CINXE.COM
Search results for: non-motorized means
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: non-motorized means</title> <meta name="description" content="Search results for: non-motorized means"> <meta name="keywords" content="non-motorized means"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="non-motorized means" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="non-motorized means"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4446</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: non-motorized means</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4446</span> Approach Based on Fuzzy C-Means for Band Selection in Hyperspectral Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20Saqui">Diego Saqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20H.%20Saito"> José H. Saito</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20R.%20Campos"> José R. Campos</a>, <a href="https://publications.waset.org/abstracts/search?q=L%C3%BAcio%20A.%20de%20C.%20Jorge"> Lúcio A. de C. Jorge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hyperspectral images and remote sensing are important for many applications. A problem in the use of these images is the high volume of data to be processed, stored and transferred. Dimensionality reduction techniques can be used to reduce the volume of data. In this paper, an approach to band selection based on clustering algorithms is presented. This approach allows to reduce the volume of data. The proposed structure is based on Fuzzy C-Means (or K-Means) and NWHFC algorithms. New attributes in relation to other studies in the literature, such as kurtosis and low correlation, are also considered. A comparison of the results of the approach using the Fuzzy C-Means and K-Means with different attributes is performed. The use of both algorithms show similar good results but, particularly when used attributes variance and kurtosis in the clustering process, however applicable in hyperspectral images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=band%20selection" title="band selection">band selection</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20c-means" title=" fuzzy c-means"> fuzzy c-means</a>, <a href="https://publications.waset.org/abstracts/search?q=k-means" title=" k-means"> k-means</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral%20image" title=" hyperspectral image"> hyperspectral image</a> </p> <a href="https://publications.waset.org/abstracts/50614/approach-based-on-fuzzy-c-means-for-band-selection-in-hyperspectral-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4445</span> A Parallel Implementation of k-Means in MATLAB</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitris%20Varsamis">Dimitris Varsamis</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20Talagkozis"> Christos Talagkozis</a>, <a href="https://publications.waset.org/abstracts/search?q=Alkiviadis%20Tsimpiris"> Alkiviadis Tsimpiris</a>, <a href="https://publications.waset.org/abstracts/search?q=Paris%20Mastorocostas"> Paris Mastorocostas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is the parallel implementation of k-means in MATLAB, in order to reduce the execution time. Specifically, a new function in MATLAB for serial k-means algorithm is developed, which meets all the requirements for the conversion to a function in MATLAB with parallel computations. Additionally, two different variants for the definition of initial values are presented. In the sequel, the parallel approach is presented. Finally, the performance tests for the computation times respect to the numbers of features and classes are illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=K-means%20algorithm" title="K-means algorithm">K-means algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20computations" title=" parallel computations"> parallel computations</a>, <a href="https://publications.waset.org/abstracts/search?q=Matlab" title=" Matlab"> Matlab</a> </p> <a href="https://publications.waset.org/abstracts/80503/a-parallel-implementation-of-k-means-in-matlab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4444</span> Improved K-Means Clustering Algorithm Using RHadoop with Combiner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Eun%20Shin">Ji Eun Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Hoon%20Lim"> Dong Hoon Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=combiner" title=" combiner"> combiner</a>, <a href="https://publications.waset.org/abstracts/search?q=K-means%20clustering" title=" K-means clustering"> K-means clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=RHadoop" title=" RHadoop"> RHadoop</a> </p> <a href="https://publications.waset.org/abstracts/41570/improved-k-means-clustering-algorithm-using-rhadoop-with-combiner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4443</span> On a Univalent Function and the Integral Means of Its Derivative</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shatha%20S.%20Alhily">Shatha S. Alhily</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research paper is to show all the possible values of the pth power of the integrable function which make the integral means of the derivative of univalent function existing and finite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=derivative" title="derivative">derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20means" title=" integral means"> integral means</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20conformal%20maps" title=" self conformal maps"> self conformal maps</a>, <a href="https://publications.waset.org/abstracts/search?q=univalent%20function" title=" univalent function"> univalent function</a> </p> <a href="https://publications.waset.org/abstracts/34053/on-a-univalent-function-and-the-integral-means-of-its-derivative" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">629</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4442</span> Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira-Sadat%20JamaliDinan">Samira-Sadat JamaliDinan</a>, <a href="https://publications.waset.org/abstracts/search?q=Haidar%20Almohri"> Haidar Almohri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad-Reza%20Nazem-Zadeh"> Mohammad-Reza Nazem-Zadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temporal%20lobe%20epilepsy" title="temporal