CINXE.COM
Search results for: residential electricity demand
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: residential electricity demand</title> <meta name="description" content="Search results for: residential electricity demand"> <meta name="keywords" content="residential electricity demand"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="residential electricity demand" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="residential electricity demand"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4679</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: residential electricity demand</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4679</span> Demand Response from Residential Air Conditioning Load Using a Programmable Communication Thermostat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Chanana">Saurabh Chanana</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Arora"> Monika Arora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Demand response is getting increased attention these days due to the increase in electricity demand and introduction of renewable resources in the existing power grid. Traditionally demand response programs involve large industrial consumers but with technological advancement, demand response is being implemented for small residential and commercial consumers also. In this paper, demand response program aims to reduce the peak demand as well as overall energy consumption of the residential customers. Air conditioners are the major reason of peak load in residential sector in summer, so a dynamic model of air conditioning load with thermostat action has been considered for applying demand response programs. A programmable communicating thermostat (PCT) is a device that uses real time pricing (RTP) signals to control the thermostat setting. A new model incorporating PCT in air conditioning load has been proposed in this paper. Results show that introduction of PCT in air conditioner is useful in reducing the electricity payments of customers as well as reducing the peak demand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demand%20response" title="demand response">demand response</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20energy%20management" title=" home energy management"> home energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=programmable%20communicating%20thermostat" title=" programmable communicating thermostat"> programmable communicating thermostat</a>, <a href="https://publications.waset.org/abstracts/search?q=thermostatically%20controlled%20appliances" title=" thermostatically controlled appliances"> thermostatically controlled appliances</a> </p> <a href="https://publications.waset.org/abstracts/1662/demand-response-from-residential-air-conditioning-load-using-a-programmable-communication-thermostat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">607</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4678</span> Determinants of Aggregate Electricity Consumption in Ghana: A Multivariate Time Series Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renata%20Konadu">Renata Konadu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Ghana, electricity has become the main form of energy which all sectors of the economy rely on for their businesses. Therefore, as the economy grows, the demand and consumption of electricity also grow alongside due to the heavy dependence on it. However, since the supply of electricity has not increased to match the demand, there has been frequent power outages and load shedding affecting business performances. To solve this problem and advance policies to secure electricity in Ghana, it is imperative that those factors that cause consumption to increase be analysed by considering the three classes of consumers; residential, industrial and non-residential. The main argument, however, is that, export of electricity to other neighbouring countries should be included in the electricity consumption model and considered as one of the significant factors which can decrease or increase consumption. The author made use of multivariate time series data from 1980-2010 and econometric models such as Ordinary Least Squares (OLS) and Vector Error Correction Model. Findings show that GDP growth, urban population growth, electricity exports and industry value added to GDP were cointegrated. The results also showed that there is unidirectional causality from electricity export and GDP growth and Industry value added to GDP to electricity consumption in the long run. However, in the short run, there was found to be a directional causality among all the variables and electricity consumption. The results have useful implication for energy policy makers especially with regards to electricity consumption, demand, and supply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electricity%20consumption" title="electricity consumption">electricity consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20policy" title=" energy policy"> energy policy</a>, <a href="https://publications.waset.org/abstracts/search?q=GDP%20growth" title=" GDP growth"> GDP growth</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20error%20correction%20model" title=" vector error correction model"> vector error correction model</a> </p> <a href="https://publications.waset.org/abstracts/56657/determinants-of-aggregate-electricity-consumption-in-ghana-a-multivariate-time-series-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4677</span> The Rebound Effect of Energy Efficiency in Residential Energy Demand: Case of Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Aldubyan">Mohammad Aldubyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fateh%20Belaid"> Fateh Belaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwar%20Gasim"> Anwar Gasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at linking to link residential energy efficiency to the rebound effect concept, a well-known behavioral phenomenon in which service consumption increases when consumers notice a reduction in monetary spending on energy due to improvements in energy efficiency. It provides insights on into how and why the rebound effect happens when energy efficiency improves and whether this phenomenon is positive or negative. It also shows one technique to estimate the rebound effect on the national residential level. The paper starts with a bird’s eye view of the rebound effect and then dives in in-depth into measuring the rebound effect and evaluating its impact. Finally, the paper estimates the rebound effect in the Saudi residential sector through by linking pre-estimated price elasticities of demand to the Saudi residential building stock. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=rebound%20effect" title=" rebound effect"> rebound effect</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20electricity%20demand" title=" residential electricity demand"> residential electricity demand</a> </p> <a href="https://publications.waset.org/abstracts/158063/the-rebound-effect-of-energy-efficiency-in-residential-energy-demand-case-of-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4676</span> Domestic Solar Hot Water Systems in Order to Reduce the Electricity Peak Demand in Assalouyeh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roya%20Moradifar">Roya Moradifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bijan%20Honarvar"> Bijan Honarvar</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Zabihi"> Masoumeh Zabihi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The personal residential camps of South Pars gas complex are one of the few places where electric energy is used for the bath water heating. The widespread use of these devices is mainly responsible for the high peak of the electricity demand in the residential sector. In an attempt to deal with this issue, to reduce the electricity usage of the hot water, as an option, solar hot water systems have been proposed. However, despite the high incidence of solar radiation on the Assaloyeh about 20 MJ/m²/day, currently, there is no technical assessment quantifying the economic benefits on the region. The present study estimates the economic impacts resulting by the deployment of solar hot water systems in residential camp. Hence, the feasibility study allows assessing the potential of solar water heating as an alternative to reduce the peak on the electricity demand. In order to examine the potential of using solar energy in Bidkhoon residential camp two solar water heater packages as pilots were installed for restaurant and building. Restaurant package was damaged due to maintenance problems, but for the building package, we achieved the result of the solar fraction total 83percent and max energy saving 2895 kWh, the maximum reduction in CO₂ emissions calculated as 1634.5 kg. The results of this study can be used as a support tool to spread the use solar water heaters and create policies for South Pars Gas Complex. