CINXE.COM

Search results for: waiting times

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: waiting times</title> <meta name="description" content="Search results for: waiting times"> <meta name="keywords" content="waiting times"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="waiting times" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="waiting times"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3799</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: waiting times</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3799</span> Waiting Time Reduction in a Government Hospital Emergency Department: A Case Study on AlAdan Hospital, Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bashayer%20AlRobayaan">Bashayer AlRobayaan</a>, <a href="https://publications.waset.org/abstracts/search?q=Munira%20Saad"> Munira Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20AlBawab"> Alaa AlBawab</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20AlHamad"> Fatma AlHamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20AlAwadhi"> Sara AlAwadhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Fahmy"> Sherif Fahmy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addresses the problem of long waiting times in government hospitals emergency departments (ED). It aims at finding feasible and simple ways of reducing waiting times that do not require a lot of resources and/or expenses. AlAdan Hospital in Kuwait was chosen to be understudy to further understand and capture the problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=healthcare" title="healthcare">healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital" title=" hospital"> hospital</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuwait" title=" Kuwait"> Kuwait</a>, <a href="https://publications.waset.org/abstracts/search?q=waiting%20times" title=" waiting times"> waiting times</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20department" title=" emergency department"> emergency department</a> </p> <a href="https://publications.waset.org/abstracts/9389/waiting-time-reduction-in-a-government-hospital-emergency-department-a-case-study-on-aladan-hospital-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3798</span> Using Discrete Event Simulation Approach to Reduce Waiting Times in Computed Tomography Radiology Department</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mwafak%20Shakoor">Mwafak Shakoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to reduce patient waiting times, improve system throughput and improve resources utilization in radiology department. A discrete event simulation model was developed using Arena simulation software to investigate different alternatives to improve the overall system delivery based on adding resource scenarios due to the linkage between patient waiting times and resource availability. The study revealed that there is no addition investment need to procure additional scanner but hospital management deploy managerial tactics to enhance machine utilization and reduce the long waiting time in the department. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation" title="discrete event simulation">discrete event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=radiology%20department" title=" radiology department"> radiology department</a>, <a href="https://publications.waset.org/abstracts/search?q=arena" title=" arena"> arena</a>, <a href="https://publications.waset.org/abstracts/search?q=waiting%20time" title=" waiting time"> waiting time</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare%20modeling" title=" healthcare modeling"> healthcare modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography "> computed tomography </a> </p> <a href="https://publications.waset.org/abstracts/17539/using-discrete-event-simulation-approach-to-reduce-waiting-times-in-computed-tomography-radiology-department" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3797</span> Optimizing Electric Vehicle Charging with Charging Data Analytics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tayyibah%20Khanam">Tayyibah Khanam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saad%20Alam"> Mohammad Saad Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanchari%20Deb"> Sanchari Deb</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Rafat"> Yasser Rafat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric vehicles are considered as viable replacements to gasoline cars since they help in reducing harmful emissions and stimulate power generation through renewable energy sources, hence contributing to sustainability. However, one of the significant obstacles in the mass deployment of electric vehicles is the charging time anxiety among users and, thus, the subsequent large waiting times for available chargers at charging stations. Data analytics, on the other hand, has revolutionized the decision-making tasks of management and operating systems since its arrival. In this paper, we attempt to optimize the choice of EV charging stations for users in their vicinity by minimizing the time taken to reach the charging stations and the waiting times for available chargers. Time taken to travel to the charging station is calculated by the Google Maps API and the waiting times are predicted by polynomial regression of the historical data stored. The proposed framework utilizes real-time data and historical data from all operating charging stations in the city and assists the user in finding the best suitable charging station for their current situation and can be implemented in a mobile phone application. The algorithm successfully predicts the most optimal choice of a charging station and the minimum required time for various sample data sets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charging%20data" title="charging data">charging data</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title=" electric vehicles"> electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=waiting%20times" title=" waiting times"> waiting times</a> </p> <a href="https://publications.waset.org/abstracts/133474/optimizing-electric-vehicle-charging-with-charging-data-analytics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3796</span> Integrating Nursing Informatics to Improve Patient-Centered Care: A Project to Reduce Patient Waiting Time at the Blood Pressure Counter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pi-Chi%20Wu">Pi-Chi Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsui-Ping%20Chu"> Tsui-Ping Chu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsiu-Hung%20Wang"> Hsiu-Hung Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The ability to provide immediate medical service in outpatient departments is one of the keys to patient satisfaction. Objectives: This project used electronic equipment to integrate nursing care information to patient care at a blood pressure diagnostic counter. Through process reengineering, the average patient waiting time decreased from 35 minutes to 5 minutes, while service satisfaction increased from a score of 2.7 to 4.6. Methods: Data was collected from a local hospital in Southern Taiwan from a daily average of 2,200 patients in the outpatient department. Previous waiting times were affected by (1) space limitations, (2) the need to help guide patient mobility, (3) the need for nurses to appease irate patients and give instructions, (4), the need for patients to replace lost counter tickets, (5) the need to re-enter information, (6) the replacement of missing patient information. An ad hoc group was established to enhance patient satisfaction and shorten waiting times for patients to see a doctor. A four step strategy consisting of (1) counter relocation, (2) queue reorganization, (3) electronic information integration, (4) process reengineering was implemented. Results: Implementation of the developed strategy decreased patient waiting time from 35 minutes to an average of 5 minutes, and increased patient satisfaction scores from 2.7 to 6.4. Conclusion: Through the integration of information technology and process transformation, waiting times were drastically reduced, patient satisfaction increased, and nurses were allowed more time to engage in more cost-effective services. This strategy was simultaneously enacted in separate hospitals throughout Taiwan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=process%20reengineering" title="process reengineering">process reengineering</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20information%20integration" title=" electronic information integration"> electronic information integration</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20satisfaction" title=" patient satisfaction"> patient satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20waiting%20time" title=" patient waiting time"> patient waiting time</a> </p> <a href="https://publications.waset.org/abstracts/36448/integrating-nursing-informatics-to-improve-patient-centered-care-a-project-to-reduce-patient-waiting-time-at-the-blood-pressure-counter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3795</span> A Study on the Waiting Time for the First Employment of Arts Graduates in Sri Lanka </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imali%20T.