u0026lt;p\u0026gt;The RGF is in each case predicted from the quadruple of state variables (\u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;N\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;\u0026lt;sub\u0026gt;\u0026lt;i\u0026gt;max\u0026lt;/i\u0026gt;\u0026lt;/sub\u0026gt;, \u0026lt;i\u0026gt;S\u0026lt;/i\u0026gt;). The data is from three novels in Chinese (see \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t002\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Table 2\u0026lt;/a\u0026gt;). The RGF predictions with multiple meaning constraint are given by the dashed curves. The RGF \u0026lt;i\u0026gt;without\u0026lt;/i\u0026gt; the multiple meaning constraint is predicted from the state variable triple (\u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;N\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;\u0026lt;sub\u0026gt;\u0026lt;i\u0026gt;max\u0026lt;/i\u0026gt;\u0026lt;/sub\u0026gt;) and corresponds to the dotted curves. Only when the multiple meaning constraint significantly improves the RGF-prediction can some specific interpretation be associated with it. As seen from the figure the significance increases with increasing length of the novel.\u0026lt;/p","publication_date":{"day":8,"month":5,"year":2015,"errors":{}}},"translated_abstract":"\u0026lt;p\u0026gt;The RGF is in each case predicted from the quadruple of state variables (\u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;N\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;\u0026lt;sub\u0026gt;\u0026lt;i\u0026gt;max\u0026lt;/i\u0026gt;\u0026lt;/sub\u0026gt;, \u0026lt;i\u0026gt;S\u0026lt;/i\u0026gt;). The data is from three novels in Chinese (see \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t002\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Table 2\u0026lt;/a\u0026gt;). The RGF predictions with multiple meaning constraint are given by the dashed curves. The RGF \u0026lt;i\u0026gt;without\u0026lt;/i\u0026gt; the multiple meaning constraint is predicted from the state variable triple (\u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;N\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;\u0026lt;sub\u0026gt;\u0026lt;i\u0026gt;max\u0026lt;/i\u0026gt;\u0026lt;/sub\u0026gt;) and corresponds to the dotted curves. Only when the multiple meaning constraint significantly improves the RGF-prediction can some specific interpretation be associated with it. As seen from the figure the significance increases with increasing length of the novel.\u0026lt;/p","internal_url":"https://www.academia.edu/93603212/Test_of_RGF_including_multiple_meaning_constraints","translated_internal_url":"","created_at":"2022-12-24T07:11:25.889-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Test_of_RGF_including_multiple_meaning_constraints","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":17960,"name":"Infectious Diseases","url":"https://www.academia.edu/Documents/in/Infectious_Diseases"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":265214,"name":"Rgf","url":"https://www.academia.edu/Documents/in/Rgf"},{"id":543930,"name":"Chinese Characters","url":"https://www.academia.edu/Documents/in/Chinese_Characters"},{"id":1037447,"name":"Deviation","url":"https://www.academia.edu/Documents/in/Deviation"}],"urls":[{"id":27386562,"url":"https://figshare.com/articles/Test_of_RGF_including_multiple_meaning_constraints_/2669065"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="93603211"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/93603211/Comparison_between_Chinese_texts_in_characters_and_words"><img alt="Research paper thumbnail of Comparison between Chinese texts in characters and words" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/93603211/Comparison_between_Chinese_texts_in_characters_and_words">Comparison between Chinese texts in characters and words</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">&lt;p&gt;(a) Comparison between characters and words for the novel &lt;i&gt;A Q Zheng Zhuan&lt;/i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">&lt;p&gt;(a) Comparison between characters and words for the novel &lt;i&gt;A Q Zheng Zhuan&lt;/i&gt; by Xun Lu together with the respective RGF-predictions. (b) The same comparison for the novel &lt;i&gt;Ping Fan De Shi Jie&lt;/i&gt; by Yao Lu. Filled dots correspond to the binned data for Chinese characters and filled triangles the data for words. Full and dashed curves correspond to the respective RGF-predictions and dotted straight lines are the Zipf’s law expectations for the word-frequency distribution. The respective “state”-variables (&lt;i&gt;M&lt;/i&gt;, &lt;i&gt;N&lt;/i&gt;, &lt;i&gt;k&lt;/i&gt;&lt;sub&gt;&lt;i&gt;max&lt;/i&gt;&lt;/sub&gt;) and the corresponding RGF-predictions are given in &lt;a href=&quot;<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t001&quot" rel="nofollow">http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t001&quot</a>; target=&quot;_blank&quot;&gt;Table 1&lt;/a&gt;. Note that the translation between words and characters is a deterministic process. Yet the “state”-variables (&lt;i&gt;M&lt;/i&gt;, &lt;i&gt;N&lt;/i&gt;, &lt;i&gt;k&lt;/i&gt;&lt;sub&gt;&lt;i&gt;max&lt;/i&gt;&lt;/sub&gt;) suffice to predict the change in frequency distribution caused by the translation between words and characters.&lt;/p</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="93603211"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="93603211"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 93603211; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=93603211]").text(description); $(".js-view-count[data-work-id=93603211]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 93603211; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='93603211']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 93603211, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=93603211]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":93603211,"title":"Comparison between Chinese texts in characters and words","translated_title":"","metadata":{"abstract":"\u0026lt;p\u0026gt;(a) Comparison between characters and words for the novel \u0026lt;i\u0026gt;A Q Zheng Zhuan\u0026lt;/i\u0026gt; by Xun Lu together with the respective RGF-predictions. (b) The same comparison for the novel \u0026lt;i\u0026gt;Ping Fan De Shi Jie\u0026lt;/i\u0026gt; by Yao Lu. Filled dots correspond to the binned data for Chinese characters and filled triangles the data for words. Full and dashed curves correspond to the respective RGF-predictions and dotted straight lines are the Zipf’s law expectations for the word-frequency distribution. The respective “state”-variables (\u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;N\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;\u0026lt;sub\u0026gt;\u0026lt;i\u0026gt;max\u0026lt;/i\u0026gt;\u0026lt;/sub\u0026gt;) and the corresponding RGF-predictions are given in \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t001\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Table 1\u0026lt;/a\u0026gt;. Note that the translation between words and characters is a deterministic process. Yet the “state”-variables (\u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;N\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;\u0026lt;sub\u0026gt;\u0026lt;i\u0026gt;max\u0026lt;/i\u0026gt;\u0026lt;/sub\u0026gt;) suffice to predict the change in frequency distribution caused by the translation between words and characters.\u0026lt;/p","publication_date":{"day":8,"month":5,"year":2015,"errors":{}}},"translated_abstract":"\u0026lt;p\u0026gt;(a) Comparison between characters and words for the novel \u0026lt;i\u0026gt;A Q Zheng Zhuan\u0026lt;/i\u0026gt; by Xun Lu together with the respective RGF-predictions. (b) The same comparison for the novel \u0026lt;i\u0026gt;Ping Fan De Shi Jie\u0026lt;/i\u0026gt; by Yao Lu. Filled dots correspond to the binned data for Chinese characters and filled triangles the data for words. Full and dashed curves correspond to the respective RGF-predictions and dotted straight lines are the Zipf’s law expectations for the word-frequency distribution. The respective “state”-variables (\u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;N\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;\u0026lt;sub\u0026gt;\u0026lt;i\u0026gt;max\u0026lt;/i\u0026gt;\u0026lt;/sub\u0026gt;) and the corresponding RGF-predictions are given in \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.t001\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Table 1\u0026lt;/a\u0026gt;. Note that the translation between words and characters is a deterministic process. Yet the “state”-variables (\u0026lt;i\u0026gt;M\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;N\u0026lt;/i\u0026gt;, \u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;\u0026lt;sub\u0026gt;\u0026lt;i\u0026gt;max\u0026lt;/i\u0026gt;\u0026lt;/sub\u0026gt;) suffice to predict the change in frequency distribution caused by the translation between words and characters.\u0026lt;/p","internal_url":"https://www.academia.edu/93603211/Comparison_between_Chinese_texts_in_characters_and_words","translated_internal_url":"","created_at":"2022-12-24T07:11:25.718-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Comparison_between_Chinese_texts_in_characters_and_words","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":17960,"name":"Infectious Diseases","url":"https://www.academia.edu/Documents/in/Infectious_Diseases"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":265214,"name":"Rgf","url":"https://www.academia.edu/Documents/in/Rgf"},{"id":543930,"name":"Chinese Characters","url":"https://www.academia.edu/Documents/in/Chinese_Characters"},{"id":1037447,"name":"Deviation","url":"https://www.academia.edu/Documents/in/Deviation"}],"urls":[{"id":27386561,"url":"https://figshare.com/articles/Comparison_between_Chinese_texts_in_characters_and_words_/2668996"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="93603210"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/93603210/Size_dependence_of_novels_written_in_Chinese_characters"><img alt="Research paper thumbnail of Size dependence of novels written in Chinese characters" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/93603210/Size_dependence_of_novels_written_in_Chinese_characters">Size dependence of novels written in Chinese characters</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">&lt;p&gt;The same two novels as in &lt;a href=&quot;http://www.plosone.org/article/info:doi/10.13...