CINXE.COM
Search results for: transient natural convection
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: transient natural convection</title> <meta name="description" content="Search results for: transient natural convection"> <meta name="keywords" content="transient natural convection"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="transient natural convection" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="transient natural convection"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6578</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: transient natural convection</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6578</span> Analyses of Natural Convection Heat Transfer from a Heated Cylinder Mounted in Vertical Duct</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Bhowmik">H. Bhowmik</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Faisal"> A. Faisal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al%20Yaarubi"> Ahmed Al Yaarubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Al%20Alawi"> Nabil Al Alawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experiments are conducted to analyze the steady-state and the power-on transient natural convection heat transfer from a horizontal cylinder mounted in a vertical up flow circular duct. The heat flux ranges from 177 W/m<sup>2</sup> to 2426 W/m<sup>2</sup> and the Rayleigh number ranges from 1×10<sup>4</sup> to 4.35×10<sup>4</sup>. For natural air flow and constant heat flux condition, the effects of heat transfer around the cylinder under steady-state condition are investigated. The steady-state results compare favorably with that of the available data. The effects of transient heat transfer data on different angular position of the thermocouple (0<sup>o</sup>, 90<sup>o</sup>, 180<sup>o</sup>) are also reported. It is observed that the transient heat transfer around the cylinder is strongly affected by the position of thermocouples. In the transient region, the rate of heat transfer obtained at 90<sup>o</sup> and 180<sup>o</sup> are higher than that of stagnation point (0<sup>o</sup>). Finally, the dependence of the average Nusselt number on Rayleigh number for steady and transient natural convection heat transfer are analyzed, and a correlation equation is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fourier%20number" title="Fourier number">Fourier number</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20number" title=" Rayleigh number"> Rayleigh number</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state" title=" steady state"> steady state</a>, <a href="https://publications.waset.org/abstracts/search?q=transient" title=" transient"> transient</a> </p> <a href="https://publications.waset.org/abstracts/84493/analyses-of-natural-convection-heat-transfer-from-a-heated-cylinder-mounted-in-vertical-duct" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6577</span> Numerical Solution of Transient Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djalal%20Hamed">Djalal Hamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to perform, by mean of the finite volume method, a numerical solution of the transient natural convection in a narrow rectangular channel between two vertical parallel Material Testing Reactor (MTR)-type fuel plates, imposed under a heat flux with a cosine shape to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not reach a specific safety limits (90 °C). For this purpose, a computer program is developed to determine the principal parameters related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor core power. Throughout the obtained results, we noticed that the core power should not reach 400 kW, to ensure a safe passive residual heat removing from the nuclear core by the upward natural convection cooling mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buoyancy%20force" title="buoyancy force">buoyancy force</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20force" title=" friction force"> friction force</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20natural%20convection" title=" transient natural convection"> transient natural convection</a> </p> <a href="https://publications.waset.org/abstracts/86190/numerical-solution-of-transient-natural-convection-in-vertical-heated-rectangular-channel-between-two-vertical-parallel-mtr-type-fuel-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6576</span> Unsteady and Steady State in Natural Convection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syukri%20Himran">Syukri Himran</a>, <a href="https://publications.waset.org/abstracts/search?q=Erwin%20Eka%20Putra"> Erwin Eka Putra</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanang%20Roni"> Nanang Roni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explains the natural convection of viscous fluid flowing on semi-infinite vertical plate. A set of the governing equations describing the continuity, momentum and energy, have been reduced to dimensionless forms by introducing the references variables. To solve the problems, the equations are formulated by explicit finite-difference in time dependent form and computations are performed by Fortran program. The results describe velocity, temperature profiles both in transient and steady state conditions. An approximate value of heat transfer coefficient and the effects of Pr on convection flow are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title="natural convection">natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20plate" title=" vertical plate"> vertical plate</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20and%20temperature%20profiles" title=" velocity and temperature profiles"> velocity and temperature profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20and%20unsteady" title=" steady and unsteady"> steady and unsteady</a> </p> <a href="https://publications.waset.org/abstracts/35967/unsteady-and-steady-state-in-natural-convection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6575</span> Transient Free Laminar Convection in the Vicinity of a Thermal Conductive Vertical Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Bykalyuk">Anna Bykalyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9ric%20Kuznik"> Frédéric Kuznik</a>, <a href="https://publications.waset.org/abstracts/search?q=K%C3%A9vyn%20Johannes"> Kévyn Johannes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the influence of a vertical plate’s thermal capacity is numerically investigated in order to evaluate the evolution of the thermal boundary layer structure, as well as the convective heat transfer coefficient and the velocity and temperature profiles. Whereas the heat flux of the heated vertical plate is evaluated under time depending boundary conditions. The main important feature of this problem is the unsteadiness of the physical phenomena. A 2D CFD model is developed with the Ansys Fluent 14.0 environment and is validated using unsteady data obtained for