CINXE.COM

Search results for: local binary patterns

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: local binary patterns</title> <meta name="description" content="Search results for: local binary patterns"> <meta name="keywords" content="local binary patterns"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="local binary patterns" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="local binary patterns"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8603</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: local binary patterns</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8603</span> Speech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20Arcos">Christian Arcos</a>, <a href="https://publications.waset.org/abstracts/search?q=Marley%20Vellasco"> Marley Vellasco</a>, <a href="https://publications.waset.org/abstracts/search?q=Abraham%20Alcaim"> Abraham Alcaim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhancement in each high-frequency subband is performed by binary labels through the local binary pattern masking that encodes the ratio between the original value of each coefficient and the values of the neighbour coefficients. This approach enhances the high-frequency spectra of the wavelet transform instead of eliminating them through a threshold. A comparative analysis is carried out with conventional speech enhancement algorithms, demonstrating that the proposed technique achieves significant improvements in terms of PESQ, an international recommendation of objective measure for estimating subjective speech quality. Informal listening tests also show that the proposed method in an acoustic context improves the quality of speech, avoiding the annoying musical noise present in other speech enhancement techniques. Experimental results obtained with a DNN based speech recognizer in noisy environments corroborate the superiority of the proposed scheme in the robust speech recognition scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20labels" title="binary labels">binary labels</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20binary%20patterns" title=" local binary patterns"> local binary patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=mask" title=" mask"> mask</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20coefficients" title=" wavelet coefficients"> wavelet coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20enhancement" title=" speech enhancement"> speech enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20recognition" title=" speech recognition"> speech recognition</a> </p> <a href="https://publications.waset.org/abstracts/79985/speech-enhancement-using-wavelet-coefficients-masking-with-local-binary-patterns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8602</span> Local Texture and Global Color Descriptors for Content Based Image Retrieval</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tajinder%20Kaur">Tajinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Anu%20Bala"> Anu Bala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An image retrieval system is a computer system for browsing, searching, and retrieving images from a large database of digital images a new algorithm meant for content-based image retrieval (CBIR) is presented in this paper. The proposed method combines the color and texture features which are extracted the global and local information of the image. The local texture feature is extracted by using local binary patterns (LBP), which are evaluated by taking into consideration of local difference between the center pixel and its neighbors. For the global color feature, the color histogram (CH) is used which is calculated by RGB (red, green, and blue) spaces separately. In this paper, the combination of color and texture features are proposed for content-based image retrieval. The performance of the proposed method is tested on Corel 1000 database which is the natural database. The results after being investigated show a significant improvement in terms of their evaluation measures as compared to LBP and CH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color" title="color">color</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20binary%20patterns" title=" local binary patterns"> local binary patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20retrieval" title=" image retrieval"> image retrieval</a> </p> <a href="https://publications.waset.org/abstracts/25503/local-texture-and-global-color-descriptors-for-content-based-image-retrieval" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8601</span> An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiu%20Chen">Qiu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Kotani"> Koji Kotani</a>, <a href="https://publications.waset.org/abstracts/search?q=Feifei%20Lee"> Feifei Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadahiro%20Ohmi"> Tadahiro Ohmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BVQ) histogram using DCT coefficients in low frequency domains, as well as Local Binary Pattern (LBP) histogram in spatial domain. Recognition results with different regions are first obtained separately and then fused by weighted averaging. Publicly available ORL database is used for the evaluation of our proposed algorithm, which is consisted of 40 subjects with 10 images per subject containing variations in lighting, posing, and expressions. It is demonstrated that face recognition using RD method can achieve much higher recognition rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20vector%20quantization%20%28BVQ%29" title="binary vector quantization (BVQ)">binary vector quantization (BVQ)</a>, <a href="https://publications.waset.org/abstracts/search?q=DCT%20coefficients" title="DCT coefficients">DCT coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title=" face recognition"> face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20binary%20patterns%20%28LBP%29" title=" local binary patterns (LBP)"> local binary patterns (LBP)</a> </p> <a href="https://publications.waset.org/abstracts/44892/an-improved-face-recognition-algorithm-using-histogram-based-features-in-spatial-and-frequency-domains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8600</span> Face Sketch Recognition in Forensic Application Using Scale Invariant Feature Transform and Multiscale Local Binary Patterns Fusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gargi%20Phadke">Gargi Phadke</a>, <a href="https://publications.waset.org/abstracts/search?q=Mugdha%20Joshi"> Mugdha Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamal%20Salunkhe"> Shamal Salunkhe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Facial sketches are used as a crucial clue by criminal investigators for identification of suspects when the description of eyewitness or victims are only available as evidence. A forensic artist develops a sketch as per the verbal description is given by an eyewitness that shows the facial look of the culprit. In this paper, the fusion of Scale Invariant Feature Transform (SIFT) and multiscale local binary patterns (MLBP) are proposed as a feature to recognize a forensic face sketch images from a gallery of mugshot photos. This work focuses