CINXE.COM

Search results for: ribosomal DNA–rDNA

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ribosomal DNA–rDNA</title> <meta name="description" content="Search results for: ribosomal DNA–rDNA"> <meta name="keywords" content="ribosomal DNA–rDNA"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ribosomal DNA–rDNA" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ribosomal DNA–rDNA"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 121</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ribosomal DNA–rDNA</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> High Expression Levels and Amplification of rRNA Genes in a Mentally Retarded Child with 13p+: A Familial Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irina%20S.%20Kolesnikova">Irina S. Kolesnikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20A.%20Dolskiy"> Alexander A. Dolskiy</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalya%20A.%20Lemskaya"> Natalya A. Lemskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Yulia%20V.%20Maksimova"> Yulia V. Maksimova</a>, <a href="https://publications.waset.org/abstracts/search?q=Asia%20R.%20Shorina"> Asia R. Shorina</a>, <a href="https://publications.waset.org/abstracts/search?q=Alena%20S.%20Telepova"> Alena S. Telepova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20S.%20Graphodatsky"> Alexander S. Graphodatsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20V.%20Yudkin"> Dmitry V. Yudkin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A cytogenetic and molecular genetic study of the family with a male child who had mental retardation and autistic features revealed an abnormal chromosome 13 bearing an enlarged p-arm with amplified ribosomal DNA (rDNA) in a boy and his father. Cytogenetic analysis using standard G-banding and FISH with labeled rDNA probes revealed an abnormal chromosome 13 with an enlarged p-arms due to rDNA amplification in a male child, who had clinically confirmed mental retardation and an autistic behavior. This chromosome is evidently inherited from the father, who has morphologically the same chromosome, but is healthy. The karyotype of the mother was normal. Ag-NOR staining showed brightly stained large whole-p-arm nucleolus organizer regions (NORs) in a child and normal-sized NORs in his father with 13p+-NOR-amount mosaicism. qRT-PCR with specific primers showed highly increased levels of 18S, 28S and 5,8 S ribosomal RNA (rRNA) in the patient’s blood samples compared to a normal healthy control donor. Both patient’s father and mother had no elevated levels of rRNAs expression. Thus, in this case, rRNA level seems to correlate with mental retardation in familial individuals with 13p+. Our findings of rRNA overexpression in a patient with mental retardation and his parents may show a possible link between the karyotype (p-arm enlargement due to rDNA amplification), rDNA functionality (rRNA overexpression), functional changes in the brain and mental retardation. The study is supported by Russian Science Foundation Grant 15-15-10001. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mental%20retardation" title="mental retardation">mental retardation</a>, <a href="https://publications.waset.org/abstracts/search?q=ribosomal%20DNA%E2%80%93rDNA" title=" ribosomal DNA–rDNA"> ribosomal DNA–rDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=ribosomal%20RNA%E2%80%93rRNA" title=" ribosomal RNA–rRNA"> ribosomal RNA–rRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleolus%20organizer%20region%E2%80%93NOR" title=" nucleolus organizer region–NOR"> nucleolus organizer region–NOR</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosome%2013" title=" chromosome 13"> chromosome 13</a> </p> <a href="https://publications.waset.org/abstracts/60315/high-expression-levels-and-amplification-of-rrna-genes-in-a-mentally-retarded-child-with-13p-a-familial-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Novel Aminoglycosides to Target Resistant Pathogens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nihar%20Ranjan">Nihar Ranjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Derrick%20Watkins"> Derrick Watkins</a>, <a href="https://publications.waset.org/abstracts/search?q=Dev%20P.%20Arya"> Dev P. Arya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current methods in the study of antibiotic activity of ribosome targeted antibiotics are dependent on cell based bacterial inhibition assays or various forms of ribosomal binding assays. These assays are typically independent of each other and little direct correlation between the ribosomal binding and bacterial inhibition is established with the complementary assay. We have developed novel high-throughput capable assays for ribosome targeted drug discovery. One such assay examines the compounds ability to bind to a model ribosomal RNA A-site. We have also coupled this assay to other functional orthogonal assays. Such analysis can provide valuable understanding of the relationships between two complementary drug screening methods and could be used as standard analysis to correlate the affinity of a compound for its target and the effect the compound has on a cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20resistance" title="bacterial resistance">bacterial resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=aminoglycosides" title=" aminoglycosides"> aminoglycosides</a>, <a href="https://publications.waset.org/abstracts/search?q=screening" title=" screening"> screening</a>, <a href="https://publications.waset.org/abstracts/search?q=drugs" title=" drugs"> drugs</a> </p> <a href="https://publications.waset.org/abstracts/16341/novel-aminoglycosides-to-target-resistant-pathogens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Ribosomal Protein S4 Gene: Exploring the Presence in Syrian Strain of Leishmania Tropica Genome, Sequencing it and Evaluating Immune Response of pCI-S4 DNA Vaccine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alyaa%20Abdlwahab">Alyaa Abdlwahab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cutaneous leishmaniasis represents a serious health problem in Syria; this problem has become noticeably aggravated after the civil war in the country. Leishmania tropica parasite is the main cause of cutaneous leishmaniasis in Syria. In order to control the disease, we need an effective vaccine against leishmania parasite. DNA vaccination remains one of the favorable approaches that have been used to face cutaneous leishmaniasis. Ribosomal protein S4 is responsible for important roles in Leishmania parasite life. DNA vaccine based on S4 gene has been used against infections by many species of Leishmania parasite but leishmania tropica parasite, so this gene represents a good candidate for DNA vaccine construction. After proving the existence of ribosomal protein S4 gene in a Syrian strain of Leishmania tropica (LCED Syrian 01), sequencing it and cloning it into pCI plasmid, BALB/C mice were inoculated with pCI-S4 DNA vaccine. The immune response was determined by monitoring the lesion progression in inoculated BALB/C mice for six weeks after challenging mice with Leishmania tropica (LCED Syrian 01) parasites. IL-12, IFN-γ, and IL-4 were quantified in draining lymph nodes (DLNa) of the immunized BALB/C mice by using the RT-qPCR technique. The parasite burden was calculated in the final week for the footpad lesion and the DLNs of the mice. This study proved the existence and the expression of the ribosomal protein S4 gene in Leishmania tropica (LCED Syrian 01) promastigotes. The sequence of ribosomal protein cDNA S4 gene was determined and published in Genbank; the gene size was 822 bp. Expression was also demonstrated at the level of cDNA. Also, this study revealed that pCI-S4 DNA vaccine induces TH1\TH2 response in immunized mice; this response prevents partially developing a dermal lesion of Leishmania. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ribosomal%20protein%20S4" title="ribosomal protein S4">ribosomal protein S4</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20vaccine" title=" DNA vaccine"> DNA vaccine</a>, <a href="https://publications.waset.org/abstracts/search?q=Leishmania%20tropica" title=" Leishmania tropica"> Leishmania tropica</a>, <a href="https://publications.waset.org/abstracts/search?q=BALB%5Cc" title=" BALB\c"> BALB\c</a> </p> <a href="https://publications.waset.org/abstracts/146394/ribosomal-protein-s4-gene-exploring-the-presence-in-syrian-strain-of-leishmania-tropica-genome-sequencing-it-and-evaluating-immune-response-of-pci-s4-dna-vaccine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Halal Authentication for Some Product Collected from Jordanian Market Using Real-Time PCR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20S.%20Sharaf">Omar S. Sharaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mitochondrial 12s rRNA (mt-12s rDNA) gene for pig-specific was developed to detect material from pork species in different products collected from Jordanian market. The amplification PCR products of 359 bp and 531 bp were successfully amplified from the cyt b gene of pig the amplification product using mt-12S rDNA gene were successfully produced a single band with a molecular size of 456 bp. In the present work, the PCR amplification of mtDNA of cytochrome b has been shown as a suitable tool for rapid detection of pig DNA. 100 samples from different dairy, gelatin and chocolate based products and 50 samples from baby food formula were collected and tested to a presence of any pig derivatives. It was found that 10% of chocolate based products, 12% of gelatin and 56% from dairy products and 5.2% from baby food formula showed single band from mt-12S rDNA gene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=halal%20food" title="halal food">halal food</a>, <a href="https://publications.waset.org/abstracts/search?q=baby%20infant%20formula" title=" baby infant formula"> baby infant formula</a>, <a href="https://publications.waset.org/abstracts/search?q=chocolate%20based%20products" title=" chocolate based products"> chocolate based products</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan" title=" Jordan"> Jordan</a> </p> <a href="https://publications.waset.org/abstracts/32463/halal-authentication-for-some-product-collected-from-jordanian-market-using-real-time-pcr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> A Molecular Modelling Approach for Identification of Lead Compound from Rhizomes of Glycosmis Pentaphylla for Skin Cancer Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Shrivastava">Rahul Shrivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Tripathi"> Manish Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohmmad%20Yasir"> Mohmmad Yasir</a>, <a href="https://publications.waset.org/abstracts/search?q=Shailesh%20Singh"> Shailesh Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Life style changes and depletion in atmospheric ozone layer in recent decades lead to increase in skin cancer including both melanoma and nonmelanomas. Natural products which were obtained from different plant species