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20energy" title="electrical energy">electrical energy</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20water" title=" hot water"> hot water</a>, <a href="https://publications.waset.org/abstracts/search?q=solar" title=" solar"> solar</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Pars%20Gas%20complex" title=" South Pars Gas complex"> South Pars Gas complex</a> </p> <a href="https://publications.waset.org/abstracts/72068/domestic-solar-hot-water-systems-in-order-to-reduce-the-electricity-peak-demand-in-assalouyeh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4675</span> City-Wide Simulation on the Effects of Optimal Appliance Scheduling in a Time-of-Use Residential Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rudolph%20Carl%20Barrientos">Rudolph Carl Barrientos</a>, <a href="https://publications.waset.org/abstracts/search?q=Juwaln%20Diego%20Descallar"> Juwaln Diego Descallar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rainer%20James%20Palmiano"> Rainer James Palmiano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Household Appliance Scheduling Systems (HASS) coupled with a Time-of-Use (TOU) pricing scheme, a form of Demand Side Management (DSM), is not widely utilized in the Philippines’ residential electricity sector. This paper’s goal is to encourage distribution utilities (DUs) to adopt HASS and TOU by analyzing the effect of household schedulers on the electricity price and load profile in a residential environment. To establish this, a city based on an implemented survey is generated using Monte Carlo Analysis (MCA). Then, a Binary Particle Swarm Optimization (BPSO) algorithm-based HASS is developed considering user satisfaction, electricity budget, appliance prioritization, energy storage systems, solar power, and electric vehicles. The simulations were assessed under varying levels of user compliance. Results showed that the average electricity cost, peak demand, and peak-to-average ratio (PAR) of the city load profile were all reduced. Therefore, the deployment of the HASS and TOU pricing scheme is beneficial for both stakeholders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=appliance%20scheduling" title="appliance scheduling">appliance scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=DSM" title=" DSM"> DSM</a>, <a href="https://publications.waset.org/abstracts/search?q=TOU" title=" TOU"> TOU</a>, <a href="https://publications.waset.org/abstracts/search?q=BPSO" title=" BPSO"> BPSO</a>, <a href="https://publications.waset.org/abstracts/search?q=city-wide%20simulation" title=" city-wide simulation"> city-wide simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=appliance%20prioritization" title=" appliance prioritization"> appliance prioritization</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20system" title=" energy storage system"> energy storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20power" title=" solar power"> solar power</a> </p> <a href="https://publications.waset.org/abstracts/155938/city-wide-simulation-on-the-effects-of-optimal-appliance-scheduling-in-a-time-of-use-residential-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4674</span> Tuning of the Thermal Capacity of an Envelope for Peak Demand Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isha%20Rathore">Isha Rathore</a>, <a href="https://publications.waset.org/abstracts/search?q=Peeyush%20Jain"> Peeyush Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Elangovan%20Rajasekar"> Elangovan Rajasekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal capacity of the envelope impacts the cooling and heating demand of a building and modulates the peak electricity demand. This paper presents the thermal capacity tuning of a building envelope to minimize peak electricity demand for space cooling. We consider a 40 m² residential testbed located in Hyderabad, India (Composite Climate). An EnergyPlus model is validated using real-time data. A Parametric simulation framework for thermal capacity tuning is created using the Honeybee plugin. Diffusivity, Thickness, layer position, orientation and fenestration size of the exterior envelope are parametrized considering a five-layered wall system. A total of 1824 parametric runs are performed and the optimum wall configuration leading to minimum peak cooling demand is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20capacity" title="thermal capacity">thermal capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=tuning" title=" tuning"> tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20demand%20reduction" title=" peak demand reduction"> peak demand reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20analysis" title=" parametric analysis"> parametric analysis</a> </p> <a href="https://publications.waset.org/abstracts/143562/tuning-of-the-thermal-capacity-of-an-envelope-for-peak-demand-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4673</span> Modeling Residential Electricity Consumption Function in Malaysia: Time Series Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20L.%20Ivy-Yap">L. L. Ivy-Yap</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Bekhet"> H. A. Bekhet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the Malaysian residential electricity consumption continued to increase rapidly, effective energy policies, which address factors affecting residential electricity consumption, is urgently needed. This study attempts to investigate the relationship between residential electricity consumption (EC), real disposable income (Y), price of electricity (Pe) and population (Po) in Malaysia for 1978-2011 periods. Unlike previous studies on Malaysia, the current study focuses on the residential sector, a sector that is important for the contemplation of energy policy. The Phillips-Perron (P-P) unit root test is employed to infer the stationary of each variable while the bound test is executed to determine the existence of co-integration relationship among the variables, modeled in an Autoregressive Distributed Lag (ARDL) framework. The CUSUM and CUSUM of squares tests are applied to ensure the stability of the model. The results suggest the existence of long-run equilibrium relationship and bidirectional Granger causality between EC and the macroeconomic variables. The empirical findings will help policy makers of Malaysia in developing new monitoring standards of energy consumption. As it is the major contributing factor in economic growth and CO2 emission, there is a need for more proper planning in Malaysia to attain future targets in order to cut emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-integration" title="co-integration">co-integration</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity" title=" elasticity"> elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=granger%20causality" title=" granger causality"> granger causality</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20electricity%20consumption" title=" residential electricity consumption"> residential electricity consumption</a> </p> <a href="https://publications.waset.org/abstracts/2495/modeling-residential-electricity-consumption-function-in-malaysia-time-series-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4672</span> Analyzing Electricity Demand Multipliers in the Malaysian Economy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Ali%20Bekhet">Hussain Ali Bekhet</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuan%20Ab%20Rashid%20Bin%20Tuan%20Abdullah"> Tuan Ab Rashid Bin Tuan Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahira%20Yasmin"> Tahira Yasmin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is very important for electric utility to determine dominant sectors which have more impacts on electricity consumption in national economy system. The aim of this paper is to examine the electricity demand multipliers in Malaysia for (2005-2014) period. Malaysian Input-output tables, 2005 and 2010 are used. Besides, a new concept, electricity demand