on comparative analysis of proposed scheme with existing algorithms in different challenges like illumination change and rotation condition. Experimental results show that proposed scheme can lead to better performance for the defined problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SIFT%20feature" title="SIFT feature">SIFT feature</a>, <a href="https://publications.waset.org/abstracts/search?q=MLBP" title=" MLBP"> MLBP</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20sketch" title=" face sketch"> face sketch</a> </p> <a href="https://publications.waset.org/abstracts/85747/face-sketch-recognition-in-forensic-application-using-scale-invariant-feature-transform-and-multiscale-local-binary-patterns-fusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8599</span> Hit-Or-Miss Transform as a Tool for Similar Shape Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20Mohamed%20Elrajubi">Osama Mohamed Elrajubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Idris%20El-Feghi"> Idris El-Feghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abu%20Baker%20Saghayer"> Mohamed Abu Baker Saghayer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes an identification of specific shapes within binary images using the morphological Hit-or-Miss Transform (HMT). Hit-or-Miss transform is a general binary morphological operation that can be used in searching of particular patterns of foreground and background pixels in an image. It is actually a basic operation of binary morphology since almost all other binary morphological operators are derived from it. The input of this method is a binary image and a structuring element (a template which will be searched in a binary image) while the output is another binary image. In this paper a modification of Hit-or-Miss transform has been proposed. The accuracy of algorithm is adjusted according to the similarity of the template and the sought template. The implementation of this method has been done by C language. The algorithm has been tested on several images and the results have shown that this new method can be used for similar shape detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hit-or-miss%20operator%20transform" title="hit-or-miss operator transform">hit-or-miss operator transform</a>, <a href="https://publications.waset.org/abstracts/search?q=HMT" title=" HMT"> HMT</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20morphological%20operation" title=" binary morphological operation"> binary morphological operation</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20detection" title=" shape detection"> shape detection</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20images%20processing" title=" binary images processing"> binary images processing</a> </p> <a href="https://publications.waset.org/abstracts/11881/hit-or-miss-transform-as-a-tool-for-similar-shape-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8598</span> Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khadijat%20T.%20Bamigbade">Khadijat T. Bamigbade</a>, <a href="https://publications.waset.org/abstracts/search?q=Olufade%20F.%20W.%20Onifade"> Olufade F. W. Onifade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20facial%20expression%20analysis" title="automatic facial expression analysis">automatic facial expression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20binary%20pattern" title=" local binary pattern"> local binary pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=LBP-HOG" title=" LBP-HOG"> LBP-HOG</a>, <a href="https://publications.waset.org/abstracts/search?q=occlusion%20detection" title=" occlusion detection"> occlusion detection</a> </p> <a href="https://publications.waset.org/abstracts/105048/improved-feature-extraction-technique-for-handling-occlusion-in-automatic-facial-expression-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8597</span> Contourlet Transform and Local Binary Pattern Based Feature Extraction for Bleeding Detection in Endoscopic Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mekha%20Mathew">Mekha Mathew</a>, <a href="https://publications.waset.org/abstracts/search?q=Varun%20P%20Gopi"> Varun P Gopi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless Capsule Endoscopy (WCE) has become a great device in Gastrointestinal (GI) tract diagnosis, which can examine the entire GI tract, especially the small intestine without invasiveness and sedation. Bleeding in the digestive tract is a symptom of a disease rather than a disease itself. Hence the detection of bleeding is important in diagnosing many diseases. In this paper we proposes a novel method for distinguishing bleeding regions from normal regions based on Contourlet transform and Local Binary Pattern (LBP). Experiments show that this method provides a high accuracy rate of 96.38% in CIE XYZ colour space for k-Nearest Neighbour (k-NN) classifier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wireless%20Capsule%20Endoscopy" title="Wireless Capsule Endoscopy">Wireless Capsule Endoscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20binary%20pattern" title=" local binary pattern"> local binary pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=k-NN%20classifier" title=" k-NN classifier"> k-NN classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=contourlet%20transform" title=" contourlet transform"> contourlet transform</a> </p> <a href="https://publications.waset.org/abstracts/17314/contourlet-transform-and-local-binary-pattern-based-feature-extraction-for-bleeding-detection-in-endoscopic-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8596</span> Performance Comparison of Non-Binary RA and QC-LDPC Codes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ni%20Wenli">Ni Wenli</a>, <a href="https://publications.waset.org/abstracts/search?q=He%20Jing"> He Jing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Repeat–Accumulate (RA) codes are subclass of LDPC codes with fast encoder structures. In this paper, we consider a nonbinary extension of binary LDPC codes over GF(q) and construct a non-binary RA code and a non-binary QC-LDPC code over GF(2^4), we construct non-binary RA codes with linear encoding method and non-binary QC-LDPC codes with algebraic constructions method. And the BER performance of RA and QC-LDPC codes over GF(q) are compared with BP decoding and by simulation over the Additive White Gaussian Noise (AWGN) channels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-binary%20RA%20codes" title="non-binary RA codes">non-binary RA codes</a>, <a href="https://publications.waset.org/abstracts/search?q=QC-LDPC%20codes" title=" QC-LDPC codes"> QC-LDPC codes</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20comparison" title=" performance comparison"> performance comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=BP%20algorithm" title=" BP algorithm"> BP algorithm</a> </p> <a href="https://publications.waset.org/abstracts/42170/performance-comparison-of-non-binary-ra-and-qc-ldpc-codes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8595</span> Gray Level Image Encryption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roza%20Afarin">Roza Afarin</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Mozaffari"> Saeed