CINXE.COM
Search results for: MtDNA
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: MtDNA</title> <meta name="description" content="Search results for: MtDNA"> <meta name="keywords" content="MtDNA"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="MtDNA" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="MtDNA"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 22</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: MtDNA</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Mitochondrial DNA Copy Number in Egyptian Patients with Hepatitis C Virus Related Hepatocellular Carcinoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doaa%20Hashad">Doaa Hashad</a>, <a href="https://publications.waset.org/abstracts/search?q=Amany%20Elyamany"> Amany Elyamany</a>, <a href="https://publications.waset.org/abstracts/search?q=Perihan%20Salem"> Perihan Salem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Hepatitis C virus infection (HCV) constitutes a serious dilemma that has an impact on the health of millions of Egyptians. Hepatitis C virus related hepatocellular carcinoma (HCV-HCC) is a crucial consequence of HCV that represents the third cause of cancer-related deaths worldwide. Aim of the study: assess the use of mitochondrial DNA (mtDNA) content as a non-invasive molecular biomarker in hepatitis c virus related hepatocellular carcinoma (HCV-HCC). Methods: A total of 135 participants were enrolled in the study. Volunteers were assigned to one of three groups equally; a group of HCV related cirrhosis (HCV-cirrhosis), a group of HCV-HCC and a control group of age- and sex- matched healthy volunteers with no evidence of liver disease. mtDNA was determined using a quantitative real-time PCR technique. Results: mtDNA content was lowest in HCV-HCC cases. No statistically significant difference was observed between the group of HCV-cirrhosis and the control group as regards mtDNA level. HCC patients with multi-centric hepatic lesions had significantly lower mtDNA content. On using receiver operating characteristic curve analysis, a cutoff of 34 was assigned for mtDNA content to distinguish between HCV-HCC and HCV-cirrhosis patients who are not yet complicated by malignancy. Lower mtDNA was associated with greater HCC risk on using healthy controls, HCV-cirrhosis, or combining both groups as a reference group. Conclusions: mtDNA content might constitute a non-invasive molecular biomarker that reflects tumor burden in HCV-HCC cases and could be used as a predictor of HCC risk in patients of HCV-cirrhosis. In addition, the non significant difference of mtDNA level between HCV-cirrhosis patients and healthy controls could eliminate the grey zone created by the use of AFP in some cirrhotic patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20copy%20number" title="DNA copy number">DNA copy number</a>, <a href="https://publications.waset.org/abstracts/search?q=HCC" title=" HCC"> HCC</a>, <a href="https://publications.waset.org/abstracts/search?q=HCV" title=" HCV"> HCV</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial" title=" mitochondrial"> mitochondrial</a> </p> <a href="https://publications.waset.org/abstracts/45827/mitochondrial-dna-copy-number-in-egyptian-patients-with-hepatitis-c-virus-related-hepatocellular-carcinoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Magnetophotonics 3D MEMS/NEMS System for Quantitative Mitochondrial DNA Defect Profiling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dar-Bin%20Shieh">Dar-Bin Shieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gwo-Bin%20Lee"> Gwo-Bin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Ming%20Chang"> Chen-Ming Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Sheng%20Yeh"> Chen Sheng Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Chia%20Huang"> Chih-Chia Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsung-Ju%20Li"> Tsung-Ju Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mitochondrial defects have a significant impact in many human diseases and aging associated phenotypes. The pathogenic mitochondrial DNA (mtDNA) mutations are diverse and usually present as heteroplasmic. mtDNA 4977bps deletion is one of the common mtDNA defects, and the ratio of mutated versus normal copy is significantly associated with clinical symptoms thus their quantitative detection has become an important unmet needs for advanced disease diagnosis and therapeutic guidelines. This study revealed a Micro-electro-mechanical-system (MEMS) enabled automatic microfluidic chip that only required minimal sample. The system integrated multiple laboratory operation steps into a Lab-on-a-Chip for high-sensitive and prompt measurement. The entire process including magnetic nanoparticle based mtDNA extraction in chip, mutation selective photonic DNA cleavage, and nanoparticle accelerated photonic quantitative polymerase chain reaction (qPCR). All subsystems were packed inside a miniature three-dimensional micro structured system and operated in an automatic manner. Integration of magnetic beads with microfluidic transportation could promptly extract and enrich the specific mtDNA. The near infrared responsive magnetic nanoparticles enabled micro-PCR to be operated by pulse-width-modulation controlled laser pulsing to amplify the desired mtDNA while quantified by fluorescence intensity captured by a complementary metal oxide system array detector. The proportions of pathogenic mtDNA in total DNA were thus obtained. Micro capillary electrophoresis module was used to analyze the amplicone products. In conclusion, this study demonstrated a new magnetophotonic based qPCR MEMS system that successfully detects and quantify specific disease related DNA mutations thus provides a promising future for rapid diagnosis of mitochondria diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20DNA" title="mitochondrial DNA">mitochondrial DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-electro-mechanical-system" title=" micro-electro-mechanical-system"> micro-electro-mechanical-system</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetophotonics" title=" magnetophotonics"> magnetophotonics</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a> </p> <a href="https://publications.waset.org/abstracts/78727/magnetophotonics-3d-memsnems-system-for-quantitative-mitochondrial-dna-defect-profiling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Mitochondrial DNA Defect and Mitochondrial Dysfunction in Diabetic Nephropathy: The Role of Hyperglycemia-Induced Reactive Oxygen Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Al-Kafaji">Ghada Al-Kafaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sabry"> Mohamed Sabry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mitochondria are the site of cellular respiration and produce energy in the form of adenosine triphosphate (ATP) via oxidative phosphorylation. They are the major source of intracellular reactive oxygen species (ROS) and are also direct target to ROS attack. Oxidative stress and ROS-mediated disruptions of mitochondrial function are major components involved in the pathogenicity of diabetic complications. In this work, the changes in mitochondrial DNA (mtDNA) copy number, biogenesis, gene expression of mtDNA-encoded subunits of electron transport chain (ETC) complexes, and mitochondrial function in response to hyperglycemia-induced ROS and the effect of direct inhibition of ROS on mitochondria were investigated in an in vitro model of diabetic nephropathy using human renal mesangial cells. The cells were exposed to normoglycemic and hyperglycemic conditions in the presence and absence of Mn(III)tetrakis(4-benzoic acid) porphyrin chloride (MnTBAP) or catalase for 1, 4 and 7 days. ROS production was assessed by the confocal microscope and flow cytometry. mtDNA copy number and PGC-1a, NRF-1, and TFAM, as well as ND2, CYTB, COI, and ATPase 6 transcripts, were all analyzed by real-time PCR. PGC-1a, NRF-1, and TFAM, as well as ND2, CYTB, COI, and ATPase 6 proteins, were analyzed by Western blotting. Mitochondrial function was determined by assessing mitochondrial membrane potential and adenosine triphosphate (ATP) levels. Hyperglycemia-induced a significant increase in the production of mitochondrial superoxide and hydrogen peroxide at day 1 (P < 0.05), and this increase remained significantly elevated at days 4 and 7 (P < 0.05). The copy number of mtDNA and expression of PGC-1a, NRF-1, and TFAM as well as ND2, CYTB, CO1 and ATPase 6 increased after one day of hyperglycemia (P < 0.05), with a