lobe epilepsy">temporal lobe epilepsy</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetoencephalography" title=" magnetoencephalography"> magnetoencephalography</a> </p> <a href="https://publications.waset.org/abstracts/115667/machine-learning-approach-for-lateralization-of-temporal-lobe-epilepsy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4441</span> Firefighting Means in Food Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Racim%20Rifaat%20Ferdjani">Racim Rifaat Ferdjani</a>, <a href="https://publications.waset.org/abstracts/search?q=Zineddine%20Chetoui"> Zineddine Chetoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of our work is to provide a tool that helps control and ensures a global view of the means of firefighting (MLCI) in a food production plant (for example Hamoud Boualem plant). We divided the site into 4 zones, then we identified the firefighting means (MLCI) present in each zone, taking into account their type, weight, location, and fire class as well as their compliance with respect to the regulations in force while assigning them an alphanumeric reference which makes it possible to deduce everything. Thus, the use of a tool in the form of an Excel table was made concrete, and an average compliance rate of 45% was therefore obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MLCI" title="MLCI">MLCI</a>, <a href="https://publications.waset.org/abstracts/search?q=firefighting%20means" title=" firefighting means"> firefighting means</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamoud" title=" Hamoud"> Hamoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Boualem" title=" Boualem"> Boualem</a> </p> <a href="https://publications.waset.org/abstracts/126668/firefighting-means-in-food-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4440</span> An Improved K-Means Algorithm for Gene Expression Data Clustering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Billel%20Kenidra">Billel Kenidra</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Benmohammed"> Mohamed Benmohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microarray%20data%20mining" title="microarray data mining">microarray data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20pattern%20recognition" title=" biological pattern recognition"> biological pattern recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=partitional%20clustering" title=" partitional clustering"> partitional clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=k-means%20algorithm" title=" k-means algorithm"> k-means algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=centroid%20initialization" title=" centroid initialization"> centroid initialization</a> </p> <a href="https://publications.waset.org/abstracts/83541/an-improved-k-means-algorithm-for-gene-expression-data-clustering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4439</span> Flowing Online Vehicle GPS Data Clustering Using a New Parallel K-Means Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orhun%20Vural">Orhun Vural</a>, <a href="https://publications.waset.org/abstracts/search?q=Oguz%20%20Bayat"> Oguz Bayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Rustu%20Akay"> Rustu Akay</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20N.%20Ucan"> Osman N. Ucan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a new parallel approach clustering of GPS data. Evaluation has been made by comparing execution time of various clustering algorithms on GPS data. This paper aims to propose a parallel based on neighborhood K-means algorithm to make it faster. The proposed parallelization approach assumes that each GPS data represents a vehicle and to communicate between vehicles close to each other after vehicles are clustered. This parallelization approach has been examined on different sized continuously changing GPS data and compared with serial K-means algorithm and other serial clustering algorithms. The results demonstrated that proposed parallel K-means algorithm has been shown to work much faster than other clustering algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parallel%20k-means%20algorithm" title="parallel k-means algorithm">parallel k-means algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20clustering" title=" parallel clustering"> parallel clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering%20algorithms" title=" clustering algorithms"> clustering algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering%20on%20flowing%20data" title=" clustering on flowing data"> clustering on flowing data</a> </p> <a href="https://publications.waset.org/abstracts/86622/flowing-online-vehicle-gps-data-clustering-using-a-new-parallel-k-means-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4438</span> Consumer Load Profile Determination with Entropy-Based K-Means Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20P.%20Panapakidis">Ioannis P. Panapakidis</a>, <a href="https://publications.waset.org/abstracts/search?q=Marios%20N.%20Moschakis"> Marios N. Moschakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering" title="clustering">clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20profiling" title=" load profiling"> load profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20modeling" title=" load modeling"> load modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency%20and%20quality" title=" energy efficiency and quality"> energy efficiency and quality</a> </p> <a href="https://publications.waset.org/abstracts/89525/consumer-load-profile-determination-with-entropy-based-k-means-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4437</span> Degree of Approximation of Functions by Product Means</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hare%20Krishna%20Nigam">Hare Krishna Nigam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, for the first time, (E,q)(C,2) product summability method is introduced and two quite new results on degree of approximation of the function f belonging to Lip (alpha,r)class and W(L(r), xi(t)) class by (E,q)(C,2) product means of Fourier series, has been obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Degree%20of%20approximation" title="Degree of approximation">Degree of approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=%28E" title=" (E"> (E</a>, <a href="https://publications.waset.org/abstracts/search?q=q%29%28C" title="q)(C">q)(C</a>, <a href="https://publications.waset.org/abstracts/search?q=2%29%20means" title="2) means">2) means</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20series" title=" Fourier series"> Fourier series</a>, <a href="https://publications.waset.org/abstracts/search?q=Lebesgue%20integral" title=" Lebesgue integral"> Lebesgue integral</a>, <a href="https://publications.waset.org/abstracts/search?q=Lip%20%28alpha" title=" Lip (alpha"> Lip (alpha</a>, <a href="https://publications.waset.org/abstracts/search?q=r%29class" title="r)class">r)class</a>, <a href="https://publications.waset.org/abstracts/search?q=W%28L%28r%29" title=" W(L(r)"> W(L(r)</a>, <a href="https://publications.waset.org/abstracts/search?q=xi%28t%29%29class%20of%20%20functions" title="xi(t))class of functions">xi(t))class of functions</a> </p> <a href="https://publications.waset.org/abstracts/32235/degree-of-approximation-of-functions-by-product-means" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4436</span> Upper Bound of the Generalized P-Value for the Difference between Two Future Population Means</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rada%20Somkhuean">Rada Somkhuean</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa-aat%20Niwitpong"> Sa-aat Niwitpong</a>, <a href="https://publications.waset.org/abstracts/search?q=Suparat%20Niwitpong"> Suparat Niwitpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the generalized p-values for testing the difference between two future population means when the variances are unknown, in both cases for when the variances are equal and unequal. We also derive a closed form expression of the upper bound of the proposed generalized p-value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20p-value" title="generalized p-value">generalized p-value</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20future%20population%20means" title=" two future population means"> two future population means</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20bound" title=" upper bound"> upper bound</a>, <a href="https://publications.waset.org/abstracts/search?q=variances" title=" variances"> variances</a> </p> <a href="https://publications.waset.org/abstracts/12128/upper-bound-of-the-generalized-p-value-for-the-difference-between-two-future-population-means" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4435</span> Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Polat">Kemal Polat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20C-means%20clustering" title="fuzzy C-means clustering">fuzzy C-means clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20C-means%20clustering%20based%20attribute%20weighting" title=" fuzzy C-means clustering based attribute weighting"> fuzzy C-means clustering based attribute weighting</a>, <a href="https://publications.waset.org/abstracts/search?q=Pima%20Indians%20diabetes" title=" Pima Indians diabetes"> Pima Indians diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a> </p> <a href="https://publications.waset.org/abstracts/46171/intelligent-recognition-of-diabetes-disease-via-fcm-based-attribute-weighting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4434</span> Automatic Classification Using Dynamic Fuzzy C Means Algorithm and Mathematical Morphology: Application in 3D MRI Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelkhalek%20Bakkari">Abdelkhalek Bakkari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image segmentation is a critical step in image processing and pattern recognition. In this paper, we proposed a new robust automatic image classification based on a dynamic fuzzy c-means algorithm and mathematical morphology. The proposed segmentation algorithm (DFCM_MM) has been applied to MR perfusion images. The obtained results show the validity and robustness of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=segmentation" title="segmentation">segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic" title=" dynamic"> dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20c-means" title=" fuzzy c-means"> fuzzy c-means</a>, <a href="https://publications.waset.org/abstracts/search?q=MR%20image" title=" MR image"> MR image</a> </p> <a href="https://publications.waset.org/abstracts/13711/automatic-classification-using-dynamic-fuzzy-c-means-algorithm-and-mathematical-morphology-application-in-3d-mri-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4433</span> Degree of Approximation of Functions Conjugate to Periodic Functions Belonging to Lipschitz Classes by Product Matrix Means</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smita%20Sonker">Smita Sonker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various investigators have determined the degree of approximation of conjugate signals (functions) of functions belonging to different classes Lipα, Lip(α,p), Lip(ξ(t),p), W(Lr,ξ(t), (β ≥ 0)) by matrix summability means, lower triangular matrix operator, product means (i.e. (C,1)(E,1), (C,1)(E,q), (E,q)(C,1) (N,p,q)(E,1), and (E,q)(N,pn) of their conjugate trigonometric Fourier series. In this paper, we shall determine the degree of approximation of 2π-periodic function conjugate functions of f belonging to the function classes Lipα and W(Lr; ξ(t); (β ≥ 0)) by (C1.T) -means of their conjugate trigonometric Fourier series. On the other hand, we shall review above-mentioned work in the light of Lenski. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=signals" title="signals">signals</a>, <a href="https://publications.waset.org/abstracts/search?q=trigonometric%20fourier%20approximation" title=" trigonometric fourier approximation"> trigonometric fourier approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=class%20W%28L%5Er" title=" class W(L^r"> class W(L^r</a>, <a href="https://publications.waset.org/abstracts/search?q=%5Cxi%28t%29" title="\xi(t)">\xi(t)</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugate%20fourier%20series" title=" conjugate fourier series"> conjugate fourier series</a> </p> <a href="https://publications.waset.org/abstracts/20996/degree-of-approximation-of-functions-conjugate-to-periodic-functions-belonging-to-lipschitz-classes-by-product-matrix-means" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4432</span> Decision Tree Model for the Recommendation of Digital and Alternate Payment Methods for SMEs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arturo%20J.