multiplier (EDM), is presented to identify key sectors imposing great impacts on electricity demand quantitatively. In order to testify the effectiveness of the Malaysian energy policies, it notes that there is fluctuation of the ranking sectors between 2005 and 2010. This could be reflected that there is efficiency with pace of development in Malaysia. This can be good indication for decision makers for designing future energy policies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=input-output%20model" title="input-output model">input-output model</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20multipliers" title=" demand multipliers"> demand multipliers</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity" title=" electricity"> electricity</a>, <a href="https://publications.waset.org/abstracts/search?q=key%20sectors" title=" key sectors"> key sectors</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/30016/analyzing-electricity-demand-multipliers-in-the-malaysian-economy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4671</span> Electricity Demand Modeling and Forecasting in Singapore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xian%20Li">Xian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing-Guo%20Wang"> Qing-Guo Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiangshuai%20Huang"> Jiangshuai Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jidong%20Liu"> Jidong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Yu"> Ming Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Kok%20Poh"> Tan Kok Poh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In power industry, accurate electricity demand forecasting for a certain leading time is important for system operation and control, etc. In this paper, we investigate the modeling and forecasting of Singapore’s electricity demand. Several standard models, such as HWT exponential smoothing model, the ARMA model and the ANNs model have been proposed based on historical demand data. We applied them to Singapore electricity market and proposed three refinements based on simulation to improve the modeling accuracy. Compared with existing models, our refined model can produce better forecasting accuracy. It is demonstrated in the simulation that by adding forecasting error into the forecasting equation, the modeling accuracy could be improved greatly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20industry" title="power industry">power industry</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20demand" title=" electricity demand"> electricity demand</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a> </p> <a href="https://publications.waset.org/abstracts/13471/electricity-demand-modeling-and-forecasting-in-singapore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">640</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4670</span> Renewable Energy Integration in Cities of Developing Countries: The Case Study of Tema City, Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marriette%20Sakah">Marriette Sakah</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Kuhn"> Christoph Kuhn</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Gyamfi"> Samuel Gyamfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global electricity demand of households in 2005 is estimated to double by 2025 and nearly double again in 2030. The residential sector promises considerable demand growth through infrastructural and equipment investments, the majority of which is projected to occur in developing countries. This lays bare the urgency for enhanced efficiency in all energy systems combined with exploitation of local potential for renewable energy systems. This study explores options for reducing energy consumption, particularly in residential buildings and providing robust, decentralized and renewable energy supply for African cities. The potential of energy efficiency measures and the potential of harnessing local resources for renewable energy supply are quantitatively assessed. The scale of research specifically addresses the city level, which is regulated by local authorities. Local authorities can actively promote the transition to a renewable-based energy supply system by promoting energy efficiency and the use of alternative renewable fuels in existing buildings, and particularly in planning and development of new settlement areas through the use of incentives, regulations, and demonstration projects. They can also support a more sustainable development by shaping local land use and development patterns in such ways that reduce per capita energy consumption and are benign to the environment. The subject of the current case study, Tema, is Ghana´s main industrial hub, a port city and home to 77,000 families. Residential buildings in Tema consumed 112 GWh of electricity in 2013 or 1.45 MWh per household. If average household electricity demand were to decline at an annual rate of just 2 %, by 2035 Tema would consume only 134 GWh of electricity despite an expected increase in the number of households by 84 %. The work is based on a ground survey of the city’s residential sector. The results show that efficient technologies and decentralized renewable energy systems have great potential for meeting the rapidly growing energy demand of cities in developing countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving%20potential" title=" energy saving potential"> energy saving potential</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20integration" title=" renewable energy integration"> renewable energy integration</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20buildings" title=" residential buildings"> residential buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20Africa" title=" urban Africa"> urban Africa</a> </p> <a href="https://publications.waset.org/abstracts/71336/renewable-energy-integration-in-cities-of-developing-countries-the-case-study-of-tema-city-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4669</span> Demand and Supply Management for Electricity Markets: Econometric Analysis of Electricity Prices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ioana%20Neamtu">Ioana Neamtu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the potential for demand-side management for the system price in the Nordic electricity market and the price effects of introducing wind-power into the system. The model proposed accounts for the micro-structure of the Nordic electricity market by modeling each hour individually, while still accounting for the relationship between the hours within a day. This flexibility allows us to explore the differences between peak and shoulder demand hours. Preliminary results show potential for demand response management, as indicated by the price elasticity of demand as well as a small but statistically significant decrease in price, given by the wind power penetration. Moreover, our study shows that these effects are stronger during day-time and peak hours,compared to night-time and shoulder hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20model" title="structural model">structural model</a>, <a href="https://publications.waset.org/abstracts/search?q=GMM%20estimation" title=" GMM estimation"> GMM estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20of%20equations" title=" system of equations"> system of equations</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20market" title=" electricity market"> electricity market</a> </p> <a href="https://publications.waset.org/abstracts/25699/demand-and-supply-management-for-electricity-markets-econometric-analysis-of-electricity-prices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4668</span> Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalin%20Si">Dalin Si</a>, <a href="https://publications.waset.org/abstracts/search?q=Azizan%20Aziz"> Azizan Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Bertrand%20Lasternas"> Bertrand Lasternas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20prediction" title="building energy prediction">building energy prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20response" title=" demand response"> demand response</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20market" title=" electricity market"> electricity market</a> </p> <a href="https://publications.waset.org/abstracts/54774/development-of-prediction-models-of-day-ahead-hourly-building-electricity-consumption-and-peak-power-demand-using-the-machine-learning-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4667</span> Unravelling