have the potential of anti skin cancer activity. In regard of this, present study focuses the potential effect of Glycosmis pentaphylla against anti skin cancer activity. Different Phytochemical constituents which were present in the roots of Glycosmis pentaphylla were identified and were used as ligands after sketching of their structures with the help of ACD/Chemsketch. These ligands are screened for their anticancer potential with proteins which are involved in skin cancer effects with the help of pyrx software. After performing docking studies, results reveal that Noracronycine secondary metabolite of Glycosmis pentaphylla shows strong affinity of their binding energy with Ribosomal S6 Kinase 2 (2QR8) protein. Ribosomal S6 Kinase 2 (2QR8) has an important role in the cell proliferation and transformation mediated through by N-terminal kinase domain and was induced by the tumour promoters such as epidermal growth factor. It also plays a key role in the neoplastic transformation of human skin cells and in skin cancer growth. Noracronycine interact with THR-493 and MET-496 residue of Ribosomal S6 Kinase 2 protein with binding energy ΔG = -8.68 kcal/mole. Thus on the basis of this study we can say that Noracronycine which present in roots of Glycosmis pentaphylla can be used as lead compound against skin cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glycosmis%20pentaphylla" title="glycosmis pentaphylla">glycosmis pentaphylla</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrx" title=" pyrx"> pyrx</a>, <a href="https://publications.waset.org/abstracts/search?q=ribosomal%20s6%20kinase" title=" ribosomal s6 kinase"> ribosomal s6 kinase</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20cancer" title=" skin cancer"> skin cancer</a> </p> <a href="https://publications.waset.org/abstracts/43676/a-molecular-modelling-approach-for-identification-of-lead-compound-from-rhizomes-of-glycosmis-pentaphylla-for-skin-cancer-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Analysis on Thermococcus achaeans with Frequent Pattern Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeongyeob%20Hong">Jeongyeob Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Myeonghoon%20Park"> Myeonghoon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Taeson%20Yoon"> Taeson Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After the advent of Achaeans which utilize different metabolism pathway and contain conspicuously different cellular structure, they have been recognized as possible materials for developing quality of human beings. Among diverse Achaeans, in this paper, we compared 16s RNA Sequences of four different species of Thermococcus: Achaeans genus specialized in sulfur-dealing metabolism. Four Species, Barophilus, Kodakarensis, Hydrothermalis, and Onnurineus, live near the hydrothermal vent that emits extreme amount of sulfur and heat. By comparing ribosomal sequences of aforementioned four species, we found similarities in their sequences and expressed protein, enabling us to expect that certain ribosomal sequence or proteins are vital for their survival. Apriori algorithms and Decision Tree were used. for comparison. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achaeans" title="Achaeans">Achaeans</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermococcus" title=" Thermococcus"> Thermococcus</a>, <a href="https://publications.waset.org/abstracts/search?q=apriori%20algorithm" title=" apriori algorithm"> apriori algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a> </p> <a href="https://publications.waset.org/abstracts/30046/analysis-on-thermococcus-achaeans-with-frequent-pattern-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Identification of Cellulose-Hydrolytic Thermophiles Isolated from Sg. Klah Hot Spring Based on 16S rDNA Gene Sequence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Norashirene">M. J. Norashirene</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zakiah"> Y. Zakiah</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nurdiana"> S. Nurdiana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Nur%20Hilwani"> I. Nur Hilwani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Siti%20Khairiyah"> M. H. Siti Khairiyah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Muhamad%20Arif"> M. J. Muhamad Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, six bacterial isolates of a slightly thermophilic organism from the Sg. Klah hot spring, Malaysia were successfully isolated and designated as M7T55D1, M7T55D2, M7T55D3, M7T53D1, M7T53D2 and M7T53D3 respectively. The bacterial isolates were screened for their cellulose hydrolytic ability on Carboxymethlycellulose agar medium. The isolated bacterial strains were identified morphologically, biochemically and molecularly with the aid of 16S rDNA sequencing. All of the bacteria showed their optimum growth at a slightly alkaline pH of 7.5 with a temperature of 55°C. All strains were Gram-negative, non-spore forming type, strictly aerobic, catalase-positive and oxidase-positive with the ability to produce thermostable cellulase. Based on BLASTn results, bacterial isolates of M7T55D2 and M7T53D1 gave the highest homology (97%) with similarity to Tepidimonas ignava while isolates M7T55D1, M7T55D3, M7T53D2 and M7T53D3 showed their closest homology (97%-98%) with Tepidimonas thermarum. These cellulolytic thermophiles might have a commercial potential to produce valuable thermostable cellulase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulase" title="cellulase">cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulolytic" title=" cellulolytic"> cellulolytic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophiles" title=" thermophiles"> thermophiles</a>, <a href="https://publications.waset.org/abstracts/search?q=16S%20rDNA%20gene" title=" 16S rDNA gene"> 16S rDNA gene</a> </p> <a href="https://publications.waset.org/abstracts/13039/identification-of-cellulose-hydrolytic-thermophiles-isolated-from-sg-klah-hot-spring-based-on-16s-rdna-gene-sequence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Isolation and Molecular IdentıFıCation of Polyethylene Degrading Bacteria From Soil and Degradation Detection by FTIR Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Haghi">Morteza Haghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cigdem%20Yilmazbas"> Cigdem Yilmazbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Zeynep%20Uysal"> Ayse Zeynep Uysal</a>, <a href="https://publications.waset.org/abstracts/search?q=Melisa%20Tepedelen"> Melisa Tepedelen</a>, <a href="https://publications.waset.org/abstracts/search?q=Gozde%20Turkoz%20Bakirci"> Gozde Turkoz Bakirci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, the increase in plastic waste accumulation is an inescapable consequence of environmental pollution; the disposal of these wastes has caused a significant problem. Variable methods have been utilized; however, biodegradation is the most environmentally friendly and low-cost method. Accordingly, the present study aimed to isolate the bacteria capable of biodegradation of plastics. In doing so, we applied the liquid carbon-free basal medium (LCFBM) prepared with deionized water for the isolation of bacterial species obtained from soil samples taken from the Izmir Menemen region. Isolates forming biofilms on plastic were selected and named (PLB3, PLF1, PLB1B) and subjected to a degradation test. FTIR analysis, 16s rDNA amplification, sequencing, identification of isolates were performed. Finally, at the end of the process, a mass loss of 16.6% in PLB3 isolate and 25% in PLF1 isolate was observed, while no mass loss was detected in PLB1B isolate. Only PLF1 and PLB1B created transparent zones on plastic texture. Considering the FTIR result, PLB3 changed plastic structure by 13.6% and PLF1 by 17%, while PLB1B did not change the plastic texture. According to the 16s rDNA sequence analysis, FLP1, PLB1B, and PLB3 isolates were identified as Streptomyces albogriseolus, Enterobacter cloacae, and Klebsiella pneumoniae, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title="polyethylene">polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=16s%20rDNA" title=" 16s rDNA"> 16s rDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a> </p> <a href="https://publications.waset.org/abstracts/139334/isolation-and-molecular-identification-of-polyethylene-degrading-bacteria-from-soil-and-degradation-detection-by-ftir-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Actinomycetes from Protected Forest Ecosystems of Assam, India: Diversity and Antagonistic Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Sharma">Priyanka Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjita%20Das"> Ranjita Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohan%20C.%20Kalita"> Mohan C. Kalita</a>, <a href="https://publications.waset.org/abstracts/search?q=Debajit%20Thakur"> Debajit Thakur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Actinomycetes are the richest source of novel bioactive secondary metabolites such as antibiotics, enzymes and other therapeutically useful metabolites with diverse biological activities. The present study aims at the antimicrobial potential and genetic diversity of culturable Actinomycetes isolated from protected forest ecosystems of Assam which includes Kaziranga National Park (26°30˝-26°45˝N and 93°08˝-93°36˝E), Pobitora Wildlife Sanctuary (26º12˝-26º16˝N and 91º58˝-92º05˝E) and Gibbon Wildlife Sanctuary (26˚40˝-26˚45˝N and 94˚20˝-94˚25˝E) which are located in the North-eastern part of India. Northeast India is a part of the Indo-Burma mega biodiversity hotspot and most of the protected forests of this region are still unexplored for the isolation of effective antibiotic-producing Actinomycetes. Thus, there is tremendous possibility that these virgin forests could be a potential storehouse of novel microorganisms, particularly Actinomycetes, exhibiting diverse biological properties. Methodology: Soil samples were collected from different ecological niches of the protected forest ecosystems of Assam and Actinomycetes were isolated by serial dilution spread plate technique using five selective isolation media. Preliminary screening of Actinomycetes for an antimicrobial activity was done by spot inoculation method and the secondary screening by disc diffusion method against several test pathogens, including multidrug resistant Staphylococcus aureus (MRSA). The strains were further screened for the presence of antibiotic synthetic genes such as type I polyketide synthases (PKS-I), type II polyketide synthases (PKS-II) and non-ribosomal peptide synthetases (NRPS) genes. Genetic diversity of the Actinomycetes producing antimicrobial metabolites was analyzed through 16S rDNA-RFLP using Hinf1 restriction endonuclease. Results: Based on the phenotypic characterization, a total of 172 morphologically distinct Actinomycetes were isolated and screened for antimicrobial activity by spot inoculation method on agar medium. Among the strains tested, 102 (59.3%) strains showed activity against Gram-positive