CINXE.COM

Search results for: wastewaters

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: wastewaters</title> <meta name="description" content="Search results for: wastewaters"> <meta name="keywords" content="wastewaters"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="wastewaters" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="wastewaters"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 100</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: wastewaters</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Microalgae for Plant Biostimulants on Whey and Dairy Wastewaters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergejs%20Kolesovs">Sergejs Kolesovs</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavels%20Semjonovs"> Pavels Semjonovs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whey and dairy wastewaters if disposed in the environment without proper treatment, cause serious environmental risks contributing to overall and particular environmental pollution and climate change. Biological treatment of wastewater is considered to be most eco-friendly approach, as compared to the chemical treatment methods. Research shows, that dairy wastewater can potentially be remediated by use of microalgae thussignificantly reducing the content of carbohydrates, P, N, K and other pollutants. Moreover, it has been shown, that use of dairy wastewaters results in higher microalgae biomass production. In recent decades microalgal biomass has entailed a big interest for its potential applications in pharmaceuticals, biomedicine, health supplementation, cosmetics, animal feed, plant protection, bioremediation and biofuels. It was shown, that lipids productivity on whey and dairy wastewater is higher as compared with standard cultivation media and occurred without the necessity of inducing specific stress conditions such as N starvation. Moreover, microalgae biomass production as usually associated with high production costs may benefit from perspective of both reasons – enhanced microalgae biomass or target substances productivity on cheap growth substrate and effective management of whey and dairy wastewaters, which issignificant for decrease of total production costs in both processes. Obviously, it became especially important when large volume and low cost industrial microalgal biomass production is anticipated for further use in agriculture of crops as plant growth stimulants, biopesticides soil fertilisers or remediating solutions. Environmental load of dairy wastewaters can be significantly decreased when microalgae are grown in coculture with other microorganisms. This enhances the utilisation of lactose, which is main C source in whey and dairy wastewaters when it is not metabolised easily by most microalgal species chosen. Our study showsthat certain microalgae strains can be used in treatment of residual sugars containing industrial wastewaters and decrease of their concentration thus approving that further extensive research on dairy wastewaters pre-treatment optionsfor effective cultivation of microalgae, carbon uptake and metabolism, strain selection and choice of coculture candidates is needed for further optimisation of the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalgae" title="microalgae">microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20wastewaters" title=" dairy wastewaters"> dairy wastewaters</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20biostimulants" title=" plant biostimulants"> plant biostimulants</a> </p> <a href="https://publications.waset.org/abstracts/153094/microalgae-for-plant-biostimulants-on-whey-and-dairy-wastewaters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Sustainable Treatment of Vegetable Oil Industry Wastewaters by Xanthomonas campestris</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bojana%20%C5%BD.%20Baji%C4%87">Bojana Ž. Bajić</a>, <a href="https://publications.waset.org/abstracts/search?q=Sini%C5%A1a%20N.%20Dodi%C4%87"> Siniša N. Dodić</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20S.%20Pu%C5%A1ka%C5%A1"> Vladimir S. Puškaš</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20M.%20Dodi%C4%87"> Jelena M. Dodić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing industrialization as a response to the demands of the consumer society greatly exploits resources and generates large amounts of waste effluents in addition to the desired product. This means it is a priority to implement technologies with the maximum utilization of raw materials and energy, minimum generation of waste effluents and/or their recycling (secondary use). Considering the process conditions and the nature of the raw materials used by the vegetable oil industry, its wastewaters can be used as substrates for the biotechnological production which requires large amounts of water. This way the waste effluents of one branch of industry become raw materials for another branch which produces a new product while reducing wastewater pollution and thereby reducing negative environmental impacts. Vegetable oil production generates wastewaters during the process of rinsing oils and fats which contain mainly fatty acid pollutants. The vegetable oil industry generates large amounts of waste effluents, especially in the processes of degumming, deacidification, deodorization and neutralization. Wastewaters from the vegetable oil industry are generated during the whole year in significant amounts, based on the capacity of the vegetable oil production. There are no known alternative applications for these wastewaters as raw materials for the