%20Jayamanne">Imali T. Jayamanne</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20Asoka%20Ramanayake"> K. P. Asoka Ramanayake</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transition from tertiary level education to employment is one of the challenges that many fresh university graduates face after graduation. The transition period or the waiting time to obtain the first employment varies with the socio-economic factors and the general characteristics of a graduate. Compared to other fields of study, Arts graduates in Sri Lanka, have to wait a long time to find their first employment. The objective of this study is to identify the determinants of the transition from higher education to employment of these graduates using survival models. The study is based on a survey that was conducted in the year 2016 on a stratified random sample of Arts graduates from Sri Lankan universities who had graduated in 2012. Among the 469 responses, 36 (8%) waiting times were interval censored and 13 (3%) were right censored. Waiting time for the first employment varied between zero to 51 months. Initially, the log-rank and the Gehan-Wilcoxon tests were performed to identify the significant factors. Gender, ethnicity, GCE Advanced level English grade, civil status, university, class received, degree type, sector of first employment, type of first employment and the educational qualifications required for the first employment were significant at 10%. The Cox proportional hazards model was fitted to model the waiting time for first employment with these significant factors. All factors, except ethnicity and type of employment were significant at 5%. However, since the proportional hazard assumption was violated, the lognormal Accelerated failure time (AFT) model was fitted to model the waiting time for the first employment. The same factors were significant in the AFT model as in Cox proportional model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AFT%20model" title="AFT model">AFT model</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20employment" title=" first employment"> first employment</a>, <a href="https://publications.waset.org/abstracts/search?q=proportional%20hazard" title=" proportional hazard"> proportional hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=survey%20design" title=" survey design"> survey design</a>, <a href="https://publications.waset.org/abstracts/search?q=waiting%20time" title=" waiting time"> waiting time</a> </p> <a href="https://publications.waset.org/abstracts/77027/a-study-on-the-waiting-time-for-the-first-employment-of-arts-graduates-in-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3794</span> Introduction of Digital Radiology to Improve the Timeliness in Availability of Radiological Diagnostic Images for Trauma Care</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anuruddha%20Jagoda">Anuruddha Jagoda</a>, <a href="https://publications.waset.org/abstracts/search?q=Samiddhi%20Samarakoon"> Samiddhi Samarakoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20Jasinghe"> Anil Jasinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an emergency department ‘where every second count for patient’s management’ timely availability of X- rays play a vital role in early diagnosis and management of patients. Trauma care centers rely heavily on timely radiologic imaging for patient care and radiology plays a crucial role in the emergency department (ED) operations. A research study was carried out to assess timeliness of availability of X-rays and total turnaround time at the Accident Service of National Hospital of Sri Lanka which is the premier trauma center in the country. Digital Radiology system was implemented as an intervention to improve the timeliness of availability of X-rays. Post-implementation assessment was carried out to assess the effectiveness of the intervention. Reduction in all three aspects of waiting times namely waiting for initial examination by doctors, waiting until X –ray is performed and waiting for image availability was observed after implementation of the intervention. However, the most significant improvement was seen in waiting time for image availability and reduction in time for image availability had indirect impact on reducing waiting time for initial examination by doctors and waiting until X –ray is performed. The most significant reduction in time for image availability was observed when performing 4-5 X rays with DR system. The least improvement in timeliness was seen in patients who are categorized as critical. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emergency%20department" title="emergency department">emergency department</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20radilogy" title=" digital radilogy"> digital radilogy</a>, <a href="https://publications.waset.org/abstracts/search?q=timeliness" title=" timeliness"> timeliness</a>, <a href="https://publications.waset.org/abstracts/search?q=trauma%20care" title=" trauma care"> trauma care</a> </p> <a href="https://publications.waset.org/abstracts/56328/introduction-of-digital-radiology-to-improve-the-timeliness-in-availability-of-radiological-diagnostic-images-for-trauma-care" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3793</span> Health Care using Queuing Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Vadivukkarasi">S. Vadivukkarasi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Karthi"> K. Karthi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karthick"> M. Karthick</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Dinesh"> C. Dinesh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Santhosh"> S. Santhosh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yogaraj"> A. Yogaraj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The appointment system was designed to minimize patient’s idle time overlooking patients waiting time in hospitals. This is no longer valid in today’s consumer oriented society. Long waiting times for treatment in the outpatient department followed by short consultations has long been a complaint. Nowadays, customers use waiting time as a decisive factor in choosing a service provider. Queuing theory constitutes a very powerful tool because queuing models require relatively little data and are simple and fast to use. Because of this simplicity and speed, modelers can be used to quickly evaluate and compare various alternatives for providing service. The application of queuing models in the analysis of health care systems is increasingly accepted by health care decision makers. Timely access to care is a key component of high-quality health care. However, patient delays are prevalent throughout health care systems, resulting in dissatisfaction and adverse clinical consequences for patients as well as potentially higher costs and wasted capacity for providers. Arguably, the most critical delays for health care are the ones associated with health care emergencies. The allocation of resources can be divided into three general areas: bed management, staff management, and room facility management. Effective and efficient patient flow is indicated by high patient throughput, low patient waiting times, a short length of stay at the hospital and overtime, while simultaneously maintaining adequate staff utilization rates and low patient’s idle times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=appointment%20system" title="appointment system">appointment system</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20scheduling" title=" patient scheduling"> patient scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=bed%20management" title=" bed management"> bed management</a>, <a href="https://publications.waset.org/abstracts/search?q=queueing%20calculation" title=" queueing calculation"> queueing calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20analysis" title=" system analysis"> system analysis</a> </p> <a href="https://publications.waset.org/abstracts/1705/health-care-using-queuing-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3792</span> Using Design Thinking Principles to Improve Patients Experiences in Two Outpatient Pharmacies in Asir Region, Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalia%20Almaghaslah">Dalia Almaghaslah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Design thinking approach; empathize, define, ideate prototype, test, implement, was used to assess outpatient experiences in two hospital pharmacies in the Asir region, Saudi Arabia. Semi-structured interviews were conducted with 40 patients. The data were analyzed using thematic analysis. The findings suggested that patients were generally satisfied with pharmaceutical services provided in both pharmacies. Pharmacists were found to have enough knowledge, good attitude, and efficient communication and counselling skills. Non-pharmacy-related factors such as cultural factors (gender segregation), long waiting times, uncomfortable waiting areas, lack of electronic prescribing, number waiting system were found to have a negative impact on patients' experiences and satisfaction. Prototypes will be used to test the effects of implementing the electronic system in Al -mahal hospital and to test changing the physical layout of the waiting area in Asir hospital. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20thinking" title="design thinking">design thinking</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital%20pharmacy" title=" hospital pharmacy"> hospital pharmacy</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20satisfaction" title=" patient satisfaction"> patient satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a> </p> <a href="https://publications.waset.org/abstracts/124384/using-design-thinking-principles-to-improve-patients-experiences-in-two-outpatient-pharmacies-in-asir-region-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3791</span> Wait-Optimized Scheduler Algorithm for Efficient Process Scheduling in Computer Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Habibur%20Rahman">Md Habibur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaeho%20Kim"> Jaeho Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efficient process scheduling is a crucial factor in ensuring optimal system performance and resource utilization in computer systems. While various algorithms have been proposed over the years, there are still limitations to their effectiveness. This paper introduces a new Wait-Optimized Scheduler (WOS) algorithm that aims to minimize process waiting time by dividing them into two layers and considering both process time and waiting time. The WOS algorithm is non-preemptive and prioritizes processes with the shortest WOS. In the first layer, each process runs for a predetermined duration, and any unfinished process is subsequently moved to the second layer, resulting in a decrease in response time. Whenever the first layer is free or the number of processes in the second layer is twice that of the first layer, the algorithm sorts all the processes in the second layer based on their remaining time minus waiting time and sends one process to the first layer to run. This ensures that all processes eventually run, optimizing waiting time. To evaluate the performance of the WOS algorithm, we conducted experiments comparing its performance with traditional scheduling algorithms such as First-Come-First-Serve (FCFS) and Shortest-Job-First (SJF). The results showed that the WOS algorithm outperformed the traditional algorithms in reducing the waiting time of processes, particularly in scenarios with a large number of short tasks with long wait times. Our study highlights the effectiveness of the WOS algorithm in improving process scheduling efficiency in computer systems. By reducing process waiting time, the WOS algorithm can improve system performance and resource utilization. The findings of this study provide valuable insights for researchers and practitioners in developing and implementing efficient process scheduling algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=process%20scheduling" title="process scheduling">process scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=wait-optimized%20scheduler" title=" wait-optimized scheduler"> wait-optimized scheduler</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20time" title=" response time"> response time</a>, <a href="https://publications.waset.org/abstracts/search?q=non-preemptive" title=" non-preemptive"> non-preemptive</a>, <a href="https://publications.waset.org/abstracts/search?q=waiting%20time" title=" waiting time"> waiting time</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20scheduling%20algorithms" title=" traditional scheduling algorithms"> traditional scheduling algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=first-come-first-serve" title=" first-come-first-serve"> first-come-first-serve</a>, <a href="https://publications.waset.org/abstracts/search?q=shortest-job-first" title=" shortest-job-first"> shortest-job-first</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20performance" title=" system performance"> system performance</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20utilization" title=" resource utilization"> resource utilization</a> </p> <a href="https://publications.waset.org/abstracts/165734/wait-optimized-scheduler-algorithm-for-efficient-process-scheduling-in-computer-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3790</span> Control of Hybrid System Using Fuzzy Logic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faiza%20Mahi">Faiza Mahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Debbat"> Fatima Debbat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Fay%C3%A7al%20Khelfi"> Mohamed Fayçal Khelfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a control approach using Fuzzy Lo system. More precisely, the study focuses on the improvement of users service in terms of analysis and control of a transportation system their waiting times in the exchange platforms of passengers. Many studies have been developed in the literature for such problematic, and many control tools are proposed. In this paper we focus on the use of fuzzy logic technique to control the system during its evolution in order to minimize the arrival gap of connected transportation means at the exchange points of passengers. An example of illustration is worked out and the obtained results are reported. an important area of research is the modeling and simulation ordering system. We describe an approach to analysis using Fuzzy Logic. The hybrid simulator developed in toolbox Matlab consists calculation of waiting time transportation mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuzzy%20logic" title="Fuzzy logic">Fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=Hybrid%20system" title=" Hybrid system"> Hybrid system</a>, <a href="https://publications.waset.org/abstracts/search?q=Waiting%20Time" title=" Waiting Time"> Waiting Time</a>, <a href="https://publications.waset.org/abstracts/search?q=Transportation%20system" title=" Transportation system"> Transportation system</a>, <a href="https://publications.waset.org/abstracts/search?q=Control" title=" Control"> Control</a> </p> <a href="https://publications.waset.org/abstracts/22406/control-of-hybrid-system-using-fuzzy-logic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3789</span> Modeling Waiting and Service Time for Patients: A Case Study of Matawale Health Centre, Zomba, Malawi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moses%20Aron">Moses Aron</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20Mwakilama"> Elias Mwakilama</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimmy%20Namangale"> Jimmy Namangale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spending more time on long queues for a basic service remains a common challenge to most developing countries, including Malawi. For health sector in particular, Out-Patient Department (OPD) experiences long queues. This puts the lives of patients at risk. However, using queuing analysis to under the nature of the problems and efficiency of service systems, such problems can be abated. Based on a kind of service, literature proposes different possible queuing models. However, unlike using generalized assumed models proposed by literature, use of real time case study data can help in deeper understanding the particular problem model and how such a model can vary from one day to the other and also from each case to another. As such, this study uses data obtained from one urban HC for BP, Pediatric and General OPD cases to investigate an average queuing time for patients within the system. It seeks to highlight the proper queuing model by investigating the kind of distributions functions over patient’s arrival time, inter-arrival time, waiting time and service time. Comparable with the standard set values by WHO, the study found that patients at this HC spend more waiting times than service times. On model investigation, different days presented different models ranging from an assumed M/M/1, M/M/2 to M/Er/2. As such, through sensitivity analysis, in general, a commonly assumed M/M/1 model failed to fit the data but rather an M/Er/2 demonstrated to fit well. An M/Er/3 model seemed to be good in terms of measuring resource utilization, proposing a need to increase medical personnel at this HC. However, an M/Er/4 showed to cause more idleness of human resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health%20care" title="health care">health care</a>, <a href="https://publications.waset.org/abstracts/search?q=out-patient%20department" title=" out-patient department"> out-patient department</a>, <a href="https://publications.waset.org/abstracts/search?q=queuing%20model" title=" queuing model"> queuing model</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/36218/modeling-waiting-and-service-time-for-patients-a-case-study-of-matawale-health-centre-zomba-malawi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3788</span> Modelling