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">&lt;p&gt;The same two novels as in &lt;a href=&quot;<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.g002&quot" rel="nofollow">http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.g002&quot</a>; target=&quot;_blank&quot;&gt;Fig 2&lt;/a&gt; are divided into parts. The frequency distribution of a full novel is compared to the one of a part. (a) &lt;i&gt;P&lt;/i&gt;(&lt;i&gt;k&lt;/i&gt;) for &lt;i&gt;A Q Zheng Zhuan&lt;/i&gt; (filled dots) is compared to the distribution for a typical 10&lt;sup&gt;&lt;i&gt;th&lt;/i&gt;&lt;/sup&gt;-part (filled triangles). Here the word &lt;i&gt;typical&lt;/i&gt; means an average distribution obtained by taking many different 10&lt;sup&gt;&lt;i&gt;th&lt;/i&gt;&lt;/sup&gt; with different starting points. These two functions have quite different shapes. However, the shapes of both are equally well predicted by RGF (curves with dashed and full lines). (b) The distribution of the 10&lt;sup&gt;&lt;i&gt;th&lt;/i&gt;&lt;/sup&gt;-part, which can to very good approximation be trivially obtained from the full book by just &lt;i&gt;randomly&lt;/i&gt; removing 90% of the words from the full book. This corresponds to the dashed curve which is almost identical to the RGF-prediction and both correspond very well to the data. (c-d) The same features for the novel &lt;i&gt;Ping Fan De Shi Jie&lt;/i&gt;. Note that the 10&lt;sup&gt;&lt;i&gt;th&lt;/i&gt;&lt;/sup&gt;-part agrees better with RGF than the full novel.&lt;/p</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="93603210"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="93603210"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 93603210; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=93603210]").text(description); $(".js-view-count[data-work-id=93603210]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 93603210; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='93603210']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 93603210, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=93603210]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":93603210,"title":"Size dependence of novels written in Chinese characters","translated_title":"","metadata":{"abstract":"\u0026lt;p\u0026gt;The same two novels as in \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.g002\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Fig 2\u0026lt;/a\u0026gt; are divided into parts. The frequency distribution of a full novel is compared to the one of a part. (a) \u0026lt;i\u0026gt;P\u0026lt;/i\u0026gt;(\u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;) for \u0026lt;i\u0026gt;A Q Zheng Zhuan\u0026lt;/i\u0026gt; (filled dots) is compared to the distribution for a typical 10\u0026lt;sup\u0026gt;\u0026lt;i\u0026gt;th\u0026lt;/i\u0026gt;\u0026lt;/sup\u0026gt;-part (filled triangles). Here the word \u0026lt;i\u0026gt;typical\u0026lt;/i\u0026gt; means an average distribution obtained by taking many different 10\u0026lt;sup\u0026gt;\u0026lt;i\u0026gt;th\u0026lt;/i\u0026gt;\u0026lt;/sup\u0026gt; with different starting points. These two functions have quite different shapes. However, the shapes of both are equally well predicted by RGF (curves with dashed and full lines). (b) The distribution of the 10\u0026lt;sup\u0026gt;\u0026lt;i\u0026gt;th\u0026lt;/i\u0026gt;\u0026lt;/sup\u0026gt;-part, which can to very good approximation be trivially obtained from the full book by just \u0026lt;i\u0026gt;randomly\u0026lt;/i\u0026gt; removing 90% of the words from the full book. This corresponds to the dashed curve which is almost identical to the RGF-prediction and both correspond very well to the data. (c-d) The same features for the novel \u0026lt;i\u0026gt;Ping Fan De Shi Jie\u0026lt;/i\u0026gt;. Note that the 10\u0026lt;sup\u0026gt;\u0026lt;i\u0026gt;th\u0026lt;/i\u0026gt;\u0026lt;/sup\u0026gt;-part agrees better with RGF than the full novel.\u0026lt;/p","publication_date":{"day":8,"month":5,"year":2015,"errors":{}}},"translated_abstract":"\u0026lt;p\u0026gt;The same two novels as in \u0026lt;a href=\u0026quot;http://www.plosone.org/article/info:doi/10.1371/journal.pone.0125592#pone.0125592.g002\u0026quot; target=\u0026quot;_blank\u0026quot;\u0026gt;Fig 2\u0026lt;/a\u0026gt; are divided into parts. The frequency distribution of a full novel is compared to the one of a part. (a) \u0026lt;i\u0026gt;P\u0026lt;/i\u0026gt;(\u0026lt;i\u0026gt;k\u0026lt;/i\u0026gt;) for \u0026lt;i\u0026gt;A Q Zheng Zhuan\u0026lt;/i\u0026gt; (filled dots) is compared to the distribution for a typical 10\u0026lt;sup\u0026gt;\u0026lt;i\u0026gt;th\u0026lt;/i\u0026gt;\u0026lt;/sup\u0026gt;-part (filled triangles). Here the word \u0026lt;i\u0026gt;typical\u0026lt;/i\u0026gt; means an average distribution obtained by taking many different 10\u0026lt;sup\u0026gt;\u0026lt;i\u0026gt;th\u0026lt;/i\u0026gt;\u0026lt;/sup\u0026gt; with different starting points. These two functions have quite different shapes. However, the shapes of both are equally well predicted by RGF (curves with dashed and full lines). (b) The distribution of the 10\u0026lt;sup\u0026gt;\u0026lt;i\u0026gt;th\u0026lt;/i\u0026gt;\u0026lt;/sup\u0026gt;-part, which can to very good approximation be trivially obtained from the full book by just \u0026lt;i\u0026gt;randomly\u0026lt;/i\u0026gt; removing 90% of the words from the full book. This corresponds to the dashed curve which is almost identical to the RGF-prediction and both correspond very well to the data. (c-d) The same features for the novel \u0026lt;i\u0026gt;Ping Fan De Shi Jie\u0026lt;/i\u0026gt;. Note that the 10\u0026lt;sup\u0026gt;\u0026lt;i\u0026gt;th\u0026lt;/i\u0026gt;\u0026lt;/sup\u0026gt;-part agrees better with RGF than the full novel.\u0026lt;/p","internal_url":"https://www.academia.edu/93603210/Size_dependence_of_novels_written_in_Chinese_characters","translated_internal_url":"","created_at":"2022-12-24T07:11:25.536-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Size_dependence_of_novels_written_in_Chinese_characters","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"},{"id":6021,"name":"Cancer","url":"https://www.academia.edu/Documents/in/Cancer"},{"id":17960,"name":"Infectious Diseases","url":"https://www.academia.edu/Documents/in/Infectious_Diseases"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":265214,"name":"Rgf","url":"https://www.academia.edu/Documents/in/Rgf"},{"id":543930,"name":"Chinese Characters","url":"https://www.academia.edu/Documents/in/Chinese_Characters"},{"id":1037447,"name":"Deviation","url":"https://www.academia.edu/Documents/in/Deviation"}],"urls":[{"id":27386560,"url":"https://figshare.com/articles/Size_dependence_of_novels_written_in_Chinese_characters_/2669032"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="93603209"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/93603209/Nonuniversal_Jumps_and_the_Kosterlitz_Thouless_Transition"><img alt="Research paper thumbnail of Nonuniversal Jumps and the Kosterlitz-Thouless Transition" class="work-thumbnail" src="https://attachments.academia-assets.com/96296030/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/93603209/Nonuniversal_Jumps_and_the_Kosterlitz_Thouless_Transition">Nonuniversal Jumps and the Kosterlitz-Thouless Transition</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, 1985</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="47f7b4982b306469c2779de4720f2f5d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96296030,"asset_id":93603209,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96296030/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="93603209"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="93603209"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 93603209; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=93603209]").text(description); $(".js-view-count[data-work-id=93603209]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 93603209; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='93603209']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 93603209, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "47f7b4982b306469c2779de4720f2f5d" } } $('.js-work-strip[data-work-id=93603209]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":93603209,"title":"Nonuniversal Jumps and the Kosterlitz-Thouless Transition","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","grobid_abstract":"A new set of renormalization equations for the two-dimensional Coulomb gas is derived. Within this new description, the prediction of a universal jump or the prediction that the exponent q is 4 at the critical line breaks down below a certain temperature. Consequently it should be possible to have a Kosterlitz-Thouless transition without a universal jump. A realization is suggested.","publication_date":{"day":null,"month":null,"year":1985,"errors":{}},"publication_name":"Physical Review Letters","grobid_abstract_attachment_id":96296030},"translated_abstract":null,"internal_url":"https://www.academia.edu/93603209/Nonuniversal_Jumps_and_the_Kosterlitz_Thouless_Transition","translated_internal_url":"","created_at":"2022-12-24T07:11:25.358-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96296030,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96296030/thumbnails/1.jpg","file_name":"fulltext.pdf","download_url":"https://www.academia.edu/attachments/96296030/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nonuniversal_Jumps_and_the_Kosterlitz_Th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96296030/fulltext-libre.pdf?1671897481=\u0026response-content-disposition=attachment%3B+filename%3DNonuniversal_Jumps_and_the_Kosterlitz_Th.pdf\u0026Expires=1733021417\u0026Signature=XDGITV~X3ZHGg8KJrz6MGRdDMHH1rdJLlHU-JnZXvEYOQ8v2UsILhtYXU90nG0cNffU0rIg8t8MWgvskwcUrVij7ALvjO6UiqBxT2ES4eYVh80Q~vmTvnZ~3noJMTmZRTO6IoE3wz7MRCL2scUOyhMQgWDRGNGi74r-iij9ZDrd-4K2B256Y2x81qVuJEhaIe3w8I7X6FKA8N6BM3oDwG-GkCgUGLOk1d0DBRPe1Y-rLnSdHOhQFL3uhrVviSSDBMxIVeT79jwR~PmKLdufwtYJvoHPEei25I7qYHymR72U4a~RwwxTULxdWnRiSCY54Eo9sfrr5fDAiCl8pAnr42w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Nonuniversal_Jumps_and_the_Kosterlitz_Thouless_Transition","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":96296030,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96296030/thumbnails/1.jpg","file_name":"fulltext.pdf","download_url":"https://www.academia.edu/attachments/96296030/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Nonuniversal_Jumps_and_the_Kosterlitz_Th.