production of marketable products. Since the literature has no data on the potential negative impact of fatty acids on the metabolism of the bacterium Xanthomonas campestris, these wastewaters were considered as potential raw materials for the biotechnological production of xanthan. In this research, vegetable oil industry wastewaters were used as the basis for the cultivation media for xanthan production with Xanthomonas campestris ATCC 13951. Examining the process of biosynthesis of xanthan on vegetable oil industry wastewaters as the basis for the cultivation media was performed to obtain insight into the possibility of its use in the aforementioned biotechnological process. Additionally, it was important to experimentally determine the absence of substances that have an inhibitory effect on the metabolism of the production microorganism. Xanthan content, rheological parameters of the cultivation media, carbon conversion into xanthan and conversions of the most significant nutrients for biosynthesis (carbon, nitrogen and phosphorus sources) were determined as indicators of the success of biosynthesis. The obtained results show that biotechnological production of the biopolymer xanthan by bacterium Xanthomonas campestris on vegetable oil industry wastewaters based cultivation media simultaneously provides preservation of the environment and economic benefits which is a sustainable solution to the problem of wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title="biotechnology">biotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20bioprocess" title=" sustainable bioprocess"> sustainable bioprocess</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oil%20industry%20wastewaters" title=" vegetable oil industry wastewaters"> vegetable oil industry wastewaters</a>, <a href="https://publications.waset.org/abstracts/search?q=Xanthomonas%20campestris" title=" Xanthomonas campestris"> Xanthomonas campestris</a> </p> <a href="https://publications.waset.org/abstracts/87839/sustainable-treatment-of-vegetable-oil-industry-wastewaters-by-xanthomonas-campestris" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Bioremediation Potential of Stegiocolonium and Spirogyra Grown in Waste Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neelma%20Munir">Neelma Munir</a>, <a href="https://publications.waset.org/abstracts/search?q=Zirwa%20Sarwar"> Zirwa Sarwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rubab%20Naseem"> Rubab Naseem</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Hasnain"> Maria Hasnain</a>, <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Naz"> Shagufta Naz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastewater discharge from different sources causes contamination of water bodies and eutrophication. Stegiocolonium and Spirogyra are commonly found algal species in the water bodies of Pakistan. These algal species were tested for their bioremediation potential using different wastewaters. Different parameters, i.e., BOD, COD, pH, nitrates, phosphates and microflora, were analyzed to observe the phycoremediation efficiency of the tested algal strains. When these different wastewaters were treated with these algae, reduction of BOD and COD was observed helped in the reduction of pollutants from the environment. From the results of the present study, it was evident that Ulothrix sp. and Oedogonium sp. showed a high biomass production in different wastewaters as compared to Stigeoclonium sp. and Spirogyra sp. Whereas the oil content of Stigeoclonium sp. was greater than Spirogyra sp. Oil extracted from algal strains was then utilized for converting it to biodiesel, indicating that these algal species can be cultured in wastewater to produce biodiesel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel" title=" biofuel"> biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a> </p> <a href="https://publications.waset.org/abstracts/146107/bioremediation-potential-of-stegiocolonium-and-spirogyra-grown-in-waste-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Cadmium Separation from Aqueous Solutions by Natural Biosorbents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20V.%20P.%20Murthy">Z. V. P. Murthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Arunachalam"> Preeti Arunachalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangeeta%20Balram"> Sangeeta Balram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Removal of metal ions from different wastewaters has become important due to their effects on living beings. Cadmium is one of the heavy metals found in different industrial wastewaters. There are many conventional methods available to remove heavy metals from wastewaters like adsorption, membrane separations, precipitation, electrolytic methods, etc. and all of them have their own advantages and disadvantages. The present work deals with the use of natural biosorbents (chitin and chitosan) to separate cadmium ions from aqueous solutions. The adsorption data were fitted with different isotherms and kinetics models. Amongst different adsorption isotherms used to fit the adsorption data, the Freundlich isotherm showed better fits for both the biosorbents. The kinetics data of adsorption of cadmium showed better fit with pseudo-second order model for both the biosorbents. Chitosan, the derivative from chitin, showed better performance than chitin. The separation results are encouraging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitin" title="chitin">chitin</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a> </p> <a