bacteria, 98 (56.97%) against Gram-negative bacteria, 92 (53.48%) against Candida albicans MTCC 227 and 130 (75.58%) strains showed activity against at least one of the test pathogens. Twelve Actinomycetes exhibited broad spectrum antimicrobial activity in the secondary screening. The taxonomic identification of these twelve strains by 16S rDNA sequencing revealed that Streptomyces was found to be the predominant genus. The PKS-I, PKS-II and NRPS genes detection indicated diverse bioactive products of these twelve Actinomycetes. Genetic diversity by 16S rDNA-RFLP indicated that Streptomyces was the dominant genus amongst the antimicrobial metabolite producing Actinomycetes. Conclusion: These findings imply that Actinomycetes from the protected forest ecosystems of Assam, India, are a potential source of bioactive secondary metabolites. These areas are as yet poorly studied and represent diverse and largely unscreened ecosystem for the isolation of potent Actinomycetes producing antimicrobial secondary metabolites. Detailed characterization of the bioactive Actinomycetes as well as purification and structure elucidation of the bioactive compounds from the potent Actinomycetes is the subject of ongoing investigation. Thus, to exploit Actinomycetes from such unexplored forest ecosystems is a way to develop bioactive products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Actinomycetes" title="Actinomycetes">Actinomycetes</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20ecosystems" title=" forest ecosystems"> forest ecosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=RFLP" title=" RFLP"> RFLP</a> </p> <a href="https://publications.waset.org/abstracts/31375/actinomycetes-from-protected-forest-ecosystems-of-assam-india-diversity-and-antagonistic-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Amplified Ribosomal DNA Restriction Analysis Method to Assess Rumen Microbial Diversity of Ruminant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Natsir">A. Natsir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nadir"> M. Nadir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Syahrir"> S. Syahrir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mujnisa"> A. Mujnisa</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Purnomo"> N. Purnomo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Egan"> A. R. Egan</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20J.%20Leury"> B. J. Leury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rumen degradation characteristic of feedstuff is one of the prominent factors affecting microbial population in rumen of animal. High rumen degradation rate of faba bean protein may lead to inconstant rumen conditions that could have a prominent impact on rumen microbial diversity. Amplified Ribosomal DNA Restriction Analysis (ARDRA) is utilized to monitor diversity of rumen microbes on sheep fed low quality forage supplemented by faba beans. Four mature merino sheep with existing rumen cannula were used in this study according to 4 x 4 Latin square design. The results of study indicated that there were 37 different ARDRA types identified out of 136 clones examined. Among those clones, five main clone types existed across the treatments with different percentages. In conclusion, the ARDRA method is potential to be used as a routine tool to assess the temporary changes in the rumen community as a result of different feeding strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARDRA%20method" title="ARDRA method">ARDRA method</a>, <a href="https://publications.waset.org/abstracts/search?q=cattle" title=" cattle"> cattle</a>, <a href="https://publications.waset.org/abstracts/search?q=genomic%20diversity" title=" genomic diversity"> genomic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20microbes" title=" rumen microbes"> rumen microbes</a> </p> <a href="https://publications.waset.org/abstracts/55076/amplified-ribosomal-dna-restriction-analysis-method-to-assess-rumen-microbial-diversity-of-ruminant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Hydration of Protein-RNA Recognition Sites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amita%20Barik">Amita Barik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjit%20Prasad%20Bahadur"> Ranjit Prasad Bahadur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the role of water molecules in 89 protein-RNA complexes taken from the Protein Data Bank. Those with tRNA and single-stranded RNA are less hydrated than with duplex or ribosomal proteins. Protein-RNA interfaces are hydrated less than protein-DNA interfaces, but more than protein-protein interfaces. Majority of the waters at protein-RNA interfaces makes multiple H-bonds; however, a fraction does not make any. Those making Hbonds have preferences for the polar groups of RNA than its partner protein. The spatial distribution of waters makes interfaces with ribosomal proteins and single-stranded RNA relatively ‘dry’ than interfaces with tRNA and duplex RNA. In contrast to protein-DNA interfaces, mainly due to the presence of the 2’OH, the ribose in protein-RNA interfaces is hydrated more than the phosphate or the bases. The minor groove in protein-RNA interfaces is hydrated more than the major groove, while in protein-DNA interfaces it is reverse. The strands make the highest number of water-mediated H-bonds per unit interface area followed by the helices and the non-regular structures. The preserved waters at protein-RNA interfaces make higher number of H-bonds than the other waters. Preserved waters contribute toward the affinity in protein-RNA recognition and should be carefully treated while engineering protein-RNA interfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=h-bonds" title="h-bonds">h-bonds</a>, <a href="https://publications.waset.org/abstracts/search?q=minor-major%20grooves" title=" minor-major grooves"> minor-major grooves</a>, <a href="https://publications.waset.org/abstracts/search?q=preserved%20water" title=" preserved water"> preserved water</a>, <a href="https://publications.waset.org/abstracts/search?q=protein-RNA%20interfaces" title=" protein-RNA interfaces"> protein-RNA interfaces</a> </p> <a href="https://publications.waset.org/abstracts/42932/hydration-of-protein-rna-recognition-sites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Systematics of Water Lilies (Genus Nymphaea L.) Using 18S rDNA Sequences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nakkuntod">M. Nakkuntod</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Srinarang"> S. Srinarang</a>, <a href="https://publications.waset.org/abstracts/search?q=K.W.%20Hilu"> K.W. Hilu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water lily (<em>Nymphaea</em> L.) is the largest genus of Nymphaeaceae. This family is composed of six genera (<em>Nuphar</em>, <em>Ondinea</em>, <em>Euryale</em>, <em>Victoria</em>, <em>Barclaya</em>, <em>Nymphaea</em>). Its members are nearly worldwide in tropical and temperate regions. The classification of some species in <em>Nymphaea</em> is ambiguous due to high variation in leaf and flower parts such as leaf margin, stamen appendage. Therefore, the phylogenetic relationships based on 18S rDNA were constructed to delimit this genus. DNAs of 52 specimens belonging to water lily family were extracted using modified conventional method containing cetyltrimethyl ammonium bromide (<em>CTAB</em>). The results showed that the amplified fragment is about 1600 base pairs in size. After analysis, the aligned sequences presented 9.36% for variable characters comprising 2.66% of parsimonious informative sites and 6.70% of singleton sites. Moreover, there are 6 regions of 1-2 base(s) for insertion/deletion. The phylogenetic trees based on maximum parsimony and maximum likelihood with high bootstrap support indicated that genus <em>Nymphaea</em> was a paraphyletic group because of <em>Ondinea</em>, <em>Victoria</em> and <em>Euryale</em> disruption. Within genus <em>Nymphaea</em>, subgenus <em>Nymphaea</em> is a basal lineage group which cooperated with <em>Euryale</em> and <em>Victoria</em>. The other four subgenera, namely <em>Lotos</em>, <em>Hydrocallis</em>, <em>Brachyceras </em>and <em>Anecphya</em> were included the same large clade which <em>Ondinea</em> was placed within <em>Anecphya</em> clade due to geographical sharing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nrDNA" title="nrDNA">nrDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogeny" title=" phylogeny"> phylogeny</a>, <a href="https://publications.waset.org/abstracts/search?q=taxonomy" title=" taxonomy"> taxonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=waterlily" title=" waterlily"> waterlily</a> </p> <a href="https://publications.waset.org/abstracts/96212/systematics-of-water-lilies-genus-nymphaea-l-using-18s-rdna-sequences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Evaluation of the Physico-Chemical and Microbial Properties of the Compost Leachate (CL) to Assess Its Role in the Bioremediation of Polyaromatic Hydrocarbons (PAHs)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omaima%20A.%20Sharaf">Omaima A. Sharaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20A.%20Moussa"> Tarek A. Moussa</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20M.%20Badr%20El-Din"> Said M. Badr El-Din</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Moawad"> H. Moawad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Polycyclic aromatic hydrocarbons (PAHs) pose great environmental and human health concerns for their widespread occurrence, persistence, and carcinogenic properties. PAHs releases due to anthropogenic activities to the wider environment have led to higher concentrations of these contaminants than would be expected from natural processes alone. This may result in a wide range of environmental problems that can accumulate in agricultural ecosystems, which threatened to become a negative impact on sustainable agricultural development. Thus, this study aimed to evaluate the physico-chemical, and microbial properties of the compost leachate (CL) to assess its role as nutrient and microbial source (biostimulation/bioaugmentation) for developing a cost-effective bioremediation technology for PAHs contaminated sites. Material and Methods: PAHs-degrading bacteria were isolated from CL that was collected from a composting site located in central Scotland, UK. Isolation was carried out by enrichment using phenanthrene (PHR), pyrene (PYR) and benzo(a)pyrene (BaP) as the sole source of carbon and energy. The isolates were characterized using a variety of phenotypic and molecular properties. Six different isolates were identified based on the difference in morphological and biochemical tests. The efficiency of these isolates in PAHs utilization was assessed. Further analysis was performed to define taxonomical status and phylogenic relation between the most potent PAHs-utilizing bacterial strains and other standard strains, using molecular approach by partial 16S rDNA gene sequence analysis. Results indicated that the 16S rDNA