Mozaffari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is image encryption using Genetic Algorithm (GA). The proposed encryption method consists of two phases. In modification phase, pixels locations are altered to reduce correlation among adjacent pixels. Then, pixels values are changed in the diffusion phase to encrypt the input image. Both phases are performed by GA with binary chromosomes. For modification phase, these binary patterns are generated by Local Binary Pattern (LBP) operator while for diffusion phase binary chromosomes are obtained by Bit Plane Slicing (BPS). Initial population in GA includes rows and columns of the input image. Instead of subjective selection of parents from this initial population, a random generator with predefined key is utilized. It is necessary to decrypt the coded image and reconstruct the initial input image. Fitness function is defined as average of transition from 0 to 1 in LBP image and histogram uniformity in modification and diffusion phases, respectively. Randomness of the encrypted image is measured by entropy, correlation coefficients and histogram analysis. Experimental results show that the proposed method is fast enough and can be used effectively for image encryption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation%20coefficients" title="correlation coefficients">correlation coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20encryption" title=" image encryption"> image encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20entropy" title=" image entropy"> image entropy</a> </p> <a href="https://publications.waset.org/abstracts/10723/gray-level-image-encryption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8594</span> Hardware Implementation of Local Binary Pattern Based Two-Bit Transform Motion Estimation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seda%20Yavuz">Seda Yavuz</a>, <a href="https://publications.waset.org/abstracts/search?q=An%C4%B1l%20%C3%87elebi"> Anıl Çelebi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysun%20Ta%C5%9Fyap%C4%B1%20%C3%87elebi"> Aysun Taşyapı Çelebi</a>, <a href="https://publications.waset.org/abstracts/search?q=O%C4%9Fuzhan%20Urhan"> Oğuzhan Urhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, demand for using real-time video transmission capable devices is ever-increasing. So, high resolution videos have made efficient video compression techniques an essential component for capturing and transmitting video data. Motion estimation has a critical role in encoding raw video. Hence, various motion estimation methods are introduced to efficiently compress the video. Low bit‑depth representation based motion estimation methods facilitate computation of matching criteria and thus, provide small hardware footprint. In this paper, a hardware implementation of a two-bit transformation based low-complexity motion estimation method using local binary pattern approach is proposed. Image frames are represented in two-bit depth instead of full-depth by making use of the local binary pattern as a binarization approach and the binarization part of the hardware architecture is explained in detail. Experimental results demonstrate the difference between the proposed hardware architecture and the architectures of well-known low-complexity motion estimation methods in terms of important aspects such as resource utilization, energy and power consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binarization" title="binarization">binarization</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware%20architecture" title=" hardware architecture"> hardware architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20binary%20pattern" title=" local binary pattern"> local binary pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20estimation" title=" motion estimation"> motion estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=two-bit%20transform" title=" two-bit transform"> two-bit transform</a> </p> <a href="https://publications.waset.org/abstracts/77730/hardware-implementation-of-local-binary-pattern-based-two-bit-transform-motion-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8593</span> Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annalakshmi%20G.">Annalakshmi G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakthivel%20Murugan%20S."> Sakthivel Murugan S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title="feature extraction">feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20directional%20pattern" title=" local directional pattern"> local directional pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=ELM%20classifier" title=" ELM classifier"> ELM classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=GWO%20optimization" title=" GWO optimization"> GWO optimization</a> </p> <a href="https://publications.waset.org/abstracts/142439/local-directional-encoded-derivative-binary-pattern-based-coral-image-classification-using-weighted-distance-gray-wolf-optimization-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8592</span> Human Identification Using Local Roughness Patterns in Heartbeat Signal </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Khayrul%20Bashar">Md. Khayrul Bashar</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Saiful%20Islam"> Md. Saiful Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Kimiko%20Yamashita"> Kimiko Yamashita</a>, <a href="https://publications.waset.org/abstracts/search?q=Yano%20Midori"> Yano Midori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite having some progress in human authentication, conventional biometrics (e.g., facial features, fingerprints, retinal scans, gait, voice patterns) are not robust against falsification because they are neither confidential nor secret to an individual. As a non-invasive tool, electrocardiogram (ECG) has recently shown a great potential in human recognition due to its unique rhythms characterizing the variability of human heart structures (chest geometry, sizes, and positions). Moreover, ECG has a real-time vitality characteristic that signifies the live signs, which ensure legitimate individual to be identified. However, the detection accuracy of the current ECG-based methods is not sufficient due to a high variability of the individual’s heartbeats at a different instance of time. These variations may occur due to muscle flexure, the change of mental or emotional states, and the change of sensor positions or long-term baseline shift during the recording of ECG signal. In this study, a new method is proposed for human identification, which is based on the extraction of the local roughness of ECG heartbeat signals. First ECG signal is preprocessed using a second order band-pass Butterworth filter having cut-off frequencies of 0.00025 and 0.04. A number of local binary patterns are then extracted by applying a moving neighborhood window along the ECG signal. At each instant of the ECG signal, the pattern is formed by comparing the ECG intensities at neighboring time points with the central intensity in the moving window. Then, binary weights are multiplied with the pattern to come up with the local roughness description of the signal. Finally, histograms are constructed