href="https://publications.waset.org/abstracts/79853/cadmium-separation-from-aqueous-solutions-by-natural-biosorbents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Removal of Heavy Metal, Dye and Salinity from Industrial Wastewaters by Banana Rachis Cellulose Micro Crystal-Clay Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Maniruzzaman">Mohd Maniruzzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Monjurul%20Alam"> Md. Monjurul Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Hafezur%20Rahaman"> Md. Hafezur Rahaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Anika%20Amir%20Mohona"> Anika Amir Mohona</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The consumption of water by various industries is increasing day by day, and the wastewaters from them are increasing as well. These wastewaters consist of various kinds of color, dissolved solids, toxic heavy metals, residual chlorine, and other non-degradable organic materials. If these wastewaters are exposed directly to the environment, it will be hazardous for the environment and personal health. So, it is very necessary to treat these wastewaters before exposing into the environment. In this research, we have demonstrated the successful processing and utilization of fully bio-based cellulose micro crystal (CMC) composite for the removal of heavy metals, dyes, and salinity from industrial wastewaters. Banana rachis micro-cellulose were prepared by acid hydrolysis (H₂SO₄) of banana (Musa acuminata L.) rachis fiber, and Bijoypur raw clay were treated by organic solvent tri-ethyl amine. Composites were prepared with varying different composition of banana rachis nano-cellulose and modified Bijoypur (north-east part in Bangladesh) clay. After the successful characterization of cellulose micro crystal (CMC) and modified clay, our targeted filter was fabricated with different composition of cellulose micro crystal and clay in the locally fabricated packing column with 7.5 cm as thickness of composites fraction. Waste-water was collected from local small textile industries containing basic yellow 2 as dye, lead (II) nitrate [Pb(NO₃)₂] and chromium (III) nitrate [Cr(NO₃)₃] as heavy metals and saline water was collected from Khulna to test the efficiency of banana rachis cellulose micro crystal-clay composite for removing the above impurities. The filtering efficiency of wastewater purification was characterized by Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (X-RD), thermo gravimetric analysis (TGA), atomic absorption spectrometry (AAS), scanning electron microscopy (SEM) analyses. Finally, our all characterizations data are shown with very high expected results for in industrial application of our fabricated filter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=banana%20rachis" title="banana rachis">banana rachis</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-based%20filter" title=" bio-based filter"> bio-based filter</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20micro%20crystal-clay%20composite" title=" cellulose micro crystal-clay composite"> cellulose micro crystal-clay composite</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewaters" title=" wastewaters"> wastewaters</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20dyes" title=" synthetic dyes"> synthetic dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20salinity" title=" water salinity"> water salinity</a> </p> <a href="https://publications.waset.org/abstracts/104811/removal-of-heavy-metal-dye-and-salinity-from-industrial-wastewaters-by-banana-rachis-cellulose-micro-crystal-clay-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Preparation of Fe, Cr Codoped TiO2 Nanostructure for Phenol Removal from Wastewaters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Nowzari-Dalini">N. Nowzari-Dalini</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sabbaghi"> S. Sabbaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenol is a hazardous material found in many industrial wastewaters. Photocatalytic degradation and furthermore catalyst doping are promising techniques in purpose of effective phenol removal, which have been studied comprehensively in this decade. In this study, Fe, Cr codoped TiO<sub>2</sub> were prepared by sol-gel method, and its photocatalytic activity was investigated through degradation of phenol under visible light. The catalyst was characterized by XRD, SEM, FT-IR, BET, and EDX. The results showed that nanoparticles possess anatase phase, and the average size of nanoparticles was about 21 nm. Also, photocatalyst has significant surface area. Effect of experimental parameters such as pH, irradiation time, pollutant concentration, and catalyst concentration were investigated by using Design-Expert<sup>&reg;</sup> software. 98% of phenol degradation was achieved after 6h of irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doping" title="doping">doping</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/59934/preparation-of-fe-cr-codoped-tio2-nanostructure-for-phenol-removal-from-wastewaters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Environmental Engineering Case Study of Waste Water Treatement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harold%20Jideofor">Harold Jideofor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastewater treatment consists of applying known technology to improve or upgrade the quality of a wastewater. Usually wastewater treatment will involve collecting the wastewater in a central, segregated location (the Wastewater Treatment Plant) and subjecting the wastewater to various treatment processes. Most often, since large volumes of