sequence analysis confirmed the results of biochemical identification, as both of biochemical and molecular identification of the isolates assigned them to Bacillus licheniformis, Pseudomonas aeruginosa, Alcaligenes faecalis, Serratia marcescens, Enterobacter cloacae and Providenicia which were identified as the prominent PAHs-utilizers isolated from CL. Conclusion: This study indicates that the CL samples contain a diverse population of PAHs-degrading bacteria and the use of CL may have a potential for bioremediation of PAHs contaminated sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycyclic%20aromatic%20hydrocarbons" title="polycyclic aromatic hydrocarbons">polycyclic aromatic hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-chemical%20analyses" title=" physico-chemical analyses"> physico-chemical analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=compost%20leachate" title=" compost leachate"> compost leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20and%20biochemical%20analyses" title=" microbial and biochemical analyses"> microbial and biochemical analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenic%20relations" title=" phylogenic relations"> phylogenic relations</a>, <a href="https://publications.waset.org/abstracts/search?q=16S%20rDNA%20sequence%20analysis" title=" 16S rDNA sequence analysis"> 16S rDNA sequence analysis</a> </p> <a href="https://publications.waset.org/abstracts/7624/evaluation-of-the-physico-chemical-and-microbial-properties-of-the-compost-leachate-cl-to-assess-its-role-in-the-bioremediation-of-polyaromatic-hydrocarbons-pahs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Isolation, Identification and Characterization of the Bacteria and Yeast from the Fermented Stevia Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asato%20Takaishi">Asato Takaishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masashi%20Nasuhara"> Masashi Nasuhara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayuko%20Itsuki"> Ayuko Itsuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenichi%20Suga"> Kenichi Suga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stevia (Stevia rebaudiana Bertoni) is a composite plant native to Paraguay. Stevia sweetener is derived from a hot water extract of Stevia (Stevia extract), which has some effects such as histamine decomposition, antioxidative effect, and blood sugar level-lowering function. The steviol glycosides in the Stevia extract are considered to contribute to these effects. In addition, these effects increase by the fermentation. However, it takes a long time for fermentation of Stevia extract and the fermentation liquid sometimes decays during the fermentation process because natural fermentation method is used. The aim of this study is to perform the fermentation of Stevia extract in a shorter period, and to produce the fermentation liquid in stable quality. From the natural fermentation liquid of Stevia extract, the four strains of useful (good taste) microorganisms were isolated using dilution plate count method and some properties were determined. The base sequences of 16S rDNA and 28S rDNA revealed three bacteria (two Lactobacillus sp. and Microbacterium sp.) and one yeast (Issatchenkia sp.). This result has corresponded that several kinds of lactic bacterium such as Lactobacillus pentosus and Lactobacillus buchneri were isolated from Stevia leaves. Liquid chromatography/mass spectrometory (LC/MS/MS) and High-Performance Liquid Chromatography (HPLC) were used to determine the contents of steviol glycosides and neutral sugars. When these strains were cultured in the sterile Stevia extract, the steviol and stevioside were increased in the fermented Stevia extract. So, it was suggested that the rebaudioside A and the mixture of steviol glycosides in the Stevia extract were decomposed into stevioside and steviol by microbial metabolism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=lactobacillus" title=" lactobacillus"> lactobacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=Stevia" title=" Stevia"> Stevia</a>, <a href="https://publications.waset.org/abstracts/search?q=steviol%20glycosides" title=" steviol glycosides"> steviol glycosides</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a> </p> <a href="https://publications.waset.org/abstracts/62007/isolation-identification-and-characterization-of-the-bacteria-and-yeast-from-the-fermented-stevia-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Functional Diversity of Pseudomonas: Role in Stimulation of Bean Germination and Common Blight Biocontrol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Slimane%20Mokrani">Slimane Mokrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabti%20El%20hafid"> Nabti El hafid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Description of the subject: Currently, several efforts focus on the study of biodiversity, microbial biotechnology, and the use of ecological strategies. Objectives: The aim of this present work is to determine the functional diversity of bacteria in rhizospheric and non-rhizospheric soils of different plants. Methods: Bacteria were isolated from soil and identified based on physiological and biochemical characters and genotypic taxonomy performed by 16S rDNA and BOX-PCR. As well as the characterization of various PGPR traits. Then, they are tested for their effects on the stimulation of seed germination and the growth of Phaseolus vulgaris L. As well as their biological control activities with regard to the phytopathogenic bacterial isolate Xapf. Results and Discussion: The biochemical and physiological identification of 75 bacterial isolates made it possible to associate them with the two groups of fluorescent Pseudomonas (74.67%) and non-fluorescent Pseudomonas (25.33%). The identification by 16S rDNA of 27 strains made it possible to attribute the majority of the strains to the genus Pseudomonas (81.48%), Serratia (7.41%) and Bacillus (11.11%). The bacterial strains showed a high capacity to produce IAA, siderophores, HCN and to solubilize phosphate. A significant stimulation of germination and growth was observed by applying the Pseudomonas strains. Furthermore, significant reductions in the severity and intensity of the disease caused caused by Xapf were observed. Conclusion: The bacteria described in this present study endowed with different PGPR activities seem to be very promising for their uses as biological control agents and bio-fertilization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofertilization" title="biofertilization">biofertilization</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title=" biological control"> biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=phaseolus%20vulgaris%20L" title=" phaseolus vulgaris L"> phaseolus vulgaris L</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomonas" title=" pseudomonas"> pseudomonas</a>, <a href="https://publications.waset.org/abstracts/search?q=Xanthomonas%20axonopodis%20pv.%20phaseoli%20var.%20fuscans%20and%20common%20blight" title=" Xanthomonas axonopodis pv. phaseoli var. fuscans and common blight"> Xanthomonas axonopodis pv. phaseoli var. fuscans and common blight</a> </p> <a href="https://publications.waset.org/abstracts/159039/functional-diversity-of-pseudomonas-role-in-stimulation-of-bean-germination-and-common-blight-biocontrol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Assessment of Lactic Acid Bacteria of Probiotic Potentials in Dairy Produce in Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashad%20R.%20Al-Hindi">Rashad R. Al-Hindi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to isolate and identify lactic acid bacteria and evaluate their therapeutic and food preservation importance. Ninety-three suspected lactic acid bacteria (LAB) were isolated from thirteen different raw and fermented milk of indigenous sources in the Kingdom of Saudi Arabia. The identification of forty-six selected LAB strains and genetic relatedness were performed based on 16S rDNA gene sequence comparison. The LAB counts in certain samples were higher under microaerobic than anaerobic conditions. The identified LAB belonged to genera Enterococcus (16 strains), Lactobacillus (9 strains), Weissella (10 strains), Streptococcus (8 strains) and Lactococcus (3 strains). Phylogenetic tree generated from the full-length (~1.6 kb) sequences confirmed previous findings. Utilization of shorter 16S rDNA sequences (~1.0 kb) also discriminated among strains of which V2 region was the most effective. None of the strains exhibited resistance to clinically relevant antibiotics or undesirable hemolytic activity, while they differed in other probiotic characteristics, e.g., tolerance to acidic pH, resistance to bile salt, and antibacterial activity. In conclusion, the isolates Lactobacillus casei MSJ1, Lactobacillus casei Dwan5, Lactobacillus plantarum EyLan2 and Enterococcus faecium Gail-BawZir8 are likely the best probiotic LAB and we speculate that studying the synergistic effects of bacterial combinations might result in the occurrence of more effective probiotic potential. We argue that the raw and fermented milk of animals hosted in Saudi Arabia, especially stirred yogurt (Laban) made from camel milk, are rich in LAB with promising probiotics potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermented%20foods" title="fermented foods">fermented foods</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20bacteria" title=" lactic acid bacteria"> lactic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia "> Saudi Arabia </a> </p> <a href="https://publications.waset.org/abstracts/77426/assessment-of-lactic-acid-bacteria-of-probiotic-potentials-in-dairy-produce-in-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Interpersonal Variation of Salivary Microbiota Using Denaturing Gradient Gel Electrophoresis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjula%20Weerasekera">Manjula Weerasekera</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Sissons"> Chris Sissons</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Wong"> Lisa Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sally%20Anderson"> Sally Anderson</a>, <a href="https://publications.waset.org/abstracts/search?q=Ann%20Holmes"> Ann Holmes</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Cannon"> Richard Cannon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to characterize bacterial population and yeasts in saliva by Polymerase chain reaction followed by denaturing gradient gel electrophoresis (PCR-DGGE) and measure yeast levels by culture. PCR-DGGE was performed to identify oral bacteria and yeasts in 24 saliva samples. DNA was extracted and used to generate DNA amplicons of the V2–V3 hypervariable region of the bacterial 16S rDNA gene using PCR. Further universal primers targeting the large subunit rDNA gene (25S-28S) of fungi were used to amplify yeasts present in human saliva. Resulting PCR products were subjected to denaturing gradient gel electrophoresis using Universal mutation detection system. DGGE bands were extracted