a Hospital as a Queueing Network: Analysis for Improving Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emad%20Alenany">Emad Alenany</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Adel%20El-Baz"> M. Adel El-Baz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the flow of different classes of patients into a hospital is modelled and analyzed by using the queueing network analyzer (QNA) algorithm and discrete event simulation. Input data for QNA are the rate and variability parameters of the arrival and service times in addition to the number of servers in each facility. Patient flows mostly match real flow for a hospital in Egypt. Based on the analysis of the waiting times, two approaches are suggested for improving performance: Separating patients into service groups, and adopting different service policies for sequencing patients through hospital units. The separation of a specific group of patients, with higher performance target, to be served separately from the rest of patients requiring lower performance target, requires the same capacity while improves performance for the selected group of patients with higher target. Besides, it is shown that adopting the shortest processing time and shortest remaining processing time service policies among other tested policies would results in, respectively, 11.47% and 13.75% reduction in average waiting time relative to first come first served policy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=queueing%20network" title="queueing network">queueing network</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete-event%20simulation" title=" discrete-event simulation"> discrete-event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20applications" title=" health applications"> health applications</a>, <a href="https://publications.waset.org/abstracts/search?q=SPT" title=" SPT"> SPT</a> </p> <a href="https://publications.waset.org/abstracts/56783/modelling-a-hospital-as-a-queueing-network-analysis-for-improving-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3787</span> Baring Witness, Bearing Withness: Paradoxes of Testimony in J.M. Coetzee’s Waiting for the Barbarians</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Sweny">Alexandra Sweny</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper contends with the intersection between the act of witnessing and the act of reading in order to consider the relevance of literary testimony and fiction as tools for postcolonial readings of history. J. M. Coetzee's Waiting for the Barbarians elucidates what Primo Levi deems the 'paradoxical' task of testimony: that suffering can only be fully narrated by the sufferer themselves, whose voice and narrative capacity is often foreclosed by the very extent of their trauma. By examining the fictional Magistrate's position as both a reader and translator of history, this paper posits Waiting for the Barbarians as an ethical command against the appropriation of trauma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethical%20criticism" title="ethical criticism">ethical criticism</a>, <a href="https://publications.waset.org/abstracts/search?q=limit-experience" title=" limit-experience"> limit-experience</a>, <a href="https://publications.waset.org/abstracts/search?q=postcolonialism" title=" postcolonialism"> postcolonialism</a>, <a href="https://publications.waset.org/abstracts/search?q=psychic%20trauma%20in%20literature" title=" psychic trauma in literature"> psychic trauma in literature</a>, <a href="https://publications.waset.org/abstracts/search?q=testimony" title=" testimony"> testimony</a> </p> <a href="https://publications.waset.org/abstracts/131706/baring-witness-bearing-withness-paradoxes-of-testimony-in-jm-coetzees-waiting-for-the-barbarians" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3786</span> A Two Server Poisson Queue Operating under FCFS Discipline with an ‘m’ Policy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Sivasamy">R. Sivasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Paulraj"> G. Paulraj</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kalaimani"> S. Kalaimani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.Thillaigovindan"> N.Thillaigovindan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For profitable businesses, queues are double-edged swords and hence the pain of long wait times in a queue often frustrates customers. This paper suggests a technical way of reducing the pain of lines through a Poisson M/M1, M2/2 queueing system operated by two heterogeneous servers with an objective of minimising the mean sojourn time of customers served under the queue discipline ‘First Come First Served with an ‘m’ policy, i.e. FCFS-m policy’. Arrivals to the system form a Poisson process of rate λ and are served by two exponential servers. The service times of successive customers at server ‘j’ are independent and identically distributed (i.i.d.) random variables and each of it is exponentially distributed with rate parameter μj (j=1, 2). The primary condition for implementing the queue discipline ‘FCFS-m policy’ on these service rates μj (j=1, 2) is that either (m+1) µ2 > µ1> m µ2 or (m+1) µ1 > µ2> m µ1 must be satisfied. Further waiting customers prefer the server-1 whenever it becomes available for service, and the server-2 should be installed if and only if the queue length exceeds the value ‘m’ as a threshold. Steady-state results on queue length and waiting time distributions have been obtained. A simple way of tracing the optimal service rate μ*2 of the server-2 is illustrated in a specific numerical exercise to equalize the average queue length cost with that of the service cost. Assuming that the server-1 has to dynamically adjust the service rates as μ1 during the system size is strictly less than T=(m+2) while μ2=0, and as μ1 +μ2 where μ2>0 if the system size is more than or equal to T, corresponding steady state results of M/M1+M2/1 queues have been deduced from those of M/M1,M2/2 queues. To conclude this investigation has a viable application, results of M/M1+M2/1 queues have been used in processing of those waiting messages into a single computer node and to measure the power consumption by the node. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two%20heterogeneous%20servers" title="two heterogeneous servers">two heterogeneous servers</a>, <a href="https://publications.waset.org/abstracts/search?q=M%2FM1" title=" M/M1"> M/M1</a>, <a href="https://publications.waset.org/abstracts/search?q=M2%2F2%20queue" title="M2/2 queue">M2/2 queue</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20cost%20and%20queue%20length%20cost" title=" service cost and queue length cost"> service cost and queue length cost</a>, <a href="https://publications.waset.org/abstracts/search?q=M%2FM1%2BM2%2F1%20queue" title=" M/M1+M2/1 queue"> M/M1+M2/1 queue</a> </p> <a href="https://publications.waset.org/abstracts/42944/a-two-server-poisson-queue-operating-under-fcfs-discipline-with-an-m-policy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3785</span> Decomposition of the Customer-Server Interaction in Grocery Shops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Ahrens">Andreas Ahrens</a>, <a href="https://publications.waset.org/abstracts/search?q=Ojaras%20Purvinis"> Ojaras Purvinis</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Zascerinska"> Jelena Zascerinska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A successful shopping experience without overcrowded shops and long waiting times undoubtedly leads to the release of happiness hormones and is generally considered the goal of any optimization. Factors influencing the shopping experience can be divided into internal and external ones. External factors are related, e. g. to the arrival of the customers to the shop, whereas internal are linked with the service process itself when checking out (waiting in the queue to the cash register and the scanning of the goods as well as the payment process itself) or any other non-expected delay when changing the status from a visitor to a buyer by choosing goods or items. This paper divides the customer-server interaction into five phases starting with the customer's arrival at the shop, the selection of goods, the buyer waiting in the queue to the cash register, the payment process, and ending with the customer or buyer's departure. Our simulation results show how five phases are intertwined and influence the overall shopping experience. Parameters for measuring the shopping experience are estimated based on the burstiness level in each of the five phases of the customer-server interaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=customers%E2%80%99%20burstiness" title="customers’ burstiness">customers’ burstiness</a>, <a href="https://publications.waset.org/abstracts/search?q=cash%20register" title=" cash register"> cash register</a>, <a href="https://publications.waset.org/abstracts/search?q=customers%E2%80%99%20wait-ing%20time" title=" customers’ wait-ing time"> customers’ wait-ing time</a>, <a href="https://publications.waset.org/abstracts/search?q=gap%20distribution%20function" title=" gap distribution function"> gap distribution function</a> </p> <a href="https://publications.waset.org/abstracts/147564/decomposition-of-the-customer-server-interaction-in-grocery-shops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3784</span> Execution Time Optimization of Workflow Network with Activity Lead-Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaoping%20Qiu">Xiaoping Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Binci%20You"> Binci You</a>, <a href="https://publications.waset.org/abstracts/search?q=Yue%20Hu"> Yue Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The executive time of the workflow network has an important effect on the efficiency of the business process. In this paper, the activity executive time is divided into the service time and the waiting time, then the lead time can be extracted from the waiting time. The executive time formulas of the three basic structures in the workflow network are deduced based on the activity lead time. Taken the process of e-commerce logistics as an example, insert appropriate lead time for key activities by using Petri net, and the executive time optimization model is built to minimize the waiting time with the time-cost constraints. Then the solution program-using VC++6.0 is compiled to get the optimal solution, which reduces the waiting time of key activities in the workflow, and verifies the role of lead time in the timeliness of e-commerce logistics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20business" title="electronic business">electronic business</a>, <a href="https://publications.waset.org/abstracts/search?q=execution%20time" title=" execution time"> execution time</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%20time" title=" lead time"> lead time</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20model" title=" optimization model"> optimization model</a>, <a href="https://publications.waset.org/abstracts/search?q=petri%20net" title=" petri net"> petri net</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20workflow%20network" title=" time workflow network"> time workflow network</a> </p> <a href="https://publications.waset.org/abstracts/137019/execution-time-optimization-of-workflow-network-with-activity-lead-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3783</span> Automatic Queuing Model Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Suleiman">Fahad Suleiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Queuing, in medical system is the process of moving patients in a specific sequence to a specific service according to the patients’ nature of illness. The term scheduling stands for the process of computing a schedule. This may be done by a queuing based scheduler. This paper focuses on the medical consultancy system, the different queuing algorithms that are used in healthcare system to serve the patients, and the average waiting time. The aim of this paper is to build automatic queuing system for organizing the medical queuing system that can analyses the queue status and take decision which patient to serve. The new queuing architecture model can switch between different scheduling algorithms according to the testing results and the factor of the average waiting time. The main innovation of this work concerns the modeling of the average waiting time is taken into processing, in addition with the process of switching to the scheduling algorithm that gives the best average waiting time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=queuing%20systems" title="queuing systems">queuing systems</a>, <a href="https://publications.waset.org/abstracts/search?q=queuing%20system%20models" title=" queuing system models"> queuing system models</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling%20algorithms" title=" scheduling algorithms"> scheduling algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=patients" title=" patients"> patients</a> </p> <a href="https://publications.waset.org/abstracts/38535/automatic-queuing-model-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3782</span> Fill Rate Window as a Criterion for Spares Allocation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Dreyfuss">Michael Dreyfuss</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahel%20Giat"> Yahel Giat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Limited battery range and long recharging times are the greatest obstacles to the successful adoption of electric cars. One of the suggestions to overcome these problems is that carmakers retain ownership of batteries and provide battery swapping service so that customers exchange their depleted batteries for recharged batteries. Motivated by this example, we consider the problem of optimal spares allocation in an exchangeable-item, multi-location repair system. We generalize the standard service measures of fill rate and average waiting time to reflect the fact that customers penalize the service provider only if they have to wait more than a ‘tolerable’ time window. These measures are denoted as the window fill rate and the truncated waiting time, respectively. We find that the truncated waiting time is convex and therefore a greedy algorithm solves the spares allocation problem efficiently. We show that the window fill rate is generally S-shaped and describe an efficient algorithm to find a near-optimal solution and detail a priori and a posteriori upper bounds to the distance from optimum. The theory is complemented with a large scale numerical example demonstrating the spare battery allocation in battery swapping stations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convex-concave%20optimization" title="convex-concave optimization">convex-concave optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=exchangeable%20item" title=" exchangeable item"> exchangeable item</a>, <a href="https://publications.waset.org/abstracts/search?q=M%2FG%2Finfinity" title=" M/G/infinity"> M/G/infinity</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20location" title=" multiple location"> multiple location</a>, <a href="https://publications.waset.org/abstracts/search?q=repair%20system" title=" repair system"> repair system</a>, <a href="https://publications.waset.org/abstracts/search?q=spares%20allocation" title=" spares allocation"> spares allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20fill%20rate" title=" window fill rate"> window fill rate</a> </p> <a href="https://publications.waset.org/abstracts/35185/fill-rate-window-as-a-criterion-for-spares-allocation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3781</span> Performance Optimization on Waiting Time Using Queuing Theory in an Advanced Manufacturing Environment: Robotics to Enhance Productivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganiyat%20Soliu">Ganiyat Soliu</a>, <a href="https://publications.waset.org/abstracts/search?q=Glen%20Bright"> Glen Bright</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiemela%20Onunka"> Chiemela Onunka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance optimization plays a key role in controlling the waiting time during manufacturing in an advanced manufacturing environment to improve productivity. Queuing mathematical modeling theory was used to examine the performance of the multi-stage production line. Robotics as a disruptive technology was implemented into a virtual manufacturing scenario during the packaging process to study the effect of waiting time on productivity. The queuing mathematical model was used to determine the optimum service rate required by robots during the packaging stage of manufacturing to yield an optimum production cost. Different rates of production were assumed in a virtual manufacturing environment, cost of packaging was estimated with optimum production cost. An equation was generated using queuing mathematical modeling theory and the theorem adopted for analysis of the scenario is the Newton Raphson theorem. Queuing theory presented here provides an adequate analysis of the number of robots required to regulate waiting time in order to increase the number of output. Arrival rate of the product was fast which shows that queuing mathematical model was effective in minimizing service cost and the waiting time during manufacturing. At a reduced waiting time, there was an improvement in the number of products obtained per hour. The overall productivity was improved based on the assumptions used in the queuing modeling theory implemented in the virtual manufacturing scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance%20optimization" title="performance optimization">performance optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=queuing%20theory" title=" queuing theory"> queuing theory</a>, <a href="https://publications.waset.org/abstracts/search?q=robotics" title=" robotics"> robotics</a> </p> <a