that describe the heartbeat signals of individual subjects in the database. One advantage of the proposed feature is that it does not depend on the accuracy of detecting QRS complex, unlike the conventional methods. Supervised recognition methods are then designed using minimum distance to mean and Bayesian classifiers to identify authentic human subjects. An experiment with sixty (60) ECG signals from sixty adult subjects from National Metrology Institute of Germany (NMIG) - PTB database, showed that the proposed new method is promising compared to a conventional interval and amplitude feature-based method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20identification" title="human identification">human identification</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG%20biometrics" title=" ECG biometrics"> ECG biometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20roughness%20patterns" title=" local roughness patterns"> local roughness patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20classification" title=" supervised classification"> supervised classification</a> </p> <a href="https://publications.waset.org/abstracts/29806/human-identification-using-local-roughness-patterns-in-heartbeat-signal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8591</span> Teaching the Binary System via Beautiful Facts from the Real Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salem%20Ben%20Said">Salem Ben Said</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent times the decimal number system to which we are accustomed has received serious competition from the binary number system. In this note, an approach is suggested to teaching and learning the binary number system using examples from the real world. More precisely, we will demonstrate the utility of the binary system in describing the optimal strategy to win the Chinese Nim game, and in telegraphy by decoding the hidden message on Perseverance’s Mars parachute written in the language of binary system. Finally, we will answer the question, “why do modern computers prefer the ternary number system instead of the binary system?”. All materials are provided in a format that is conductive to classroom presentation and discussion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20number%20system" title="binary number system">binary number system</a>, <a href="https://publications.waset.org/abstracts/search?q=Nim%20game" title=" Nim game"> Nim game</a>, <a href="https://publications.waset.org/abstracts/search?q=telegraphy" title=" telegraphy"> telegraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=computers%20prefer%20the%20ternary%20system" title=" computers prefer the ternary system"> computers prefer the ternary system</a> </p> <a href="https://publications.waset.org/abstracts/143278/teaching-the-binary-system-via-beautiful-facts-from-the-real-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8590</span> Mouthing Patterns in Indian Sign Language</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Kulshreshtha">Neha Kulshreshtha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the patterns of 'Mouthing', a non-manual marker, and its distribution in Indian Sign Language (ISL). Linguistic research in Indian Sign Language is an emerging field where much is needed to be done. The little research which has happened focuses on the structure of ISL in terms of physical or manual markers, therefore a study of mouthing patterns would give an insight into the distribution of this particular non-manual marker. Data has been collected with the help of native ISL users through various techniques in which natural signs can be captured, for example, storytelling, informal conversations etc. The aim of the study is to find out the various situations where mouthing is used. Sometimes, the mouthing is not actually the articulation of the word as spoken in the local languages. The paper aims to find out whether the mouthing patterns in ISL are influenced by any local language or they are independent of any influence from the local language or both. Mouthing patterns have been studied in many sign languages and an investigation into ISL will reveal whether it falls in pattern with the other sign languages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indian%20sign%20language" title="Indian sign language">Indian sign language</a>, <a href="https://publications.waset.org/abstracts/search?q=mouthing" title=" mouthing"> mouthing</a>, <a href="https://publications.waset.org/abstracts/search?q=non-manual%20marker" title=" non-manual marker"> non-manual marker</a>, <a href="https://publications.waset.org/abstracts/search?q=spoken%20language%20influence" title=" spoken language influence"> spoken language influence</a> </p> <a href="https://publications.waset.org/abstracts/78826/mouthing-patterns-in-indian-sign-language" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8589</span> Variable vs. Fixed Window Width Code Correlation Reference Waveform Receivers for Multipath Mitigation in Global Navigation Satellite Systems with Binary Offset Carrier and Multiplexed Binary Offset Carrier Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Alhussein">Fahad Alhussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Huaping%20Liu"> Huaping Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares the multipath mitigation performance of code correlation reference waveform receivers with variable and fixed window width, for binary offset carrier and multiplexed binary offset carrier signals typically used in global navigation satellite systems. In the variable window width method, such width is iteratively reduced until the distortion on the discriminator with multipath is eliminated. This distortion is measured as the Euclidean distance between the actual discriminator (obtained with the incoming signal), and the local discriminator (generated with a local copy of the signal). The variable window width have shown better performance compared to the fixed window width. In particular, the former yields zero error for all delays for the BOC and MBOC signals considered, while the latter gives rather large nonzero errors for small delays in all cases. Due to its computational simplicity, the variable window width method is perfectly suitable for implementation in low-cost receivers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation%20reference%20waveform%20receivers" title="correlation reference waveform receivers">correlation reference waveform receivers</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20offset%20carrier" title=" binary offset carrier"> binary offset carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplexed%20binary%20offset%20carrier" title=" multiplexed binary offset carrier"> multiplexed binary offset carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20navigation%20satellite%20systems" title=" global navigation satellite systems"> global navigation satellite systems</a> </p> <a href="https://publications.waset.org/abstracts/116944/variable-vs-fixed-window-width-code-correlation-reference-waveform-receivers-for-multipath-mitigation-in-global-navigation-satellite-systems-with-binary-offset-carrier-and-multiplexed-binary-offset-carrier-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8588</span> Contestation of Local and Non-Local Knowledge in Developing Bali Cattle at Barru Regency, Province of South Sulawesi, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Amidah%20Amrawaty">A. Amidah Amrawaty</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saleh%20S.