plasterboard studied under a dynamic temperature evolution. All the phenomena produced in the vicinity of the thermal conductive vertical plate (plasterboard) are analyzed and discussed. This work is the first stage of a holistic research on transient free convection that aims, in the future, to study the natural convection in the vicinity of a vertical plate containing Phase Change Materials (PCM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20modeling" title="CFD modeling">CFD modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductive%20plate" title=" thermal conductive plate"> thermal conductive plate</a>, <a href="https://publications.waset.org/abstracts/search?q=time-depending%20boundary%20conditions" title=" time-depending boundary conditions"> time-depending boundary conditions</a> </p> <a href="https://publications.waset.org/abstracts/1371/transient-free-laminar-convection-in-the-vicinity-of-a-thermal-conductive-vertical-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6574</span> Numerical Analysis of the Effects of Transpiration on Transient/Steady Natural Convection Flow of Reactive Viscous Fluid in a Vertical Channel Formed by Two Vertical Porous Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20K.%20Samaila">Ahmad K. Samaila</a>, <a href="https://publications.waset.org/abstracts/search?q=Basant%20K.%20Jha"> Basant K. Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is devoted to investigate the effect of transpiration on transient as well as steady-state natural convection flow of a reactive viscous fluid in a vertical channel formed by two infinite vertical parallel porous plates. The Boussinesq assumption is applied and the nonlinear governing equations of energy and momentum are developed. The problem is solved numerically using implicit finite difference method and analytically for steady-state case using perturbation method. Solutions are presented in graphical form for fluid temperature, velocity, and skin-friction and wall heat transfer rate for various parametric values. It is found that velocity, temperature, rate of heat transfer as well as skin-friction are strongly affected by mass leakage through the porous plates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transpiration" title="transpiration">transpiration</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20viscous%20fluid" title=" reactive viscous fluid"> reactive viscous fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20plates" title=" porous plates"> porous plates</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=suction%2Finjection" title=" suction/injection"> suction/injection</a> </p> <a href="https://publications.waset.org/abstracts/4015/numerical-analysis-of-the-effects-of-transpiration-on-transientsteady-natural-convection-flow-of-reactive-viscous-fluid-in-a-vertical-channel-formed-by-two-vertical-porous-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6573</span> Study of Natural Convection in Storage Tank of LNG</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hariti%20Rafika">Hariti Rafika</a>, <a href="https://publications.waset.org/abstracts/search?q=Fekih%20Malika"> Fekih Malika</a>, <a href="https://publications.waset.org/abstracts/search?q=Saighi%20Mohamed"> Saighi Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer by natural convection in storage tanks for LNG is extremely related to heat gains through the walls with thermal insulation is not perfectly efficient. In this paper, we present the study of natural convection in the unsteady regime for natural gas in aware phase using the fluent software. The gas is just on the surface of the liquid phase. The CFD numerical method used to solve the system of equations is based on the finite volume method. This numerical simulation allowed us to determine the temperature profiles, the stream function, the velocity vectors and the variation of the heat flux density in the vapor phase in the LNG storage tank volume. The results obtained for a general configuration, by numerical simulation were compared to those found in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20gains" title=" heat gains"> heat gains</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20tank" title=" storage tank"> storage tank</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefied%20natural%20gas" title=" liquefied natural gas"> liquefied natural gas</a> </p> <a href="https://publications.waset.org/abstracts/3055/study-of-natural-convection-in-storage-tank-of-lng" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6572</span> Combined Surface Tension and Natural Convection of Nanofluids in a Square Open Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habibis%20Saleh">Habibis Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishak%20Hashim"> Ishak Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Combined surface tension and natural convection heat transfer in an open cavity is studied numerically in this article. The cavity is filled with water-{Cu} nanofluids. The left wall is kept at low temperature, the right wall at high temperature and the bottom and top walls are adiabatic. The top free surface is assumed to be flat and non--deformable. Finite difference method is applied to solve the dimensionless governing equations. It is found that the insignificant effect of adding the nanoparticles were obtained about $Ma_{bf}=250$. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title="natural convection">natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=marangoni%20convection" title=" marangoni convection"> marangoni convection</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluids" title=" nanofluids"> nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20open%20cavity" title=" square open cavity"> square open cavity</a> </p> <a href="https://publications.waset.org/abstracts/16711/combined-surface-tension-and-natural-convection-of-nanofluids-in-a-square-open-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6571</span> Study of Heat Transfer by Natural Convection in Overhead Storage Tank of LNG</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hariti%20Rafika">Hariti Rafika</a>, <a href="https://publications.waset.org/abstracts/search?q=Fekih%20Malika"> Fekih Malika</a>, <a href="https://publications.waset.org/abstracts/search?q=Saighi%20Mohamed"> Saighi Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the period storage of liquefied natural gas, stability is necessarily affected by natural convection along the walls of the tank with thermal insulation is not perfectly efficient. In this paper, we present the numerical simulation of heat transfert by natural convection double diffusion,in unsteady laminar regime in a storage tank. The storage tank contains a liquefied natural gas (LNG) in its gaseous phase. Fluent, a commercial CFD package, based on the numerical finite volume method, is used to simulate the flow. The gas is just on the surface of the liquid phase. This numerical simulation