Domestic Electricity Demand by Domestic Renewable Energy Supply: A Case Study in Yogyakarta and Central Java, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diyono%20Harun">Diyono Harun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indonesia aims to reduce carbon emissions from energy generation by reaching 23% and 31% of the national energy supply from renewable energy sources (RES) in 2025 and 2030. The potential for RES in Indonesia is enormous, but not all province has the same potential for RES. Yogyakarta, one of the most travel-destinated provinces in Indonesia, has less potential than its neighbour, Central Java. Consequently, Yogyakarta must meet its electricity demand by importing electricity from Central Java if this province only wants to use electricity from RES. Thus, achieving the objective is balancing the electricity supply between an importer (Yogyakarta) and an exporter province (Central Java). This research aims to explore the RES potential and the current capacity of RES for electricity generation in both provinces. The results show that the present capacity of RES meets the annual domestic electricity demand in both provinces only with an extension of the RES potential. The renewable energy mixes in this research also can lower CO2 emissions compared to gas-fired power plants. This research eventually provides insights into exploring and using the domestic RES potentials between two areas with different RES capacities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20mix" title="energy mix">energy mix</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20sources" title=" renewable energy sources"> renewable energy sources</a>, <a href="https://publications.waset.org/abstracts/search?q=domestic%20electricity" title=" domestic electricity"> domestic electricity</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20generation" title=" electricity generation"> electricity generation</a> </p> <a href="https://publications.waset.org/abstracts/162934/unravelling-domestic-electricity-demand-by-domestic-renewable-energy-supply-a-case-study-in-yogyakarta-and-central-java-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4666</span> Integration of PV Systems in Residential Buildings: A Solution for Supporting Electrical Grid in Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabil%20A.%20Ahmed">Nabil A. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20A.%20N.%20Mhaisen"> Nasser A. N. Mhaisen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a solution to enhance the power quality and to reduce the peak load demand in Kuwait electric grid as a solution to the shortage of electricity production. Technical, environmental and economic feasibility study of utilizing integrated grid-connected photovoltaic (PV) system in residential buildings for supplying 7.1% of electrical power consumption in Kuwait is carried out using RETScreen software. A 10 KWp on-grid PV power generation system spread on the rooftop of the residential buildings is adopted and investigated and the complete system performance is simulated using PSIM software. Taking into account the international prices of electricity and natural gas, the proposed solution is investigated and tested for four different types of installation systems in terms of power generation and costs which includes horizontal installation, 25º tilted angle, single axis tracking and dual axis tracking. Results shows that the 25º tilted angle fixed mounted system is the most efficient type. The payback period as a tool of benefit analysis of the proposed system is calculated and it found to be 2.55 years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaics" title="photovoltaics">photovoltaics</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20buildings" title=" residential buildings"> residential buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20grid" title=" electrical grid"> electrical grid</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20capacity" title=" production capacity"> production capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=on-grid" title=" on-grid"> on-grid</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20generation" title=" power generation"> power generation</a> </p> <a href="https://publications.waset.org/abstracts/17196/integration-of-pv-systems-in-residential-buildings-a-solution-for-supporting-electrical-grid-in-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4665</span> Adjusting Electricity Demand Data to Account for the Impact of Loadshedding in Forecasting Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Migael%20van%20Zyl">Migael van Zyl</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefanie%20Visser"> Stefanie Visser</a>, <a href="https://publications.waset.org/abstracts/search?q=Awelani%20Phaswana"> Awelani Phaswana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electricity landscape in South Africa is characterized by frequent occurrences of loadshedding, a measure implemented by Eskom to manage electricity generation shortages by curtailing demand. Loadshedding, classified into stages ranging from 1 to 8 based on severity, involves the systematic rotation of power cuts across municipalities according to predefined schedules. However, this practice introduces distortions in recorded electricity demand, posing challenges to accurate forecasting essential for budgeting, network planning, and generation scheduling. Addressing this challenge requires the development of a methodology to quantify the impact of loadshedding and integrate it back into metered electricity demand data. Fortunately, comprehensive records of loadshedding impacts are maintained in a database, enabling the alignment of Loadshedding effects with hourly demand data. This adjustment ensures that forecasts accurately reflect true demand patterns, independent of loadshedding's influence, thereby enhancing the reliability of electricity supply management in South Africa. This paper presents a methodology for determining the hourly impact of load scheduling and subsequently adjusting historical demand data to account for it. Furthermore, two forecasting models are developed: one utilizing the original dataset and the other using the adjusted data. A comparative analysis is conducted to evaluate forecast accuracy improvements resulting from the adjustment process. By implementing this methodology, stakeholders can make more informed decisions regarding electricity infrastructure investments, resource allocation, and operational planning, contributing to the overall stability and efficiency of South Africa's electricity supply system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electricity%20demand%20forecasting" title="electricity demand forecasting">electricity demand forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20shedding" title=" load shedding"> load shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20side%20management" title=" demand side management"> demand side management</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20science" title=" data science"> data science</a> </p> <a href="https://publications.waset.org/abstracts/182807/adjusting-electricity-demand-data-to-account-for-the-impact-of-loadshedding-in-forecasting-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4664</span> The Cost of Solar-Centric Renewable Portfolio </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timothy%20J.%20Considine">Timothy J. Considine</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20J.%20M.%20Manderson"> Edward J. M. Manderson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper develops an econometric forecasting system of energy demand coupled with engineering-economic models of energy supply. The framework is used to quantify the impact of state-level renewable portfolio standards (RPSs) achieved predominately with solar generation on electricity rates, electricity consumption, and environmental quality. We perform the analysis using Arizona’s RPS as a case study. We forecast energy demand in Arizona out to 2035, and find by this time the state will require an additional 35 million MWh of electricity generation. If Arizona implements its RPS when supplying this electricity demand, we find there will be a substantial increase in electricity rates (relative to a business-as-usual scenario of reliance on gas-fired generation). Extending the current regime of tax credits can greatly reduce this increase, at the taxpayers’ expense. We find that by 2025 Arizona’s RPS will implicitly abate carbon dioxide emissions at a cost between $101 and $135 per metric ton, and by 2035 abatement costs are between $64 and $112 per metric ton (depending on the future evolution of nature gas prices). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electricity%20demand" title="electricity demand">electricity demand</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20portfolio%20standard" title=" renewable portfolio standard"> renewable portfolio standard</a>, <a href="https://publications.waset.org/abstracts/search?q=solar" title=" solar"> solar</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a> </p> <a href="https://publications.waset.org/abstracts/25663/the-cost-of-solar-centric-renewable-portfolio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4663</span> Investigating Best Practice Energy Efficiency Policies and Programs, and Their Replication Potential for Residential Sector of Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habib%20Alshuwaikhat">Habib Alshuwaikhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Hossain"> Nahid Hossain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residential sector consumes more than half of the produced electricity in Saudi Arabia, and fossil fuel is the main source of energy to meet growing household electricity demand in the Kingdom. Several studies forecasted and expressed concern that unless the domestic energy demand growth is controlled, it will reduce Saudi Arabia’s crude oil export capacity within a decade and the Kingdom is likely to be incapable of exporting crude oil within next three decades. Though the Saudi government has initiated to address the domestic energy demand growth issue, the demand side energy management policies and programs are focused on industrial and commercial sectors. It is apparent that there is an urgent need to develop a comprehensive energy efficiency strategy for addressing efficient energy use in residential sector in the Kingdom. Then again as Saudi Arabia is at its primary stage in addressing energy efficiency issues in its residential sector, there is a scope for the Kingdom to learn from global energy efficiency practices and design its own energy efficiency policies and programs. However, in order to do that sustainable, it is essential to address local contexts of energy efficiency. It is also necessary to find out the policies and programs that will fit to the local contexts. Thus the objective of this study was set to identify globally best practice energy efficiency policies and programs in residential sector that have replication potential in Saudi Arabia. In this regard two sets of multi-criteria decision analysis matrices were developed to evaluate the energy efficiency policies and programs. The first matrix was used to evaluate the global energy efficiency policies and programs, and the second matrix was used to evaluate the replication potential of global best practice energy efficiency policies and programs for Saudi Arabia. Wuppertal Institute’s guidelines for energy efficiency policy evaluation were used to develop the matrices, and the different attributes of the matrices were set through available literature review. The study reveals that the best practice energy efficiency policies and programs with good replication potential for Saudi Arabia are those which have multiple components to address energy efficiency and are diversified in their characteristics. The study also indicates the more diversified components are included in a policy and program, the more replication potential it has for the Kingdom. This finding is consistent with other studies, where it is observed that in order to be successful in energy efficiency practices, it is required to introduce multiple policy components in a cluster rather than concentrate on a single policy measure. The developed multi-criteria decision analysis matrices for energy efficiency policy and program evaluation could be utilized to assess the replication potential of other globally best practice energy efficiency policies and programs for the residential sector of the Kingdom. In addition it has potential to guide Saudi policy makers to adopt and formulate its own energy efficiency policies and programs for Saudi Arabia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title="Saudi Arabia">Saudi Arabia</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20sector" title=" residential sector"> residential sector</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=policy%20evaluation" title=" policy evaluation"> policy evaluation</a> </p> <a href="https://publications.waset.org/abstracts/14763/investigating-best-practice-energy-efficiency-policies-and-programs-and-their-replication-potential-for-residential-sector-of-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4662</span> Fuzzy Adaptive Control of an Intelligent Hybrid HPS (Pvwindbat), Grid Power System Applied to a Dwelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Derrouazin">A. Derrouazin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Mekkakia-M"> N. Mekkakia-M</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Taleb"> R. Taleb</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Helaimi"> M. Helaimi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benbouali"> A. Benbouali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays the use of different sources of renewable energy for the production of electricity is the concern of everyone, as, even impersonal domestic use of the electricity in isolated sites or in town. As the conventional sources of energy are shrinking, a need has arisen to look for alternative sources of energy with more emphasis on its optimal use. This paper presents design of a sustainable Hybrid Power System (PV-Wind-Storage) assisted by grid as supplementary sources applied to case study residential house, to meet its entire energy demand. A Fuzzy control system model has been developed to optimize and control flow of power from these sources. This energy requirement is mainly fulfilled from PV and Wind energy stored in batteries module for critical load of a residential house and supplemented by grid for base and peak load. The system has been developed for maximum daily households load energy of 3kWh and can be scaled to any higher value as per requirement of individual /community house ranging from 3kWh/day to 10kWh/day, as per the requirement. The simulation work, using intelligent energy management, has resulted in an optimal yield leading to average reduction in cost of electricity by 50% per day. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20%28PV%29" title="photovoltaic (PV)">photovoltaic (PV)</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a>, <a href="https://publications.waset.org/abstracts/search?q=microcontroller" title=" microcontroller"> microcontroller</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20control%20%28FC%29" title=" fuzzy control (FC)"> fuzzy control (FC)</a>, <a href="https://publications.waset.org/abstracts/search?q=Matlab" title=" Matlab "> Matlab </a> </p> <a href="https://publications.waset.org/abstracts/27710/fuzzy-adaptive-control-of-an-intelligent-hybrid-hps-pvwindbat-grid-power-system-applied-to-a-dwelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">648</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4661</span> Micro-Transformation Strategy Of Residential Transportation Space Based On The Demand Of Residents: Taking A Residential District In Wuhan, China As An Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Geng">Hong Geng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaiyu%20Fan"> Zaiyu Fan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the acceleration of urbanization and motorization in China, the scale of cities and the travel distance of residents are constantly expanding, and the number of cars is continuously increasing, so the urban traffic problem is more and more serious. Traffic congestion, environmental pollution, energy consumption, travel safety and direct interference between traffic and other urban activities are increasingly prominent problems brought about by motorized development. This not only has a serious impact on the lives of the residents but also has a major impact on the healthy development of the city. The paper found that, in order to solve the development of motorization, a number of problems will arise; urban planning and traffic