significant reduction in all those parameters at 4 and 7 days (P < 0.05). The mitochondrial membrane potential decreased progressively at 1 to 7 days of hyperglycemia with the parallel progressive reduction in ATP levels over time (P < 0.05). MnTBAP and catalase treatment of cells cultured under hyperglycemic conditions attenuated ROS production reversed renal mitochondrial oxidative stress and improved mtDNA, mitochondrial biogenesis, and function. These results show that hyperglycemia-induced ROS caused an early increase in mtDNA copy number, mitochondrial biogenesis and mtDNA-encoded gene expression of the ETC subunits in human mesangial cells as a compensatory response to the decline in mitochondrial function, which precede the mtDNA defect and mitochondrial dysfunction with a progressive oxidative response. Protection from ROS-mediated damage to renal mitochondria induced by hyperglycemia may be a novel therapeutic approach for the prevention/treatment of DN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetic%20nephropathy" title="diabetic nephropathy">diabetic nephropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperglycemia" title=" hyperglycemia"> hyperglycemia</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=mtDNA" title=" mtDNA"> mtDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20dysfunction" title=" mitochondrial dysfunction"> mitochondrial dysfunction</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese%20superoxide%20dismutase" title=" manganese superoxide dismutase"> manganese superoxide dismutase</a>, <a href="https://publications.waset.org/abstracts/search?q=catalase" title=" catalase"> catalase</a> </p> <a href="https://publications.waset.org/abstracts/65128/mitochondrial-dna-defect-and-mitochondrial-dysfunction-in-diabetic-nephropathy-the-role-of-hyperglycemia-induced-reactive-oxygen-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Assessment of Genetic Diversity and Population Structure of Goldstripe Sardinella, Sardinella gibbosa in the Transboundary Area of Kenya and Tanzania Using mtDNA and msDNA Markers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sammy%20Kibor">Sammy Kibor</a>, <a href="https://publications.waset.org/abstracts/search?q=Filip%20Huyghe"> Filip Huyghe</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc%20Kochzius"> Marc Kochzius</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Kairo"> James Kairo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Goldstripe Sardinella, Sardinella gibbosa, (Bleeker, 1849) is a commercially and ecologically important small pelagic fish common in the Western Indian Ocean region. The present study aimed to assess genetic diversity and population structure of the species in the Kenya-Tanzania transboundary area using mtDNA and msDNA markers. Some 630 bp sequence in the mitochondrial DNA (mtDNA) Cytochrome C Oxidase I (COI) and five polymorphic microsatellite DNA loci were analyzed. Fin clips of 309 individuals from eight locations within the transboundary area were collected between July and December 2018. The S. gibbosa individuals from the different locations were distinguishable from one another based on the mtDNA variation, as demonstrated with a neighbor-joining tree and minimum spanning network analysis. None of the identified 22 haplotypes were shared between Kenya and Tanzania. Gene diversity per locus was relatively high (0.271-0.751), highest Fis was 0.391. The structure analysis, discriminant analysis of Principal component (DAPC) and the pair-wise (FST = 0.136 P < 0.001) values after Bonferroni correction using five microsatellite loci provided clear inference on genetic differentiation and thus evidence of population structure of S. gibbosa along the Kenya-Tanzania coast. This study shows a high level of genetic diversity and the presence of population structure (Φst =0.078 P < 0.001) resulting to the existence of four populations giving a clear indication of minimum gene flow among the population. This information has application in the designing of marine protected areas, an important tool for marine conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marine%20connectivity" title="marine connectivity">marine connectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=microsatellites" title=" microsatellites"> microsatellites</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20genetics" title=" population genetics"> population genetics</a>, <a href="https://publications.waset.org/abstracts/search?q=transboundary" title=" transboundary"> transboundary</a> </p> <a href="https://publications.waset.org/abstracts/106757/assessment-of-genetic-diversity-and-population-structure-of-goldstripe-sardinella-sardinella-gibbosa-in-the-transboundary-area-of-kenya-and-tanzania-using-mtdna-and-msdna-markers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Modified Gold Screen Printed Electrode with Ruthenium Complex for Selective Detection of Porcine DNA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Aishah%20Hasbullah">Siti Aishah Hasbullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies on identification of pork content in food have grown rapidly to meet the Halal food standard in Malaysia. The used mitochondria DNA (mtDNA) approaches for the identification of pig species is thought to be the most precise marker due to the mtDNA genes are present in thousands of copies per cell, the large variability of mtDNA. The standard method commonly used for DNA detection is based on polymerase chain reaction (PCR) method combined with gel electrophoresis but has major drawback. Its major drawbacks are laborious, need longer time and toxic to handle. Therefore, the need for simplicity and fast assay of DNA is vital and has triggered us to develop DNA biosensors for porcine DNA detection. Therefore, the aim of this project is to develop electrochemical DNA biosensor based on ruthenium (II) complex, [Ru(bpy)2(p-PIP)]2+ as DNA hybridization label. The interaction of DNA and [Ru(bpy)2(p-HPIP)]2+ will be studied by electrochemical transduction using Gold Screen-Printed Electrode (GSPE) modified with gold nanoparticles (AuNPs) and succinimide acrylic microspheres. The electrochemical detection by redox active ruthenium (II) complex was measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicate that the interaction of [Ru(bpy)2(PIP)]2+ with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA. Under optimized condition, this porcine DNA biosensor incorporated modified GSPE shows good linear range towards porcine DNA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold" title="gold">gold</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20printed%20electrode" title=" screen printed electrode"> screen printed electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=ruthenium" title=" ruthenium"> ruthenium</a>, <a href="https://publications.waset.org/abstracts/search?q=porcine%20DNA" title=" porcine DNA"> porcine DNA</a> </p> <a href="https://publications.waset.org/abstracts/68407/modified-gold-screen-printed-electrode-with-ruthenium-complex-for-selective-detection-of-porcine-dna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Estimated Heat Production, Blood Parameters and Mitochondrial DNA Copy Number of Nellore Bulls with High and Low Residual Feed Intake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Welder%20A.%20Baldassini">Welder A. Baldassini</a>, <a href="https://publications.waset.org/abstracts/search?q=Jon%20J.%20Ramsey"> Jon J. Ramsey</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcos%20R.%20Chiaratti"> Marcos R. Chiaratti</a>, <a href="https://publications.waset.org/abstracts/search?q=Am%C3%A1lia%20S.%20Chaves"> Amália S. Chaves</a>, <a href="https://publications.waset.org/abstracts/search?q=Renata%20H.%20Branco"> Renata H. Branco</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20F.%20M.%20Bonilha"> Sarah F. M. Bonilha</a>, <a href="https://publications.waset.org/abstracts/search?q=Dante%20P.%20D.