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96296030/fulltext-libre.pdf?1671897481=\u0026response-content-disposition=attachment%3B+filename%3DNonuniversal_Jumps_and_the_Kosterlitz_Th.pdf\u0026Expires=1733021417\u0026Signature=XDGITV~X3ZHGg8KJrz6MGRdDMHH1rdJLlHU-JnZXvEYOQ8v2UsILhtYXU90nG0cNffU0rIg8t8MWgvskwcUrVij7ALvjO6UiqBxT2ES4eYVh80Q~vmTvnZ~3noJMTmZRTO6IoE3wz7MRCL2scUOyhMQgWDRGNGi74r-iij9ZDrd-4K2B256Y2x81qVuJEhaIe3w8I7X6FKA8N6BM3oDwG-GkCgUGLOk1d0DBRPe1Y-rLnSdHOhQFL3uhrVviSSDBMxIVeT79jwR~PmKLdufwtYJvoHPEei25I7qYHymR72U4a~RwwxTULxdWnRiSCY54Eo9sfrr5fDAiCl8pAnr42w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":16460,"name":"Statistical Physics","url":"https://www.academia.edu/Documents/in/Statistical_Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":201464,"name":"Renormalization","url":"https://www.academia.edu/Documents/in/Renormalization"},{"id":288502,"name":"Jump","url":"https://www.academia.edu/Documents/in/Jump"},{"id":288867,"name":"Coulomb","url":"https://www.academia.edu/Documents/in/Coulomb"}],"urls":[{"id":27386559,"url":"http://link.aps.org/article/10.1103/PhysRevLett.54.2351"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="93603154"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/93603154/New_renormalization_equations_for_the_Kosterlitz_Thouless_transition"><img alt="Research paper thumbnail of New renormalization equations for the Kosterlitz-Thouless transition" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/93603154/New_renormalization_equations_for_the_Kosterlitz_Thouless_transition">New renormalization equations for the Kosterlitz-Thouless transition</a></div><div class="wp-workCard_item"><span>Physical Review B</span><span>, 1985</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A new set of renormalization equations for the two-dimensional Coulomb gas is derived and solved ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A new set of renormalization equations for the two-dimensional Coulomb gas is derived and solved numerically. These equations give a new picture of the Kosterlitz-Thouless transition. A new temperature T* is found. Above T* the value of the dielectric constant at the transition is εc=1/(4Tc) as before whereas below T* the new result εc&amp;amp;amp;amp;amp;amp;lt;1/(4Tc) is obtained. The singular behavior at</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="93603154"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="93603154"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 93603154; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=93603154]").text(description); $(".js-view-count[data-work-id=93603154]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 93603154; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='93603154']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 93603154, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=93603154]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":93603154,"title":"New renormalization equations for the Kosterlitz-Thouless transition","translated_title":"","metadata":{"abstract":"A new set of renormalization equations for the two-dimensional Coulomb gas is derived and solved numerically. These equations give a new picture of the Kosterlitz-Thouless transition. A new temperature T* is found. Above T* the value of the dielectric constant at the transition is εc=1/(4Tc) as before whereas below T* the new result εc\u0026amp;amp;amp;amp;amp;amp;lt;1/(4Tc) is obtained. The singular behavior at","publisher":"American Physical Society (APS)","publication_date":{"day":null,"month":null,"year":1985,"errors":{}},"publication_name":"Physical Review B"},"translated_abstract":"A new set of renormalization equations for the two-dimensional Coulomb gas is derived and solved numerically. These equations give a new picture of the Kosterlitz-Thouless transition. A new temperature T* is found. Above T* the value of the dielectric constant at the transition is εc=1/(4Tc) as before whereas below T* the new result εc\u0026amp;amp;amp;amp;amp;amp;lt;1/(4Tc) is obtained. The singular behavior at","internal_url":"https://www.academia.edu/93603154/New_renormalization_equations_for_the_Kosterlitz_Thouless_transition","translated_internal_url":"","created_at":"2022-12-24T07:09:27.159-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"New_renormalization_equations_for_the_Kosterlitz_Thouless_transition","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":192257,"name":"Physical","url":"https://www.academia.edu/Documents/in/Physical"},{"id":201464,"name":"Renormalization","url":"https://www.academia.edu/Documents/in/Renormalization"},{"id":288867,"name":"Coulomb","url":"https://www.academia.edu/Documents/in/Coulomb"},{"id":389578,"name":"Dielectric Constant","url":"https://www.academia.edu/Documents/in/Dielectric_Constant"},{"id":434746,"name":"Model System","url":"https://www.academia.edu/Documents/in/Model_System"},{"id":494966,"name":"Renormalization Group","url":"https://www.academia.edu/Documents/in/Renormalization_Group"},{"id":1130298,"name":"Critical Point","url":"https://www.academia.edu/Documents/in/Critical_Point"},{"id":1394433,"name":"Critical Temperature","url":"https://www.academia.edu/Documents/in/Critical_Temperature"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="88930895"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/88930895/The_two_dimensional_Coulomb_gas_vortex_unbinding_and_superfluid_superconducting_films"><img alt="Research paper thumbnail of The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films" class="work-thumbnail" src="https://attachments.academia-assets.com/92819037/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/88930895/The_two_dimensional_Coulomb_gas_vortex_unbinding_and_superfluid_superconducting_films">The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films</a></div><div class="wp-workCard_item"><span>Reviews of Modern Physics</span><span>, 1987</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b5519d9eccc713d81a0f559c24a0a12c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":92819037,"asset_id":88930895,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/92819037/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="88930895"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="88930895"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 88930895; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=88930895]").text(description); $(".js-view-count[data-work-id=88930895]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 88930895; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='88930895']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 88930895, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b5519d9eccc713d81a0f559c24a0a12c" } } $('.js-work-strip[data-work-id=88930895]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":88930895,"title":"The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","grobid_abstract":"The article reviews the two-dimensional Coulomb gas model and its connection to vortex fluctuations for a two-dimensional superfluid. The neutral and non-neutral versions of the Coulomb gas are discussed and the relation to an equivalent sine-Gordon field theory is given. The charge-unbinding picture is used to elucidate some essential properties of the Coulomb gas. Derivations of approximate renormalization equations are sketched and the phase transition for the neutral two-dimensional Coulomb gas is described. The Kosterlitz renormalization-group equations are reviewed in some detail. The vortex-Coulomb gas charge analogy is carefully explained. The connections between experiments for 4He films and superconducting films and the neutral and non-neutral versions of the Coulomb gas are outlined using concepts like the universal jurnp and the Coulomb gas scaling relations. The properties of a dynamical version of the Coulomb gas, corresponding to vortex dynamics, are discussed and related to experiments. An analogy with Maxwell's equations in two dimensions is also given.","publication_date":{"day":null,"month":null,"year":1987,"errors":{}},"publication_name":"Reviews of Modern Physics","grobid_abstract_attachment_id":92819037},"translated_abstract":null,"internal_url":"https://www.academia.edu/88930895/The_two_dimensional_Coulomb_gas_vortex_unbinding_and_superfluid_superconducting_films","translated_internal_url":"","created_at":"2022-10-21T10:34:55.233-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":92819037,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92819037/thumbnails/1.jpg","file_name":"fulltext.pdf","download_url":"https://www.academia.edu/attachments/92819037/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_two_dimensional_Coulomb_gas_vortex_u.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92819037/fulltext-libre.pdf?1666377608=\u0026response-content-disposition=attachment%3B+filename%3DThe_two_dimensional_Coulomb_gas_vortex_u.pdf\u0026Expires=1733021417\u0026Signature=YQCGoMlaWtbjIyQj4uVg0irq-G4gJ~gK5BM9M4rRZWHKwta5ZOGkTTcltOS7BMRxFjXVneHYirE-JARcgHPD7OvBR1Vrjot-eeJzc7WOP4FBchQ88FErW3Krs3zyj76xGNVhfEbVvPOmt2xiWcXoXaiTvFDuz4hMa9V-DMOcUEMWfZq~siSr59A6s~nkns1Y-VMHwctdqZvD~D1mRMBYZMAEh3g3qfw2iMUgdYauiTOLR7QZJUDI2uKm6MGX2viaiSQTNosMHicSS3I3s22veaeOBlVihqRrgKsPTSg4QKy84Se5LyOfYZNhJW74XvYQSXxo89ltF0CzFgnKyTx37g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_two_dimensional_Coulomb_gas_vortex_unbinding_and_superfluid_superconducting_films","translated_slug":"","page_count":66,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":92819037,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/92819037/thumbnails/1.jpg","file_name":"fulltext.pdf","download_url":"https://www.academia.edu/attachments/92819037/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_two_dimensional_Coulomb_gas_vortex_u.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/92819037/fulltext-libre.pdf?1666377608=\u0026response-content-disposition=attachment%3B+filename%3DThe_two_dimensional_Coulomb_gas_vortex_u.pdf\u0026Expires=1733021417\u0026Signature=YQCGoMlaWtbjIyQj4uVg0irq-G4gJ~gK5BM9M4rRZWHKwta5ZOGkTTcltOS7BMRxFjXVneHYirE-JARcgHPD7OvBR1Vrjot-eeJzc7WOP4FBchQ88FErW3Krs3zyj76xGNVhfEbVvPOmt2xiWcXoXaiTvFDuz4hMa9V-DMOcUEMWfZq~siSr59A6s~nkns1Y-VMHwctdqZvD~D1mRMBYZMAEh3g3qfw2iMUgdYauiTOLR7QZJUDI2uKm6MGX2viaiSQTNosMHicSS3I3s22veaeOBlVihqRrgKsPTSg4QKy84Se5LyOfYZNhJW74XvYQSXxo89ltF0CzFgnKyTx37g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":333,"name":"Field Theory","url":"https://www.academia.edu/Documents/in/Field_Theory"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":5496,"name":"Superfluidity","url":"https://www.academia.edu/Documents/in/Superfluidity"},{"id":6469,"name":"Superconductivity","url":"https://www.academia.edu/Documents/in/Superconductivity"},{"id":7936,"name":"Quantum Mechanics","url":"https://www.academia.edu/Documents/in/Quantum_Mechanics"},{"id":27080,"name":"Vortex dynamics","url":"https://www.academia.edu/Documents/in/Vortex_dynamics"},{"id":34622,"name":"Modern physics","url":"https://www.academia.edu/Documents/in/Modern_physics"},{"id":101573,"name":"Thin Film","url":"https://www.academia.edu/Documents/in/Thin_Film"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":225310,"name":"Vortex","url":"https://www.academia.edu/Documents/in/Vortex"},{"id":288867,"name":"Coulomb","url":"https://www.academia.edu/Documents/in/Coulomb"},{"id":308420,"name":"Phase Transformation","url":"https://www.academia.edu/Documents/in/Phase_Transformation"},{"id":556555,"name":"Partition Function","url":"https://www.academia.edu/Documents/in/Partition_Function"},{"id":765146,"name":"Differential equation","url":"https://www.academia.edu/Documents/in/Differential_equation"},{"id":778976,"name":"Scaling Law","url":"https://www.academia.edu/Documents/in/Scaling_Law"},{"id":970277,"name":"Two Dimensions","url":"https://www.academia.edu/Documents/in/Two_Dimensions"},{"id":1130559,"name":"Electric Field","url":"https://www.academia.edu/Documents/in/Electric_Field"}],"urls":[{"id":24999754,"url":"http://link.aps.org/article/10.1103/RevModPhys.59.1001"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85183368"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/85183368/Searchability_of_networks"><img