and sequenced using Sanger method. A potential relationship was evaluated between groups of bacteria identified by cluster analysis of DGGE fingerprints with the yeast levels and with their diversity. Significant interpersonal variation of salivary microbiome was observed. Cluster and principal component analysis of the bacterial DGGE patterns yielded three significant major clusters, and outliers. Seventeen of the 24 (71%) saliva samples were yeast positive going up to 10³ cfu/mL. Predominately, C. albicans, and six other species of yeast were detected. The presence, amount and species of yeast showed no clear relationship to the bacterial clusters. Microbial community in saliva showed a significant variation between individuals. A lack of association between yeasts and the bacterial fingerprints in saliva suggests the significant ecological person-specific independence in highly complex oral biofilm systems under normal oral conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=denaturing%20gradient%20gel%20electrophoresis" title=" denaturing gradient gel electrophoresis"> denaturing gradient gel electrophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20biofilm" title=" oral biofilm"> oral biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=yeasts" title=" yeasts"> yeasts</a> </p> <a href="https://publications.waset.org/abstracts/73969/interpersonal-variation-of-salivary-microbiota-using-denaturing-gradient-gel-electrophoresis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Identification and Characterization of Oil-Degrading Bacteria from Crude Oil-Contaminated Desert Soil in Northeastern Jordan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Aladwan">Mohammad Aladwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Adelia%20Skripova"> Adelia Skripova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioremediation aspects of crude oil-polluted fields can be achieved by isolation and identification of bacterial species from oil-contaminated soil in order to choose the most active isolates and increase the strength of others. In this study, oil-degrading bacteria were isolated and identified from oil-contaminated soil samples in northeastern Jordan. The bacterial growth count (CFU/g) was between 1.06×10⁵ and 0.75×10⁹. Eighty-two bacterial isolates were characterized by their morphology and biochemical tests. The identified bacterial genera included: Klebsiella, Staphylococcus, Citrobacter, Lactobacillus, Alcaligenes, Pseudomonas, Hafnia, Micrococcus, Rhodococcus, Serratia, Enterobacter, Bacillus, Salmonella, Mycobacterium, Corynebacterium, and Acetobacter. Molecular identification of a universal primer 16S rDNA gene was used to identify four bacterial isolates: Microbacterium esteraromaticum strain L20, Pseudomonas stutzeri strain 13636M, Klebsilla pneumoniae, and uncultured Klebsilla sp., known as new strains. Our results indicate that their specific oil-degrading bacteria isolates might have a high strength of oil degradation from oil-contaminated sites. Staphylococcus intermedius (75%), Corynebacterium xerosis (75%), and Pseudomonas fluorescens (50%) showed a high growth rate on different types of hydrocarbons, such as crude oil, toluene, naphthalene, and hexane. In addition, monooxygenase and catechol 2,3-dioxygenase were detected in 17 bacterial isolates, indicating their superior hydrocarbon degradation potential. Total petroleum hydrocarbons were analyzed using gas chromatography for soil samples. Soil samples M5, M7, and M8 showed the highest levels (43,645, 47,805, and 45,991 ppm, respectively), and M4 had the lowest level (7,514 ppm). All soil samples were analyzed for heavy metal contamination (Cu, Cd, Mn, Zn, and Pb). Site M7 contains the highest levels of Cu, Mn, and Pb, while Site M8 contains the highest levels of Mn and Zn. In the future, these isolates of bacteria can be used for the cleanup of oil-contaminated soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=16S%20rDNA%20gene" title=" 16S rDNA gene"> 16S rDNA gene</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-degrading%20bacteria" title=" oil-degrading bacteria"> oil-degrading bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbons" title=" hydrocarbons"> hydrocarbons</a> </p> <a href="https://publications.waset.org/abstracts/155484/identification-and-characterization-of-oil-degrading-bacteria-from-crude-oil-contaminated-desert-soil-in-northeastern-jordan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> The Effect of Extensive Mosquito Migration on Dengue Control as Revealed by Phylogeny of Dengue Vector Aedes aegypti</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20D.%20Nirmani">M. D. Nirmani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20L.%20N.%20Perera"> K. L. N. Perera</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20H.%20Galhena"> G. H. Galhena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dengue has become one of the most important arbo-viral disease in all tropical and subtropical regions of the world. Aedes aegypti, is the principal vector of the virus, vary in both epidemiological and behavioral characteristics, which could be finely measured through DNA sequence comparison at their population level. Such knowledge in the population differences can assist in implementation of effective vector control strategies allowing to make estimates of the gene flow and adaptive genomic changes, which are important predictors of the spread of Wolbachia infection or insecticide resistance. As such, this study was undertaken to investigate the phylogenetic relationships of Ae. aegypti from Galle and Colombo, Sri Lanka, based on the ribosomal protein region which spans between two exons, in order to understand the geographical distribution of genetically distinct mosquito clades and its impact on mosquito control measures. A 320bp DNA region spanning from 681-930 bp, corresponding to the ribosomal protein, was sequenced in 62 Ae. aegypti larvae collected from Galle (N=30) and Colombo (N=32), Sri Lanka. The sequences were aligned using ClustalW and the haplotypes were determined with DnaSP 5.10. Phylogenetic relationships among haplotypes were constructed using the maximum likelihood method under Tamura 3 parameter model in MEGA 7.0.14 including three previously reported sequences of Australian (N=2) and Brazilian (N=1) Ae. aegypti. The bootstrap support was calculated using 1000 replicates and the tree was rooted using Aedes notoscriptus (GenBank accession No. KJ194101). Among all sequences, nineteen different haplotypes were found among which five haplotypes were shared between 80% of mosquitoes in the two populations. Seven haplotypes were unique to each of the population. Phylogenetic tree revealed two basal clades and a single derived clade. All observed haplotypes of the two Ae. aegypti populations were distributed in all the three clades, indicating a lack of genetic differentiation between populations. The Brazilian Ae. aegypti haplotype and one of the Australian haplotypes were grouped together with the Sri Lankan basal haplotype in the same basal clade, whereas the other Australian haplotype was found in the derived clade. Phylogram showed that Galle and Colombo Ae. aegypti populations are highly related to each other despite the large geographic distance (129 Km) indicating a substantial genetic similarity between them. This may have probably arisen from passive migration assisted by human travelling and trade through both land and water as the two areas are bordered by the sea. In addition, studied Sri Lankan mosquito populations were closely related to Australian and Brazilian samples. Probably this might have caused by shipping industry between the three countries as all of them are fully or partially enclosed by sea. For example, illegal fishing boats migrating to Australia by sea is perhaps a good mean of transportation of all life stages of mosquitoes from Sri Lanka. These findings indicate that extensive mosquito migrations occur between populations not only within the country, but also among other countries in the world which might be a main barrier to the successful vector control measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aedes%20aegypti" title="Aedes aegypti">Aedes aegypti</a>, <a href="https://publications.waset.org/abstracts/search?q=dengue%20control" title=" dengue control"> dengue control</a>, <a href="https://publications.waset.org/abstracts/search?q=extensive%20mosquito%20migration" title=" extensive mosquito migration"> extensive mosquito migration</a>, <a href="https://publications.waset.org/abstracts/search?q=haplotypes" title=" haplotypes"> haplotypes</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogeny" title=" phylogeny"> phylogeny</a>, <a href="https://publications.waset.org/abstracts/search?q=ribosomal%20protein" title=" ribosomal protein"> ribosomal protein</a> </p> <a href="https://publications.waset.org/abstracts/77262/the-effect-of-extensive-mosquito-migration-on-dengue-control-as-revealed-by-phylogeny-of-dengue-vector-aedes-aegypti" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Tomato Endophytes Trichoderma asperellum AAUTLF and Stenotrophomonas maltophilia D1B Exhibits Plant Growth-Promotion and Fusarium Wilt Suppression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bandana%20Saikia">Bandana Saikia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Bhattacharyya"> Ashok Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endophytic microbes and their metabolites positively impact overall plant health, which may have a potential implication in agriculture. In the present study, 177 bacterial endophytes and 57 fungal endophytes were isolated, with the highest recovery rate from tomato roots. A maximum of 112 endophytes were isolated during monsoon, followed by 64 isolates and 58 isolates isolated during pre-monsoon and post-monsoon periods, respectively, indicating the rich diversity in bacterial and fungal endophytes of tomato crops from different locations of Assam, India. Further, the endophytes were evaluated for their antagonistic potential against Fusarium oxysporum f. sp. lycopersici. Fungal endophytic isolate AAUTLF (Endophytic Fungi of Tomato Leaf from Assam Agricultural University, Assam, India area) and bacterial endophyte D1B (Endophytic bacteria of tomato from Dhemiji, India district) showed the highest antifungal activity against the pathogen both in vitro and in vivo. Based on 5.8 rDNA sequence analysis of fungal and 16S rDNA sequence of bacteria endophytes, the most effective fungal and bacterial isolates against FOL were identified as Trichoderma asperellum AAUTLF and Stenotrophomonas maltophilia D1B, respectively. The isolates showed an antagonistic effect against Fusarium oxysporum f.sp. lycopersici in-vitro and reduced the disease index of Fusarium wilt in tomatoes by 64.4% under pot conditions. Trichoderma asperellum AAUTLF produced an antifungal compound viz., 6-pentyl-2H-pyran-2-one, which also possesses growth-promoting characteristics. The bacteria Stenotrophomonas maltophilia D1B