href="https://publications.waset.org/abstracts/102213/performance-optimization-on-waiting-time-using-queuing-theory-in-an-advanced-manufacturing-environment-robotics-to-enhance-productivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3780</span> Analysis of Waiting Time and Drivers Fatigue at Manual Toll Plaza and Suggestion of an Automated Toll Tax Collection System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Dawood%20Idrees">Muhammad Dawood Idrees</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Hafeez"> Maria Hafeez</a>, <a href="https://publications.waset.org/abstracts/search?q=Arsalan%20Ansari"> Arsalan Ansari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Toll tax collection is the earliest method of tax collection and revenue generation. This revenue is utilized for the development of roads networks, maintenance, and connecting to roads and highways across the country. Pakistan is one of the biggest countries, covers a wide area of land, roads networks, and motorways are important source of connecting cities. Every day millions of people use motorways, and they have to stop at toll plazas to pay toll tax as majority of toll plazas are manually collecting toll tax. The purpose of this study is to calculate the waiting time of vehicles at Karachi Hyderabad (M-9) motorway. As Karachi is the biggest city of Pakistan and hundreds of thousands of people use this route to approach other cities. Currently, toll tax collection is manual system which is a major cause for long time waiting at toll plaza. This study calculates the waiting time of vehicles, fuel consumed in waiting time, manpower employed at toll plaza as all process is manual, and it also leads to mental and physical fatigue of driver. All wastages of sources are also calculated, and a most feasible automatic toll tax collection system is proposed which is not only beneficial to reduce waiting time but also beneficial in reduction of fuel, reduction of manpower employed, and reduction in physical and mental fatigue. A cost comparison in terms of wastages is also shown between manual and automatic toll tax collection system (E-Z Pass). Results of this study reveal that, if automatic tool collection system is implemented at Karachi to Hyderabad motorway (M-9), there will be a significance reduction in waiting time of vehicles, which leads to reduction of fuel consumption, environmental pollution, mental and physical fatigue of driver. All these reductions are also calculated in terms of money (Pakistani rupees) and it is obtained that millions of rupees can be saved by using automatic tool collection system which will lead to improve the economy of country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=toll%20tax%20collection" title="toll tax collection">toll tax collection</a>, <a href="https://publications.waset.org/abstracts/search?q=waiting%20time" title=" waiting time"> waiting time</a>, <a href="https://publications.waset.org/abstracts/search?q=wastages" title=" wastages"> wastages</a>, <a href="https://publications.waset.org/abstracts/search?q=driver%20fatigue" title=" driver fatigue"> driver fatigue</a> </p> <a href="https://publications.waset.org/abstracts/100627/analysis-of-waiting-time-and-drivers-fatigue-at-manual-toll-plaza-and-suggestion-of-an-automated-toll-tax-collection-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3779</span> QIP: Introducing a Dedicated Ozurdex Clinic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaisnavy%20Govindasamy">Vaisnavy Govindasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20Ishrat"> Saba Ishrat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The Dexamethasone Intravitreal Implant 0.7 mg (OzurdexTM, Allergan®) is a biodegradable corticosteroid implant approved by the FDA for managing diabetic macular edema (DMO), macular edema following branch retinal vein occlusion (BRVO) or central retinal vein occlusion (CRVO), and posterior segment non-infectious uveitis. This implant can release dexamethasone over a six-month period, exhibiting peak effectiveness between 60 and 90 days post-administration. The intravitreal injection should be performed under sterile conditions. At James Cook University Hospital (JCUH), Ozurdex injections are currently administered in the Vitreo-Retinal (VR) theatre. This study aimed to evaluate the feasibility and potential advantages of establishing a dedicated clinic for Ozurdex administration separate from the VR theatre setting. Method: Retrospectively, data of all Ozurdex injections administered between October 2021 to October 2022 was collected from operating theatre registers at JCUH. Data pertaining to the indications for Ozurdex; waiting times from referral date to date of injection; duration of theatre time consumed; and post-injection complications were collected from electronic notes. The resources needed to establish a dedicated Ozurdex clinic were evaluated. Over a six-month period from October 2023 to March 2024, we gathered data on utilization of theatre 28. Results: A total of 135 Ozurdex injections were administered. Among the indications, uveitis represented 47.3% of cases, DMO with 23.6% and RVO with 22.9%. Remaining cases lacked sufficient data. Each Ozurdex injection procedure consumed 15 minutes in the VR theatre list. Complications arose in 5% of injections, totaling 7 cases. These included glaucoma, ocular hypertension, subconjunctival haemorrhage and implant migration. Waiting times averaged 6 weeks from date for referral to procedure date. We also found that, on an average theatre 28 was offered but remained unused for 4 days, totalling eight sessions in a month. Analysis: Establishing a sperate Ozurdex clinic would improve the quality of patient care in following ways: 1.Decrease injection waiting times (currently averaging 6 weeks), leading to better visual outcomes. 2.Free up approximately three hours of theatre time in Vitreo-Retina theatres each month, allowing for 3-4 additional surgeries. Reduce waiting times for critical retinal surgeries and enhance visual outcomes. 3.Provide additional training opportunities for trainees and retina fellows, improving their skills. 4.Optimize the use of empty theatre slots (theatre 28) currently experiencing underutilization of resources. Conclusion: These findings support the implementation of a separate clinic for administering Ozurdex injections at JCUH. It is evident that introducing a dedicated clinic will enhance operational efficiency, optimise resource utilsation, and improve overall quality of care for patients undergoing this treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=opthalmology" title="opthalmology">opthalmology</a>, <a href="https://publications.waset.org/abstracts/search?q=ozurdex" title=" ozurdex"> ozurdex</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=complication" title=" complication"> complication</a> </p> <a href="https://publications.waset.org/abstracts/191111/qip-introducing-a-dedicated-ozurdex-clinic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3778</span> Repair Workshop Queue System Modification Using Priority Scheme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Okonkwo%20Ugochukwu">C. Okonkwo Ugochukwu</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Sinebe%20Jude"> E. Sinebe Jude</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Odoh%20Blessing"> N. Odoh Blessing</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Okafor%20Christian"> E. Okafor Christian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a modification on repair workshop queuing system using multi priority scheme was carried out. Chi square goodness of fit test was used to determine the random distribution of the inter arrival time and service time of crankshafts that come for maintenance in the workshop. The chi square values obtained for all the prioritized classes show that the distribution conforms to Poisson distribution. The mean waiting time in queue results of non-preemptive priority for 1st, 2nd and 3rd classes show 0.066, 0.09, and 0.224 day respectively, while preemptive priority show 0.007, 0.036 and 0.258 day. However, when non priority is used, which obviously has no class distinction it amounts to 0.17 days. From the results, one can observe that the preemptive priority system provides a very dramatic improvement over the non preemptive priority as it concerns arrivals that are of higher priority. However, the improvement has a detrimental effect on the low priority class. The trend of the results is similar to the mean waiting time in the system as a result of addition of the actual service time. Even though the mean waiting time for the queue and that of the system for no priority takes the least time when compared with the least priority, urgent and semi-urgent jobs will terribly suffer which will most likely result in reneging or balking of many urgent jobs. Hence, the adoption of priority scheme in this type of scenario will result in huge profit to the Company and more customer satisfaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=queue" title="queue">queue</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20class" title=" priority class"> priority class</a>, <a