alt="Research paper thumbnail of Searchability of networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/85183368/Searchability_of_networks">Searchability of networks</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85183368"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85183368"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85183368; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85183368]").text(description); $(".js-view-count[data-work-id=85183368]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85183368; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85183368']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85183368, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85183368]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85183368,"title":"Searchability of networks","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/85183368/Searchability_of_networks","translated_internal_url":"","created_at":"2022-08-19T21:58:01.332-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Searchability_of_networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85183367"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85183367/Networks_and_Cities_An_Information_Perspective"><img alt="Research paper thumbnail of Networks and Cities: An Information Perspective" class="work-thumbnail" src="https://attachments.academia-assets.com/89961022/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85183367/Networks_and_Cities_An_Information_Perspective">Networks and Cities: An Information Perspective</a></div><div class="wp-workCard_item"><span>Physical Review Letters</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f0f6a38c27a003a7bd12c54e5e984655" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89961022,"asset_id":85183367,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89961022/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85183367"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85183367"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85183367; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85183367]").text(description); $(".js-view-count[data-work-id=85183367]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85183367; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85183367']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85183367, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f0f6a38c27a003a7bd12c54e5e984655" } } $('.js-work-strip[data-work-id=85183367]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85183367,"title":"Networks and Cities: An Information Perspective","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","ai_title_tag":"Mapping Urban Traffic as Information Networks","grobid_abstract":"Traffic is constrained by the information involved in locating the receiver and the physical distance between sender and receiver. We here focus on the former, and investigate traffic in the perspective of information handling. We re-plot the road map of cities in terms of the information needed to locate specific addresses and create information city networks with roads mapped to nodes and intersections to links between nodes. These networks have the broad degree distribution found in many other complex networks. The mapping to an information city network makes it possible to quantify the information associated with locating specific addresses.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Physical Review Letters","grobid_abstract_attachment_id":89961022},"translated_abstract":null,"internal_url":"https://www.academia.edu/85183367/Networks_and_Cities_An_Information_Perspective","translated_internal_url":"","created_at":"2022-08-19T21:58:01.075-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89961022,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961022/thumbnails/1.jpg","file_name":"0407054.pdf","download_url":"https://www.academia.edu/attachments/89961022/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Networks_and_Cities_An_Information_Persp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961022/0407054-libre.pdf?1660973070=\u0026response-content-disposition=attachment%3B+filename%3DNetworks_and_Cities_An_Information_Persp.pdf\u0026Expires=1733021417\u0026Signature=PRbKylGkWi3Kcgo6IZp71nkvNdrm0YMRAkcy2SZmT0fqgcJBJn7G2gpOz2xX9r67xBaeke7L43Z~zWXowMPGoaX6RBE~nU2e372~GNGokkL455nHxO5WIG7pzHZcj7C7d3PLFA7QQbvS-pm0WwllfHKdrX6WIAzQRJJxsARgmtOoFDTJ3b2KHwhoUNZW-Kj5Ia3ctc-7LRruS4eYG4kciJKVw5-pHSHxvwBDIuWWgGBNFIA3JLTC-vjFRTP3prNHgrX~FrKzVogL93biqlN-RbRafpO7cB5QrYxohxHZj8IDkb3eztfRg8w4jW~buD5s2dIll66b-DtnK-9VAvX2rw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Networks_and_Cities_An_Information_Perspective","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":89961022,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961022/thumbnails/1.jpg","file_name":"0407054.pdf","download_url":"https://www.academia.edu/attachments/89961022/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Networks_and_Cities_An_Information_Persp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961022/0407054-libre.pdf?1660973070=\u0026response-content-disposition=attachment%3B+filename%3DNetworks_and_Cities_An_Information_Persp.pdf\u0026Expires=1733021417\u0026Signature=PRbKylGkWi3Kcgo6IZp71nkvNdrm0YMRAkcy2SZmT0fqgcJBJn7G2gpOz2xX9r67xBaeke7L43Z~zWXowMPGoaX6RBE~nU2e372~GNGokkL455nHxO5WIG7pzHZcj7C7d3PLFA7QQbvS-pm0WwllfHKdrX6WIAzQRJJxsARgmtOoFDTJ3b2KHwhoUNZW-Kj5Ia3ctc-7LRruS4eYG4kciJKVw5-pHSHxvwBDIuWWgGBNFIA3JLTC-vjFRTP3prNHgrX~FrKzVogL93biqlN-RbRafpO7cB5QrYxohxHZj8IDkb3eztfRg8w4jW~buD5s2dIll66b-DtnK-9VAvX2rw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":1410,"name":"Information Theory","url":"https://www.academia.edu/Documents/in/Information_Theory"},{"id":4808,"name":"Urban Planning","url":"https://www.academia.edu/Documents/in/Urban_Planning"},{"id":11010,"name":"Communication Theory","url":"https://www.academia.edu/Documents/in/Communication_Theory"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":99499,"name":"Complex network","url":"https://www.academia.edu/Documents/in/Complex_network"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":403102,"name":"American physical society","url":"https://www.academia.edu/Documents/in/American_physical_society"}],"urls":[{"id":23142650,"url":"http://link.aps.org/article/10.1103/PhysRevLett.94.028701"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85183366"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85183366/Navigating_networks_with_limited_information"><img alt="Research paper thumbnail of Navigating networks with limited information" class="work-thumbnail" src="https://attachments.academia-assets.com/89961023/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85183366/Navigating_networks_with_limited_information">Navigating networks with limited information</a></div><div class="wp-workCard_item"><span>Physical Review E</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="59e69cb03a485c0d8d996a75c5dc07ca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89961023,"asset_id":85183366,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89961023/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85183366"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85183366"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85183366; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85183366]").text(description); $(".js-view-count[data-work-id=85183366]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85183366; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85183366']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85183366, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "59e69cb03a485c0d8d996a75c5dc07ca" } } $('.js-work-strip[data-work-id=85183366]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85183366,"title":"Navigating networks with limited information","translated_title":"","metadata":{"publisher":"American Physical Society (APS)","grobid_abstract":"We study navigation with limited information in networks and demonstrate that many real-world networks have a structure which can be described as favoring communication at short distance at the cost of constraining communication at long distance. This feature, which is robust and more evident with limited than with complete information, reflects both topological and possibly functional design characteristics. For example, the characteristics of the networks studied derived from a city and from the Internet are manifested through modular network designs. We also observe that directed navigation in typical networks requires remarkably little information on the level of individual nodes. By studying navigation, or specific signaling, we take a complementary approach to the common studies of information transfer devoted to broadcasting of information in studies of virus spreading and the like.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Physical Review E","grobid_abstract_attachment_id":89961023},"translated_abstract":null,"internal_url":"https://www.academia.edu/85183366/Navigating_networks_with_limited_information","translated_internal_url":"","created_at":"2022-08-19T21:58:00.834-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89961023,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961023/thumbnails/1.jpg","file_name":"0412051.pdf","download_url":"https://www.academia.edu/attachments/89961023/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Navigating_networks_with_limited_informa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961023/0412051-libre.pdf?1660973076=\u0026response-content-disposition=attachment%3B+filename%3DNavigating_networks_with_limited_informa.pdf\u0026Expires=1733021417\u0026Signature=DArjKg42Mv-8Q8AgUUZ2WsZogoxhgD-W6YggwPlFh0eIHnNlDo0lwI7uFfkBx3wpgFHPFPDAyiNgQkIi8f-DbOJu5oW~bqjO4DYZqlj3l4G~rKoIMjo0njaj8C13dPF3IHp7qj3FO54ZAHhwuvhQK97ledqEmJH1yZM6ziHesf04AUgPEX6xYunj4vVbIZs0T1qqykrr8MAjG5iM-YQtV9cSHW4Dr6T-XtXEJz2FtQNUHX25i0sZFgJuCahIO4Q9yEf2rpFANLwe0q1WbPNR7QypI96jzmSGGDqoMXWQcokO9H1QTCYNyFeUcBNaT2ZxuuHztyieyRf5mp8PzxsbOg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Navigating_networks_with_limited_information","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":89961023,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961023/thumbnails/1.jpg","file_name":"0412051.pdf","download_url":"https://www.academia.edu/attachments/89961023/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Navigating_networks_with_limited_informa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961023/0412051-libre.pdf?1660973076=\u0026response-content-disposition=attachment%3B+filename%3DNavigating_networks_with_limited_informa.pdf\u0026Expires=1733021417\u0026Signature=DArjKg42Mv-8Q8AgUUZ2WsZogoxhgD-W6YggwPlFh0eIHnNlDo0lwI7uFfkBx3wpgFHPFPDAyiNgQkIi8f-DbOJu5oW~bqjO4DYZqlj3l4G~rKoIMjo0njaj8C13dPF3IHp7qj3FO54ZAHhwuvhQK97ledqEmJH1yZM6ziHesf04AUgPEX6xYunj4vVbIZs0T1qqykrr8MAjG5iM-YQtV9cSHW4Dr6T-XtXEJz2FtQNUHX25i0sZFgJuCahIO4Q9yEf2rpFANLwe0q1WbPNR7QypI96jzmSGGDqoMXWQcokO9H1QTCYNyFeUcBNaT2ZxuuHztyieyRf5mp8PzxsbOg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":1410,"name":"Information