produced antifungal compounds, including benzothiazole, oleic acid, phenylacetic acid, and 3-(Hydroxy-phenyl-methyl)-2,3-dimethyl-octan-4-one. This would be of high importance for the source of antagonistic strains and biocontrol of tomato Fusarium wilt, as well as other plant fungal diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=root%20endophytes" title="root endophytes">root endophytes</a>, <a href="https://publications.waset.org/abstracts/search?q=Stemotrophomonas" title=" Stemotrophomonas"> Stemotrophomonas</a>, <a href="https://publications.waset.org/abstracts/search?q=Trichoderma" title=" Trichoderma"> Trichoderma</a>, <a href="https://publications.waset.org/abstracts/search?q=benzothiazole" title=" benzothiazole"> benzothiazole</a>, <a href="https://publications.waset.org/abstracts/search?q=6-pentyl-2H-pyran-2-one" title=" 6-pentyl-2H-pyran-2-one"> 6-pentyl-2H-pyran-2-one</a> </p> <a href="https://publications.waset.org/abstracts/165567/tomato-endophytes-trichoderma-asperellum-aautlf-and-stenotrophomonas-maltophilia-d1b-exhibits-plant-growth-promotion-and-fusarium-wilt-suppression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> One Species into Five: Nucleo-Mito Barcoding Reveals Cryptic Species in &#039;Frankliniella Schultzei Complex&#039;: Vector for Tospoviruses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Kumar">Vikas Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kailash%20Chandra"> Kailash Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaomud%20Tyagi"> Kaomud Tyagi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The insect order Thysanoptera includes small insects commonly called thrips. As insect vectors, only thrips are capable of Tospoviruses transmission (genus Tospovirus, family Bunyaviridae) affecting various crops. Currently, fifteen species of subfamily Thripinae (Thripidae) have been reported as vectors for tospoviruses. Frankliniella schultzei, which is reported as act as a vector for at least five tospovirses, have been suspected to be a species complex with more than one species. It is one of the historical unresolved issues where, two species namely, F. schultzei Trybom and F. sulphurea Schmutz were erected from South Africa and Srilanaka respectively. These two species were considered to be valid until 1968 when sulphurea was treated as colour morph (pale form) and synonymised under schultzei (dark form) However, these two have been considered as valid species by some of the thrips workers. Parallel studies have indicated that brown form of schultzei is a vector for tospoviruses while yellow form is a non-vector. However, recent studies have shown that yellow populations have also been documented as vectors. In view of all these facts, it is highly important to have a clear understanding whether these colour forms represent true species or merely different populations with different vector carrying capacities and whether there is some hidden diversity in 'Frankliniella schultzei species complex'. In this study, we aim to study the 'Frankliniella schultzei species complex' with molecular spectacles with DNA data from India and Australia and Africa. A total of fifty-five specimens was collected from diverse locations in India and Australia. We generated molecular data using partial fragments of mitochondrial cytochrome c oxidase I gene (mtCOI) and 28S rRNA gene. For COI dataset, there were seventy-four sequences, out of which data on fifty-five was generated in the current study and others were retrieved from NCBI. All the four different tree construction methods: neighbor-joining, maximum parsimony, maximum likelihood and Bayesian analysis, yielded the same tree topology and produced five cryptic species with high genetic divergence. For, rDNA, there were forty-five sequences, out of which data on thirty-nine was generated in the current study and others were retrieved from NCBI. The four tree building methods yielded four cryptic species with high bootstrap support value/posterior probability. Here we could not retrieve one cryptic species from South Africa as we could not generate data on rDNA from South Africa and sequence for rDNA from African region were not available in the database. The results of multiple species delimitation methods (barcode index numbers, automatic barcode gap discovery, general mixed Yule-coalescent, and Poisson-tree-processes) also supported the phylogenetic data and produced 5 and 4 Molecular Operational Taxonomic Units (MOTUs) for mtCOI and 28S dataset respectively. These results of our study indicate the likelihood that F. sulphurea may be a valid species, however, more morphological and molecular data is required on specimens from type localities of these two species and comparison with type specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20barcoding" title="DNA barcoding">DNA barcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20complex" title=" species complex"> species complex</a>, <a href="https://publications.waset.org/abstracts/search?q=thrips" title=" thrips"> thrips</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20delimitation" title=" species delimitation"> species delimitation</a> </p> <a href="https://publications.waset.org/abstracts/92364/one-species-into-five-nucleo-mito-barcoding-reveals-cryptic-species-in-frankliniella-schultzei-complex-vector-for-tospoviruses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> A Genetic Identification of Candida Species Causing Intravenous Catheter-Associated Candidemia in Heart Failure Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Reza%20Aghili">Seyed Reza Aghili</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahereh%20Shokohi"> Tahereh Shokohi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shirin%20Sadat%20Hashemi%20Fesharaki"> Shirin Sadat Hashemi Fesharaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Boroumand"> Mohammad Ali Boroumand</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahar%20Salmanian"> Bahar Salmanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Intravenous catheter-associated fungal infection as nosocomial infection continue to be a deep problem among hospitalized patients, decreasing quality of life and adding healthcare costs. The capacity of catheters in the spread of candidemia in heart failure patients is obvious. The aim of this study was to evaluate the prevalence and genetic identification of Candida species in heart disorder patients. Material and Methods: This study was conducted in Tehran Hospital of Cardiology Center (Tehran, Iran, 2014) during 1.5 years on the patients hospitalized for at least 7 days and who had central or peripheral vein catheter. Culture of catheters, blood and skin of the location of catheter insertion were applied for detecting Candida colonies in 223 patients. Identification of Candida species was made on the basis of a combination of various phenotypic methods and confirmed by sequencing the ITS1-5.8S-ITS2 region amplified from the genomic DNA using PCR and the NCBI BLAST. Results: Of the 223 patients samples tested, we identified totally 15 Candida isolates obtained from 9 (4.04%) catheter cultures, 3 (1.35%) blood cultures and 2 (0.90%) skin cultures of the catheter insertion areas. On the base of ITS region sequencing, out of nine Candida isolates from catheter, 5(55.6%) C. albicans, 2(22.2%) C. glabrata, 1(11.1%) C. membranifiaciens and 1 (11.1%) C. tropicalis were identified. Among three Candida isolates from blood culture, C. tropicalis, C. carpophila and C. membranifiaciens were identified. Non-candida yeast isolated from one blood culture was Cryptococcus albidus. One case of C. glabrata and one case of Candida albicans were isolated from skin culture of the catheter insertion areas in patients with positive catheter culture. In these patients, ITS region of rDNA sequence showed a similarity between Candida isolated from the skin and catheter. However, the blood samples of these patients were negative for fungal growth. We report two cases of catheter-related candidemia caused by C. membranifiaciens and C. tropicalis on the base of genetic similarity of species isolated from blood and catheter which were treated successfully with intravenous fluconazole and catheter removal. In phenotypic identification methods, we could only identify C. albicans and C. tropicalis and other yeast isolates were diagnosed as Candida sp. Discussion: Although more than 200 species of Candida have been identified, only a few cause diseases in humans. There is some evidence that non-albicans infections are increasing. Many risk factors, including prior antibiotic therapy, use of a central venous catheter, surgery, and parenteral nutrition are considered to be associated with candidemia in hospitalized heart failure patients. Identifying the route of infection in candidemia is difficult. Non-albicans candida as the cause of candidemia is increasing dramatically. By using conventional method, many non-albicans isolates remain unidentified. So, using more sensitive and specific molecular genetic sequencing to clarify the aspects of epidemiology of the unknown candida species infections is essential. The positive blood and catheter cultures for candida isolates and high percentage of similarity of their ITS region of rDNA sequence in these two patients confirmed the diagnosis of intravenous catheter-associated candidemia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catheter-associated%20infections" title="catheter-associated infections">catheter-associated infections</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20failure%20patient" title=" heart failure patient"> heart failure patient</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20genetic%20sequencing" title=" molecular genetic sequencing"> molecular genetic sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=ITS%20region%20of%20rDNA" title=" ITS region of rDNA"> ITS region of rDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=Candidemia" title=" Candidemia"> Candidemia</a> </p> <a href="https://publications.waset.org/abstracts/60303/a-genetic-identification-of-candida-species-causing-intravenous-catheter-associated-candidemia-in-heart-failure-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Bioactive Secondary Metabolites from Culturable Unusual Actinomycetes from Solomon Islands Marine Sediments: Isolation and Characterisation of Bioactive Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahilya%20Singh">Ahilya Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Brad%20Carte"> Brad Carte</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Subramani"> Ramesh Subramani</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Aalbersberg"> William Aalbersberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A total of 37 actinomycete strains were purified from 25 Solomon Islands marine sediments using four different types of isolation media. Among them, 54% of the strains had obligate requirement of seawater for growth. The ethyl acetate extract of 100 ml fermentation product of each strain was