href="https://publications.waset.org/abstracts/search?q=preemptive" title=" preemptive"> preemptive</a>, <a href="https://publications.waset.org/abstracts/search?q=non-preemptive" title=" non-preemptive"> non-preemptive</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20waiting%20time" title=" mean waiting time"> mean waiting time</a> </p> <a href="https://publications.waset.org/abstracts/69985/repair-workshop-queue-system-modification-using-priority-scheme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3777</span> Applying Lean Six Sigma in an Emergency Department, of a Private Hospital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Al-Lumai">Sarah Al-Lumai</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Al-Attar"> Fatima Al-Attar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nour%20Jamal">Nour Jamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Badria%20Al-Dabbous"> Badria Al-Dabbous</a>, <a href="https://publications.waset.org/abstracts/search?q=Manal%20Abdulla">Manal Abdulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, many commonly used Industrial Engineering tools and techniques are being used in hospitals around the world for the goal of producing a more efficient and effective healthcare system. A common quality improvement methodology known as Lean Six-Sigma has been successful in manufacturing industries and recently in healthcare. The objective of our project is to use the Lean Six-Sigma methodology to reduce waiting time in the Emergency Department (ED), in a local private hospital. Furthermore, a comprehensive literature review was conducted to evaluate the success of Lean Six-Sigma in the ED. According to the study conducted by Ibn Sina Hospital, in Morocco, the most common problem that patients complain about is waiting time. To ensure patient satisfaction many hospitals such as North Shore University Hospital were able to reduce waiting time up to 37% by using Lean Six-Sigma. Other hospitals, such as John Hopkins’s medical center used Lean Six-Sigma successfully to enhance the overall patient flow that ultimately decreased waiting time. Furthermore, it was found that capacity constraints, such as staff shortages and lack of beds were one of the main reasons behind long waiting time. With the use of Lean Six-Sigma and bed management, hospitals like Memorial Hermann Southwest Hospital were able to reduce patient delays. Moreover, in order to successfully implement Lean Six-Sigma in our project, two common methodologies were considered, DMAIC and DMADV. After the assessment of both methodologies, it was found that DMAIC was a more suitable approach to our project because it is more concerned with improving an already existing process. With many of its successes, Lean Six-Sigma has its limitation especially in healthcare; but limitations can be minimized if properly approached. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20six%20sigma" title="lean six sigma">lean six sigma</a>, <a href="https://publications.waset.org/abstracts/search?q=DMAIC" title=" DMAIC"> DMAIC</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital" title=" hospital"> hospital</a>, <a href="https://publications.waset.org/abstracts/search?q=methodology" title=" methodology"> methodology</a> </p> <a href="https://publications.waset.org/abstracts/9391/applying-lean-six-sigma-in-an-emergency-department-of-a-private-hospital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3776</span> Mixed Model Sequencing in Painting Production Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Unchalee%20Inkampa">Unchalee Inkampa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuanjai%20Somboonwiwat"> Tuanjai Somboonwiwat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Painting process of automobiles and automobile parts, which is a continuous process based on EDP (Electrode position paint, EDP). Through EDP, all work pieces will be continuously sent to the painting process. Work process can be divided into 2 groups based on the running time: Painting Room 1 and Painting Room 2. This leads to continuous operation. The problem that arises is waiting for workloads onto Painting Room. The grading process EDP to Painting Room is a major problem. Therefore, this paper aim to develop production sequencing method by applying EDP to painting process. It also applied fixed rate launching for painting room and earliest due date (EDD) for EDP process and swap pairwise interchange for waiting time to a minimum of machine. The result found that the developed method could improve painting reduced waiting time, on time delivery, meeting customers wants and improved productivity of painting unit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sequencing" title="sequencing">sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20model%20lines" title=" mixed model lines"> mixed model lines</a>, <a href="https://publications.waset.org/abstracts/search?q=painting%20process" title=" painting process"> painting process</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode%20position%20paint" title=" electrode position paint"> electrode position paint</a> </p> <a href="https://publications.waset.org/abstracts/34291/mixed-model-sequencing-in-painting-production-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3775</span> Rooted Challenges: Palestinian Refugees’ Right to Work in Lebanon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majd%20Owda">Majd Owda</a>, <a href="https://publications.waset.org/abstracts/search?q=Raed%20Abubadawia"> Raed Abubadawia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seventy-four years have passed, and the Palestinian refugees are still waiting to exercise their right of return, which was approved by the international community through dozens of international resolutions. Despite the wait, Palestinian refugees continue to suffer in many host countries. In these waiting stations, they are still deprived of many basic rights. Perhaps Lebanon is one of the most extreme waiting stations in depriving Palestinian refugees of these rights, especially the right to work. This paper attempts to identify the various Lebanese partisan and sectarian points of view that stand in the way of granting Palestinian refugees their basic rights, foremost of which is the right to work, in addition to the recent administrative attempts of the Lebanese government (2021) to grant them their basic rights. And the legal and political obstacles faced by these attempts and which have eliminated them since their launch. This paper highlights the continued need of Palestinian refugees in Lebanon for various social, political and international moves to grant them their basic rights in order to preserve human dignity, which cannot be resolved without these rights. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Palestinian%20refugees" title="Palestinian refugees">Palestinian refugees</a>, <a href="https://publications.waset.org/abstracts/search?q=Lebanon" title=" Lebanon"> Lebanon</a>, <a href="https://publications.waset.org/abstracts/search?q=labor%20law" title=" labor law"> labor law</a>, <a href="https://publications.waset.org/abstracts/search?q=right%20to%20work." title=" right to work."> right to work.</a> </p> <a href="https://publications.waset.org/abstracts/161589/rooted-challenges-palestinian-refugees-right-to-work-in-lebanon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3774</span> Challenges for a WPT 4 Waiting Lane Concept - Laboratory and Practical Experience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julia%20Langen">Julia Langen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article describes the challenges of a wireless charging system for a cab waiting lane in a public space and presents a concept for solving them. In this concept, multiple cabs can be charged simultaneously and during stopping and rolling. Particular technical challenges are a coil topology that meets the EMF requirements and an intelligent control concept that allows the individual coil segments to be switched on and off. The charging concept explained here is currently being implemented as a pilot project, so that initial results on the operation can be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20lane" title="charge lane">charge lane</a>, <a href="https://publications.waset.org/abstracts/search?q=inductive%20charging%20solution" title=" inductive charging solution"> inductive charging solution</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20city" title=" smart city"> smart city</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20power%20transfer" title=" wireless power transfer"> wireless power transfer</a> </p> <a href="https://publications.waset.org/abstracts/142962/challenges-for-a-wpt-4-waiting-lane-concept-laboratory-and-practical-experience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3773</span> Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ahnaf%20Zahin">Muhammad Ahnaf Zahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaw%20Adu-Gyamfi"> Yaw Adu-Gyamfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gated%20recurrent%20unit" title="gated recurrent unit">gated recurrent unit</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20absolute%20percentage%20error" title=" mean absolute percentage error"> mean absolute percentage error</a>, <a href="https://publications.waset.org/abstracts/search?q=single-step%20forecasting" title=" single-step forecasting"> single-step forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20time%20prediction." title=" travel time prediction."