%20Ali"> M. Saleh S. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Darmawan%20Salman"> Darmawan Salman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to identify local and non local knowledge in Bali cattle development, to analyze the contestation between local and non-local knowledge. The paradigm used was constructivism paradigm with a qualitative approach. descriptive type of research using case study method. The study was conducted in four villages subjected to Agropolitan Program, i.e. Palakka, Tompo, Galung and Anabanua in Barru District, province of South Sulawesi. The results indicated that the local knowledge of the farmers were: a) knowledge of animal housing, b) knowledge of the prevention and control disease, c) knowledge of the feed, d) knowledge of breed selection, e) knowledge of sharing arrangement, f) knowledge of marketing, Generally, there are three patterns of knowledge contestation namely coexistence, ‘zero sum game’ and hybridization but in this research only coexistence and zero sum game patterns took place, while the pattern of hybridization did not occur. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contestation" title="contestation">contestation</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20knowledge" title=" local knowledge"> local knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=non-local%20knowledge" title=" non-local knowledge"> non-local knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=developing%20of%20Bali%20cattle" title=" developing of Bali cattle"> developing of Bali cattle</a> </p> <a href="https://publications.waset.org/abstracts/49469/contestation-of-local-and-non-local-knowledge-in-developing-bali-cattle-at-barru-regency-province-of-south-sulawesi-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8587</span> Pyramid Binary Pattern for Age Invariant Face Verification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saroj%20Bijarnia">Saroj Bijarnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Preety%20Singh"> Preety Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a simple and effective biometrics system based on face verification across aging using a new variant of texture feature, Pyramid Binary Pattern. This employs Local Binary Pattern along with its hierarchical information. Dimension reduction of generated texture feature vector is done using Principal Component Analysis. Support Vector Machine is used for classification. Our proposed method achieves an accuracy of 92:24% and can be used in an automated age-invariant face verification system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biometrics" title="biometrics">biometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=age%20invariant" title=" age invariant"> age invariant</a>, <a href="https://publications.waset.org/abstracts/search?q=verification" title=" verification"> verification</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/64435/pyramid-binary-pattern-for-age-invariant-face-verification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8586</span> Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaushik%20Sathupadi">Kaushik Sathupadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandesh%20Achar"> Sandesh Achar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=gait%20analysis" title=" gait analysis"> gait analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20binary%20pattern%20%28LBP%29" title=" local binary pattern (LBP)"> local binary pattern (LBP)</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20features" title=" statistical features"> statistical features</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-electro-mechanical%20systems%20%28MEMS%29" title=" micro-electro-mechanical systems (MEMS)"> micro-electro-mechanical systems (MEMS)</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20relevance%20and%20minimum%20re-dundancy%20%28MRMR%29" title=" maximum relevance and minimum re-dundancy (MRMR)"> maximum relevance and minimum re-dundancy (MRMR)</a> </p> <a href="https://publications.waset.org/abstracts/190027/personalizing-human-physical-life-routines-recognition-over-cloud-based-sensor-data-via-ai-and-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8585</span> On the Construction of Some Optimal Binary Linear Codes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Skezeer%20John%20B.%20Paz">Skezeer John B. Paz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ederlina%20G.%20Nocon"> Ederlina G. Nocon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finding an optimal binary linear code is a central problem in coding theory. A binary linear code C = [n, k, d] is called optimal if there is no linear code with higher minimum distance d given the length n and the dimension k. There are bounds giving limits for the minimum distance d of a linear code of fixed length n and dimension k. The lower bound which can be taken by construction process tells that there is a known linear code having this minimum distance. The upper bound is given by theoretic results such as Griesmer bound. One way to find an optimal binary linear code is to make the lower bound of d equal to its higher bound. That is, to construct a binary linear code which achieves the highest possible value of its minimum distance d, given n and k. Some optimal binary linear codes were presented by Andries Brouwer in his published table on bounds of the minimum distance d of binary linear codes for 1 ≤ n ≤ 256 and k ≤ n. This was further improved by Markus Grassl by giving a detailed construction process for each code exhibiting the lower bound. In this paper, we construct new optimal binary linear codes by using some construction processes on existing binary linear codes. Particularly, we developed an algorithm applied to the codes already constructed to extend the list of optimal binary linear codes up to 257 ≤ n ≤ 300 for k ≤ 7. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bounds%20of%20linear%20codes" title="bounds of linear codes">bounds of linear codes</a>, <a href="https://publications.waset.org/abstracts/search?q=Griesmer%20bound" title=" Griesmer bound"> Griesmer bound</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20of%20linear%20codes" title=" construction of linear codes"> construction of linear codes</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20binary%20linear%20codes" title=" optimal binary linear codes"> optimal binary linear codes</a> </p> <a href="https://publications.waset.org/abstracts/31628/on-the-construction-of-some-optimal-binary-linear-codes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">755</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8584</span> Soret-Driven Convection in a Binary Fluid with Coriolis Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20H.%20Z.%20Abidin">N. H. Z. Abidin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20F.