%20Lanna"> Dante P. D. Lanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With increased production costs there is a need for animals that are more efficient in terms of meat production. In this context, the role of mitochondrial DNA (mtDNA) on physiological processes in liver, muscle and adipose tissues may account for inter-animal variation in energy expenditures and heat production. The purpose this study was to investigate if the amounts of mtDNA in liver, muscle and adipose tissue (subcutaneous and visceral depots) of Nellore bulls are associated with residual feed intake (RFI) and estimated heat production (EHP). Eighteen animals were individually fed in a feedlot for 90 days. RFI values were obtained by regression of dry matter intake (DMI) in relation to average daily gain (ADG) and mid-test metabolic body weight (BW). The animals were classified into low (more efficient) and high (less efficient) RFI groups. The bulls were then randomly distributed in individual pens where they were given excess feed twice daily to result in 5 to 10% orts for 90 d with diet containing 15% crude protein and 2.7 Mcal ME/kg DM. The heart rate (HR) of bulls was monitored for 4 consecutive days and used for calculation of EHP. Electrodes were fitted to bulls with stretch belts (POLAR RS400; Kempele, Finland). To calculate oxygen pulse (O2P), oxygen consumption was obtained using a facemask connected to the gas analyzer (EXHALYZER, ECOMedics, Zurich, Switzerland) and HR were simultaneously measured for 15 minutes period. Daily oxygen (O2) consumption was calculated by multiplying the volume of O2 per beat by total daily beats. EHP was calculated multiplying O2P by the average HR obtained during the 4 days, assuming 4.89 kcal/L of O2 to measure daily EHP that was expressed in kilocalories/day/kilogram metabolic BW (kcal/day/kg BW0.75). Blood samples were collected between days 45 and 90th after the beginning of the trial period in order to measure the concentration of hemoglobin and hematocrit. The bulls were slaughtered in an experimental slaughter house in accordance with current guidelines. Immediately after slaughter, a section of liver, a portion of longissimus thoracis (LT) muscle, plus a portion of subcutaneous fat (surrounding LT muscle) and portions of visceral fat (kidney, pelvis and inguinal fat) were collected. Samples of liver, muscle and adipose tissues were used to quantify mtDNA copy number per cell. The number of mtDNA copies was determined by normalization of mtDNA amount against a single copy nuclear gene (B2M). Mean of EHP, hemoglobin and hematocrit of high and low RFI bulls were compared using two-sample t-tests. Additionally, the one-way ANOVA was used to compare mtDNA quantification considering the mains effects of RFI groups. We found lower EHP (83.047 vs. 97.590 kcal/day/kgBW0.75; P < 0.10), hemoglobin concentration (13.533 vs. 15.108 g/dL; P < 0.10) and hematocrit percentage (39.3 vs. 43.6 %; P < 0.05) in low compared to high RFI bulls, respectively, which may be useful traits to identify efficient animals. However, no differences were observed between the mtDNA content in liver, muscle and adipose tissue of Nellore bulls with high and low RFI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioenergetics" title="bioenergetics">bioenergetics</a>, <a href="https://publications.waset.org/abstracts/search?q=Bos%20indicus" title=" Bos indicus"> Bos indicus</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20efficiency" title=" feed efficiency"> feed efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title=" mitochondria"> mitochondria</a> </p> <a href="https://publications.waset.org/abstracts/58953/estimated-heat-production-blood-parameters-and-mitochondrial-dna-copy-number-of-nellore-bulls-with-high-and-low-residual-feed-intake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Valorization of Underutilized Fish Species Through a Multidisciplinary Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiziana%20Pepe">Tiziana Pepe</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerardo%20Manfreda"> Gerardo Manfreda</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Ianieri"> Adriana Ianieri</a>, <a href="https://publications.waset.org/abstracts/search?q=Aniello%20Anastasio"> Aniello Anastasio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sustainable exploitation of marine biological resources is among the most important objectives of the EU's Common Fisheries Policy (CFP). Currently, Europe imports about 65% of its fish products, indicating that domestic production does not meet consumer demand. Despite the availability of numerous commercially significant fish species, European consumption is concentrated on a limited number of products (e.g., sea bass, sea bream, shrimp). Many native species, present in large quantities in the Mediterranean Sea, are little known to consumers and are therefore considered ‘fishing by-products’. All the data presented so far indicate a significant waste of local resources and the overexploitation of a few fish stocks. It is therefore necessary to develop strategies that guide the market towards sustainable conversion. The objective of this work was to valorize underutilized fish species of the Mediterranean Sea through a multidisciplinary approach. To this end, three fish species were sampled: Atlantic Horse Mackerel (Trachurus trachurus), Bogue (Boops boops), and Common Dolphinfish (Coryphaena hippurus). Nutritional properties (water %, fats, proteins, ashes, salts), physical/chemical properties (TVB-N, histamine, pH), and rheological properties (color, texture, viscosity) were analyzed. The analyses were conducted on both fillets and processing by-products. Additionally, mitochondrial DNA (mtDNA) was extracted from the muscle of each species. The mtDNA was then sequenced using the Illumina NGS technique. The analysis of nutritional properties classified the fillets of the sampled species as lean or semi-fat, as they had a fat content of less than 3%, while the by-products showed a higher lipid content (2.7-5%). The protein percentage for all fillets was 22-23%, while for processing by-products, the protein concentration was 18-19% for all species. Rheological analyses showed an increase in viscosity in saline solution in all species, indicating their potential suitability for industrial processing. High-quality and quantity complete mtDNA was extracted from all analyzed species. The complete mitochondrial genome sequences were successfully obtained and annotated. The results of this study suggest that all analyzed species are suitable for both human consumption and feed production. The sequencing of the complete mtDNA and its availability in international databases will be useful for accurate phylogenetic analysis and proper species identification, even in prepared and processed products. Underutilized fish species represent an important economic resource. Encouraging their consumption could limit the phenomenon of overfishing, protecting marine biodiversity. Furthermore, the valorization of these species will increase national fish production, supporting the local economy, cultural, and gastronomic tradition, and optimizing the exploitation of Mediterranean resources in accordance with the CFP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mtDNA" title="mtDNA">mtDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20analysis" title=" nutritional analysis"> nutritional analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20fisheries" title=" sustainable fisheries"> sustainable fisheries</a>, <a href="https://publications.waset.org/abstracts/search?q=underutilized%20fish%20species" title=" underutilized fish species"> underutilized fish species</a> </p> <a href="https://publications.waset.org/abstracts/188888/valorization-of-underutilized-fish-species-through-a-multidisciplinary-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Phylogenetic Studies of Six Egyptian Sheep Breeds Using Cytochrome B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othman%20Elmahdy%20Othman">Othman Elmahdy Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Agn%C3%A9s%20Germot"> Agnés Germot</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Petit"> Daniel Petit</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Khodary"> Muhammad Khodary</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahman%20Maftah"> Abderrahman Maftah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the control (D-loop) and cytochrome b (Cyt b) regions of mtDNA have received more attention due to their role in the genetic diversity and phylogenetic studies in different livestock which give important knowledge towards the genetic resource conservation. Studies based on sequencing of sheep mitochondrial DNA showed that there are five maternal lineages in the world for domestic sheep breeds; A, B, C, D and E. By using cytochrome B sequencing, we aimed to clarify the genetic affinities and phylogeny of six Egyptian sheep breeds. Blood samples were collected from 111 animals belonging to six Egyptian sheep breeds; Barki, Rahmani, Ossimi, Saidi, Sohagi