%20Anci%20Alm%C3%A9star">Arturo J. Anci Alméstar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20D.%20Fernandez%20Huapaya"> Jose D. Fernandez Huapaya</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Mauricio"> David Mauricio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Companies make erroneous decisions by not evaluating the inherent difficulties of entering electronic commerce without a prior review of current digital and alternate means of payment. For this reason, it is very important for businesses to have reliable, complete and integrated information on the means of current digital and alternate payments that allow decisions to be made about which of these to use. However, there is no such consolidated information or criteria that companies use to make decisions about the means of payment according to their needs. In this paper, we propose a decision tree model based on a taxonomy that presents us with a categorization of digital and alternative means of payment, as well as the visualization of the flow of information at a high level from the company to obtain a recommendation. This will allow the company to make the most appropriate decision about the implementation of the digital means of payment or alternative ideal for their needs, which allows a reduction in costs and complexity of the payment process. Likewise, the efficiency of the proposed model was evaluated through a satisfaction survey presented to company personnel, confirming the satisfactory quality level of the recommendations obtained by the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20payment%20medium" title="digital payment medium">digital payment medium</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title=" decision making"> decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20payments%20taxonomy" title=" digital payments taxonomy"> digital payments taxonomy</a> </p> <a href="https://publications.waset.org/abstracts/85328/decision-tree-model-for-the-recommendation-of-digital-and-alternate-payment-methods-for-smes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4431</span> An Improved C-Means Model for MRI Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Shen">Ying Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Weihua%20Zhu"> Weihua Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20image%20%28MRI%29" title="magnetic resonance image (MRI)">magnetic resonance image (MRI)</a>, <a href="https://publications.waset.org/abstracts/search?q=c-means%20model" title=" c-means model"> c-means model</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20entropy" title=" information entropy"> information entropy</a> </p> <a href="https://publications.waset.org/abstracts/79824/an-improved-c-means-model-for-mri-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4430</span> K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shao-Tzu%20Huang">Shao-Tzu Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Chien%20Hsu"> Chen-Chien Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Yen%20Wang"> Wei-Yen Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Matching high dimensional features between images is computationally expensive for exhaustive search approaches in computer vision. Although the dimension of the feature can be degraded by simplifying the prior knowledge of homography, matching accuracy may degrade as a tradeoff. In this paper, we present a feature matching method based on k-means algorithm that reduces the matching cost and matches the features between images instead of using a simplified geometric assumption. Experimental results show that the proposed method outperforms the previous linear exhaustive search approaches in terms of the inlier ratio of matched pairs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20matching" title="feature matching">feature matching</a>, <a href="https://publications.waset.org/abstracts/search?q=k-means%20clustering" title=" k-means clustering"> k-means clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=SIFT" title=" SIFT"> SIFT</a>, <a href="https://publications.waset.org/abstracts/search?q=RANSAC" title=" RANSAC"> RANSAC</a> </p> <a href="https://publications.waset.org/abstracts/73493/k-means-based-matching-algorithm-for-multi-resolution-feature-descriptors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4429</span> A Minimum Spanning Tree-Based Method for Initializing the K-Means Clustering Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Yang">J. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ma"> Y. Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Zhang"> X. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Li"> S. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zhang"> Y. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The traditional k-means algorithm has been widely used as a simple and efficient clustering method. However, the algorithm often converges to local minima for the reason that it is sensitive to the initial cluster centers. In this paper, an algorithm for selecting initial cluster centers on the basis of minimum spanning tree (MST) is presented. The set of vertices in MST with same degree are regarded as a whole which is used to find the skeleton data points. Furthermore, a distance measure between the skeleton data points with consideration of degree and Euclidean distance is presented. Finally, MST-based initialization method for the k-means algorithm is presented, and the corresponding time complexity is analyzed as well. The presented algorithm is tested on five data sets from the UCI Machine Learning Repository. The experimental results illustrate the effectiveness of the presented algorithm compared to three existing initialization methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degree" title="degree">degree</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20cluster%20center" title=" initial cluster center"> initial cluster center</a>, <a href="https://publications.waset.org/abstracts/search?q=k-means" title=" k-means"> k-means</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20spanning%20tree" title=" minimum spanning tree"> minimum spanning tree</a> </p> <a href="https://publications.waset.org/abstracts/59975/a-minimum-spanning-tree-based-method-for-initializing-the-k-means-clustering-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4428</span> Creative Means to Address Mental Health in the African American Community: Arts, Advocacy, and Awareness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denise%20F.