allowed us to determine the temperature profiles, the stream function, the velocity vectors and the variation of the heat flux density in the vapor phase in the LNG storage tank volume. The results obtained for a general configuration, by numerical simulation were compared to those found in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20gains" title=" heat gains"> heat gains</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20tank" title=" storage tank"> storage tank</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefied%20natural%20gas" title=" liquefied natural gas"> liquefied natural gas</a> </p> <a href="https://publications.waset.org/abstracts/27792/study-of-heat-transfer-by-natural-convection-in-overhead-storage-tank-of-lng" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6570</span> Numerical Modeling of Turbulent Natural Convection in a Square Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Sedighi">Mohammadreza Sedighi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Said%20Saidi"> Mohammad Said Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesamoddin%20Salarian"> Hesamoddin Salarian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical study has been performed to investigate the effect of using different turbulent models on natural convection flow field and temperature distributions in partially heated square cavity compare to benchmark. The temperature of the right vertical wall is lower than that of heater while other walls are insulated. The commercial CFD codes are used to model. Standard k-w model provided good agreement with the experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buoyancy" title="Buoyancy">Buoyancy</a>, <a href="https://publications.waset.org/abstracts/search?q=Cavity" title=" Cavity"> Cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=Heat%20Transfer" title=" Heat Transfer"> Heat Transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=Natural%20Convection" title=" Natural Convection"> Natural Convection</a>, <a href="https://publications.waset.org/abstracts/search?q=Turbulence" title=" Turbulence "> Turbulence </a> </p> <a href="https://publications.waset.org/abstracts/22257/numerical-modeling-of-turbulent-natural-convection-in-a-square-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6569</span> Numerical Analysis of Multiplicity and Transition Phenomena in Natural Convection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Kafil">Hadi Kafil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ecder"> Ali Ecder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer by natural convection in two-dimensional and three-dimensional axisymmetric enclosure fitted with partially heated vertical walls is investigated numerically. The range of Rayleigh number is varied from 10³ until convective flow becomes unstable. This research focuses on multiplicity and transition phenomena in natural convection and is based on a parametric analysis to study the onset of bifurcations. It is found that, even at low Rayleigh numbers, the flow undergoes a series of turning-point bifurcations which increase the rate of natural convention. On the other hand, by partially heating or cooling the walls, more effective results can be achieved for both heating and cooling applications, such as cooling of electronic devices and heating processes in solidification and crystal growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title="natural convection">natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20heated" title=" partial heated"> partial heated</a>, <a href="https://publications.waset.org/abstracts/search?q=onset%20of%20bifurcation" title=" onset of bifurcation"> onset of bifurcation</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20number" title=" Rayleigh number"> Rayleigh number</a> </p> <a href="https://publications.waset.org/abstracts/11789/numerical-analysis-of-multiplicity-and-transition-phenomena-in-natural-convection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6568</span> Transient/Steady Natural Convective Flow of Reactive Viscous Fluid in Vertical Porous Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20K.%20Samaila">Ahmad K. Samaila</a>, <a href="https://publications.waset.org/abstracts/search?q=Basant%20K.%20Jha"> Basant K. Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the effects of suction/injection of transient/steady natural convection flow of reactive viscous fluid in a vertical porous pipe. The mathematical model capturing the time dependent flow of viscous reactive fluid is solved using implicit finite difference method while the corresponding steady state model is solved using regular perturbation technique. Results of analytical and numerical solutions are reported for various parametric conditions to illustrate special features of the solutions. The coefficient of skin friction and rate of heat transfer are obtained and illustrated graphically. The numerical solution is shown to be in excellent agreement with the closed form analytical solution. It is interesting to note that time required to reach steady state is higher in case of injection in comparison to suction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20pipe" title="porous pipe">porous pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20viscous%20fluid" title=" reactive viscous fluid"> reactive viscous fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20natural-convective%20flow" title=" transient natural-convective flow"> transient natural-convective flow</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title=" analytical solution"> analytical solution</a> </p> <a href="https://publications.waset.org/abstracts/14191/transientsteady-natural-convective-flow-of-reactive-viscous-fluid-in-vertical-porous-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6567</span> Coupling Heat Transfer by Natural Convection and Thermal Radiation in a Storage Tank of LNG</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Hariti">R. Hariti</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saighi"> M. Saighi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Saidani-Scott"> H. Saidani-Scott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical simulation of natural convection double diffusion, coupled with thermal radiation in unsteady laminar regime in a storage tank is carried out. The storage tank contains a liquefied natural gas (LNG) in its gaseous phase. Fluent, a commercial CFD package, based on the numerical finite volume method, is used to simulate the flow. The radiative transfer equation is solved using the discrete coordinate method. This numerical simulation is used to determine the temperature profiles, stream function, velocity vectors and variation of the heat flux density for unsteady laminar natural convection. Furthermore, the influence of thermal radiation on the heat transfer has been investigated and the results obtained were compared to those found in the literature. Good agreement