planning and design in residential planning often take into account the development of motorized traffic but neglects the demand for street life. This kind of planning has resulted in the destruction of the traditional communication space of the residential area, the pollution of noise and exhaust gas, and the potential safety risks of the residential area, which has disturbed the previously quiet and comfortable life of the residential area, resulting in the inconvenience of residents' life and the loss of street vitality. Based on these facts, this paper takes a residential area in Wuhan as the research object, through the actual investigation and research, from the perspective of micro-transformation analysis, combined with the concept of traffic micro-reconstruction governance. And research puts forward the residential traffic optimization strategies such as strengthening the interaction and connection between the residential area and the urban street system, street traffic classification and organization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-transformation" title="micro-transformation">micro-transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20traffic" title=" residential traffic"> residential traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=residents%20demand" title=" residents demand"> residents demand</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20microcirculation" title=" traffic microcirculation"> traffic microcirculation</a> </p> <a href="https://publications.waset.org/abstracts/125956/micro-transformation-strategy-of-residential-transportation-space-based-on-the-demand-of-residents-taking-a-residential-district-in-wuhan-china-as-an-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4660</span> Analysis of Electricity Demand at Household Level Using Leap Model in Balochistan, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheikh%20Saeed%20Ahmad">Sheikh Saeed Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electricity is vital for any state’s development that needs policy for planning the power network extension. This study is about simulation modeling for electricity in Balochistan province. Baseline data of electricity consumption was used of year 2004 and projected with the help of LEAP model up to subsequent 30 years. Three scenarios were created to run software. One scenario was baseline and other two were alternative or green scenarios i.e. solar and wind energy scenarios. Present study revealed that Balochistan has much greater potential for solar and wind energy for electricity production. By adopting these alternative energy forms, Balochistan can save energy in future nearly 23 and 48% by incorporating solar and wind power respectively. Thus, the study suggests to government planners, an aspect of integrating renewable sources in power system for ensuring sustainable development and growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demand%20and%20supply" title="demand and supply">demand and supply</a>, <a href="https://publications.waset.org/abstracts/search?q=LEAP" title=" LEAP"> LEAP</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=households" title=" households"> households</a> </p> <a href="https://publications.waset.org/abstracts/18942/analysis-of-electricity-demand-at-household-level-using-leap-model-in-balochistan-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4659</span> Scheduling Method for Electric Heater in HEMS considering User’s Comfort </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong-Sung%20Kim">Yong-Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Je-Seok%20Shin"> Je-Seok Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho-Jun%20Jo"> Ho-Jun Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-O%20Kim"> Jin-O Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Home Energy Management System (HEMS) which makes the residential consumers contribute to the demand response is attracting attention in recent years. An aim of HEMS is to minimize their electricity cost by controlling the use of their appliances according to electricity price. The use of appliances in HEMS may be affected by some conditions such as external temperature and electricity price. Therefore, the user’s usage pattern of appliances should be modeled according to the external conditions, and the resultant usage pattern is related to the user’s comfortability on use of each appliances. This paper proposes a methodology to model the usage pattern based on the historical data with the copula function. Through copula function, the usage range of each appliance can be obtained and is able to satisfy the appropriate user’s comfort according to the external conditions for next day. Within the usage range, an optimal scheduling for appliances would be conducted so as to minimize an electricity cost with considering user’s comfort. Among the home appliance, electric heater (EH) is a representative appliance which is affected by the external temperature. In this paper, an optimal scheduling algorithm for an electric heater (EH) is addressed based on the method of branch and bound. As a result, scenarios for the EH usage are obtained according to user’s comfort levels and then the residential consumer would select the best scenario. The case study shows the effects of the proposed algorithm compared with the traditional operation of the EH, and it also represents impacts of the comfort level on the scheduling result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20scheduling" title="load scheduling">load scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=usage%20pattern" title=" usage pattern"> usage pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=user%E2%80%99s%20comfort" title=" user’s comfort"> user’s comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=copula%20function" title=" copula function"> copula function</a>, <a href="https://publications.waset.org/abstracts/search?q=branch%20and%20bound" title=" branch and bound"> branch and bound</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20heater" title=" electric heater "> electric heater </a> </p> <a href="https://publications.waset.org/abstracts/39132/scheduling-method-for-electric-heater-in-hems-considering-users-comfort" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">584</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4658</span> Energy Analysis of Seasonal Air Conditioning Demand of All Income Classes Using Bottom up Model in Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Arif">Saba Arif</a>, <a href="https://publications.waset.org/abstracts/search?q=Anam%20Nadeem"> Anam Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Roman%20Kalvin"> Roman Kalvin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanzeel%20Rashid"> Tanzeel Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Burhan%20Ali"> Burhan Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Juntakan%20Taweekun"> Juntakan Taweekun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the energy crisis is taking serious attention. Globally, industries and building are major share takers of energy. 72% of total global energy is consumed by residential houses, markets, and commercial building. Additionally, in appliances air conditioners are major consumer of electricity; about 60% energy is used for cooling purpose in houses due to HVAC units. Energy demand will aid in determining what changes will be needed whether it is the estimation of the required energy for households or instituting conservation measures. Bottom-up model is one of the most famous methods for forecasting. In current research bottom-up model of air conditioners' energy consumption in all income classes in comparison with seasonal variation and hourly consumption is calculated. By comparison of energy consumption of all income classes by usage of air conditioners, total consumption of actual demand and current availability can be seen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning" title="air conditioning">air conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=bottom%20up%20model" title=" bottom up model"> bottom up model</a>, <a href="https://publications.waset.org/abstracts/search?q=income%20classes" title=" income classes"> income classes</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20demand" title=" energy demand"> energy demand</a> </p> <a href="https://publications.waset.org/abstracts/83887/energy-analysis-of-seasonal-air-conditioning-demand-of-all-income-classes-using-bottom-up-model-in-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4657</span> Dynamic