Theory","url":"https://www.academia.edu/Documents/in/Information_Theory"},{"id":11010,"name":"Communication Theory","url":"https://www.academia.edu/Documents/in/Communication_Theory"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":54501,"name":"Complex System","url":"https://www.academia.edu/Documents/in/Complex_System"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":89305,"name":"Network Design","url":"https://www.academia.edu/Documents/in/Network_Design"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":118599,"name":"Information Transfer","url":"https://www.academia.edu/Documents/in/Information_Transfer"},{"id":574187,"name":"Tree Structure","url":"https://www.academia.edu/Documents/in/Tree_Structure"},{"id":1714028,"name":"Long Distance","url":"https://www.academia.edu/Documents/in/Long_Distance"}],"urls":[{"id":23142649,"url":"http://link.aps.org/article/10.1103/PhysRevE.71.066111"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85183365"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85183365/Correlations_in_Networks_Associated_to_Preferential_Growth"><img alt="Research paper thumbnail of Correlations in Networks Associated to Preferential Growth" class="work-thumbnail" src="https://attachments.academia-assets.com/89961011/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85183365/Correlations_in_Networks_Associated_to_Preferential_Growth">Correlations in Networks Associated to Preferential Growth</a></div><div class="wp-workCard_item"><span>Physica Scripta</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="356ffd494feea55aa26060ecd88c5a7d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89961011,"asset_id":85183365,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89961011/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85183365"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85183365"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85183365; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85183365]").text(description); $(".js-view-count[data-work-id=85183365]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85183365; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85183365']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85183365, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "356ffd494feea55aa26060ecd88c5a7d" } } $('.js-work-strip[data-work-id=85183365]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85183365,"title":"Correlations in Networks Associated to Preferential Growth","translated_title":"","metadata":{"publisher":"IOP Publishing","grobid_abstract":"Combinations of random and preferential growth for both on-growing and stationary networks are studied and a hierarchical topology is observed. Thus for real world scale-free networks which do not exhibit hierarchical features preferential growth is probably not the main ingredient in the growth process. An example of such real world networks includes the protein-protein interaction network in yeast, which exhibits pronounced anti-hierarchical features.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Physica Scripta","grobid_abstract_attachment_id":89961011},"translated_abstract":null,"internal_url":"https://www.academia.edu/85183365/Correlations_in_Networks_Associated_to_Preferential_Growth","translated_internal_url":"","created_at":"2022-08-19T21:58:00.615-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89961011,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961011/thumbnails/1.jpg","file_name":"0401537.pdf","download_url":"https://www.academia.edu/attachments/89961011/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Correlations_in_Networks_Associated_to_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961011/0401537-libre.pdf?1660973072=\u0026response-content-disposition=attachment%3B+filename%3DCorrelations_in_Networks_Associated_to_P.pdf\u0026Expires=1733021417\u0026Signature=QjxI4AsVWiUydtwhOjV1EH-HisN-mHfuVJ3qAG6fLZvZwPyQb4Psry0m2V1eHLODLihoadbyB8Ft3HiP6CMOBxqh5pVckPzj4oeQW3JR~7a~mTyvSbm6ALbFuK9BT0-CRFs6Ncfus7VPY2bzAbdVk7SvD9VKwTCsr27RE-h~3NaAZSG8E~0fh~Wvcr2WgZP2j1DAHHXXdOrQkDXHE5yQaD6SFQ5~R~HE0eJUaJc9eBu-Cj31Eka9AUV1oBG9ReVLnP-AbCJp5Et9fXGva3ynKiOK~9ybnGgxQLQpEY1tMLLSpkX29eH5U0FCOcjXlwhmB2EZ5qkQVXC4E4p8EhM~mw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Correlations_in_Networks_Associated_to_Preferential_Growth","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":89961011,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961011/thumbnails/1.jpg","file_name":"0401537.pdf","download_url":"https://www.academia.edu/attachments/89961011/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Correlations_in_Networks_Associated_to_P.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961011/0401537-libre.pdf?1660973072=\u0026response-content-disposition=attachment%3B+filename%3DCorrelations_in_Networks_Associated_to_P.pdf\u0026Expires=1733021417\u0026Signature=QjxI4AsVWiUydtwhOjV1EH-HisN-mHfuVJ3qAG6fLZvZwPyQb4Psry0m2V1eHLODLihoadbyB8Ft3HiP6CMOBxqh5pVckPzj4oeQW3JR~7a~mTyvSbm6ALbFuK9BT0-CRFs6Ncfus7VPY2bzAbdVk7SvD9VKwTCsr27RE-h~3NaAZSG8E~0fh~Wvcr2WgZP2j1DAHHXXdOrQkDXHE5yQaD6SFQ5~R~HE0eJUaJc9eBu-Cj31Eka9AUV1oBG9ReVLnP-AbCJp5Et9fXGva3ynKiOK~9ybnGgxQLQpEY1tMLLSpkX29eH5U0FCOcjXlwhmB2EZ5qkQVXC4E4p8EhM~mw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":219874,"name":"Scale free network","url":"https://www.academia.edu/Documents/in/Scale_free_network"},{"id":2639567,"name":"Growth Process","url":"https://www.academia.edu/Documents/in/Growth_Process"},{"id":2806988,"name":"Protein- Protein interaction network analysis","url":"https://www.academia.edu/Documents/in/Protein-_Protein_interaction_network_analysis"}],"urls":[{"id":23142648,"url":"http://stacks.iop.org/1402-4896/71/i=6/a=018/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85183364"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85183364/A_simple_model_for_self_organization_of_bipartite_networks"><img alt="Research paper thumbnail of A simple model for self-organization of bipartite networks" class="work-thumbnail" src="https://attachments.academia-assets.com/89961019/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85183364/A_simple_model_for_self_organization_of_bipartite_networks">A simple model for self-organization of bipartite networks</a></div><div class="wp-workCard_item"><span>Europhysics Letters (EPL)</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9159c9a599c544bfaad4cc1ddbb705e0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89961019,"asset_id":85183364,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89961019/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85183364"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85183364"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85183364; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85183364]").text(description); $(".js-view-count[data-work-id=85183364]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85183364; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85183364']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85183364, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9159c9a599c544bfaad4cc1ddbb705e0" } } $('.js-work-strip[data-work-id=85183364]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85183364,"title":"A simple model for self-organization of bipartite networks","translated_title":"","metadata":{"publisher":"IOP Publishing","grobid_abstract":"We suggest a minimalistic model for directed networks and suggest an application to injection and merging of magnetic field lines. We obtain a network of connected donor and acceptor vertices with degree distribution 1/s 2 , and with dynamical reconnection events of size ∆s occurring with frequency that scale as 1/∆s 3. This suggest that the model is in the same universality class as the model for self organization in the solar atmosphere suggested by Hughes et al. 5.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Europhysics Letters (EPL)","grobid_abstract_attachment_id":89961019},"translated_abstract":null,"internal_url":"https://www.academia.edu/85183364/A_simple_model_for_self_organization_of_bipartite_networks","translated_internal_url":"","created_at":"2022-08-19T21:58:00.453-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89961019,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961019/thumbnails/1.jpg","file_name":"0403005.pdf","download_url":"https://www.academia.edu/attachments/89961019/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_simple_model_for_self_organization_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961019/0403005-libre.pdf?1660973080=\u0026response-content-disposition=attachment%3B+filename%3DA_simple_model_for_self_organization_of.pdf\u0026Expires=1733021417\u0026Signature=Wqn0C5hKpKKTHnrKKtv6-y2-p3ArXtaPTFttmYxJ72MY15OBsXs6O4BFpzxVee5~RUnrZj0tMr-7y4-auTcz8mXVBxGCl1hAr89vuHCrUQevu2GzYO6ileeuhOi-RTklElB3yKZiKIRhwI9bmja5fjfNsv8AnpibxjlUMignosshMIY3tBXLLK1e1il~9gf3f5SJTiw2cSdy5hmtGMNuk1MbtYrlkccuhNOlpka12R1VCPqjh7EJNNnPu4~7ZnTh5Ut2ltsuLDIRO7z8PndkMjdrSy0srzqwkbioXVRgKULcyBwrrvZHq9Cqu0N44bDCvw-q9j2VU-v2AOe301CAeQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_simple_model_for_self_organization_of_bipartite_networks","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":89961019,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961019/thumbnails/1.jpg","file_name":"0403005.pdf","download_url":"https://www.academia.edu/attachments/89961019/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_simple_model_for_self_organization_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961019/0403005-libre.pdf?1660973080=\u0026response-content-disposition=attachment%3B+filename%3DA_simple_model_for_self_organization_of.pdf\u0026Expires=1733021417\u0026Signature=Wqn0C5hKpKKTHnrKKtv6-y2-p3ArXtaPTFttmYxJ72MY15OBsXs6O4BFpzxVee5~RUnrZj0tMr-7y4-auTcz8mXVBxGCl1hAr89vuHCrUQevu2GzYO6ileeuhOi-RTklElB3yKZiKIRhwI9bmja5fjfNsv8AnpibxjlUMignosshMIY3tBXLLK1e1il~9gf3f5SJTiw2cSdy5hmtGMNuk1MbtYrlkccuhNOlpka12R1VCPqjh7EJNNnPu4~7ZnTh5Ut2ltsuLDIRO7z8PndkMjdrSy0srzqwkbioXVRgKULcyBwrrvZHq9Cqu0N44bDCvw-q9j2VU-v2AOe301CAeQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":34754,"name":"Magnetic field","url":"https://www.academia.edu/Documents/in/Magnetic_field"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":148392,"name":"EPL","url":"https://www.academia.edu/Documents/in/EPL"},{"id":299563,"name":"Self Organization","url":"https://www.academia.edu/Documents/in/Self_Organization"},{"id":500214,"name":"Bipartite Graph","url":"https://www.academia.edu/Documents/in/Bipartite_Graph"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85183362"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85183362/Self_organized_scale_free_networks_from_merging_and_regeneration"><img alt="Research paper thumbnail of Self organized scale-free networks from