and Fallahi. The total DNA was extracted and the specific primers were used for conventional PCR amplification of the cytochrome B region of mtDNA. PCR amplified products were purified and sequenced. The alignment of sequences was done using BioEdit software and DnaSP 5.00 software was used to identify the sequence variation and polymorphic sites in the aligned sequences. The result showed that the presence of 39 polymorphic sites leading to the formation of 29 haplotypes. The haplotype diversity in six tested breeds ranged from 0.643 in Rahmani breed to 0.871 in Barki breed. The lowest genetic distance was observed between Rahmani and Saidi (D: 1.436 and Dxy: 0.00127) while the highest distance was observed between Ossimi and Sohagi (D: 6.050 and Dxy: 0.00534). Neighbour-joining (Phylogeny) tree was constructed using Mega 5.0 software. The sequences of 111 analyzed samples were aligned with references sequences of different haplogroups; A, B, C, D and E. The phylogeny result showed the presence of four haplogroups; HapA, HapB, HapC and HapE in the examined samples whereas the haplogroup D was not found. The result showed that 88 out of 111 tested animals cluster with haplogroup B (79.28%), whereas 12 tested animals cluster with haplogroup A (10.81%), 10 animals cluster with haplogroup C (9.01%) and one animal belongs to haplogroup E (0.90%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phylogeny" title="phylogeny">phylogeny</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20biodiversity" title=" genetic biodiversity"> genetic biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=MtDNA" title=" MtDNA"> MtDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=cytochrome%20B" title=" cytochrome B"> cytochrome B</a>, <a href="https://publications.waset.org/abstracts/search?q=Egyptian%20sheep" title=" Egyptian sheep"> Egyptian sheep</a> </p> <a href="https://publications.waset.org/abstracts/70705/phylogenetic-studies-of-six-egyptian-sheep-breeds-using-cytochrome-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Genetic Diversity of Wild Population of Heterobranchus Spp. Based on Mitochondria DNA Cytochrome C Oxidase Subunit I Gene Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Abubakar">M. Y. Abubakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ipinjolu%20J.%20K."> Ipinjolu J. K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuzine%20B.%20Esa"> Yuzine B. Esa</a>, <a href="https://publications.waset.org/abstracts/search?q=Magawata%20I."> Magawata I.</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20W.%20A."> Hassan W. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Turaki%20A.%20A."> Turaki A. A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catfish (Heterobranchus spp.) is a major freshwater fish that are widely distributed in Nigeria waters and are gaining rapid aquaculture expansion. However, indiscriminate artificial crossbreeding of the species with others poses a threat to their biodiversity. There is a paucity of information about the genetic variability, hence this insight on the genetic variability is badly needed, not only for the species conservation but for aquaculture expansion. In this study, we tested the level of Genetic diversity, population differentiation and phylogenetic relationship analysis on 35 individuals of two populations of Heterobranchus bidorsalis and 29 individuals of three populations of Heterobranchus longifilis using the mitochondrial cytochrome c oxidase subunit I (mtDNA COI) gene sequence. Nucleotide sequences of 650 bp fragment of the COI gene of the two species were compared. In the whole 4 and 5 haplotypes were distinguished in the populations of H. bidorsalis & H. longifilis with accession numbers (MG334168 - MG334171 & MG334172 to MG334176) respectively. Haplotypes diversity indices revealed a range of 0.59 ± 0.08 to 0.57 ± 0.09 in H. bidorsalis and 0.000 to 0.001051 ± 0.000945 in H. longifilis population, respectively. Analysis of molecular variance (AMOVA) revealed no significant variation among H. bidorsalis population of the Niger & Benue Rivers, detected significant genetic variation was between the Rivers of Niger, Kaduna and Benue population of H. longifilis. Two main clades were recovered, showing a clear separation between H. bidorsalis and H. longifilis in the phylogenetic tree. The mtDNA COI genes studied revealed high gene flow between populations with no distinct genetic differentiation between the populations as measured by the fixation index (FST) statistic. However, a proportion of population-specific haplotypes was observed in the two species studied, suggesting a substantial degree of genetic distinctiveness for each of the population investigated. These findings present the description of the species character and accessions of the fish’s genetic resources, through gene sequence submitted in Genetic database. The data will help to protect their valuable wild resource and contribute to their recovery and selective breeding in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AMOVA" title="AMOVA">AMOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=Heterobranchus%20spp." title=" Heterobranchus spp."> Heterobranchus spp.</a>, <a href="https://publications.waset.org/abstracts/search?q=mtDNA%20COI" title=" mtDNA COI"> mtDNA COI</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20tree" title=" phylogenetic tree"> phylogenetic tree</a> </p> <a href="https://publications.waset.org/abstracts/110852/genetic-diversity-of-wild-population-of-heterobranchus-spp-based-on-mitochondria-dna-cytochrome-c-oxidase-subunit-i-gene-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Sequence Polymorphism and Haplogroup Distribution of Mitochondrial DNA Control Regions HVS1 and HVS2 in a Southwestern Nigerian Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ogbonnaya%20O.%20Iroanya">Ogbonnaya O. Iroanya</a>, <a href="https://publications.waset.org/abstracts/search?q=Samson%20T.%20Fakorede"> Samson T. Fakorede</a>, <a href="https://publications.waset.org/abstracts/search?q=Osamudiamen%20J.%20Edosa"> Osamudiamen J. Edosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadiat%20A.%20Azeez"> Hadiat A. Azeez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The human mitochondrial DNA (mtDNA) is about 17 kbp circular DNA fragments found within the mitochondria together with smaller fragments of 1200 bp known as the control region. Knowledge of variation within populations has been employed in forensic and molecular anthropology studies. The study was aimed at investigating the polymorphic nature of the two hypervariable segments (HVS) of the mtDNA, i.e., HVS1 and HVS2, and to determine the haplogroup distribution among individuals resident in Lagos, Southwestern Nigeria. Peripheral blood samples were obtained from sixty individuals who are not related maternally, followed by DNA extraction and amplification of the extracted DNA using primers specific for the regions under investigation. DNA amplicons were sequenced, and sequenced data were aligned and compared to the revised Cambridge Reference Sequence (rCRS) GenBank Accession number: NC_012920.1) using BioEdit software. Results obtained showed 61 and 52 polymorphic nucleotide positions for HVS1 and HVS2, respectively. While a total of three indels mutation were recorded for HVS1, there were seven for HVS2. Also, transition mutations predominate nucleotide change observed in the study. Genetic diversity (GD) values for HVS1 and HVS2 were estimated to be 84.21 and 90.4%, respectively, while random match probability was 0.17% for HVS1 and 0.89% for HVS2. The study also revealed mixed haplogroups specific to the African (L1-L3) and the Eurasians (U and H) lineages. New polymorphic sites obtained from the study are promising for human identification purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypervariable%20region" title="hypervariable region">hypervariable region</a>, <a href="https://publications.waset.org/abstracts/search?q=indels" title=" indels"> indels</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20DNA" title=" mitochondrial DNA"> mitochondrial DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphism" title=" polymorphism"> polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20match%20probability" title=" random match probability"> random match probability</a> </p> <a href="https://publications.waset.org/abstracts/125506/sequence-polymorphism-and-haplogroup-distribution-of-mitochondrial-dna-control-regions-hvs1-and-hvs2-in-a-southwestern-nigerian-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Molecular