between the results obtained by the numerical method and those taken on site for the temperature values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tank" title="tank">tank</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefied%20natural%20gas" title=" liquefied natural gas"> liquefied natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20radiation" title=" thermal radiation"> thermal radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/15574/coupling-heat-transfer-by-natural-convection-and-thermal-radiation-in-a-storage-tank-of-lng" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6566</span> Effects of Roughness Elements on Heat Transfer During Natural Convection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yousaf">M. Yousaf</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Usman"> S. Usman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study focused on the investigation of the effects of roughness elements on heat transfer during natural convection in a rectangular cavity using a numerical technique. Roughness elements were introduced on the bottom hot wall with a normalized amplitude (A*/H) of 0.1. Thermal and hydrodynamic behavior was studied using a computational method based on Lattice Boltzmann method (LBM). Numerical studies were performed for a laminar natural convection in the range of Rayleigh number (Ra) from 103 to 106 for a rectangular cavity of aspect ratio (L/H) 2 with a fluid of Prandtl number (Pr) 1.0. The presence of the sinusoidal roughness elements caused a minimum to the maximum decrease in the heat transfer as 7% to 17% respectively compared to the smooth enclosure. The results are presented for mean Nusselt number (Nu), isotherms, and streamlines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title="natural convection">natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20number" title=" Rayleigh number"> Rayleigh number</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=Lattice%20Boltzmann%20method" title=" Lattice Boltzmann method "> Lattice Boltzmann method </a> </p> <a href="https://publications.waset.org/abstracts/34093/effects-of-roughness-elements-on-heat-transfer-during-natural-convection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6565</span> Double Diffusive Natural Convection in Horizontal Elliptical Annulus Containing a Fluid-Saturated Porous Medium: Effects of Lewis Number</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hichem%20Boulechfar">Hichem Boulechfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfoud%20Djezzar"> Mahfoud Djezzar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two-dimensional double diffusive natural convection in an annular elliptical space filled with fluid-saturated porous medium, is analyzed by solving numerically the mass balance, momentum, energy and concentration equations, using Darcy's law and Boussinesq approximation. Both walls delimiting the annular space are maintained at two uniform different temperatures and concentrations. The external parameter considered is the Lewis number. For the present work, the heat and mass transfer for natural convection is studied for the case of aiding buoyancies, where the flow is generated in a cooperative mode by both temperature and solutal gradients. The local Nusselt and Sherwood numbers are presented in term of the external parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20diffusive" title="double diffusive">double diffusive</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptical%20annulus" title=" elliptical annulus"> elliptical annulus</a> </p> <a href="https://publications.waset.org/abstracts/38246/double-diffusive-natural-convection-in-horizontal-elliptical-annulus-containing-a-fluid-saturated-porous-medium-effects-of-lewis-number" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6564</span> Thermomagnetic Convection of a Ferrofluid in a Non-Uniform Magnetic Field Induced a Current Carrying Wire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Vatani">Ashkan Vatani</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Woodfield"> Peter Woodfield</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam-Trung%20Nguyen"> Nam-Trung Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Dzung%20Dao"> Dzung Dao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermomagnetic convection of a ferrofluid flow induced by the non-uniform magnetic field around a current-carrying wire was theoretically analyzed and experimentally tested. To show this phenomenon, the temperature rise of a hot wire, immersed in DIW and Ferrofluid, as a result of joule heating has been measured using a transient hot-wire technique. When current is applied to the wire, a temperature gradient is imposed on the magnetic fluid resulting in non-uniform magnetic susceptibility of the ferrofluid that results in a non-uniform magnetic body force which makes the ferrofluid flow as a bulk suspension. For the case of the wire immersed in DIW, free convection is the only means of cooling, while for the case of ferrofluid a combination of both free convection and thermomagnetic convection is expected to enhance the heat transfer from the wire beyond that of DIW. Experimental results at different temperatures and for a range of constant currents applied to the wire show that thermomagnetic convection becomes effective for the currents higher than 1.5A at all temperatures. It is observed that the onset of thermomagnetic convection is directly proportional to the current applied to the wire and that the thermomagnetic convection happens much faster than the free convection. Calculations show that a 35% enhancement in heat transfer can be expected for the ferrofluid compared to DIW, for a 3A current applied to the wire. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling" title="cooling">cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrofluid" title=" ferrofluid"> ferrofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection" title=" thermomagnetic convection"> thermomagnetic convection</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/62634/thermomagnetic-convection-of-a-ferrofluid-in-a-non-uniform-magnetic-field-induced-a-current-carrying-wire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6563</span> Free Convection in a Darcy Thermally Stratified Porous Medium That Embeds a Vertical Wall of Constant Heat Flux and Concentration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Neagu">Maria Neagu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the heat and mass driven natural convection succession in a Darcy thermally stratified porous medium that embeds a vertical semi-infinite impermeable wall of constant heat flux and concentration. The scale analysis of the system determines the two possible maps of the heat and mass driven natural convection sequence along the wall as a function of the process parameters. These results are verified using the finite differences method applied to the conservation equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title="finite difference method">finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=scale%20analysis" title=" scale analysis"> scale analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stratification" title=" thermal stratification"> thermal stratification</a> </p> <a href="https://publications.waset.org/abstracts/41763/free-convection-in-a-darcy-thermally-stratified-porous-medium-that-embeds-a-vertical-wall-of-constant-heat-flux-and-concentration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6562</span> Three-Dimensional Unsteady Natural Convection and Entropy Generation in an Inclined Cubical Trapezoidal Cavity Subjected to Uniformly Heated Bottom Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farshid%20Fathinia">Farshid Fathinia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical computation of unsteady laminar three-dimensional natural convection and entropy generation in an inclined cubical trapezoidal air-filled cavity is performed for the first time in this work. The vertical right and left sidewalls of the cavity are maintained at constant cold temperatures. The lower wall is subjected to a constant hot temperature, while the upper one is considered insulated. Computations are performed for Rayleigh numbers varied as 103 ≤ Ra ≤ 105, while the trapezoidal cavity inclination angle is varied as 0° ≤ ϕ ≤ 180°. Prandtl number is considered constant at Pr = 0.71. The second law of thermodynamics is applied to obtain thermodynamic losses inside the cavity due to both heat transfer and fluid friction irreversibilities. The variation of local and average Nusselt numbers are presented and discussed.While, streamlines, isotherms and entropy contours are presented in both two and three-dimensional pattern. The results show that when the Rayleigh number increases, the flow patterns are changed especially in three-dimensional results and the flow circulation increases. Also, the inclination angle effect on the total entropy generation becomes insignificant when the Rayleigh number is low.Moreover, when the Rayleigh number increases the average Nusselt number increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transient%20natural%20convection" title="transient natural convection">transient natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20cavity" title=" trapezoidal cavity"> trapezoidal cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20flow" title=" three-dimensional flow"> three-dimensional flow</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy%20generation" title=" entropy generation"> entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20law" title=" second law "> second law </a> </p> <a href="https://publications.waset.org/abstracts/24831/three-dimensional-unsteady-natural-convection-and-entropy-generation-in-an-inclined-cubical-trapezoidal-cavity-subjected-to-uniformly-heated-bottom-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6561</span> Steady State Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djalal%20Hamed">Djalal Hamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to perform an analytic solution of steady state natural convection in a narrow rectangular channel between two vertical parallel MTR-type fuel plates, imposed under a cosine shape heat flux to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not be reach the specific safety limits (90 °C). For this purpose, a simple computer program is developed to determine the principal parameter related to the nuclear core safety such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor power. Our results are validated throughout a comparison against the results of another published work, which is considered like a reference of this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buoyancy%20force" title="buoyancy force">buoyancy force</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20force" title=" friction force"> friction force</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20hydraulic%20analysis" title=" thermal hydraulic analysis"> thermal hydraulic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20heated%20rectangular%20channel" title=" vertical heated rectangular channel"> vertical heated rectangular channel</a> </p> <a href="https://publications.waset.org/abstracts/84661/steady-state-natural-convection-in-vertical-heated-rectangular-channel-between-two-vertical-parallel-mtr-type-fuel-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6560</span> Natural Convection of a Nanofluid in a Conical Container</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Mahfoud">Brahim Mahfoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Bendjaghlouli"> Ali Bendjaghlouli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural convection is simulated in a truncated cone filled with nanofluid. Inclined and top walls have constant temperature where the heat source is located on the bottom wall of the conical container which is thermally insulated. A finite volume approach is used to solve the governing equations using the SIMPLE algorithm for different parameters such as Rayleigh number, inclination angle of inclined walls of the enclosure and heat source length. The results showed an enhancement in cooling system by using a nanofluid, when conduction regime is assisted. The inclination angle of inclined sidewall and heat source length affect the heat transfer rate and the maximum temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20source" title="heat source">heat source</a>, <a href="https://publications.waset.org/abstracts/search?q=truncated%20cone" title=" truncated cone"> truncated cone</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a> </p> <a href="https://publications.waset.org/abstracts/49356/natural-convection-of-a-nanofluid-in-a-conical-container" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6559</span> A Study of Learning Achievement for Heat Transfer by Using Experimental Sets of Convection with the Predict-Observe-Explain Teaching Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanlapa%20Boonsod">Wanlapa Boonsod</a>, <a href="https://publications.waset.org/abstracts/search?q=Nisachon%20Yangprasong"> Nisachon Yangprasong</a>, <a href="https://publications.waset.org/abstracts/search?q=Udomsak%20Kitthawee"> Udomsak Kitthawee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal physics education is a complicated and challenging topic to discuss in any classroom. As a result, most students tend to be uninterested in learning this topic. In the current study, a convection experiment set was devised to show how heat can be transferred by a convection system to a thermoelectric plate until a LED flashes. This research aimed to 1) create a natural convection experimental set, 2) study learning achievement on the convection experimental set with the predict-observe-explain (POE) technique, and 3) study satisfaction for the convection experimental set with the predict-observe-explain (POE) technique. The samples were chosen by purposive sampling and comprised 28 students in grade 11 at Patumkongka School in Bangkok, Thailand. The primary research instrument was the plan for predict-observe-explain (POE) technique on heat transfer using a convection experimental set. Heat transfer experimental set by convection. The instruments used to collect data included a heat transfer achievement model by convection, a Satisfaction Questionnaire after the learning activity, and the predict-observe-explain (POE) technique for heat transfer using a convection experimental set. The research format comprised a one-group pretest-posttest design. The data was analyzed by GeoGebra program. The statistics used in the research were mean, standard deviation and t-test for dependent samples. The results of the research showed that achievement on heat transfer using convection experimental set was composed of thermo-electrics on the top side attached to the heat sink and another side attached to a stainless plate. Electrical current was displayed by the flashing of a 5v LED. The entire set of thermo-electrics was set up on the top of the box and heated by an alcohol burner. The achievement of learning was measured with the predict-observe-explain (POE) technique, with the natural convection experimental set statistically higher than before learning at a 0.01 level. Satisfaction with POE for physics learning of heat transfer by using convection experimental set was at a high level (4.83 from 5.00). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convection" title="convection">convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=physics%20education" title=" physics education"> physics education</a>, <a href="https://publications.waset.org/abstracts/search?q=POE" title=" POE"> POE</a> </p> <a href="https://publications.waset.org/abstracts/93014/a-study-of-learning-achievement-for-heat-transfer-by-using-experimental-sets-of-convection-with-the-predict-observe-explain-teaching-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6558</span> Numerical Investigation of Natural Convection of Pine, Olive and Orange Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Tahavvor">Ali Reza Tahavvor</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Hosseini"> Saeed Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazli%20Jowkar"> Nazli Jowkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Behnam%20Amiri"> Behnam Amiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer of leaves is a crucial factor in optimal operation of metabolic functions in plants. In order to quantify this phenomenon in different leaves and investigate the influence of leaf shape on heat transfer, natural convection for pine, orange and olive leaves was simulated as representatives of different groups of leaf shapes. CFD techniques were used in this simulation with the purpose to calculate heat transfer of leaves in similar environmental conditions. The problem was simulated for steady state and three-dimensional conditions. From obtained results, it was concluded that heat fluxes of all three different leaves are almost identical, however, total rate of heat transfer have highest and lowest values for orange leaves and pine leaves, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamic" title="computational fluid dynamic">computational fluid dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20flux" title=" heat flux"> heat flux</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a> </p> <a href="https://publications.waset.org/abstracts/30133/numerical-investigation-of-natural-convection-of-pine-olive-and-orange-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6557</span> Entropy Generation Analyze Due to the Steady Natural Convection of Newtonian Fluid in a Square Enclosure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20T.%20Naas">T. T. Naas</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Lasbet"> Y. Lasbet</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Kezrane"> C. Kezrane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal control in many systems is widely accomplished applying mixed convection process due to its low cost, reliability and easy maintenance. Typical applications include the aircraft electronic equipment, rotating-disc heat exchangers, turbo machinery, and nuclear reactors, etc. Natural convection in an inclined square enclosure heated via wall heater has been studied numerically. Finite volume method is used for solving momentum and energy equations in the form of stream function–vorticity. The right and left walls are kept at a constant temperature, while the other parts are adiabatic. The range of the inclination angle covers a whole revolution. The method is validated for a vertical cavity. A general power law dependence of the Nusselt number with respect to the Rayleigh number with the coefficient and exponent as functions of the inclination angle is presented. For a fixed Rayleigh number, the inclination angle increases or decreases is found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20convection%20in%20enclosure" title="natural convection in enclosure">natural convection in enclosure</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20enclosure" title=" inclined enclosure"> inclined enclosure</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy%20generation%20analyze" title=" entropy generation analyze"> entropy generation analyze</a> </p> <a href="https://publications.waset.org/abstracts/25709/entropy-generation-analyze-due-to-the-steady-natural-convection-of-newtonian-fluid-in-a-square-enclosure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6556</span> Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Afshar">O. Afshar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=receiver%20tube" title="receiver tube">receiver tube</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20convection" title=" heat convection"> heat convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a> </p> <a href="https://publications.waset.org/abstracts/38149/numerical-investigation-of-hot-oil-velocity-effect-on-force-heat-convection-and-impact-of-wind-velocity-on-convection-heat-transfer-in-receiver-tube-of-parabolic-trough-collector-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6555</span> Induced Thermo-Osmotic Convection for Heat and Mass Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francisco%20J.