merging and regeneration" class="work-thumbnail" src="https://attachments.academia-assets.com/89961088/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85183362/Self_organized_scale_free_networks_from_merging_and_regeneration">Self organized scale-free networks from merging and regeneration</a></div><div class="wp-workCard_item"><span>The European Physical Journal B</span><span>, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="15682844c2258d59253d90137f2d5474" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":89961088,"asset_id":85183362,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/89961088/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85183362"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85183362"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85183362; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85183362]").text(description); $(".js-view-count[data-work-id=85183362]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85183362; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85183362']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85183362, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "15682844c2258d59253d90137f2d5474" } } $('.js-work-strip[data-work-id=85183362]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85183362,"title":"Self organized scale-free networks from merging and regeneration","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"We consider the self organizing process of merging and regeneration of vertices in complex networks and demonstrate that a scale-free degree distribution emerges in a steady state of such a dynamics. The merging of neighbor vertices in a network may be viewed as an optimization of efficiency by minimizing redundancy. It is also a mechanism to shorten the distance and thus decrease signaling times between vertices in a complex network. Thus the merging process will in particular be relevant for networks where these issues related to global signaling are of concern.","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"The European Physical Journal B","grobid_abstract_attachment_id":89961088},"translated_abstract":null,"internal_url":"https://www.academia.edu/85183362/Self_organized_scale_free_networks_from_merging_and_regeneration","translated_internal_url":"","created_at":"2022-08-19T21:58:00.225-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":89961088,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961088/thumbnails/1.jpg","file_name":"0403006.pdf","download_url":"https://www.academia.edu/attachments/89961088/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Self_organized_scale_free_networks_from.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961088/0403006-libre.pdf?1660973074=\u0026response-content-disposition=attachment%3B+filename%3DSelf_organized_scale_free_networks_from.pdf\u0026Expires=1733021417\u0026Signature=E0Y5k2nSdPePq12~c7gF8EVK3OORvFI4NwovzFExeFqGkgpDx2C23kPd3eczxdeA430HlPHMWSvyqRtr~tf-8-xWYRp4hDX~1-7bkwmf0l0S~DJXqXbR6mAaOGw--ZV3VK-XJgFZjb88aJ7W065IdyAeYFe3IGU29Qdd2XSii6Yain891GBCoLwUai8XlDAYfTC59p~B-H1ASDbxmPPY2W8iDkN0e5W58f2tctXeJawVqIfZuQuewqT88gPCjZpJXbtM7KjTpA49up-ef-KQi0i0DK7CDWPPCvjb1yIS3rxjPoqy0DV0nl6~A-XFHyh0Vpf0g7MJw6moPTb7rOlA6A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Self_organized_scale_free_networks_from_merging_and_regeneration","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":89961088,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89961088/thumbnails/1.jpg","file_name":"0403006.pdf","download_url":"https://www.academia.edu/attachments/89961088/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Self_organized_scale_free_networks_from.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89961088/0403006-libre.pdf?1660973074=\u0026response-content-disposition=attachment%3B+filename%3DSelf_organized_scale_free_networks_from.pdf\u0026Expires=1733021417\u0026Signature=E0Y5k2nSdPePq12~c7gF8EVK3OORvFI4NwovzFExeFqGkgpDx2C23kPd3eczxdeA430HlPHMWSvyqRtr~tf-8-xWYRp4hDX~1-7bkwmf0l0S~DJXqXbR6mAaOGw--ZV3VK-XJgFZjb88aJ7W065IdyAeYFe3IGU29Qdd2XSii6Yain891GBCoLwUai8XlDAYfTC59p~B-H1ASDbxmPPY2W8iDkN0e5W58f2tctXeJawVqIfZuQuewqT88gPCjZpJXbtM7KjTpA49up-ef-KQi0i0DK7CDWPPCvjb1yIS3rxjPoqy0DV0nl6~A-XFHyh0Vpf0g7MJw6moPTb7rOlA6A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":7150,"name":"Complex Systems","url":"https://www.academia.edu/Documents/in/Complex_Systems"},{"id":35921,"name":"Condensed Matter","url":"https://www.academia.edu/Documents/in/Condensed_Matter"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":99372,"name":"Theoretical Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Theoretical_Condensed_Matter_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":219874,"name":"Scale free network","url":"https://www.academia.edu/Documents/in/Scale_free_network"},{"id":234860,"name":"Steady state","url":"https://www.academia.edu/Documents/in/Steady_state"},{"id":299563,"name":"Self Organization","url":"https://www.academia.edu/Documents/in/Self_Organization"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83681077"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83681077/Self_organization_of_structures_and_networks_from_merging_and_small_scale_fluctuations"><img alt="Research paper thumbnail of Self-organization of structures and networks from merging and small-scale fluctuations" class="work-thumbnail" src="https://attachments.academia-assets.com/88946233/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83681077/Self_organization_of_structures_and_networks_from_merging_and_small_scale_fluctuations">Self-organization of structures and networks from merging and small-scale fluctuations</a></div><div class="wp-workCard_item"><span>Physica A: Statistical Mechanics and its Applications</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b87ff7330cd644a4cc63af7e0eb2a217" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":88946233,"asset_id":83681077,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/88946233/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83681077"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83681077"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83681077; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83681077]").text(description); $(".js-view-count[data-work-id=83681077]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83681077; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83681077']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83681077, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b87ff7330cd644a4cc63af7e0eb2a217" } } $('.js-work-strip[data-work-id=83681077]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83681077,"title":"Self-organization of structures and networks from merging and small-scale fluctuations","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"We discuss merging-and-creation as a self-organizing process for scale-free topologies in networks. Three power-law classes characterized by the power-law exponents 3/2, 2 and 5/2 are identified and the process is generalized to networks. In the network context the merging can be viewed as a consequence of optimization related to more efficient signaling.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Physica A: Statistical Mechanics and its Applications","grobid_abstract_attachment_id":88946233},"translated_abstract":null,"internal_url":"https://www.academia.edu/83681077/Self_organization_of_structures_and_networks_from_merging_and_small_scale_fluctuations","translated_internal_url":"","created_at":"2022-07-24T20:55:38.220-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":88946233,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88946233/thumbnails/1.jpg","file_name":"0406752.pdf","download_url":"https://www.academia.edu/attachments/88946233/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Self_organization_of_structures_and_netw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88946233/0406752-libre.pdf?1658722462=\u0026response-content-disposition=attachment%3B+filename%3DSelf_organization_of_structures_and_netw.pdf\u0026Expires=1733021417\u0026Signature=ILnwNQhSqSjLNPn2Mo4vDA6qHXH~jtaJa935dvuNqj-z-rJs2qQaGoxRoRWYos0l9~XNEuFPLvWaumhWzx6MhIP0wlNCyBYw3cYB4zzr5SGBJphu9XUNKli1mmEvQ6riQHOwA1AnbY6SnmBxbKGdSh5Rz67GZDNm3WvyC7Vp7RLwhJV1fSjrz6RC8WDbW3rMhaSiHovZOo2jnu02rSlu-yY9qRsQv~C7cFI1H6XJiGaDecgpE4SsRhIp2mX2NJ8VdK48y-DiO8YWBTSEmW68bQhwRsYcMlBHcmfpcTGD7NYyec9YVkhXC0V15wgNr2rxzKPB8rClOXJM1K~LhY5gLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Self_organization_of_structures_and_networks_from_merging_and_small_scale_fluctuations","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":88946233,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88946233/thumbnails/1.jpg","file_name":"0406752.pdf","download_url":"https://www.academia.edu/attachments/88946233/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Self_organization_of_structures_and_netw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88946233/0406752-libre.pdf?1658722462=\u0026response-content-disposition=attachment%3B+filename%3DSelf_organization_of_structures_and_netw.pdf\u0026Expires=1733021417\u0026Signature=ILnwNQhSqSjLNPn2Mo4vDA6qHXH~jtaJa935dvuNqj-z-rJs2qQaGoxRoRWYos0l9~XNEuFPLvWaumhWzx6MhIP0wlNCyBYw3cYB4zzr5SGBJphu9XUNKli1mmEvQ6riQHOwA1AnbY6SnmBxbKGdSh5Rz67GZDNm3WvyC7Vp7RLwhJV1fSjrz6RC8WDbW3rMhaSiHovZOo2jnu02rSlu-yY9qRsQv~C7cFI1H6XJiGaDecgpE4SsRhIp2mX2NJ8VdK48y-DiO8YWBTSEmW68bQhwRsYcMlBHcmfpcTGD7NYyec9YVkhXC0V15wgNr2rxzKPB8rClOXJM1K~LhY5gLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":113890,"name":"Power Law","url":"https://www.academia.edu/Documents/in/Power_Law"},{"id":129770,"name":"Key words","url":"https://www.academia.edu/Documents/in/Key_words"},{"id":162351,"name":"Self-Organized Criticality","url":"https://www.academia.edu/Documents/in/Self-Organized_Criticality"},{"id":172954,"name":"Aggregation","url":"https://www.academia.edu/Documents/in/Aggregation"},{"id":219874,"name":"Scale free network","url":"https://www.academia.edu/Documents/in/Scale_free_network"},{"id":299563,"name":"Self Organization","url":"https://www.academia.edu/Documents/in/Self_Organization"},{"id":360413,"name":"Merging","url":"https://www.academia.edu/Documents/in/Merging"},{"id":3667507,"name":"Scale free Networks","url":"https://www.academia.edu/Documents/in/Scale_free_Networks"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77916434"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77916434/The_Ten_Thousand_Kims"><img alt="Research paper thumbnail of The Ten Thousand Kims" class="work-thumbnail" src="https://attachments.academia-assets.com/85144568/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77916434/The_Ten_Thousand_Kims">The Ten Thousand Kims</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="62e21835e0ff52f0300ef118ebe460fd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":85144568,"asset_id":77916434,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/85144568/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77916434"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77916434"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77916434; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77916434]").text(description); $(".js-view-count[data-work-id=77916434]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77916434; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77916434']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77916434, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "62e21835e0ff52f0300ef118ebe460fd" } } $('.js-work-strip[data-work-id=77916434]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77916434,"title":"The Ten Thousand Kims","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2016,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/77916434/The_Ten_Thousand_Kims","translated_internal_url":"","created_at":"2022-04-28T21:38:37.159-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":85144568,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85144568/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/85144568/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Ten_Thousand_Kims.