wastewater are involved, treatment processes are carried out on continuously flowing wastewaters (continuous flow or "open" systems) rather than as "batch" or a series of periodic treatment processes in which treatment is carried out on parcels or "batches" of wastewaters. While most wastewater treatment processes are continuous flow, certain operations, such as vacuum filtration, involving storage of sludge, the addition of chemicals, filtration and removal or disposal of the treated sludge, are routinely handled as periodic batch operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title="wastewater treatment">wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20engineering" title=" environmental engineering"> environmental engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/14980/environmental-engineering-case-study-of-waste-water-treatement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">586</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Brown Macroalgae L. hyperborea as Natural Cation Exchanger and Electron Donor for the Treatment of a Zinc and Hexavalent Chromium Containing Galvanization Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luciana%20P.%20Mazur">Luciana P. Mazur</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatiana%20A.%20Pozdniakova"> Tatiana A. Pozdniakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20A.%20R.%20Boaventura"> Rui A. R. Boaventura</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitor%20J.%20P.%20Vilar"> Vitor J. P. Vilar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electroplating industry requires a lot of process water, which generates a large volume of wastewater loaded with heavy metals. Two different wastewaters were collected in a company’s wastewater treatment plant, one after the use of zinc in the metal plating process and the other after the use of chromium. The main characteristics of the Zn(II) and Cr(VI) wastewaters are: pH = 6.7/5.9; chemical oxygen demand = 55/<5 mg/L; sodium, potassium, magnesium and calcium ions concentrations of 326/28, 4/28, 11/7 and 46/37 mg/L, respectively; zinc(II) = 11 mg/L and Cr(VI) = 39 mg/L. Batch studies showed that L. hyperborea can be established as a natural cation exchanger for heavy metals uptake mainly due to the presence of negatively charged functional groups in the surface of the biomass. Beyond that, L. hyperborea can be used as a natural electron donor for hexavalent chromium reduction to trivalent chromium at acidic medium through the oxidation of the biomass, and Cr(III) can be further bound to the negatively charged functional groups. The uptake capacity of Cr(III) by the oxidized biomass after Cr(VI) reduction was higher than by the algae in its original form. This can be attributed to the oxidation of the biomass during Cr(VI) reduction, turning other active sites available for Cr(III) binding. The brown macroalgae Laminaria hyperborea was packed in a fixed-bed column in order to evaluate the feasibility of the system for the continuous treatment of the two galvanization wastewaters. The column, with an internal diameter of 4.8 cm, was packed with 59 g of algae up to a bed height of 27 cm. The operation strategy adopted for the treatment of the two wastewaters consisted in: i) treatment of the Zn(II) wastewater in the first sorption cycle; ii) desorption of pre-loaded Zn(II) using an 1.0 M HCl solution; iii) treatment of the Cr(VI) wastewater, taking advantage of the acidic conditions of the column after the desorption cycle, for the reduction of the Cr(VI) to Cr(III), in the presence of the electrons resulting from the biomass oxidation. This cycle ends when all the oxidizing groups are used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosorption" title="biosorption">biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=brown%20marine%20macroalgae" title=" brown marine macroalgae"> brown marine macroalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a> </p> <a href="https://publications.waset.org/abstracts/22063/brown-macroalgae-l-hyperborea-as-natural-cation-exchanger-and-electron-donor-for-the-treatment-of-a-zinc-and-hexavalent-chromium-containing-galvanization-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Application of Magnetic-Nano Photocatalyst for Removal of Xenobiotic Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prashant%20K.%20Sharma">Prashant K. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavita%20Shah"> Kavita Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the photochemistry of nanomagnetic particles is being utilized for the removal of various pollutants. In the current era where large quantities of various xenobiotic compounds are released in the environment some of which are highly toxic are being used routinely by industries and consumers. Extensive use of these chemicals provides greater risk to plants, animals and human population which has been reviewed from time to time. Apart from the biological degradation, photochemical removal holds considerable promise for the abatement of these pesticides in wastewaters. This paper reviews the photochemical removal of xenobiotic compounds. It is evident from the review that removal depends on several factors such as pH of the solution, catalysts loading, initial concentration, light intensity and so on and so forth. Since the xenobiotics are ubiquitously present in the wastewaters, photochemical technology seems imperative to alleviate the pollution problems associated with the xenobiotics. However, commercial application of this technology has to be clearly