%20Brown">Denise F. Brown</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This proposal provides an explanation of the content for a Special Topics Course to be offered Spring of 2022. The course will be titled, Creative means to address mental health in the African American Community: Arts, Advocacy, and Awareness. Research shows that African Americans are less likely to seek treatment for mental illnesses. The stigma around mental illness influences negative ideas about having psychological problems within the African American community. Assessments of how African Americans perceive mental illness will also be provided. Current research suggests that understanding mental health is just as important as understanding mental illness. The distinguishment between mental illness and mental health provides a way to not negatively point out mental illness but to better understand that psychological and emotional well-being can be achieved whether a mental illness is present or not. The course will consist of defining mental health and mental illness and then what it means to utilize creative means to become a mental health advocate within the African American community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arts" title="arts">arts</a>, <a href="https://publications.waset.org/abstracts/search?q=advocacy" title=" advocacy"> advocacy</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20mental%20health" title=" black mental health"> black mental health</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20illness" title=" mental illness"> mental illness</a> </p> <a href="https://publications.waset.org/abstracts/143813/creative-means-to-address-mental-health-in-the-african-american-community-arts-advocacy-and-awareness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4427</span> Comparative Study of Estimators of Population Means in Two Phase Sampling in the Presence of Non-Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Ali%20Taqi">Syed Ali Taqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ismail"> Muhammad Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comparative study of estimators of population means in two phase sampling in the presence of non-response when Unknown population means of the auxiliary variable(s) and incomplete information of study variable y as well as of auxiliary variable(s) is made. Three real data sets of University students, hospital and unemployment are used for comparison of all the available techniques in two phase sampling in the presence of non-response with the newly generalized ratio estimators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-phase%20sampling" title="two-phase sampling">two-phase sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=ratio%20estimator" title=" ratio estimator"> ratio estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20estimator" title=" product estimator"> product estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20estimators" title=" generalized estimators"> generalized estimators</a> </p> <a href="https://publications.waset.org/abstracts/79636/comparative-study-of-estimators-of-population-means-in-two-phase-sampling-in-the-presence-of-non-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4426</span> Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.V.%20Suryawanshi">U.V. Suryawanshi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.S.%20Chowhan"> S.S. Chowhan</a>, <a href="https://publications.waset.org/abstracts/search?q=U.V%20Kulkarni"> U.V Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title="image segmentation">image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=preprocessing" title=" preprocessing"> preprocessing</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=FCM" title=" FCM"> FCM</a>, <a href="https://publications.waset.org/abstracts/search?q=KFCM" title=" KFCM"> KFCM</a>, <a href="https://publications.waset.org/abstracts/search?q=SFCM" title=" SFCM"> SFCM</a>, <a href="https://publications.waset.org/abstracts/search?q=IFCM" title=" IFCM"> IFCM</a> </p> <a href="https://publications.waset.org/abstracts/12406/performance-evaluation-of-various-segmentation-techniques-on-mri-of-brain-tissue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4425</span> Early Requirement Engineering for Design of Learner Centric Dynamic LMS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kausik%20Halder">Kausik Halder</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabendu%20Chaki"> Nabendu Chaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjan%20Dasgupta"> Ranjan Dasgupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a modelling framework that supports the engineering of early requirements specifications for design of learner centric dynamic Learning Management System. The framework is based on i* modelling tool and Means End Analysis, that adopts primitive concepts for modelling early requirements (such as actor, goal, and strategic dependency). We show how pedagogical and computational requirements for designing a learner centric Learning Management system can be adapted for the automatic early requirement engineering specifications. Finally, we presented a model on a Learner Quanta based adaptive Courseware. Our early requirement analysis shows that how means end analysis reveals gaps and inconsistencies in early requirements specifications that are by no means trivial to discover without the help of formal analysis tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20courseware" title="adaptive courseware">adaptive courseware</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20requirement%20engineering" title=" early requirement engineering"> early requirement engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=means%20end%20analysis" title=" means end analysis"> means end analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20modelling" title=" organizational modelling"> organizational modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=requirement%20modelling" title=" requirement modelling"> requirement modelling</a> </p> <a href="https://publications.waset.org/abstracts/8626/early-requirement-engineering-for-design-of-learner-centric-dynamic-lms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4424</span> Compact Finite Difference Schemes for Fourth Order Parabolic Partial Differential Equations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sufyan%20Muhammad">Sufyan Muhammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, in achieving highly efficient but at the same time highly accurate solutions has become the major target of numerical analyst community. The concept is termed as compact schemes and has gained great popularity and consequently, we construct compact schemes for fourth order parabolic differential equations used to study vibrations in structures. For the superiority of newly constructed schemes, we consider range of examples. We have achieved followings i.e. (a) numerical scheme utilizes minimum number of stencil points (which means new scheme is compact); (b) numerical scheme is highly accurate (which means new scheme is reliable) and (c) numerical scheme is highly efficient (which means new scheme is fast). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20finite%20differences" title="central finite differences">central finite differences</a>, <a href="https://publications.waset.org/abstracts/search?q=compact%20schemes" title=" compact schemes"> compact schemes</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernoulli%27s%20equations" title=" Bernoulli's equations"> Bernoulli's equations</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20differences" title=" finite differences"> finite differences</a> </p> <a href="https://publications.waset.org/abstracts/55343/compact-finite-difference-schemes-for-fourth-order-parabolic-partial-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4423</span> A Computational Cost-Effective Clustering Algorithm in Multidimensional Space Using the Manhattan Metric: Application to the Global Terrorism Database</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semeh%20Ben%20Salem">Semeh Ben Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Sami%20Naouali"> Sami Naouali</a>, <a href="https://publications.waset.org/abstracts/search?q=Moetez%20Sallami"> Moetez Sallami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing amount of collected data has limited the performance of the current analyzing algorithms. Thus, developing new cost-effective algorithms in terms of complexity, scalability, and accuracy raised significant interests. In this paper, a modified effective <em>k</em>-means based algorithm is developed and experimented. The new algorithm aims to reduce the computational load without significantly affecting the quality of the clusterings. The algorithm uses the City Block distance and a new stop criterion to guarantee the convergence. Conducted experiments on a real data set show its high performance when compared with the original <em>k</em>-means version. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title="pattern recognition">pattern recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20terrorism%20database" title=" global terrorism database"> global terrorism database</a>, <a href="https://publications.waset.org/abstracts/search?q=Manhattan%20distance" title=" Manhattan distance"> Manhattan distance</a>, <a href="https://publications.waset.org/abstracts/search?q=k-means%20clustering" title=" k-means clustering"> k-means clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=terrorism%20data%20analysis" title=" terrorism data analysis"> terrorism data analysis</a> </p> <a href="https://publications.waset.org/abstracts/72016/a-computational-cost-effective-clustering-algorithm-in-multidimensional-space-using-the-manhattan-metric-application-to-the-global-terrorism-database" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4422</span> Evaluation Means in English and Russian Academic Discourse: Through Comparative Analysis towards Translation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Albina%20Vodyanitskaya">Albina Vodyanitskaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given the culture- and language-specific nature of evaluation, this phenomenon is widely studied around the linguistic world and may be regarded as a challenge for translators. Evaluation penetrates all the levels of a scientific text, influences its composition and the reader’s attitude towards the information presented. One of the most challenging and rarely studied phenomena is the individual style of the scientific writer, which is mostly reflected in the use of evaluative language means. The evaluative and expressive potential of a scientific text is becoming more and more welcoming area for researchers, which stems in the shift towards anthropocentric paradigm in linguistics. Other reasons include: the cognitive and psycholinguistic processes that accompany knowledge acquisition, a genre-determined nature of a scientific text, the increasing public concern about the quality of scientific papers and some such. One more important issue, is the fact that linguists all over the world still argue about the definition of evaluation and its functions in the text. The author analyzes various approaches towards the study of evaluation and scientific texts. A comparative analysis of English and Russian dissertations and other scientific papers with regard to evaluative language means reveals major differences and similarities between English and Russian scientific style. Though standardized and genre-specific, English scientific texts contain more figurative and expressive evaluative means than the Russian ones, which should be taken into account while translating scientific papers. The processes that evaluation undergoes while being expressed by means of a target language are also analyzed. The author offers a target-language-dependent strategy for the translation of evaluation in English and Russian scientific texts. The findings may contribute to the theory and practice of translation and can increase scientific writers’ awareness of inter-language and intercultural differences in evaluative language means. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=academic%20discourse" title="academic discourse">academic discourse</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=scientific%20text" title=" scientific text"> scientific text</a>, <a href="https://publications.waset.org/abstracts/search?q=scientific%20writing" title=" scientific writing"> scientific writing</a>, <a href="https://publications.waset.org/abstracts/search?q=translation" title=" translation"> translation</a> </p> <a href="https://publications.waset.org/abstracts/42856/evaluation-means-in-english-and-russian-academic-discourse-through-comparative-analysis-towards-translation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4421</span> Design and Optimization of Open Loop Supply Chain Distribution Network Using Hybrid K-Means Cluster Based Heuristic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Suresh">P. Suresh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gunasekaran"> K. Gunasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Thanigaivelan"> R. Thanigaivelan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radio frequency identification (RFID) technology has been attracting considerable attention with the expectation of improved supply chain visibility for consumer goods, apparel, and pharmaceutical manufacturers, as well as retailers and government procurement agencies. It is also expected to improve the consumer shopping experience by making it more likely that the products they want to purchase are available. Recent announcements from some key retailers have brought interest in RFID to the forefront. A modified K- Means Cluster based Heuristic approach, Hybrid Genetic Algorithm (GA) - Simulated Annealing (SA) approach, Hybrid K-Means Cluster based Heuristic-GA and Hybrid K-Means Cluster based Heuristic-GA-SA for Open Loop Supply Chain Network problem are proposed. The study incorporated uniform crossover operator and combined crossover operator in GAs for solving open loop supply chain distribution network problem. The algorithms are tested on 50 randomly generated data set and compared with each other. The results of the numerical experiments show that the Hybrid K-means cluster based heuristic-GA-SA, when tested on 50 randomly generated data set, shows superior performance to the other methods for solving the open loop supply chain distribution network problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RFID" title="RFID">RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20distribution%20network" title=" supply chain distribution network"> supply chain distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20loop%20supply%20chain" title=" open loop supply chain"> open loop supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a> </p> <a href="https://publications.waset.org/abstracts/110012/design-and-optimization-of-open-loop-supply-chain-distribution-network-using-hybrid-k-means-cluster-based-heuristic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4420</span> Flat-Top Apodization of Laser Beams by Means of Acousto-Optics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergey%20I.%20Chizhikov">Sergey I. Chizhikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Y.%20Molchanov"> Vladimir Y. Molchanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantin%20B.%20Yushkov"> Konstantin B. Yushkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We demonstrate a method for adaptive spatial shaping of laser beams by means of acousto-optic Bragg diffraction. Transformation of the angular spectrum during Bragg diffraction is used to convert Gaussian intensity distribution into a flat-top one. Theoretical model is supported by the experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acousto-optics" title="acousto-optics">acousto-optics</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20top" title=" flat top"> flat top</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20shaping" title=" beam shaping"> beam shaping</a>, <a href="https://publications.waset.org/abstracts/search?q=Bragg%20diffraction" title=" Bragg diffraction"> Bragg diffraction</a> </p> <a href="https://publications.waset.org/abstracts/19123/flat-top-apodization-of-laser-beams-by-means-of-acousto-optics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">626</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4419</span> Multi-Scaled Non-Local Means Filter for Medical Images Denoising: Empirical Mode Decomposition vs. Wavelet Transform </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hana%20Rabbouch">Hana Rabbouch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, there has been considerable growth of denoising techniques mainly devoted to medical imaging. This important evolution is not only due to the progress of computing techniques, but also to the emergence of multi-resolution analysis (MRA) on both mathematical and algorithmic bases. In this paper, a comparative study is conducted between the two best-known MRA-based decomposition techniques: the Empirical Mode Decomposition (EMD) and the Discrete Wavelet Transform (DWT). The comparison is carried out in a framework of multi-scale denoising, where a Non-Local Means (NLM) filter is performed scale-by-scale to a sample of benchmark medical images. The results prove the effectiveness of the multiscaled denoising, especially when the NLM filtering is coupled with the EMD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20imaging" title="medical imaging">medical imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20local%20means" title=" non local means"> non local means</a>, <a href="https://publications.waset.org/abstracts/search?q=denoising" title=" denoising"> denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscaled%20analysis" title=" multiscaled analysis"> multiscaled analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20mode%20decomposition" title=" empirical mode decomposition"> empirical mode decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelets" title=" wavelets"> wavelets</a> </p> <a