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85144568/download-libre.pdf?1651207875=\u0026response-content-disposition=attachment%3B+filename%3DThe_Ten_Thousand_Kims.pdf\u0026Expires=1733021417\u0026Signature=YR8P88zTBtpAOOXdm~UKyzg5UpyRiKykxViTl~CDmnKxn1-b4z7v~FN6D8b7ckce~UjFk1eWzuAr6MOz3ciroZ1Z9iQpOBd0Ce8j3FFfLXT39M8q8QFtHcvnX42-ECCh~j39hw1Eyluku6-gmUTwimVE7ya0m3i2MHgDnpBsq4KQ4btr14pOqScfnhlxTGZPYGKnXuhrGwgin0RE68f1L-1AH~FLp9Kmxj-PY63BbGtfviGujGuczy56NOac8ehrqF9kLoEcR4rhZF9Ah1lFofNDfdZfcch98RnpyoEUR8syylBqBKtH3eNma0Wu4iGbW0anFBvG5QitDdQum98Zvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Ten_Thousand_Kims","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":85144568,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85144568/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/85144568/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Ten_Thousand_Kims.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85144568/download-libre.pdf?1651207875=\u0026response-content-disposition=attachment%3B+filename%3DThe_Ten_Thousand_Kims.pdf\u0026Expires=1733021417\u0026Signature=YR8P88zTBtpAOOXdm~UKyzg5UpyRiKykxViTl~CDmnKxn1-b4z7v~FN6D8b7ckce~UjFk1eWzuAr6MOz3ciroZ1Z9iQpOBd0Ce8j3FFfLXT39M8q8QFtHcvnX42-ECCh~j39hw1Eyluku6-gmUTwimVE7ya0m3i2MHgDnpBsq4KQ4btr14pOqScfnhlxTGZPYGKnXuhrGwgin0RE68f1L-1AH~FLp9Kmxj-PY63BbGtfviGujGuczy56NOac8ehrqF9kLoEcR4rhZF9Ah1lFofNDfdZfcch98RnpyoEUR8syylBqBKtH3eNma0Wu4iGbW0anFBvG5QitDdQum98Zvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":85144569,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/85144569/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/85144569/download_file","bulk_download_file_name":"The_Ten_Thousand_Kims.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/85144569/download-libre.pdf?1651207875=\u0026response-content-disposition=attachment%3B+filename%3DThe_Ten_Thousand_Kims.pdf\u0026Expires=1733021418\u0026Signature=MzNvUmOsHwMzBtVrFieF~s8Uij~-2X83s77VR0I~6VAnxdG34WPbk2Kj-jJbG7mbl2EyOw6HSE6IWoqdCLoslRCMXDxh~0nxCf9B14kXF-3D-jWiw52u7YCypcSkPSesbr0-kWXopS3HcYqe4~hb65jJYdzxYulTOgCmFZkzxDmHKzeLFsvaVqW9xGbVidyF0l0AAOqufEEsbj2Eg~y500C9qPBy9HxKF5WyUGWIz9qMBXYCgXBta0R6sIvGoI4HmYBeGajIaJsz4W8bInaqNCKw18oNRL~pJ2dOJ7zJDWmZqdarsM6IvzGtw~gs0FDqMDudIqhkoR7uvV2nouJ8RQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":701253,"name":"New Physics","url":"https://www.academia.edu/Documents/in/New_Physics"}],"urls":[{"id":20018862,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.768.1798\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="75678809"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/75678809/Exact_numerical_solutions_of_a_nozieres_de_dominicis_type_model_problem"><img alt="Research paper thumbnail of Exact numerical solutions of a nozieres-de dominicis-type model problem" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/75678809/Exact_numerical_solutions_of_a_nozieres_de_dominicis_type_model_problem">Exact numerical solutions of a nozieres-de dominicis-type model problem</a></div><div class="wp-workCard_item"><span>Physics Letters A</span><span>, 1976</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We infer from a model calculation that, to a very good approximation, the XPS spectra from core e...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We infer from a model calculation that, to a very good approximation, the XPS spectra from core electrons in simple metals should follow the edge power law up to the first plasmon satellite. The power law indices obtained are in good agreement with recent experimental XPS values for Na, Mg and Al.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="75678809"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="75678809"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 75678809; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=75678809]").text(description); $(".js-view-count[data-work-id=75678809]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 75678809; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='75678809']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 75678809, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=75678809]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":75678809,"title":"Exact numerical solutions of a nozieres-de dominicis-type model problem","translated_title":"","metadata":{"abstract":"We infer from a model calculation that, to a very good approximation, the XPS spectra from core electrons in simple metals should follow the edge power law up to the first plasmon satellite. The power law indices obtained are in good agreement with recent experimental XPS values for Na, Mg and Al.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":1976,"errors":{}},"publication_name":"Physics Letters A"},"translated_abstract":"We infer from a model calculation that, to a very good approximation, the XPS spectra from core electrons in simple metals should follow the edge power law up to the first plasmon satellite. The power law indices obtained are in good agreement with recent experimental XPS values for Na, Mg and Al.","internal_url":"https://www.academia.edu/75678809/Exact_numerical_solutions_of_a_nozieres_de_dominicis_type_model_problem","translated_internal_url":"","created_at":"2022-04-06T21:23:33.719-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Exact_numerical_solutions_of_a_nozieres_de_dominicis_type_model_problem","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":113890,"name":"Power Law","url":"https://www.academia.edu/Documents/in/Power_Law"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":896204,"name":"Numerical Solution","url":"https://www.academia.edu/Documents/in/Numerical_Solution"},{"id":3591712,"name":"Physics Letters A","url":"https://www.academia.edu/Documents/in/Physics_Letters_A"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="72296061"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/72296061/Phase_Transitions_in_the_Two_Dimensional_Random_Gauge_XY_Model"><img alt="Research paper thumbnail of Phase Transitions in the Two-Dimensional Random Gauge XY Model" class="work-thumbnail" src="https://attachments.academia-assets.com/81279599/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/72296061/Phase_Transitions_in_the_Two_Dimensional_Random_Gauge_XY_Model">Phase Transitions in the Two-Dimensional Random Gauge XY Model</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The two-dimensional random gauge model, where the quenched random variables are magnetic bond ang...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The two-dimensional random gauge model, where the quenched random variables are magnetic bond angles uniformly distributed within [-rπ, rπ] (0 ≤ r ≤ 1), is studied via Monte Carlo simulations. We investigate the phase diagram in the plane of the temperature T and the disorder strength r, and infer, in contrast to a prevailing conclusion in many earlier studies, that the system is superconducting at any disorder strength r for sufficiently low T. It is also argued that the superconducting to normal transition has different nature at weak disorder and strong disorder: termed Kosterlitz-Thouless (KT) type and non-KT type, respectively. The results are compared to earlier works.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="54a26c453852e2aa17e3feea2627827c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":81279599,"asset_id":72296061,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/81279599/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="72296061"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="72296061"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 72296061; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=72296061]").text(description); $(".js-view-count[data-work-id=72296061]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 72296061; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='72296061']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 72296061, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "54a26c453852e2aa17e3feea2627827c" } } $('.js-work-strip[data-work-id=72296061]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":72296061,"title":"Phase Transitions in the Two-Dimensional Random Gauge XY Model","translated_title":"","metadata":{"abstract":"The two-dimensional random gauge model, where the quenched random variables are magnetic bond angles uniformly distributed within [-rπ, rπ] (0 ≤ r ≤ 1), is studied via Monte Carlo simulations. We investigate the phase diagram in the plane of the temperature T and the disorder strength r, and infer, in contrast to a prevailing conclusion in many earlier studies, that the system is superconducting at any disorder strength r for sufficiently low T. It is also argued that the superconducting to normal transition has different nature at weak disorder and strong disorder: termed Kosterlitz-Thouless (KT) type and non-KT type, respectively. The results are compared to earlier works.","publication_date":{"day":16,"month":1,"year":2003,"errors":{}}},"translated_abstract":"The two-dimensional random gauge model, where the quenched random variables are magnetic bond angles uniformly distributed within [-rπ, rπ] (0 ≤ r ≤ 1), is studied via Monte Carlo simulations. We investigate the phase diagram in the plane of the temperature T and the disorder strength r, and infer, in contrast to a prevailing conclusion in many earlier studies, that the system is superconducting at any disorder strength r for sufficiently low T. It is also argued that the superconducting to normal transition has different nature at weak disorder and strong disorder: termed Kosterlitz-Thouless (KT) type and non-KT type, respectively. The results are compared to earlier