Identification and Evolutionary Status of Lucilia bufonivora: An Obligate Parasite of Amphibians in Europe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gerardo%20Arias">Gerardo Arias</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Wall"> Richard Wall</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamie%20Stevens"> Jamie Stevens</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lucilia bufonivora Moniez, is an obligate parasite of toads and frogs widely distributed in Europe. Its sister taxon Lucilia silvarum Meigen behaves mainly as a carrion breeder in Europe, however it has been reported as a facultative parasite of amphibians. These two closely related species are morphologically almost identical, which has led to misidentification, and in fact, it has been suggested that the amphibian myiasis cases by L. silvarum reported in Europe should be attributed to L. bufonivora. Both species remain poorly studied and their taxonomic relationships are still unclear. The identification of the larval specimens involved in amphibian myiasis with molecular tools and phylogenetic analysis of these two closely related species may resolve this problem. In this work seventeen unidentified larval specimens extracted from toad myiasis cases of the UK, the Netherlands and Switzerland were obtained, their COX1 (mtDNA) and EF1-α (Nuclear DNA) gene regions were amplified and then sequenced. The 17 larval samples were identified with both molecular markers as L. bufonivora. Phylogenetic analysis was carried out with 10 other blowfly species, including L. silvarum samples from the UK and USA. Bayesian Inference trees of COX1 and a combined-gene dataset suggested that L. silvarum and L. bufonivora are separate sister species. However, the nuclear gene EF1-α does not appear to resolve their relationships, suggesting that the rates of evolution of the mtDNA are much faster than those of the nuclear DNA. This work provides the molecular evidence for successful identification of L. bufonivora and a molecular analysis of the populations of this obligate parasite from different locations across Europe. The relationships with L. silvarum are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calliphoridae" title="calliphoridae">calliphoridae</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20evolution" title=" molecular evolution"> molecular evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=myiasis" title=" myiasis"> myiasis</a>, <a href="https://publications.waset.org/abstracts/search?q=obligate%20parasitism" title=" obligate parasitism"> obligate parasitism</a> </p> <a href="https://publications.waset.org/abstracts/77861/molecular-identification-and-evolutionary-status-of-lucilia-bufonivora-an-obligate-parasite-of-amphibians-in-europe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Sustaining the Mitochondrial Transcription Factor A in Sperm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Betty%20Anson">Betty Anson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Researchers have found that mature sperm cells are not only devoid of mature MTDNA (mitochondrial DNA) but also lack a particular protein essential for DNA maintenance, known as mitochondrial transcription factor A, or TFAM (transcription factor A mitochondria). As a result, children get the DNA of certain important body functions only from their mothers. More experiments show that TFAM appears to burn out when it is used as a source of energy for sperm movement. This study investigates alternative sources of energy for sperm movement that could sustain the existence of TFAM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mItochondria" title="mItochondria">mItochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=TFAM" title=" TFAM"> TFAM</a>, <a href="https://publications.waset.org/abstracts/search?q=sperm" title=" sperm"> sperm</a> </p> <a href="https://publications.waset.org/abstracts/173267/sustaining-the-mitochondrial-transcription-factor-a-in-sperm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Identifying Apis millefera Strains in Akkar District (North Lebanon) Using Mitochondrial DNA: A Step in Preserving the Local Strain A. m. Syriaca </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeina%20Nasr">Zeina Nasr</a>, <a href="https://publications.waset.org/abstracts/search?q=Bashar%20Merheb"> Bashar Merheb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The honey bee is a social insect that had driven the human interest much more than any other organism. Beekeeping practices dated the appearance of Man on earth and now it provides a hobby or a secondary work that contributes to the family revenue and requires a little time engagement and money investment. Honey production is not the only contribution of honey bees to the economy, since honey bees play an important role in the pollination. Bee keeping in Lebanon is an important part of the agricultural economy. However, a growing concern about bees is spreading globally, due to an accelerated decline of bees colonies. This raises the alert to preserve and protect local bee strains against uncontrolled introduction of foreign strains and invasive parasitic species. Mitochondrial DNA (mtDNA) markers are commonly used in studying genetic variation in the Apis mellifera species. The DraI-COI-COII test is based on the analysis of the intergenic region between the two genes COI and COII. The different honey bee strains differ in the presence or absence of the p sequence and the number of Q sequences present. A. m. syriaca belonging to the lineage Z, is the native honey bee subspecies in Lebanon, Syria, Jordan, and Palestine. A. m. syriaca is known for its high defensiveness, even though it has many important advantages. However, commercial breeder strains, such as the Italian (A. m. ligustica), and Carniolan (A. m. carnica) strains, have been introduced by beekeepers and regularly used for honey production. This raises worries about the disappearance of the local subspecies. It is obvious that identifying A. m. syriaca colonies and protecting them against uncontrolled mating with other bee strains is a crucial step to protect and improve the original local strain. This study aims to reveal the existing sub-species of honey bee in Akkar – Lebanon and to assess the influence of introgression on the hybridization of the local strain. This will help to identify areas of pure A.m. syriaca population over this district to be considered in choosing syriaca reserves. We collected samples of bees from different regions of Akkar district in order to perform mtDNA analysis. We determined the restriction fragments length of the intergenic region COI-COII, using the restriction enzyme DraI. The results showed both the C and the Z lineages. Four restriction patterns were identified among the restriction maps of the studied samples. The most abundant mitochondrial lineage is the Z lineage constituting about 60% of the identified samples. Al-Dreib region reported the lowest introgression with foreign mtDNA of 21% making it the most suitable area for a genetic reserve of syriaca in Akkar based on its lowest introgression and suitable environment in addition to the attitude of local beekeepers to conserve the local strain. Finally, this study is the first step in constructing conservation programs for the preservation of the local strain and should be generalized to the whole Lebanese population, consistent with the effort done in neighboring countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akkar%20Lebanon" title="Akkar Lebanon">Akkar Lebanon</a>, <a href="https://publications.waset.org/abstracts/search?q=Apis%20millefera%20syriaca" title=" Apis millefera syriaca"> Apis millefera syriaca</a>, <a href="https://publications.waset.org/abstracts/search?q=DraI-COI-COII%20test" title=" DraI-COI-COII test"> DraI-COI-COII test</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20DNA" title=" mitochondrial DNA"> mitochondrial DNA</a> </p> <a href="https://publications.waset.org/abstracts/72542/identifying-apis-millefera-strains-in-akkar-district-north-lebanon-using-mitochondrial-dna-a-step-in-preserving-the-local-strain-a-m-syriaca" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Forensic Analysis of MTDNA Hypervariable Region HVII by Sanger Sequence Method in Iraq Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Imad">H. Imad</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Cheah"> Y. Cheah</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Aamera"> O. Aamera </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aims of this research are to study the mitochondrial non-coding region by using the Sanger sequencing technique and establish the degree of variation characteristics of a fragment. FTA® Technology (FTA™ paper DNA extraction) utilized to extract DNA. A portion of a non-coding region encompassing positions 37 to 340 amplified in accordance with the Anderson reference sequence. PCR products purified by EZ-10 spin column then sequenced and detected by using the ABI 3730xL DNA Analyzer. New polymorphic positions 57, 63, and 101 are described may in future be suitable sources for identification purpose. The data obtained can be used to identify variable nucleotide positions characterized by frequent occurrence most promising for identification variants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=encompassing%20nucleotide%20positions%2037%20to%20340" title="encompassing nucleotide positions 37 to 340">encompassing nucleotide positions 37 to 340</a>, <a href="https://publications.waset.org/abstracts/search?q=HVII" title=" HVII"> HVII</a>, <a href="https://publications.waset.org/abstracts/search?q=Iraq" title=" Iraq"> Iraq</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20DNA" title=" mitochondrial DNA"> mitochondrial DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphism" title=" polymorphism"> polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a> </p> <a href="https://publications.waset.org/abstracts/2121/forensic-analysis-of-mtdna-hypervariable-region-hvii-by-sanger-sequence-method-in-iraq-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">761</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Cytochrome B Diversity and Phylogeny of Egyptian Sheep Breeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othman%20E.%20Othman">Othman E. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Agn%C3%A9s%20Germot"> Agnés Germot</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Petit"> Daniel Petit</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahman%20Maftah"> Abderrahman Maftah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Threats to the biodiversity are increasing due to the loss of genetic diversity within the species utilized in agriculture. Due to the progressive substitution of the less productive, locally adapted and native breeds by highly productive breeds, the number of threatened breeds is increased. In these conditions, it is more strategically important than ever to preserve as much the farm animal diversity as possible, to ensure a prompt and proper response to the needs of future generations. Mitochondrial (mtDNA) sequencing has been used to explain the origins of many modern domestic livestock species. Studies based on sequencing of sheep mitochondrial DNA showed that there are five maternal lineages in the world for domestic sheep breeds; A, B, C, D and E. Because of the eastern location of Egypt in the Mediterranean basin and the presence of fat-tailed sheep breeds- character quite common in Turkey and Syria- where genotypes that seem quite primitive, the phylogenetic studies of Egyptian sheep breeds become particularly attractive. We aimed in this work to clarify the genetic affinities, biodiversity and phylogeny of five Egyptian sheep breeds using cytochrome B sequencing. Blood samples were collected from 63 animals belonging to the five tested breeds; Barki, Rahmani, Ossimi, Saidi and Sohagi. The total DNA was extracted and the specific primer allowed the conventional PCR amplification of the cytochrome B region of mtDNA (approximately 1272 bp). PCR amplified products were purified and sequenced. The alignment of Sixty-three samples was done using BioEdit software. DnaSP 5.00 software was used to identify the sequence variation and polymorphic sites in the aligned sequences. The result showed that the presence of 34 polymorphic sites leading to the formation of 18 haplotypes. The haplotype diversity in five tested breeds ranged from 0.676 in Rahmani breed to 0.894 in Sohagi breed. The genetic distances (D) and the average number of pairwise differences (Dxy) between breeds were estimated. The lowest distance was observed between Rahmani and Saidi (D: 1.674 and Dxy: 0.00150) while the highest distance was observed between Ossimi and Sohagi (D: 5.233 and Dxy: 0.00475). Neighbour-joining (Phylogeny) tree was constructed using Mega 5.0 software. The sequences of the 63 analyzed samples were aligned with references sequences of different haplogroups. The phylogeny result showed the presence of three haplogroups (HapA, HapB and HapC) in the 63 examined samples. The other two haplogroups described in literature (HapD and HapE) were not found. The result showed that 50 out of 63 tested animals cluster with haplogroup B (79.37%) whereas 7 tested animals cluster with haplogroup A (11.11%) and 6 animals cluster with haplogroup C (9.52%). In conclusion, the phylogenetic reconstructions showed that the majority of Egyptian sheep breeds belonging to haplogroup B which is the dominant haplogroup in Eastern Mediterranean countries like Syria and Turkey. Some individuals are belonging to haplogroups A and C, suggesting that the crosses were done with other breeds for characteristic selection for growth and wool quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytochrome%20B" title="cytochrome B">cytochrome B</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogheny" title=" phylogheny"> phylogheny</a>, <a href="https://publications.waset.org/abstracts/search?q=Egyptian%20sheep%20breeds" title=" Egyptian sheep breeds"> Egyptian sheep breeds</a> </p> <a href="https://publications.waset.org/abstracts/45865/cytochrome-b-diversity-and-phylogeny-of-egyptian-sheep-breeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Halal Authentication for Some Product Collected from Jordanian Market Using Real-Time PCR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20S.%20Sharaf">Omar S. Sharaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mitochondrial 12s rRNA (mt-12s rDNA) gene for pig-specific was developed to detect material from pork species in different products collected from Jordanian market. The amplification PCR products of 359 bp and 531 bp were successfully amplified from the cyt b gene of pig the amplification product using mt-12S rDNA gene were successfully produced a single band with a molecular size of 456 bp. In the present work, the PCR amplification of mtDNA of cytochrome b has been shown as a suitable tool for rapid detection of pig DNA. 100 samples from different dairy, gelatin and chocolate based products and 50 samples from baby food formula were collected and tested to a presence of any pig derivatives. It was found that 10% of chocolate based products, 12% of gelatin and 56% from dairy products and 5.2% from baby food formula showed single band from mt-12S rDNA gene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=halal%20food" title="halal food">halal food</a>, <a href="https://publications.waset.org/abstracts/search?q=baby%20infant%20formula" title=" baby infant formula"> baby infant formula</a>, <a href="https://publications.waset.org/abstracts/search?q=chocolate%20based%20products" title=" chocolate based products"> chocolate based products</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan" title=" Jordan"> Jordan</a> </p> <a href="https://publications.waset.org/abstracts/32463/halal-authentication-for-some-product-collected-from-jordanian-market-using-real-time-pcr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> From Orthodox to Haploid Mitochondrial DNA Markers: Exploring the Datum Folder of population of Sindh in Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahzad%20Bhattiab">Shahzad Bhattiab</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aslamkhana"> M. Aslamkhana</a>, <a href="https://publications.waset.org/abstracts/search?q=Sana%20Abbasbc"> Sana Abbasbc</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcella%20Attimonellid"> Marcella Attimonellid</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumarasamy%20Thangaraje"> Kumarasamy Thangaraje</a>, <a href="https://publications.waset.org/abstracts/search?q=Erica%20Martinha%20Silva%20de%20Souzaf"> Erica Martinha Silva de Souzaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Uzay%20U.