screened for antimicrobial activity against multidrug resistant human pathogens and cytotoxic activity against brine shrimps. A total of 67% of the ethyl acetate extracts showed antimicrobial and/or cytotoxic activities. A strain F-1915 was selected for isolation and evaluation of bioactive compound(s) based on its bioactive properties and chemical profile analysis using the LC-MS. The strain F-1915 was identified to have 96% sequence similarity to Streptomyces violaceusniger on the basis of 16S rDNA sequences using BLAST analysis. The 16S rDNA revealed that the strain F-1915 is a new member of MAR4 clade of actinomycetes. The MAR4 clade is an interesting clade of actinomycetes known for the production of pharmaceutically important hybrid isoprenoid compounds. The ethyl acetate extract of the fermentation product of this strain was purified by silica gel column chromatography and afforded the isolation of one bioactive pure compound. Based on the 1D and 2D NMR spectral data of compound 1 it was identified as a new mono-brominated phenazinone, Marinophenazimycin A, a structure which has already been studied by external collaborators at Scripps Institution of Oceanography but is yet to be published. Compound 1 displayed significant antimicrobial activity against drug resistant human pathogens. The minimum inhibitory concentration (MIC) of compound 1 was against Methicillin Resistant Staphylococcus aureus (MRSA) was about 1.9 μg/ml and MIC recorded against Amphotericin Resistant Candida albicans (ARCA) was about 0.24 μg/ml. The bioactivity of compound 1 against ARCA was found to be better than the standard antifungal agent amphotericin B. Compound 1 however did not show any cytotoxic activity against brine shrimps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actinomycetes" title="actinomycetes">actinomycetes</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=brominated%20phenazine" title=" brominated phenazine"> brominated phenazine</a>, <a href="https://publications.waset.org/abstracts/search?q=MAR4%20clade" title=" MAR4 clade"> MAR4 clade</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20natural%20products" title=" marine natural products"> marine natural products</a>, <a href="https://publications.waset.org/abstracts/search?q=multidrug%20resistent" title=" multidrug resistent"> multidrug resistent</a>, <a href="https://publications.waset.org/abstracts/search?q=1D%20and%202D%20NMR" title=" 1D and 2D NMR"> 1D and 2D NMR</a> </p> <a href="https://publications.waset.org/abstracts/40032/bioactive-secondary-metabolites-from-culturable-unusual-actinomycetes-from-solomon-islands-marine-sediments-isolation-and-characterisation-of-bioactive-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Selection of Suitable Reference Genes for Assessing Endurance Related Traits in a Native Pony Breed of Zanskar at High Altitude</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prince%20Vivek">Prince Vivek</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20K.%20Bharti"> Vijay K. Bharti</a>, <a href="https://publications.waset.org/abstracts/search?q=Manishi%20Mukesh"> Manishi Mukesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankita%20Sharma"> Ankita Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Om%20Prakash%20Chaurasia"> Om Prakash Chaurasia</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhuvnesh%20Kumar"> Bhuvnesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High performance of endurance in equid requires adaptive changes involving physio-biochemical, and molecular responses in an attempt to regain homeostasis. We hypothesized that the identification of the suitable reference genes might be considered for assessing of endurance related traits in pony at high altitude and may ensure for individuals struggling to potent endurance trait in ponies at high altitude. A total of 12 mares of ponies, Zanskar breed, were divided into three groups, group-A (without load), group-B, (60 Kg) and group-C (80 Kg) on backpack loads were subjected to a load carry protocol, on a steep climb of 4 km uphill, and of gravel, uneven rocky surface track at an altitude of 3292 m to 3500 m (endpoint). Blood was collected before and immediately after the load carry on sodium heparin anticoagulant, and the peripheral blood mononuclear cell was separated for total RNA isolation and thereafter cDNA synthesis. Real time-PCR reactions were carried out to evaluate the mRNAs expression profile of a panel of putative internal control genes (ICGs), related to different functional classes, namely glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β₂ microglobulin (β₂M), β-actin (ACTB), ribosomal protein 18 (RS18), hypoxanthine-guanine phosophoribosyltransferase (HPRT), ubiquitin B (UBB), ribosomal protein L32 (RPL32), transferrin receptor protein (TFRC), succinate dehydrogenase complex subunit A (SDHA) for normalizing the real-time quantitative polymerase chain reaction (qPCR) data of native pony’s. Three different algorithms, geNorm, NormFinder, and BestKeeper software, were used to evaluate the stability of reference genes. The result showed that GAPDH was best stable gene and stability value for the best combination of two genes was observed TFRC and β₂M. In conclusion, the geometric mean of GAPDH, TFRC and β₂M might be used for accurate normalization of transcriptional data for assessing endurance related traits in Zanskar ponies during load carrying. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endurance%20exercise" title="endurance exercise">endurance exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitin%20B%20%28UBB%29" title=" ubiquitin B (UBB)"> ubiquitin B (UBB)</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B2%E2%82%82%20microglobulin%20%28%CE%B2%E2%82%82M%29" title=" β₂ microglobulin (β₂M)"> β₂ microglobulin (β₂M)</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20altitude" title=" high altitude"> high altitude</a>, <a href="https://publications.waset.org/abstracts/search?q=Zanskar%20ponies" title=" Zanskar ponies"> Zanskar ponies</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20gene" title=" reference gene"> reference gene</a> </p> <a href="https://publications.waset.org/abstracts/94149/selection-of-suitable-reference-genes-for-assessing-endurance-related-traits-in-a-native-pony-breed-of-zanskar-at-high-altitude" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Rhizosphere Microbial Communities in Fynbos Endemic Legumes during Wet and Dry Seasons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiisetso%20Mpai">Tiisetso Mpai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20K.%20Jaiswal"> Sanjay K. Jaiswal</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20D.%20Dakora"> Felix D. Dakora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The South African Cape fynbos biome is a global biodiversity hotspot. This biome contains a diversity of endemic shrub legumes, including Polhillia, Wiborgia, and Wiborgiella species, which are important for ecotourism as well as for improving soil fertility status. This is due to their proven N₂-fixing abilities when in association with compatible soil bacteria. In fact, Polhillia, Wiborgia, and Wiborgiella species have been reported to derive over 61% of their needed nitrogen through biological nitrogen fixation and to exhibit acid and alkaline phosphatase activity in their rhizospheres. Thus, their interactions with soil microbes may explain their survival mechanisms under the continued summer droughts and acidic, nutrient-poor soils in this region. However, information regarding their rhizosphere microbiome is still unavailable, yet it is important for Fynbos biodiversity management. Therefore, the aim of this study was to assess the microbial community structures associated with rhizosphere soils of Polhillia pallens, Polhillia brevicalyx, Wiborgia obcordata, Wiborgia sericea, and Wiborgiella sessilifolia growing at different locations of the South African Cape fynbos, during the wet and dry seasons. The hypothesis is that the microbial communities in these legume rhizospheres are the same type and are not affected by the growing season due to the restricted habitat of these wild fynbos legumes. To obtain the results, DNA was extracted from 0.5 g of each rhizosphere soil using PowerSoil™ DNA Isolation Kit, and sequences were obtained using the 16S rDNA Miseq Illumina technology. The results showed that in both seasons, bacteria were the most abundant microbial taxa in the rhizosphere soils of all five legume species, with Actinobacteria showing the highest number of sequences (about 30%). However, over 19.91% of the inhabitants in all five legume rhizospheres were unclassified. In terms of genera, Mycobacterium and Conexibacter were common in rhizosphere soils of all legumes in both seasons except for W. obcordata soils sampled during the dry season, which had Dehalogenimonas as the major inhabitant (6.08%). In conclusion, plant species and season were found to be the main drivers of microbial community structure in Cape fynbos, with the wet season being more dominant in shaping microbial diversity relative to the dry season. Wiborgia obcordata had a greater influence on microbial community structure than the other four legume species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=16S%20rDNA" title="16S rDNA">16S rDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=Cape%20fynbos" title=" Cape fynbos"> Cape fynbos</a>, <a href="https://publications.waset.org/abstracts/search?q=endemic%20legumes" title=" endemic legumes"> endemic legumes</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiome" title=" microbiome"> microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizosphere" title=" rhizosphere"> rhizosphere</a> </p> <a href="https://publications.waset.org/abstracts/140574/rhizosphere-microbial-communities-in-fynbos-endemic-legumes-during-wet-and-dry-seasons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Optimization of a Method of Total RNA Extraction from Mentha piperita</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soheila%20Afkar">Soheila Afkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mentha piperita is a medicinal plant that contains a large amount of secondary metabolite that has adverse effect on RNA extraction. Since high quality of RNA is the first step to real time-PCR, in this study optimization of total RNA isolation from leaf tissues of Mentha piperita was evaluated. From this point of view, we researched two different total RNA extraction methods on leaves of Mentha piperita to find the best one that contributes the high quality. The methods tested are RNX-plus, modified RNX-plus (1-5 numbers). RNA quality was analyzed by agarose gel 1.5%. The RNA integrity was also assessed by visualization of ribosomal RNA bands on 1.5% agarose gels. In the modified RNX-plus method (number 2), the integrity of 28S and 18S rRNA was highly satisfactory when analyzed in agarose denaturing gel, so this method is suitable for RNA isolation from Mentha piperita. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mentha%20piperita" title="Mentha piperita">Mentha piperita</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenol" title=" polyphenol"> polyphenol</a>, <a href="https://publications.waset.org/abstracts/search?q=polysaccharide" title=" polysaccharide"> polysaccharide</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA%20extraction" title=" RNA extraction"> RNA extraction</a> </p> <a href="https://publications.waset.org/abstracts/95845/optimization-of-a-method-of-total-rna-extraction-from-mentha-piperita" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Liquid Biopsy Based Microbial Biomarker in Coronary Artery Disease Diagnosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyup%20Ozkan">Eyup Ozkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozkan%20U.%20Nalbantoglu"> Ozkan U. Nalbantoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Aycan%20Gundogdu"> Aycan Gundogdu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Hora"> Mehmet Hora</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Emre%20Onuk"> A. Emre Onuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The human microbiome has been associated with cardiological conditions and this relationship is becoming to be defined beyond the gastrointestinal track. In this study, we investigate the alteration in circulatory microbiota in the context of Coronary Artery Disease (CAD). We received circulatory blood samples from suspected CAD patients and maintain 16S ribosomal RNA sequencing to identify each patient’s microbiome. It was found that Corynebacterium and Methanobacteria genera show statistically significant differences between healthy and CAD patients. The overall biodiversities between the groups were observed to be different revealed by machine learning classification models. We also achieve and demonstrate the performance of a diagnostic method using circulatory blood microbiome-based estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coronary%20artery%20disease" title="coronary artery disease">coronary artery disease</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20microbiome" title=" blood microbiome"> blood microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=angiography" title=" angiography"> angiography</a>, <a href="https://publications.waset.org/abstracts/search?q=next-generation%20sequencing" title=" next-generation sequencing"> next-generation sequencing</a> </p> <a href="https://publications.waset.org/abstracts/144219/liquid-biopsy-based-microbial-biomarker-in-coronary-artery-disease-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Molecular Biomonitoring of Bacterial Pathogens in Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Desouky%20Abd%20El%20Haleem">Desouky Abd El Haleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Zaki"> Sahar Zaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work was conducted to develop a one-step multiplex PCR system for rapid, sensitive, and specific detection of three different bacterial pathogens, Escherichia coli, Pseudomonas aeruginosa, and Salmonella spp, directly in wastewater without prior isolation on selective media. As a molecular confirmatory test after isolation of the pathogens by classical microbiological methods, PCR-RFLP of their amplified 16S rDNA genes was performed. It was observed that the developed protocols have significance impact in the ability to detect sensitively, rapidly and specifically the three pathogens directly in water within short-time, represents a considerable advancement over more time-consuming and less-sensitive methods for identification and characterization of these kinds of pathogens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiplex%20PCR" title="multiplex PCR">multiplex PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial%20pathogens" title=" bacterial pathogens"> bacterial pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20aeruginosa" title=" Pseudomonas aeruginosa"> Pseudomonas aeruginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella%20spp." title=" Salmonella spp."> Salmonella spp.</a> </p> <a href="https://publications.waset.org/abstracts/36823/molecular-biomonitoring-of-bacterial-pathogens-in-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> [Keynote Talk]: Bioactive Cyclic Dipeptides of Microbial Origin in Discovery of Cytokine Inhibitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajeli%20A.%20Begum">Sajeli A. Begum</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameer%20Basha"> Ameer Basha</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirti%20Hira"> Kirti Hira</a>, <a href="https://publications.waset.org/abstracts/search?q=Rukaiyya%20Khan"> Rukaiyya Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyclic dipeptides are simple diketopiperazine derivatives being investigated by several scientists for their biological effects which include anticancer, antimicrobial, haematological, anticonvulsant, immunomodulatory effect, etc. They are potentially active microbial metabolites having been synthesized too, for developing into drug candidates. Cultures of Pseudomonas species have earlier been reported to produce cyclic dipeptides, helping in quorum sensing signals and bacterial–host colonization phenomena during infections, causing cell anti-proliferation and immunosuppression. Fluorescing Pseudomonas species have been identified to secrete lipid derivatives, peptides, pyrroles, phenazines, indoles, aminoacids, pterines, pseudomonic acids and some antibiotics. In the present work, results of investigation on the cyclic dipeptide metabolites secreted by the culture broth of Pseudomonas species as potent pro-inflammatory cytokine inhibitors are discussed. The bacterial strain was isolated from the rhizospheric soil of groundnut crop and identified as Pseudomonas aeruginosa by 16S rDNA sequence (GenBank Accession No. KT625586). Culture broth of this strain was prepared by inoculating into King’s B broth and incubating at 30 ºC for 7 days. The ethyl acetate extract of culture broth was prepared and lyophilized to get a dry residue (EEPA). Lipopolysaccharide (LPS)-induced ELISA assay proved the inhibition of tumor necrosis factor-alpha (TNF-α) secretion in culture supernatant of RAW 264.7 cells by EEPA (IC50 38.8 μg/mL). The effect of oral administration of EEPA on plasma TNF-α level in rats was tested by ELISA kit. The LPS mediated plasma TNF-α level was reduced to 45% with 125 mg/kg dose of EEPA. Isolation of the chemical constituents of EEPA through column chromatography yielded ten cyclic dipeptides, which were characterized using nuclear magnetic resonance and mass spectroscopic techniques. These cyclic dipeptides are biosynthesized in microorganisms by multifunctional assembly of non-ribosomal peptide synthases and cyclic dipeptide synthase. Cyclo (Gly-L-Pro) was found to be more potentially (IC50 value 4.5 μg/mL) inhibiting TNF-α production followed by cyclo (trans-4-hydroxy-L-Pro-L-Phe) (IC50 value 14.2 μg/mL) and the effect was equal to that of standard immunosuppressant drug, prednisolone. Further, the effect was analyzed by determining mRNA expression of TNF-α in LPS-stimulated RAW 264.7 macrophages using quantitative real-time reverse transcription polymerase chain reaction. EEPA and isolated cyclic dipeptides demonstrated diminution of TNF-α mRNA expression levels in a dose-dependent manner under the tested conditions. Also, they were found to control the expression of other pro-inflammatory cytokines like IL-1β and IL-6, when tested through their mRNA expression levels in LPS-stimulated RAW 264.7 macrophages under LPS-stimulated conditions. In addition, significant inhibition effect was found on Nitric oxide production. Further all the compounds exhibited weak toxicity to LPS-induced RAW 264.7 cells. Thus the outcome of the study disclosed the effectiveness of EEPA and the isolated cyclic dipeptides in down-regulating key cytokines involved in pathophysiology of autoimmune diseases.In another study led by the investigators, microbial cyclic dipeptides were found to exhibit excellent antimicrobial effect against Fusarium moniliforme which is an important causative agent of Sorghum grain mold disease. Thus, cyclic dipeptides are emerging small molecular drug candidates for various autoimmune diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20dipeptides" title="cyclic dipeptides">cyclic dipeptides</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokines" title=" cytokines"> cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=Fusarium%20moniliforme" title=" Fusarium moniliforme"> Fusarium moniliforme</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas" title=" Pseudomonas"> Pseudomonas</a>, <a href="https://publications.waset.org/abstracts/search?q=TNF-alpha" title=" TNF-alpha"> TNF-alpha</a> </p> <a href="https://publications.waset.org/abstracts/76488/keynote-talk-bioactive-cyclic-dipeptides-of-microbial-origin-in-discovery-of-cytokine-inhibitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Phylogenetic Characterization of Atrazine-Degrading Bacteria Isolated from Agricultural Soil in Eastern Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sawangjit%20Sopid">Sawangjit Sopid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study sugarcane field soils with a long history of atrazine application in Chachoengsao and Chonburi provinces have been explored for their potential of atrazine biodegradation. For the atrazine degrading bacteria isolation, the soils used in this study named ACS and ACB were inoculated in MS-medium containing atrazine. Six short rod and gram-negative bacterial isolates, which were able to use this herbicide as a sole source of nitrogen, were isolated and named as ACS1, ACB1, ACB3, ACB4, ACB5 and ACB6. From the 16S rDNA nucleotide sequence analysis, the isolated bacteria ACS1 and ACB4 were identified as Rhizobium sp. with 89.1-98.7% nucleotide identity, ACB1 and ACB5 were identified as Stenotrophomonas sp. with 91.0-92.8% nucleotide identity, whereas ACB3 and ACB6 were Klebsiella sp. with 97.4-97.8% nucleotide identity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atrazine-degrading%20bacteria" title="atrazine-degrading bacteria">atrazine-degrading bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20isolates" title=" Thai isolates"> Thai isolates</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a> </p> <a href="https://publications.waset.org/abstracts/12599/phylogenetic-characterization-of-atrazine-degrading-bacteria-isolated-from-agricultural-soil-in-eastern-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">888</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ribosomal%20DNA%E2%80%93rDNA&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ribosomal%20DNA%E2%80%93rDNA&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ribosomal%20DNA%E2%80%93rDNA&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ribosomal%20DNA%E2%80%93rDNA&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ribosomal%20DNA%E2%80%93rDNA&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10