href="https://publications.waset.org/abstracts/115243/multi-scaled-non-local-means-filter-for-medical-images-denoising-empirical-mode-decomposition-vs-wavelet-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4418</span> Clustering Categorical Data Using the K-Means Algorithm and the Attribute’s Relative Frequency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semeh%20Ben%20Salem">Semeh Ben Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Sami%20Naouali"> Sami Naouali</a>, <a href="https://publications.waset.org/abstracts/search?q=Moetez%20Sallami"> Moetez Sallami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clustering is a well known data mining technique used in pattern recognition and information retrieval. The initial dataset to be clustered can either contain categorical or numeric data. Each type of data has its own specific clustering algorithm. In this context, two algorithms are proposed: the <em>k</em>-means for clustering numeric datasets and the <em>k</em>-modes for categorical datasets. The main encountered problem in data mining applications is clustering categorical dataset so relevant in the datasets. One main issue to achieve the clustering process on categorical values is to transform the categorical attributes into numeric measures and directly apply the <em>k</em>-means algorithm instead the <em>k</em>-modes. In this paper, it is proposed to experiment an approach based on the previous issue by transforming the categorical values into numeric ones using the relative frequency of each modality in the attributes. The proposed approach is compared with a previously method based on transforming the categorical datasets into binary values. The scalability and accuracy of the two methods are experimented. The obtained results show that our proposed method outperforms the binary method in all cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering" title="clustering">clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=unsupervised%20learning" title=" unsupervised learning"> unsupervised learning</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=categorical%20datasets" title=" categorical datasets"> categorical datasets</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20discovery" title=" knowledge discovery"> knowledge discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=k-means" title=" k-means"> k-means</a> </p> <a href="https://publications.waset.org/abstracts/73588/clustering-categorical-data-using-the-k-means-algorithm-and-the-attributes-relative-frequency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4417</span> The Clustering of Multiple Sclerosis Subgroups through L2 Norm Multifractal Denoising Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeliz%20Karaca">Yeliz Karaca</a>, <a href="https://publications.waset.org/abstracts/search?q=Rana%20Karabudak"> Rana Karabudak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multifractal Denoising techniques are used in the identification of significant attributes by removing the noise of the dataset. Magnetic resonance (MR) image technique is the most sensitive method so as to identify chronic disorders of the nervous system such as Multiple Sclerosis. MRI and Expanded Disability Status Scale (EDSS) data belonging to 120 individuals who have one of the subgroups of MS (Relapsing Remitting MS (RRMS), Secondary Progressive MS (SPMS), Primary Progressive MS (PPMS)) as well as 19 healthy individuals in the control group have been used in this study. The study is comprised of the following stages: (i) L2 Norm Multifractal Denoising technique, one of the multifractal technique, has been used with the application on the MS data (MRI and EDSS). In this way, the new dataset has been obtained. (ii) The new MS dataset obtained from the MS dataset and L2 Multifractal Denoising technique has been applied to the K-Means and Fuzzy C Means clustering algorithms which are among the unsupervised methods. Thus, the clustering performances have been compared. (iii) In the identification of significant attributes in the MS dataset through the Multifractal denoising (L2 Norm) technique using K-Means and FCM algorithms on the MS subgroups and control group of healthy individuals, excellent performance outcome has been yielded. According to the clustering results based on the MS subgroups obtained in the study, successful clustering results have been obtained in the K-Means and FCM algorithms by applying the L2 norm of multifractal denoising technique for the MS dataset. Clustering performance has been more successful with the MS Dataset (L2_Norm MS Data Set) K-Means and FCM in which significant attributes are obtained by applying L2 Norm Denoising technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clinical%20decision%20support" title="clinical decision support">clinical decision support</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering%20algorithms" title=" clustering algorithms"> clustering algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title=" multiple sclerosis"> multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=multifractal%20techniques" title=" multifractal techniques"> multifractal techniques</a> </p> <a href="https://publications.waset.org/abstracts/91074/the-clustering-of-multiple-sclerosis-subgroups-through-l2-norm-multifractal-denoising-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-motorized%20means&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-motorized%20means&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-motorized%20means&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-motorized%20means&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-motorized%20means&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-motorized%20means&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-motorized%20means&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-motorized%20means&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-motorized%20means&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-motorized%20means&page=148">148</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-motorized%20means&page=149">149</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-motorized%20means&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>