%20M.%20Mokhtar"> N. F. M. Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20A.%20Gani"> S. S. A. Gani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of diffusion of the thermal or known as Soret effect in a heated Binary fluid model with Coriolis force is investigated theoretically. The linear stability analysis is used, and the eigenvalue is obtained using the Galerkin method. The impact of the Soret and Coriolis force on the onset of stationary convection in a system is analysed with respect to various Binary fluid parameters and presented graphically. It is found that an increase of the Soret values, destabilize the Binary fluid layer system. However, elevating the values of the Coriolis force helps to lag the onset of convection in a system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benard%20convection" title="Benard convection">Benard convection</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20fluid" title=" binary fluid"> binary fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=Coriolis" title=" Coriolis"> Coriolis</a>, <a href="https://publications.waset.org/abstracts/search?q=Soret" title=" Soret "> Soret </a> </p> <a href="https://publications.waset.org/abstracts/68076/soret-driven-convection-in-a-binary-fluid-with-coriolis-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8583</span> Reconstruction of Binary Matrices Satisfying Neighborhood Constraints by Simulated Annealing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divyesh%20Patel">Divyesh Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanuja%20Srivastava"> Tanuja Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper considers the NP-hard problem of reconstructing binary matrices satisfying exactly-1-4-adjacency constraint from its row and column projections. This problem is formulated into a maximization problem. The objective function gives a measure of adjacency constraint for the binary matrices. The maximization problem is solved by the simulated annealing algorithm and experimental results are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20tomography" title="discrete tomography">discrete tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=exactly-1-4-adjacency" title=" exactly-1-4-adjacency"> exactly-1-4-adjacency</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20matrices" title=" binary matrices"> binary matrices</a> </p> <a href="https://publications.waset.org/abstracts/8505/reconstruction-of-binary-matrices-satisfying-neighborhood-constraints-by-simulated-annealing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8582</span> Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Singhal">P. K. Singhal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Naresh"> R. Naresh</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sharma"> V. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20bee%20colony%20algorithm" title="artificial bee colony algorithm">artificial bee colony algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20dispatch" title=" economic dispatch"> economic dispatch</a>, <a href="https://publications.waset.org/abstracts/search?q=unit%20commitment" title=" unit commitment"> unit commitment</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20power" title=" wind power"> wind power</a> </p> <a href="https://publications.waset.org/abstracts/49910/comparative-performance-of-artificial-bee-colony-based-algorithms-for-wind-thermal-unit-commitment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8581</span> Thermodynamic and Spectroscopic Investigation of Binary 2,2-Dimethyl-1-Propanol+ CO₂ Gas Hydrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seokyoon%20Moon">Seokyoon Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Ho%20Ahn"> Yun-Ho Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Heejoong%20Kim"> Heejoong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujin%20Hong"> Sujin Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunseok%20Lee"> Yunseok Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngjune%20Park"> Youngjune Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas hydrate is a non-stoichiometric crystalline compound consisting of host water-framework and low molecular weight guest molecules. Small gaseous molecules such as CH₄, CO₂, and N₂ can be captured in the host water framework lattices of the gas hydrate with specific temperature and pressure conditions. The three well-known crystal structures of structure I (sI), structure II (sII), and structure H (sH) are determined by the size and shape of guest molecules. In this study, we measured the phase equilibria of binary (2,2-dimethyl-1-propanol + CO₂, CH₄, N₂) hydrates to explore their fundamental thermodynamic characteristics. We identified the structure of the binary gas hydrate by employing synchrotron high-resolution powder diffraction (HRPD), and the guest distributions in the lattice of gas hydrate were investigated via dispersive Raman and ¹³C solid-state nuclear magnetic resonance (NMR) spectroscopies. The end-to-end distance of 2,2-dimethyl-1-propanol was calculated to be 7.76 Å, which seems difficult to be enclathrated in large cages of sI or sII. However, due to the flexibility of the host water framework, binary hydrates of sI or sII types can be formed with the help of small gas molecule. Also, the synchrotron HRPD patterns revealed that the binary hydrate structure highly depends on the type of help gases; a cubic Fd3m sII hydrate was formed with CH₄ or N₂, and a cubic Pm3n sI hydrate was formed with CO₂. Interestingly, dispersive Raman and ¹³C NMR spectra showed that the unique tuning phenomenon occurred in binary (2,2-dimethyl-1-propanol + CO₂) hydrate. By optimizing the composition of NPA, we can achieve both thermodynamic stability and high CO₂ storage capacity for the practical application to CO₂ capture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clathrate" title="clathrate">clathrate</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20hydrate" title=" gas hydrate"> gas hydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=neopentyl%20alcohol" title=" neopentyl alcohol"> neopentyl alcohol</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82" title=" CO₂"> CO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=tuning%20phenomenon" title=" tuning phenomenon"> tuning phenomenon</a> </p> <a href="https://publications.waset.org/abstracts/84702/thermodynamic-and-spectroscopic-investigation-of-binary-22-dimethyl-1-propanol-co2-gas-hydrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8580</span> Emotion Recognition with Occlusions Based on Facial Expression Reconstruction and Weber Local Descriptor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jadisha%20Cornejo">Jadisha Cornejo</a>, <a href="https://publications.waset.org/abstracts/search?q=Helio%20Pedrini"> Helio Pedrini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recognition of emotions based on facial expressions has received increasing attention from the scientific community over the last years. Several fields of applications can benefit from facial emotion recognition, such as behavior prediction, interpersonal relations, human-computer interactions, recommendation systems. In