%20Arias">Francisco J. Arias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Consideration is given to a mechanism of heat and mass transport in solutions similar than that of natural convection but with one important difference. Here the mechanism is not promoted by density differences in the fluid occurring due to temperature gradients (coefficient of thermal expansion) but rather by solubility differences due to the thermal dependence of the solubility (coefficient of thermal solubility). Utilizing a simplified physical model, it is shown that by the proper choice of the concentration of a given solution, convection might be induced by the alternating precipitation of the solute -when the solution becomes supersaturated, and its posterior recombination when changes in temperature occurs. The spontaneous change in the Gibbs free energy during the mixing is the driven force for the mechanism. The maximum extractable energy from this new type of thermal convection was derived. Experimental data from a closed-loop circuit was obtained demonstrating the feasibility for continuous separation and recombination of the solution. This type of heat and mass transport -which doesn’t depend on gravity, might potentially be interesting for heat and mass transport downwards (as in solar-roof collectors to inside homes), horizontal (e.g., microelectronic applications), and in microgravity (space technology). Also, because the coefficient of thermal solubility could be positive or negative, the investigated thermo-osmosis convection can be used either for heating or cooling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title="natural convection">natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20gradient" title=" thermal gradient"> thermal gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=solubility" title=" solubility"> solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=osmotic%20pressure" title=" osmotic pressure"> osmotic pressure</a> </p> <a href="https://publications.waset.org/abstracts/85685/induced-thermo-osmotic-convection-for-heat-and-mass-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6554</span> Numerical Study of Natural Convection in a Triangular Enclosure as an Attic for Different Geometries and Boundary Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Golchoobian">H. Golchoobian</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Saedodin"> S. Saedodin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Taheri"> M. H. Taheri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sarafraz"> A. Sarafraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, natural convection in an attic is numerically investigated. The geometry of the problem is considered to be a triangular enclosure. ANSYS Fluent software is used for modeling and numerical solution. This study is for steady state. Four right-angled triangles with height to base ratios of 2, 1, 0.5 and 0.25 are considered. The behavior of various parameters related to its performance, including temperature distribution and velocity vectors are evaluated, and graphs for the Nusselt number have been drawn. Also, in this study, the effect of geometric shape of enclosure with different height-to-base ratios has been evaluated for three types of boundary conditions of winter, summer day and one another state. It can be concluded that as the bottom side temperature and ratio of base to height of the enclosure increases, the convective effects become more prominent and circulation happened. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enclosure" title="enclosure">enclosure</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=triangular" title=" triangular"> triangular</a> </p> <a href="https://publications.waset.org/abstracts/113867/numerical-study-of-natural-convection-in-a-triangular-enclosure-as-an-attic-for-different-geometries-and-boundary-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6553</span> Numerical Study of Natural Convection Heat Transfer in a Two-Dimensional Vertical Conical PartiallyAnnular Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belkacem%20Ould%20Said">Belkacem Ould Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Nourddine%20Retiel"> Nourddine Retiel</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelilah%20Benazza"> Abdelilah Benazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Aichouni"> Mohamed Aichouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a numerical study of two-dimensional steady flow has been made of natural convection in a differentially heated vertical conical partially annular space. The heat transfer is assumed to take place by natural convection. The inner and outer surfaces of annulus are maintained at uniform wall temperature. The annulus is filled with air. The CFD FLUENT12.0 code is used to solve the governing equations of mass, momentum and energy using constant properties and the Boussinesq approximation for density variation. The streamlines and the isotherms of the fluid are presented for different annuli with different boundary conditions and Rayleigh numbers. Emphasis is placed on the influences of the height of the inner vertical cone on the flow and the temperature fields. In addition, the effects on the heat transfer are discussed for various values of physical parameters of the fluid and geometric parameters of the annulus. The heat transfer on the hot walls of the annulus is also calculated in order to make comparisons between the cylinder annulus for boundary conditions and several Rayleigh numbers. A good agreement of Nusselt number has been found between the present predictions and reference from the literature data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title="natural convection">natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=conical%20partially" title=" conical partially"> conical partially</a>, <a href="https://publications.waset.org/abstracts/search?q=annular%20space" title=" annular space"> annular space</a> </p> <a href="https://publications.waset.org/abstracts/1602/numerical-study-of-natural-convection-heat-transfer-in-a-two-dimensional-vertical-conical-partiallyannular-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6552</span> Natural Convection in Wavy-Wall Cavities Filled with Power-Law Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cha%E2%80%99o-Kuang%20Chen">Cha’o-Kuang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Chang%20Cho"> Ching-Chang Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the natural convection heat transfer performance in a complex-wavy-wall cavity filled with power-law fluid. In performing the simulations, the continuity, Cauchy momentum and energy equations are solved subject to the Boussinesq approximation using a finite volume method. The simulations focus specifically on the effects of the flow behavior index in the power-law model and the Rayleigh number on the flow streamlines, isothermal contours and mean Nusselt number within the cavity. The results show that pseudoplastic fluids have a better heat transfer performance than Newtonian or dilatant fluids. Moreover, it is shown that for Rayleigh numbers greater than Ra=103, the mean Nusselt number has a significantly increase as the flow behavior index is decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluid" title="non-Newtonian fluid">non-Newtonian fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=power-law%20fluid" title=" power-law fluid"> power-law fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity" title=" cavity"> cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=wavy%20wall" title=" wavy wall"> wavy wall</a> </p> <a href="https://publications.waset.org/abstracts/6789/natural-convection-in-wavy-wall-cavities-filled-with-power-law-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6551</span> Numerical Study of Natural Convection Heat Transfer Performance in an Inclined Cavity: Nanofluid and Random Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hicham%20Salhi">Hicham Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Si-Ameur"> Mohamed Si-Ameur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadjib%20Chafai"> Nadjib Chafai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural convection of a nanofluid consisting of water and nanoparticles (Ag or TiO2) in an inclined enclosure cavity, has been studied numerically, heated by a (random temperature, based on the random function). The governing equations are solved numerically using the finite-volume. Results are presented in the form of streamlines, isotherms, and average Nusselt number. In addition, a parametric study is carried out to examine explicitly the volume fraction effects of nanoparticles (Ψ= 0.1, 0.2), the Rayleigh number (Ra=103, 104, 105, 106),the inclination angle of the cavity( égale à 0°, 30°, 45°, 90°, 135°, 180°), types of temperature (constant ,random), types of (NF) (Ag andTiO2). The results reveal that (NPs) addition remarkably enhances heat transfer in the cavity especially for (Ψ= 0.2). Besides, the effect of inclination angle and type of temperature is more pronounced at higher Rayleigh number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20cavity" title=" inclined cavity"> inclined cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20temperature" title=" random temperature"> random temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-volume" title=" finite-volume"> finite-volume</a> </p> <a href="https://publications.waset.org/abstracts/45433/numerical-study-of-natural-convection-heat-transfer-performance-in-an-inclined-cavity-nanofluid-and-random-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6550</span> Entropy Generation of Natural Convection Heat Transfer in a Square Cavity Using Al2O3-Water Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Alipanah">M. Alipanah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ranjbar"> A. Ranjbar</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Farnad"> E. Farnad</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Alipanah"> F. Alipanah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Entropy generation of an Al2O3-water nanofluid due to heat transfer and fluid friction irreversibility has been investigated in a square cavity subject to different side wall temperatures using a nanofluid for natural convection flow. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number between 104 to 107 and volume fraction between 0 to 0.05. Based on the obtained dimensionless velocity and temperature values, the distributions of local entropy generation, average entropy generation and average Bejan number are determined. The results are compared for a pure fluid and a nanofluid. It is totally found that the heat transfer and entropy generation of the nanofluid is more than the pure fluid and minimum entropy generation and Nusselt number occur in the pure fluid at any Rayleigh number. Results depict that the addition of nanoparticles to the pure fluid has more effect on the entropy generation as the Rayleigh number goes up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy%20generation" title="entropy generation">entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=bejan%20number" title=" bejan number"> bejan number</a>, <a href="https://publications.waset.org/abstracts/search?q=nuselt%20number" title=" nuselt number"> nuselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a> </p> <a href="https://publications.waset.org/abstracts/10068/entropy-generation-of-natural-convection-heat-transfer-in-a-square-cavity-using-al2o3-water-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6549</span> Numerical Study on the Urea Melting and Induced Natural Convection in a Urea Sender Module</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doo%20Ki%20Lee">Doo Ki Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Urea-Selective Catalytic Reduction (SCR) system is considered to be the most promising technology to fulfill the stringent emission regulation. In the Urea-SCR system, the urea solutions are used as the reducing agent, which is a eutectic composition (32.5wt% of urea). The advantage of this eutectic compositions is that it has a low freezing point approximately at -11 ℃, however, the problem of freezing occurs at low-temperature levels below that freezing point. To prevent freezing of urea solutions, we need heating systems that can melt by heating the frozen urea solutions in urea storage tank at low-temperature environment. In this study, therefore, a numerical investigation of three-dimensional unsteady heating problems analyzed to find the melting characteristics of the urea solutions on melting process. In this work, it can be found that the urea melting initiated by heat conduction from the heater is enhanced by the natural convection inside the melted liquid urea solutions due to the temperature difference. Also, liquid urea solutions are initially concentrated on the upper parts of the urea sender module. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urea%20solution" title="urea solution">urea solution</a>, <a href="https://publications.waset.org/abstracts/search?q=melting" title=" melting"> melting</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20fraction" title=" liquid fraction"> liquid fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change" title=" phase change"> phase change</a> </p> <a href="https://publications.waset.org/abstracts/77724/numerical-study-on-the-urea-melting-and-induced-natural-convection-in-a-urea-sender-module" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20natural%20convection&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20natural%20convection&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20natural%20convection&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20natural%20convection&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20natural%20convection&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20natural%20convection&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20natural%20convection&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20natural%20convection&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20natural%20convection&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20natural%20convection&page=219">219</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20natural%20convection&page=220">220</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transient%20natural%20convection&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>