works.","internal_url":"https://www.academia.edu/72296061/Phase_Transitions_in_the_Two_Dimensional_Random_Gauge_XY_Model","translated_internal_url":"","created_at":"2022-02-23T00:40:59.176-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":81279599,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81279599/thumbnails/1.jpg","file_name":"cond-mat0301279.pdf","download_url":"https://www.academia.edu/attachments/81279599/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Phase_Transitions_in_the_Two_Dimensional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81279599/cond-mat0301279-libre.pdf?1645606883=\u0026response-content-disposition=attachment%3B+filename%3DPhase_Transitions_in_the_Two_Dimensional.pdf\u0026Expires=1733021418\u0026Signature=Cuws9syviTZostqQsSP0uriCyNU87l0iHhCZCAMZ7KaU6vfwz-Kts1CaWWBNyBpvR9wOkYuArwAIncyrCC8VQjGb97udxg50OHtXDt4LrmFyMA0pTRANjI2me6TgqscskwQUq0LNS0WPyoTQ-4nSksjtFF~i6qYKhon02DWv4QRBb-uws6wDu~kUC8M800BfoOkZ0b-WQWpxq7jRprXnqBikqL651JzZuIEg4~Qfs931pThdWherMtOXHQXrYjTaQLEcyLWMQ2SAX6DhchPaLZ~PzHtv63HSozOZSg2Qx-6uvZAqSJ1TVLGfPZXhmO~QhvigdAuB3XyFRAw3d6TVVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Phase_Transitions_in_the_Two_Dimensional_Random_Gauge_XY_Model","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[{"id":81279599,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81279599/thumbnails/1.jpg","file_name":"cond-mat0301279.pdf","download_url":"https://www.academia.edu/attachments/81279599/download_file?st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&st=MTczMzAxNzgxOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Phase_Transitions_in_the_Two_Dimensional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81279599/cond-mat0301279-libre.pdf?1645606883=\u0026response-content-disposition=attachment%3B+filename%3DPhase_Transitions_in_the_Two_Dimensional.pdf\u0026Expires=1733021418\u0026Signature=Cuws9syviTZostqQsSP0uriCyNU87l0iHhCZCAMZ7KaU6vfwz-Kts1CaWWBNyBpvR9wOkYuArwAIncyrCC8VQjGb97udxg50OHtXDt4LrmFyMA0pTRANjI2me6TgqscskwQUq0LNS0WPyoTQ-4nSksjtFF~i6qYKhon02DWv4QRBb-uws6wDu~kUC8M800BfoOkZ0b-WQWpxq7jRprXnqBikqL651JzZuIEg4~Qfs931pThdWherMtOXHQXrYjTaQLEcyLWMQ2SAX6DhchPaLZ~PzHtv63HSozOZSg2Qx-6uvZAqSJ1TVLGfPZXhmO~QhvigdAuB3XyFRAw3d6TVVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":81279600,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/81279600/thumbnails/1.jpg","file_name":"cond-mat0301279.pdf","download_url":"https://www.academia.edu/attachments/81279600/download_file","bulk_download_file_name":"Phase_Transitions_in_the_Two_Dimensional.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/81279600/cond-mat0301279-libre.pdf?1645606882=\u0026response-content-disposition=attachment%3B+filename%3DPhase_Transitions_in_the_Two_Dimensional.pdf\u0026Expires=1733021418\u0026Signature=bIPipAmi~-Qj3uKjL8gzo6orAQDMZspN0iE8eUWQwtF2XrMrErCvyHMlYik2~lI3GzMogruJc3xKJCt8Xkzag9BxIrL-miOoiVyoMM5IrTjH5XHPzdCoz67I96sMYBOipRAOaXdXCsomRmLbx8skv9fYZ5ki4PiHLM3OHM6~XRi3uMzsi-ifoaupQnQlnSU0ATJLru4vgpDJ9XsObqHn3dMx9RjpQykI4BHcHvq70gNJY6CqkUujlVIsC1g90ZLWEG8Wr7j860uTtaawVbdol6DeTpvPzxyPCTUZkJwVdRW0H-X2kSjbFMUgo0UFiQMGjAyi02U40-nCciDUUEaFyQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":4392,"name":"Monte Carlo Simulation","url":"https://www.academia.edu/Documents/in/Monte_Carlo_Simulation"},{"id":6974,"name":"Monte Carlo","url":"https://www.academia.edu/Documents/in/Monte_Carlo"},{"id":133177,"name":"Temperature","url":"https://www.academia.edu/Documents/in/Temperature"},{"id":173963,"name":"Phase transition","url":"https://www.academia.edu/Documents/in/Phase_transition"},{"id":183513,"name":"Order","url":"https://www.academia.edu/Documents/in/Order"},{"id":339316,"name":"Spin Glass","url":"https://www.academia.edu/Documents/in/Spin_Glass"},{"id":611819,"name":"Discrete random variable","url":"https://www.academia.edu/Documents/in/Discrete_random_variable"},{"id":1199295,"name":"Flux Pinning","url":"https://www.academia.edu/Documents/in/Flux_Pinning"},{"id":2382100,"name":"Correlation function","url":"https://www.academia.edu/Documents/in/Correlation_function"}],"urls":[{"id":17969585,"url":"https://archive.org/download/arxiv-cond-mat0301279/cond-mat0301279.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="66668113"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/66668113/Aspects_on_diagrammatic_expansion_for_models_related_to_a_homogeneous_electron_gas"><img alt="Research paper thumbnail of Aspects on diagrammatic expansion for models related to a homogeneous electron gas" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/66668113/Aspects_on_diagrammatic_expansion_for_models_related_to_a_homogeneous_electron_gas">Aspects on diagrammatic expansion for models related to a homogeneous electron gas</a></div><div class="wp-workCard_item"><span>Journal of Physics C: Solid State Physics</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="66668113"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="66668113"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66668113; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66668113]").text(description); $(".js-view-count[data-work-id=66668113]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66668113; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='66668113']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 66668113, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=66668113]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":66668113,"title":"Aspects on diagrammatic expansion for models related to a homogeneous electron gas","translated_title":"","metadata":{"abstract":"ABSTRACT","publisher":"IOP Publishing","publication_name":"Journal of Physics C: Solid State Physics"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/66668113/Aspects_on_diagrammatic_expansion_for_models_related_to_a_homogeneous_electron_gas","translated_internal_url":"","created_at":"2021-12-30T22:22:48.190-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Aspects_on_diagrammatic_expansion_for_models_related_to_a_homogeneous_electron_gas","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":347272,"name":"Second Order","url":"https://www.academia.edu/Documents/in/Second_Order"}],"urls":[{"id":15921996,"url":"http://stacks.iop.org/0022-3719/8/i=10/a=010/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="66668110"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/66668110/Excitation_probability_in_a_time_dependent_external_potential"><img alt="Research paper thumbnail of Excitation probability in a time-dependent external potential" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/66668110/Excitation_probability_in_a_time_dependent_external_potential">Excitation probability in a time-dependent external potential</a></div><div class="wp-workCard_item"><span>Journal of Physics C: Solid State Physics</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="66668110"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="66668110"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66668110; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66668110]").text(description); $(".js-view-count[data-work-id=66668110]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66668110; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='66668110']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 66668110, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=66668110]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":66668110,"title":"Excitation probability in a time-dependent external potential","translated_title":"","metadata":{"abstract":"ABSTRACT","publisher":"IOP Publishing","publication_name":"Journal of Physics C: Solid State Physics"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/66668110/Excitation_probability_in_a_time_dependent_external_potential","translated_internal_url":"","created_at":"2021-12-30T22:22:47.990-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Excitation_probability_in_a_time_dependent_external_potential","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":1993786,"name":"Cumulant","url":"https://www.academia.edu/Documents/in/Cumulant"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="66668108"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/66668108/On_the_quantitative_evaluation_of_XPS_lineshape_asymmetries_for_free_electron_like_metals"><img alt="Research paper thumbnail of On the quantitative evaluation of XPS lineshape asymmetries for free-electron-like metals" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/66668108/On_the_quantitative_evaluation_of_XPS_lineshape_asymmetries_for_free_electron_like_metals">On the quantitative evaluation of XPS lineshape asymmetries for free-electron-like metals</a></div><div class="wp-workCard_item"><span>Journal of Physics F: Metal Physics</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="66668108"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="66668108"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 66668108; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=66668108]").text(description); $(".js-view-count[data-work-id=66668108]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 66668108; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='66668108']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 66668108, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=66668108]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":66668108,"title":"On the quantitative evaluation of XPS lineshape asymmetries for free-electron-like metals","translated_title":"","metadata":{"abstract":"ABSTRACT","publisher":"IOP Publishing","publication_name":"Journal of Physics F: Metal Physics"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/66668108/On_the_quantitative_evaluation_of_XPS_lineshape_asymmetries_for_free_electron_like_metals","translated_internal_url":"","created_at":"2021-12-30T22:22:47.807-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":35870771,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_the_quantitative_evaluation_of_XPS_lineshape_asymmetries_for_free_electron_like_metals","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":35870771,"first_name":"Petter","middle_initials":null,"last_name":"Minnhagen","page_name":"PetterMinnhagen","domain_name":"umu","created_at":"2015-10-08T06:30:55.611-07:00","display_name":"Petter Minnhagen","url":"https://umu.academia.edu/PetterMinnhagen"},"attachments":[],"research_interests":[{"id":321836,"name":"Spectrum","url":"https://www.academia.edu/Documents/in/Spectrum"},{"id":749302,"name":"Indexation","url":"https://www.academia.edu/Documents/in/Indexation"}],"urls":[{"id":15921992,"url":"http://stacks.iop.org/0305-4608/7/i=11/a=026/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "780591e2734aea623ad4273b605ebc1d6f05586608a6f3d4c1ee6f3c10c3f53f", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="YV+XmJYgOzTWjZVbts1rzFQCTmj4sQqjQHV9HGjEkew/bkKcUeafPR/gRcvEM0c9uxe+SWDHWvS2ZKoCqJx0Sg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://umu.academia.edu/PetterMinnhagen?swp=tc-au-66668113" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="qjVeTesaykSWJE+VTn5o7V7B0xIZd9YkOWThquEkzBX0BItJLNxuTV9JnwU8gEQcsdQjM4EBhnPPdTa0IXwpsw==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>