%20Sezen"> Uzay U. Sezen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was designed to investigate three regions of mitochondrial DNA, HVI, HVII and HVIII, to hold a powwow genetic diversity and affiliations in 115 probands of 6 major ethnic groups, viz., Bijarani, Chandio, Ghallu, Khoso, Nasrani and Solangi, in the province of Sindh of Pakistan. For this purpose 88 haplotypes were scrutinized, defined by particular set of nucleotides (ignoring the C insertions around position 309 and 315). In spite of that 82% sequences were observed once, 12 % twice and 5.2 % thrice. The most common South Asian haplotypes were observed M (42%), N (6.9%) and R (6.9%) whereas west Eurasian haplotypes were J (1.7%), U (23.4%), H (9.5%), W (6.9%) and T (0.86%), in six ethnic groups. A random match probability between two unrelated individuals was found 0.06 %, while genetic diversity was ranged to be 0.991 to 0.999, and nucleotide diversity ranged from 0.0089 to 0.0142 for the whole control region of the population studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mtDNA%20haplogroups" title="mtDNA haplogroups">mtDNA haplogroups</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20region" title=" control region"> control region</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sindh" title=" Sindh"> Sindh</a>, <a href="https://publications.waset.org/abstracts/search?q=ethnicity" title=" ethnicity"> ethnicity</a> </p> <a href="https://publications.waset.org/abstracts/39142/from-orthodox-to-haploid-mitochondrial-dna-markers-exploring-the-datum-folder-of-population-of-sindh-in-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Introgressive Hybridisation between Two Widespread Sharks in the East Pacific Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diana%20A.%20Pazmino">Diana A. Pazmino</a>, <a href="https://publications.waset.org/abstracts/search?q=Lynne%20vanHerwerden"> Lynne vanHerwerden</a>, <a href="https://publications.waset.org/abstracts/search?q=Colin%20A.%20Simpfendorfer"> Colin A. Simpfendorfer</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Junge"> Claudia Junge</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20C.%20Donnellan"> Stephen C. Donnellan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Hoyos-Padilla"> Mauricio Hoyos-Padilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Clinton%20A.%20J.%20%20Duffy"> Clinton A. J. Duffy</a>, <a href="https://publications.waset.org/abstracts/search?q=Charlie%20Huveneers"> Charlie Huveneers</a>, <a href="https://publications.waset.org/abstracts/search?q=Bronwyn%20Gillanders"> Bronwyn Gillanders</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20A.%20Butcher"> Paul A. Butcher</a>, <a href="https://publications.waset.org/abstracts/search?q=Gregory%20E.%20Maes"> Gregory E. Maes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With just a handful of documented cases of hybridisation in cartilaginous fishes, shark hybridisation remains poorly investigated. Small amounts of admixture have been detected between Galapagos (Carcharhinus galapagensis) and dusky (Carcharhinus obscurus) sharks previously, generating a hypothesis of ongoing hybridisation. We sampled a large number of individuals from areas where both species co-occur (contact zones) across the Pacific Ocean and used both mitochondrial and nuclear-encoded SNPs to examine genetic admixture and introgression between the two species. Using empirical, analytical approaches and simulations, we first developed a set of 1,873 highly informative and reliable diagnostic SNPs for these two species to evaluate the degree of admixture between them. Overall, results indicate a high discriminatory power of nuclear SNPs (FST=0.47, p < 0.05) between the two species, unlike mitochondrial DNA (ΦST = 0.00 p > 0.05), which failed to differentiate between these species. We identified four hybrid individuals (~1%) and detected bi-directional introgression between C. galapagensis and C. obscurus in the Gulf of California along the eastern Pacific coast of the Americas. We emphasize the importance of including a combination of mtDNA and diagnostic nuclear markers to properly assess species identification, detect patterns of hybridisation, and better inform management and conservation of these sharks, especially given the morphological similarities within the genus Carcharhinus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elasmobranchs" title="elasmobranchs">elasmobranchs</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20nucleotide%20polymorphisms" title=" single nucleotide polymorphisms"> single nucleotide polymorphisms</a>, <a href="https://publications.waset.org/abstracts/search?q=hybridisation" title=" hybridisation"> hybridisation</a>, <a href="https://publications.waset.org/abstracts/search?q=introgression" title=" introgression"> introgression</a>, <a href="https://publications.waset.org/abstracts/search?q=misidentification" title=" misidentification"> misidentification</a> </p> <a href="https://publications.waset.org/abstracts/105794/introgressive-hybridisation-between-two-widespread-sharks-in-the-east-pacific-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Nuclear Mitochondrial Pseudogenes in Anastrepha fraterculus Complex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratibha%20Srivastava">Pratibha Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayyamperumal%20Jeyaprakash"> Ayyamperumal Jeyaprakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Steck"> Gary Steck</a>, <a href="https://publications.waset.org/abstracts/search?q=Jason%20Stanley"> Jason Stanley</a>, <a href="https://publications.waset.org/abstracts/search?q=Leroy%20Whilby"> Leroy Whilby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exotic, invasive tephritid fruit flies (Diptera: Tephritidae) are a major threat to fruit and vegetable industries in the United States. The establishment of pest fruit fly in the agricultural industries and produce severe ecological and economic impacts on agricultural diversification and trade. Detection and identification of these agricultural pests in a timely manner will facilitate the possibility of eradication from newly invaded areas. Identification of larval stages to species level is difficult, but is required to determine pest loads and their pathways into the United States. The aim of this study is the New World genus, Anastrepha which includes pests of major economic importance. Mitochondrial cytochrome c oxidase I (COI) gene sequences were amplified from Anastrepha fraterculus specimens collected from South America (Ecuador and Peru). Phylogenetic analysis was performed to characterize the Anastrepha fraterculus complex at a molecular level. During phylogenetics analysis numerous nuclear mitochondrial pseudogenes (numts) were discovered in different specimens. The numts are nonfunctional copies of the mtDNA present in the nucleus and are easily coamplified with the mitochondrial COI gene copy by using conserved universal primers. This is problematic for DNA Barcoding, which attempts to characterize all living organisms by using the COI gene. This study is significant for national quarantine use, as morphological diagnostics to separate larvae of the various members remain poorly developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tephritid" title="tephritid">tephritid</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastrepha%20fraterculus" title=" Anastrepha fraterculus"> Anastrepha fraterculus</a>, <a href="https://publications.waset.org/abstracts/search?q=COI" title=" COI"> COI</a>, <a href="https://publications.waset.org/abstracts/search?q=numts" title=" numts"> numts</a> </p> <a href="https://publications.waset.org/abstracts/66131/nuclear-mitochondrial-pseudogenes-in-anastrepha-fraterculus-complex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Efficiency of PCR-RFLP for the Identification of Adulteries in Meat Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hela%20Gargouri">Hela Gargouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Nizar%20Moalla"> Nizar Moalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassen%20Hadj%20Kacem"> Hassen Hadj Kacem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Meat adulteration affecting the safety and quality of food is becoming one of the main concerns of public interest across the world. The drastic consequences on the meat industry highlighted the urgent necessity to control the products' quality and to point out the complexity of both supply and processing circuits. Due to the expansion of this problem, the authentic testing of foods, particularly meat and its products, is deemed crucial to avoid unfair market competition and to protect