this work, we develop and analyze an emotion recognition framework based on facial expressions robust to occlusions through the Weber Local Descriptor (WLD). Initially, the occluded facial expressions are reconstructed following an extension approach of Robust Principal Component Analysis (RPCA). Then, WLD features are extracted from the facial expression representation, as well as Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG). The feature vector space is reduced using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Finally, K-Nearest Neighbor (K-NN) and Support Vector Machine (SVM) classifiers are used to recognize the expressions. Experimental results on three public datasets demonstrated that the WLD representation achieved competitive accuracy rates for occluded and non-occluded facial expressions compared to other approaches available in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emotion%20recognition" title="emotion recognition">emotion recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20expression" title=" facial expression"> facial expression</a>, <a href="https://publications.waset.org/abstracts/search?q=occlusion" title=" occlusion"> occlusion</a>, <a href="https://publications.waset.org/abstracts/search?q=fiducial%20landmarks" title=" fiducial landmarks"> fiducial landmarks</a> </p> <a href="https://publications.waset.org/abstracts/90510/emotion-recognition-with-occlusions-based-on-facial-expression-reconstruction-and-weber-local-descriptor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8579</span> Theoretical and Experimental Investigations of Binary Systems for Hydrogen Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gauthier%20Lefevre">Gauthier Lefevre</a>, <a href="https://publications.waset.org/abstracts/search?q=Holger%20Kohlmann"> Holger Kohlmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastien%20Saitzek"> Sebastien Saitzek</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Desfeux"> Rachel Desfeux</a>, <a href="https://publications.waset.org/abstracts/search?q=Adlane%20Sayede"> Adlane Sayede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen is a promising energy carrier, compatible with the sustainable energy concept. In this context, solid-state hydrogen-storage is the key challenge in developing hydrogen economy. The capability of absorption of large quantities of hydrogen makes intermetallic systems of particular interest. In this study, efforts have been devoted to the theoretical investigation of binary systems with constraints consideration. On the one hand, besides considering hydrogen-storage, a reinvestigation of crystal structures of the palladium-arsenic system shows, with experimental validations, that binary systems could still currently present new or unknown relevant structures. On the other hand, various binary Mg-based systems were theoretically scrutinized in order to find new interesting alloys for hydrogen storage. Taking the effect of pressure into account reveals a wide range of alternative structures, changing radically the stable compounds of studied binary systems. Similar constraints, induced by Pulsed Laser Deposition, have been applied to binary systems, and results are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20systems" title="binary systems">binary systems</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20algorithm" title=" evolutionary algorithm"> evolutionary algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20principles%20study" title=" first principles study"> first principles study</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20deposition" title=" pulsed laser deposition"> pulsed laser deposition</a> </p> <a href="https://publications.waset.org/abstracts/67827/theoretical-and-experimental-investigations-of-binary-systems-for-hydrogen-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8578</span> A Weighted Approach to Unconstrained Iris Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yao-Hong%20Tsai">Yao-Hong Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a weighted approach to unconstrained iris recognition. Nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=authentication" title="authentication">authentication</a>, <a href="https://publications.waset.org/abstracts/search?q=iris%20recognition" title=" iris recognition"> iris recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=adaboost" title=" adaboost"> adaboost</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20binary%20pattern" title=" local binary pattern"> local binary pattern</a> </p> <a href="https://publications.waset.org/abstracts/3876/a-weighted-approach-to-unconstrained-iris-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8577</span> Efficient Feature Fusion for Noise Iris in Unconstrained Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yao-Hong%20Tsai">Yao-Hong Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an efficient fusion algorithm for iris images to generate stable feature for recognition in unconstrained environment. Recently, iris recognition systems are focused on real scenarios in our daily life without the subject’s cooperation. Under large variation in the environment, the objective of this paper is to combine information from multiple images of the same iris. The result of image fusion is a new image which is more stable for further iris recognition than each original noise iris image. A wavelet-based approach for multi-resolution image fusion is applied in the fusion process. The detection of the iris image is based on Adaboost algorithm and then local binary pattern (LBP) histogram is then applied to texture classification with the weighting scheme. Experiment showed that the generated features from the proposed fusion algorithm can improve the performance for verification system through iris recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20fusion" title="image fusion">image fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=iris%20recognition" title=" iris recognition"> iris recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20binary%20pattern" title=" local binary pattern"> local binary pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet" title=" wavelet"> wavelet</a> </p> <a href="https://publications.waset.org/abstracts/17027/efficient-feature-fusion-for-noise-iris-in-unconstrained-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8576</span> Comparative Analysis of Dissimilarity Detection between Binary Images Based on Equivalency and Non-Equivalency of Image Inversion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20A.%20Y.