Pricing With Demand Response Managment in Smart Grid: Stackelberg Game Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasibe%20Berfu%20Demi%CC%87r">Hasibe Berfu Demi̇r</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eakir%20Esnaf"> Şakir Esnaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past decade, extensive improvements have been done in electrical grid infrastructures. It is very important to make plans on supply, demand, transmission, distribution and pricing for the development of the electricity energy sector. Based on this perspective, in this study, Stackelberg game approach is proposed for demand participation management (DRM), which has become an important component in the smart grid to effectively reduce power generation costs and user bills. The purpose of this study is to examine electricity consumption from a dynamic pricing perspective. The results obtained were compared with the current situation and the results were interpreted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lectricity" title="lectricity">lectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=stackelberg" title=" stackelberg"> stackelberg</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20response%20managment" title=" demand response managment"> demand response managment</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20pricing" title=" dynamic pricing"> dynamic pricing</a> </p> <a href="https://publications.waset.org/abstracts/150930/dynamic-pricing-with-demand-response-managment-in-smart-grid-stackelberg-game-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4656</span> Settlement Network Supplying Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bal%C3%A1zs%20Kulcs%C3%A1r">Balázs Kulcsár</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Few people now doubt the future of the global energy transition. The only question is whether the pace of renewables' penetration will be sufficient to compete with the rate of warming. Dynamic changes are also taking place in the Hungarian electricity system. In addition to nuclear power, which provides the basic electricity supply, the most dynamic is solar power, which is largely small-scale and residential. The emergence of solar power is outlining the emergence of energy production and supply fabric of municipalities. This creates the potential for over-producing municipalities to supply the electricity needs of neighboring settlements with lower production beyond renewables. By taking advantage of this energy sharing, electricity supply based on pure renewables can be achieved more quickly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20geography" title=" energy geography"> energy geography</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sufficiency" title=" self-sufficiency"> self-sufficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transition" title=" energy transition"> energy transition</a> </p> <a href="https://publications.waset.org/abstracts/142481/settlement-network-supplying-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4655</span> Assessing Household Energy Savings and Consumer Behavior in Padang City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prima%20Fithri">Prima Fithri</a>, <a href="https://publications.waset.org/abstracts/search?q=Lusi%20Susanti"> Lusi Susanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Karin%20Bestarina"> Karin Bestarina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indonesia's electrification ratio is still around 80.1%, which means that approximately 19.9% of households in Indonesia have not been getting the flow of electrical energy. Household electricity consumptions in Indonesia are generally still dominated by the public urban. In the city of Padang, West Sumatera, Indonesia, about 94.10% are power users of government services (PLN). The most important thing of the issue is human resources efficient energy. Consumer behavior in utilizing electricity becomes significant. Intensive questioner survey, in-depth interview and statistical analysis are carried out to collect scientific evidences of the behavioral based changes instruments to reduce electricity consumption in household sector. The questioner was developed to include five factors assuming affect the electricity consumption pattern in household sector. They are: attitude, energy price, household income, knowledge and other determinants. The survey was carried out in Padang, West Sumatra Province Indonesia. About 210 questioner papers were proportionally distributed to households in 11 districts in Padang. Stratified sampling was used as a method to select respondents. The results show that the household size, income, payment methods and size of house are factors affecting electricity saving behavior in residential sector. Household expenses on electricity are strongly influenced by gender, type of job, level of education, size of house, income, payment method and level of installed power. These results provide a scientific evidence for stakeholders on the potential of controlling electricity consumption and designing energy policy by government in residential sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electricity" title="electricity">electricity</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=household" title=" household"> household</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior" title=" behavior"> behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=policy" title=" policy"> policy</a> </p> <a href="https://publications.waset.org/abstracts/21931/assessing-household-energy-savings-and-consumer-behavior-in-padang-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4654</span> Relationship between Electricity Consumption and Economic Growth: Evidence from Nigeria (1971-2012)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20E%20Okoligwe">N. E Okoligwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Okezie%20A.%20Ihugba"> Okezie A. Ihugba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Few scholars disagrees that electricity consumption is an important supporting factor for economy growth. However, the relationship between electricity consumption and economy growth has different manifestation in different countries according to previous studies. This paper examines the causal relationship between electricity consumption and economic growth for Nigeria. In an attempt to do this, the paper tests the validity of the modernization or depending hypothesis by employing various econometric tools such as Augmented Dickey Fuller (ADF) and Johansen Co-integration test, the Error Correction Mechanism (ECM) and Granger Causality test on time series data from 1971-2012. The Granger causality is found not to run from electricity consumption to real GDP and from GDP to electricity consumption during the year of study. The null hypothesis is accepted at the 5 per cent level of significance where the probability value (0.2251 and 0.8251) is greater than five per cent level of significance because both of them are probably determined by some other factors like; increase in urban population, unemployment rate and the number of Nigerians that benefit from the increase in GDP and increase in electricity demand is not determined by the increase in GDP (income) over the period of study because electricity demand has always been greater than consumption. Consequently; the policy makers in Nigeria should place priority in early stages of reconstruction on building capacity additions and infrastructure development of the electric power sector as this would force the sustainable economic growth in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20growth" title="economic growth">economic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20consumption" title=" electricity consumption"> electricity consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20correction%20mechanism" title=" error correction mechanism"> error correction mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=granger%20causality%20test" title=" granger causality test"> granger causality test</a> </p> <a href="https://publications.waset.org/abstracts/3352/relationship-between-electricity-consumption-and-economic-growth-evidence-from-nigeria-1971-2012" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4653</span> Quantifying the UK’s Future Thermal Electricity Generation Water Use: Regional Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Murrant">Daniel