consumers from fraudulent practices of meat adulteration. The adoption of authentication methods by the food quality-control laboratories is becoming a priority issue. However, in some developing countries, the number of food tests is still insignificant, although a variety of processed and traditional meat products are widely consumed. Little attention has been paid to provide an easy, fast, reproducible, and low-cost molecular test, which could be conducted in a basic laboratory. In the current study, the 359 bp fragment of the cytochrome-b gene was mapped by PCR-RFLP using firstly fresh biological supports (DNA and meat) and then turkey salami as an example of commercial processed meat. This technique has been established through several optimizations, namely: the selection of restriction enzymes. The digestion with BsmAI, SspI, and TaaI succeed to identify the seven included animal species when meat is formed by individual species and when the meat is a mixture of different origin. In this study, the PCR-RFLP technique using universal primer succeed to meet our needs by providing an indirect sequencing method identifying by restriction enzymes the specificities characterizing different species on the same amplicon reducing the number of potential tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adulteration" title="adulteration">adulteration</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20species" title=" animal species"> animal species</a>, <a href="https://publications.waset.org/abstracts/search?q=authentication" title=" authentication"> authentication</a>, <a href="https://publications.waset.org/abstracts/search?q=meat" title=" meat"> meat</a>, <a href="https://publications.waset.org/abstracts/search?q=mtDNA" title=" mtDNA"> mtDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR-RFLP" title=" PCR-RFLP"> PCR-RFLP</a> </p> <a href="https://publications.waset.org/abstracts/137599/efficiency-of-pcr-rflp-for-the-identification-of-adulteries-in-meat-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> A Piebald Cladistic Portray of Mitochondrial DNA Control Region Haplogroups in Khyber Pakhtunkhwa, Pakistan </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahzad%20Bhatti">Shahzad Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aslamkhan"> M. Aslamkhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sana%20Abbas"> Sana Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcella%20Attimonelli"> Marcella Attimonelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Hikmet%20Hakan%20Aydin"> Hikmet Hakan Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Erica%20Martinha%20Silva%20de%20Souza"> Erica Martinha Silva de Souza</a>, <a href="https://publications.waset.org/abstracts/search?q="> </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite being situated at the crossroad of Asia, Pakistan has gained crucial importance because of its pivotal role in subsequent migratory events. To highlight the genetic footprints and to contribute an enigmatic picture of the relative population expansion pattern among four major Pashtun tribes in Khyber Pakhtunkhwa viz., Bangash, Khattak, Mahsuds and Orakzai, the complete mitochondrial control region of 100 Pashtun were analyzed. All Pashtun tribes studied here revealed high genetic diversity; that was comparable to the other Central Asian, Southeast Asian and European populations. The configuration of genetic variation and heterogeneity further unveiled through Multidimensional Scaling, Principal Component Analysis, and phylogenetic analysis. The results revealed that the Pashtun is a composite mosaic of West Eurasian ancestry of numerous geographic origin. They received substantial gene flow during different invasions and have a high element of the Western provenance. The most common haplogroups reported in this study are: South Asian haplogroup M (28%) and R (8%); whereas, West Asians haplogroups are present, albeit in high frequencies (67%) and widespread over all; HV (15%), U (17%), H (9%), J (8%), K (8%), W (4%), N (3%) and T (3%). Herein we linked the unexplored genetic connection between Ashkenazi Jews and Pashtun. The presence of specific haplotypes J1b (4%) and K1a1b1a (5%) point to a genetic connection of Jewish conglomeration with Khattak tribe. This was a result of an ancient genetic influx in the early Neolithic period that led to the formation of a diverse genetic substratum in present day Pashtun. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mtDNA%20haplogroups" title="mtDNA haplogroups">mtDNA haplogroups</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20region" title=" control region"> control region</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=KPK" title=" KPK"> KPK</a>, <a href="https://publications.waset.org/abstracts/search?q=ethnicity" title=" ethnicity"> ethnicity</a> </p> <a href="https://publications.waset.org/abstracts/47522/a-piebald-cladistic-portray-of-mitochondrial-dna-control-region-haplogroups-in-khyber-pakhtunkhwa-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Palaeo-Environmental Reconstruction of the Wet Zone of Sri Lanka: A Zooarchaeological Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalangi%20Rodrigo">Kalangi Rodrigo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sri Lanka has been known as an island which has a diverse variety of prehistoric occupation among ecological zones. Defining the paleoecology of the past societies has been an archaeological thought developed in the 1960s. It is mainly concerned with the reconstruction from available geological and biological evidence of past biota, populations, communities, landscapes, environments, and ecosystems. Sri Lanka has dealt with this subject, and considerable research has been already undertaken. The fossil and material record of Sri Lanka’s Wet Zone tropical forests continues from c. 38,000–34,000 ybp. This early and persistent human fossil, technical, and cultural florescence, as well as a collection of well-preserved tropical-forest rock shelters with associated 'on-site' palaeoenvironmental records, makes Sri Lanka a central and unusual case study to determine the extent and strength of early human tropical forest encounters. Excavations carried out in prehistoric caves in the low country wet zone has shown that in the last 50,000 years, the temperature in the lowland rainforests has not exceeded 5°C. When taking Batadombalena alone, the entire seven layers have yielded an uninterrupted occupation of Acavus sp and Canerium zeylanicum, a plant that grows in the middle of the rainforest. Acavus, which is highly sensitive to rainforest ecosystems, has been well documented in many of the lowland caves, confirming that the wetland rainforest environment has remained intact at least for the last 50,000 years. If the dry and arid conditions in the upper hills regions affected the wet zone, the Tufted Gray Lunger (semnopithecus priam), must also meet with the prehistoric caves in the wet zone thrown over dry climate. However, the bones in the low country wet zone do not find any of the fragments belonging to Turfed Gray Lunger, and prehistoric human consumption is bestowed with purple-faced leaf monkey (Trachypithecus vetulus) and Toque Macaque (Macaca Sinica). The skeletal remains of Lyriocephalus scutatus, a full-time resident in rain forests, have also been recorded among lowland caves. But, in zoological terms, these remains may be the remains of the Barking deer (Muntiacus muntjak), which is currently found in the wet zone. For further investigations, the mtDNA test of genetic diversity (Bottleneck effect) and pollen study from lowland caves should determine whether the wet zone climate has persisted over the last 50,000 years, or whether the dry weather affected in the mountainous region has invaded the wet zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paleoecology" title="paleoecology">paleoecology</a>, <a href="https://publications.waset.org/abstracts/search?q=prehistory" title=" prehistory"> prehistory</a>, <a href="https://publications.waset.org/abstracts/search?q=zooarchaeology" title=" zooarchaeology"> zooarchaeology</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction" title=" reconstruction"> reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=palaeo-climate" title=" palaeo-climate"> palaeo-climate</a> </p> <a href="https://publications.waset.org/abstracts/124475/palaeo-environmental-reconstruction-of-the-wet-zone-of-sri-lanka-a-zooarchaeological-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>