> travel time prediction.</a> </p> <a href="https://publications.waset.org/abstracts/162612/deep-learning-framework-for-predicting-bus-travel-times-with-multiple-bus-routes-a-single-step-multi-station-forecasting-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3772</span> Imposing Speed Constraints on Arrival Flights: Case Study for Changi Airport </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Aneeka">S. Aneeka</a>, <a href="https://publications.waset.org/abstracts/search?q=S.M.%20Phyoe"> S.M. Phyoe</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Guo"> R. Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.W.%20Zhong"> Z.W. Zhong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arrival flights tend to spend long waiting times at holding stacks if the arrival airport is congested. However, the waiting time spent in the air in the vicinity of the arrival airport may be reduced if the delays are distributed to the cruising phase of the arrival flights by means of speed control. Here, a case study was conducted for the flights arriving at Changi Airport. The flights that were assigned holdings were simulated to fly at a reduced speed during the cruising phase. As the study involves a single airport and is limited to imposing speed constraints to arrivals within 200 NM from its location, the simulation setup in this study could be considered as an application of the Extended Arrival Management (E-AMAN) technique, which is proven to result in considerable fuel savings and more efficient management of delays. The objective of this experiment was to quantify the benefits of imposing cruise speed constraints to arrivals at Changi Airport and to assess the effects on controllers&rsquo; workload. The simulation results indicated considerable fuel savings, reduced aircraft emissions and reduced controller workload. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20emissions" title="aircraft emissions">aircraft emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20traffic%20flow%20management" title=" air traffic flow management"> air traffic flow management</a>, <a href="https://publications.waset.org/abstracts/search?q=controller%20workload" title=" controller workload"> controller workload</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a> </p> <a href="https://publications.waset.org/abstracts/85088/imposing-speed-constraints-on-arrival-flights-case-study-for-changi-airport" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3771</span> The Effects of the Introduction of a One-day Waiting Period on Absences for Ordinary Illness of Public Employees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ali%20Ben%20Halima">Mohamed Ali Ben Halima</a>, <a href="https://publications.waset.org/abstracts/search?q=Malik%20Koubi"> Malik Koubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Lanfranchi"> Joseph Lanfranchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yohan%20Wloczysiak"> Yohan Wloczysiak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article assesses the consequences on the frequency and duration of ordinary sick leave of the January 2012 and 2018 reforms modifying the scope of sick leave reimbursement in the French civil service. These reforms introduce a one-day waiting period which removes the compensation for the first day of ordinary sick leave. In order to evaluate these reforms, we use an administrative database from the National Pension Fund for local public employees (FPT). The first important result of our data analysis is that the one-day waiting period was not introduced at the same time in the French Local Public Service establishments, or even never in some. This peculiarity allows for an identification strategy using a difference-in-differences method based on the definition at each date of groups of employees treated and not treated by the reform, since establishments that apply the one-day waiting period coexist with establishments that do not apply it. Two types of estimators are used for this evaluation: individual and time fixed effects estimators and DIDM estimators which correct for the biases of the Two Way Fixed Effects one. The results confirm that the change in the sick pay system decreases the probability of having at least one ordinary sick leave as well as the number and duration of these episodes. On the other hand, the estimates show that longer leave episodes are not less affected than shorter ones. Finally, the validity tests of the estimators support the results obtained for the second period of 2018-2019, but suggest estimation biases for the period 2012-2013. The extent to which the endogeneity of the choices of implementation of the reform at the local level impact these estimates needs to be further tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sick%20leave" title="sick leave">sick leave</a>, <a href="https://publications.waset.org/abstracts/search?q=one-day%20waiting%20period" title=" one-day waiting period"> one-day waiting period</a>, <a href="https://publications.waset.org/abstracts/search?q=territorial%20civil%20service" title=" territorial civil service"> territorial civil service</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20policy%20evaluation" title=" public policy evaluation"> public policy evaluation</a> </p> <a href="https://publications.waset.org/abstracts/165531/the-effects-of-the-introduction-of-a-one-day-waiting-period-on-absences-for-ordinary-illness-of-public-employees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3770</span> On Flexible Preferences for Standard Taxis, Electric Taxis, and Peer-to-Peer Ridesharing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Daziano">Ricardo Daziano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the analysis and planning of the mobility ecosystem, preferences for ride-hailing over incumbent street-hailing services need better understanding. In this paper, a seminonparametric discrete choice model that allows for flexible preference heterogeneity is fitted with data from a discrete choice experiment among adult commuters in Montreal, Canada (N=760). Participants chose among Uber, Teo (a local electric ride-hailing service that was in operation when data was collected in 2018), and a standard taxi when presented with information about cost, time (on-trip, waiting, walking), powertrain of the car (gasoline/hybrid) for Uber and taxi, and whether the available electric Teo was a Tesla (which was one of the actual features of the Teo fleet). The fitted flexible model offers several behavioral insights. Waiting time for ride-hailing services is associated with a statistically significant but low marginal disutility. For other time components, including on-ride, and street-hailing waiting and walking the estimates of the value of time show an interesting pattern: whereas in a conditional logit on-ride time reductions are valued higher, in the flexible LML specification means of the value of time follow the expected pattern of waiting and walking creating a higher disutility. At the same time, the LML estimates show the presence of important, multimodal unobserved preference heterogeneity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20choice" title="discrete choice">discrete choice</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20taxis" title=" electric taxis"> electric taxis</a>, <a href="https://publications.waset.org/abstracts/search?q=ridehailing" title=" ridehailing"> ridehailing</a>, <a href="https://publications.waset.org/abstracts/search?q=semiparametrics" title=" semiparametrics"> semiparametrics</a> </p> <a href="https://publications.waset.org/abstracts/124046/on-flexible-preferences-for-standard-taxis-electric-taxis-and-peer-to-peer-ridesharing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waiting%20times&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waiting%20times&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waiting%20times&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waiting%20times&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waiting%20times&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waiting%20times&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waiting%20times&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waiting%20times&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waiting%20times&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waiting%20times&amp;page=126">126</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waiting%20times&amp;page=127">127</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waiting%20times&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10