Murrant</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Quinn"> Andrew Quinn</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Chapman"> Lee Chapman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A growing population has led to increasing global water and energy demand. This demand, combined with the effects of climate change and an increasing need to maintain and protect the natural environment, represents a potentially severe threat to many national infrastructure systems. This has resulted in a considerable quantity of published material on the interdependencies that exist between the supply of water and the thermal generation of electricity, often known as the water-energy nexus. Focusing specifically on the UK, there is a growing concern that the future availability of water may at times constrain thermal electricity generation, and therefore hinder the UK in meeting its increasing demand for a secure, and affordable supply of low carbon electricity. To provide further information on the threat the water-energy nexus may pose to the UK’s energy system, this paper models the regional water demand of UK thermal electricity generation in 2030 and 2050. It uses the strategically important Energy Systems Modelling Environment model developed by the Energy Technologies Institute. Unlike previous research, this paper was able to use abstraction and consumption factors specific to UK power stations. It finds that by 2050 the South East, Yorkshire and Humber, the West Midlands and North West regions are those with the greatest freshwater demand and therefore most likely to suffer from a lack of resource. However, it finds that by 2050 it is the East, South West and East Midlands regions with the greatest total water (fresh, estuarine and seawater) demand and the most likely to be constrained by environmental standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20station%20cooling" title=" power station cooling"> power station cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=UK%20water-energy%20nexus" title=" UK water-energy nexus"> UK water-energy nexus</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20abstraction" title=" water abstraction"> water abstraction</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources" title=" water resources"> water resources</a> </p> <a href="https://publications.waset.org/abstracts/38686/quantifying-the-uks-future-thermal-electricity-generation-water-use-regional-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4652</span> A Theory and Empirical Analysis on the Efficency of Chinese Electricity Pricing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianlin%20Wang">Jianlin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiajia%20Zhao"> Jiajia Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper applies the theory and empirical method to examine the relationship between electricity price and coal price, as well as electricity and industry output, for China during Jan 1999-Dec 2012. Our results indicate that there is no any causality between coal price and electricity price under other factors are controlled. However, we found a bi-directional causality between electricity consumption and industry output. Overall, the electricity price set by China’s NDRC is inefficient, which lead to the electricity supply shortage after 2004. It is time to reform electricity price system for China’s reformers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electricity%20price" title="electricity price">electricity price</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20price" title=" coal price"> coal price</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20supply" title=" power supply"> power supply</a>, <a href="https://publications.waset.org/abstracts/search?q=China" title=" China"> China</a> </p> <a href="https://publications.waset.org/abstracts/9560/a-theory-and-empirical-analysis-on-the-efficency-of-chinese-electricity-pricing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4651</span> Economic and Technical Study for Hybrid (PV/Wind) Power System in the North East of Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabila%20Louai">Nabila Louai</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouad%20Khaldi"> Fouad Khaldi</a>, <a href="https://publications.waset.org/abstracts/search?q=Houria%20Benharchache"> Houria Benharchache</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the case of meeting a household’s electrical energy demand with hybrid systems has been examined. The objective is to study technological feasibility and economic viability of the electrification project by a hybrid system (PV/ wind) of a residential home located in Batna-Algeria and to reduce the emissions from traditional power by using renewable energy. An autonomous hybrid wind/photovoltaic (PV)/battery power system and a PV/Wind grid connected system, has been carried out using Hybrid Optimization Model for Electric Renewable (HOMER) simulation software. As a result, it has been found that electricity from the grid can be supplied at a lower price than electricity from renewable energy at this moment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=batna" title="batna">batna</a>, <a href="https://publications.waset.org/abstracts/search?q=household" title=" household"> household</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20system" title=" hybrid system"> hybrid system</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=techno-economy" title=" techno-economy"> techno-economy</a> </p> <a href="https://publications.waset.org/abstracts/32868/economic-and-technical-study-for-hybrid-pvwind-power-system-in-the-north-east-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4650</span> Protective Custody in Child Protection: Reflection of Residential Care Workers in the Philippines </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hazel%20S.%20Cometa-Lamberte">Hazel S. Cometa-Lamberte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the residential care workers reflections in working with children who were under protective custody and placed in a residential care facility for children. Key informant interviews and focus group discussion were employed in this study to analyze the views of residential care workers on the programs and services and case management system in residential care for children. Results suggest that working in a residential care facility for children needs the interplay of both the worker’s personal and professional values, knowledge and skills in working with children. Analyzing the residential care workers experiences in handling children in residential care facilities is vital for the improvement of the policies, programs and services, the repertoire of techniques and facilitate the creation of a new social work practice framework/model in child protection specifically in residential care facilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=child%20protection" title="child protection">child protection</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20care" title=" residential care"> residential care</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20care%20workers" title=" residential care workers"> residential care workers</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20workers" title=" social workers"> social workers</a> </p> <a href="https://publications.waset.org/abstracts/106551/protective-custody-in-child-protection-reflection-of-residential-care-workers-in-the-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20electricity%20demand&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20electricity%20demand&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20electricity%20demand&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20electricity%20demand&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20electricity%20demand&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20electricity%20demand&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20electricity%20demand&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20electricity%20demand&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20electricity%20demand&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20electricity%20demand&page=155">155</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20electricity%20demand&page=156">156</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20electricity%20demand&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>