%20Mustafa">Adnan A. Y. Mustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image matching is a fundamental problem that arises frequently in many aspects of robot and computer vision. It can become a time-consuming process when matching images to a database consisting of hundreds of images, especially if the images are big. One approach to reducing the time complexity of the matching process is to reduce the search space in a pre-matching stage, by simply removing dissimilar images quickly. The Probabilistic Matching Model for Binary Images (PMMBI) showed that dissimilarity detection between binary images can be accomplished quickly by random pixel mapping and is size invariant. The model is based on the gamma binary similarity distance that recognizes an image and its inverse as containing the same scene and hence considers them to be the same image. However, in many applications, an image and its inverse are not treated as being the same but rather dissimilar. In this paper, we present a comparative analysis of dissimilarity detection between PMMBI based on the gamma binary similarity distance and a modified PMMBI model based on a similarity distance that does distinguish between an image and its inverse as being dissimilar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20image" title="binary image">binary image</a>, <a href="https://publications.waset.org/abstracts/search?q=dissimilarity%20detection" title=" dissimilarity detection"> dissimilarity detection</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20matching%20model%20for%20binary%20images" title=" probabilistic matching model for binary images"> probabilistic matching model for binary images</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20mapping" title=" image mapping"> image mapping</a> </p> <a href="https://publications.waset.org/abstracts/113778/comparative-analysis-of-dissimilarity-detection-between-binary-images-based-on-equivalency-and-non-equivalency-of-image-inversion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8575</span> Local Binary Patterns-Based Statistical Data Analysis for Accurate Soccer Match Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ghahramani">Mohammad Ghahramani</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahimeh%20Saei%20Manesh"> Fahimeh Saei Manesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Winning a soccer game is based on thorough and deep analysis of the ongoing match. On the other hand, giant gambling companies are in vital need of such analysis to reduce their loss against their customers. In this research work, we perform deep, real-time analysis on every soccer match around the world that distinguishes our work from others by focusing on particular seasons, teams and partial analytics. Our contributions are presented in the platform called “Analyst Masters.” First, we introduce various sources of information available for soccer analysis for teams around the world that helped us record live statistical data and information from more than 50,000 soccer matches a year. Our second and main contribution is to introduce our proposed in-play performance evaluation. The third contribution is developing new features from stable soccer matches. The statistics of soccer matches and their odds before and in-play are considered in the image format versus time including the halftime. Local Binary patterns, (LBP) is then employed to extract features from the image. Our analyses reveal incredibly interesting features and rules if a soccer match has reached enough stability. For example, our “8-minute rule” implies if 'Team A' scores a goal and can maintain the result for at least 8 minutes then the match would end in their favor in a stable match. We could also make accurate predictions before the match of scoring less/more than 2.5 goals. We benefit from the Gradient Boosting Trees, GBT, to extract highly related features. Once the features are selected from this pool of data, the Decision trees decide if the match is stable. A stable match is then passed to a post-processing stage to check its properties such as betters’ and punters’ behavior and its statistical data to issue the prediction. The proposed method was trained using 140,000 soccer matches and tested on more than 100,000 samples achieving 98% accuracy to select stable matches. Our database from 240,000 matches shows that one can get over 20% betting profit per month using Analyst Masters. Such consistent profit outperforms human experts and shows the inefficiency of the betting market. Top soccer tipsters achieve 50% accuracy and 8% monthly profit in average only on regional matches. Both our collected database of more than 240,000 soccer matches from 2012 and our algorithm would greatly benefit coaches and punters to get accurate analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soccer" title="soccer">soccer</a>, <a href="https://publications.waset.org/abstracts/search?q=analytics" title=" analytics"> analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=database" title=" database"> database</a> </p> <a href="https://publications.waset.org/abstracts/73340/local-binary-patterns-based-statistical-data-analysis-for-accurate-soccer-match-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8574</span> Quick Similarity Measurement of Binary Images via Probabilistic Pixel Mapping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20A.%20Y.%20Mustafa">Adnan A. Y. Mustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we present a quick technique to measure the similarity between binary images. The technique is based on a probabilistic mapping approach and is fast because only a minute percentage of the image pixels need to be compared to measure the similarity, and not the whole image. We exploit the power of the Probabilistic Matching Model for Binary Images (PMMBI) to arrive at an estimate of the similarity. We show that the estimate is a good approximation of the actual value, and the quality of the estimate can be improved further with increased image mappings. Furthermore, the technique is image size invariant; the similarity between big images can be measured as fast as that for small images. Examples of trials conducted on real images are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20images" title="big images">big images</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20images" title=" binary images"> binary images</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20matching" title=" image matching"> image matching</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20similarity" title=" image similarity"> image similarity</a> </p> <a href="https://publications.waset.org/abstracts/89963/quick-similarity-measurement-of-binary-images-via-probabilistic-pixel-mapping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=local%20binary%20patterns&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=local%20binary%20patterns&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=local%20binary%20patterns&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=local%20binary%20patterns&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=local%20binary%20patterns&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=local%20binary%20patterns&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=local%20binary%20patterns&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=local%20binary%20patterns&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=local%20binary%20patterns&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=local%20binary%20patterns&amp;page=286">286</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=local%20binary%20patterns&amp;page=287">287</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=local%20binary%20patterns&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10