assessed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic" title="magnetic">magnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalayst" title=" photocatalayst"> photocatalayst</a>, <a href="https://publications.waset.org/abstracts/search?q=xenobiotic%20compounds" title=" xenobiotic compounds"> xenobiotic compounds</a> </p> <a href="https://publications.waset.org/abstracts/83188/application-of-magnetic-nano-photocatalyst-for-removal-of-xenobiotic-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Potential of Macroalgae Ulva lactuca for Municipal Wastewater Treatment and Fruitfly Food</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuang%20Qiu">Shuang Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingfeng%20Wang"> Lingfeng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhipeng%20Chen"> Zhipeng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shijian%20Ge"> Shijian Ge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Macroalgae are considered a promising approach for wastewater treatment as well as an alternative animal feed in addition to a biofuel feedstock. Their large size and/or tendency to grow as dense floating mats or substrate-attached turfs lead to lower separation and drying costs than microalgae. In this study, the macroalgae species Ulva lactuca (U. lactuca) were used to investigate their capacity for treating municipal wastewaters, and the feasibility of using the harvested biomass as an alternative food source for the fruitfly Drosophila melanogaster, an animal model for biological research. Results suggested that U. lactuca could successfully grow on three types of wastewaters studied with biomass productivities of 8.12-64.3 g DW (dry weight)/(m²∙d). The secondary wastewater (SW) was demonstrated as the most effective wastewater medium for U. lactuca growth. However, both high nitrogen (92.5-98.9%) and phosphorus (64.5-88.6%) removal efficiencies were observed in all wastewaters, particularly in primary wastewater (PW) and SW, however, in central wastewater (CW), the highest removal rates were obtained (N 24.7 ± 0.97 and P 0.69 ± 0.01 mg/(g DW·d)). Additionally, the inclusion of 20% washed U. lactuca with 80% standard fruitfly food (w/w) resulted in a longer lifespan and more stable body weights in flies. On the other hand, similar results were not obtained for the food treatment with the addition of 20 % unwashed U. lactuca. This study suggests a promising method for the macroalgae-based treatment of municipal wastewater and the biomass for animal feed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=animal%20feed" title="animal feed">animal feed</a>, <a href="https://publications.waset.org/abstracts/search?q=flies" title=" flies"> flies</a>, <a href="https://publications.waset.org/abstracts/search?q=macroalgae" title=" macroalgae"> macroalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20recovery" title=" nutrient recovery"> nutrient recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulva%20lactuca" title=" Ulva lactuca"> Ulva lactuca</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/94541/potential-of-macroalgae-ulva-lactuca-for-municipal-wastewater-treatment-and-fruitfly-food" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Operating Parameters and Costs Assessments of a Real Fishery Wastewater Effluent Treated by Electrocoagulation Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirian%20Graciella%20Dalla%20Porta">Mirian Graciella Dalla Porta</a>, <a href="https://publications.waset.org/abstracts/search?q=Humberto%20Jorge%20Jos%C3%A9"> Humberto Jorge José</a>, <a href="https://publications.waset.org/abstracts/search?q=Danielle%20de%20Bem%20Luiz"> Danielle de Bem Luiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Regina%20de%20F.%20P.%20M.Moreira"> Regina de F. P. M.Moreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Similar to most processing industries, fish processing produces large volumes of wastewater, which contains especially organic contaminants, salts and oils dispersed therein. Different processes have been used for the treatment of fishery wastewaters, but the most commonly used are chemical coagulation and flotation. These techniques are well known but sometimes the characteristics of the treated effluent do not comply with legal standards for discharge. Electrocoagulation (EC) is an electrochemical process that can be used to treat wastewaters in terms of both organic matter and nutrient removal. The process is based on the use of sacrificial electrodes such as aluminum, iron or zinc, that are oxidized to produce metal ions that can be used to coagulate and react with organic matter and nutrients in the wastewater. While EC processes are effective to treatment of several types of wastewaters, applications have been limited due to the high energy demands and high current densities. Generally, the for EC process can be performed without additional chemicals or pre-treatment, but the costs should be reduced for EC processes to become more applicable. In this work, we studied the treatment of a real wastewater from fishmeal industry by electrocoagulation process. Removal efficiencies for chemical oxygen demand (COD), total organic carbon (TOC) turbidity, phosphorous and nitrogen concentration were determined as a function of the operating conditions, such as pH, current density and operating time. The optimum operating conditions were determined to be operating time of 10 minutes, current density 100 A.m-2, and initial pH 4.0. COD, TOC, phosphorous concentration, and turbidity removal efficiencies at the optimum operating conditions were higher than 90% for aluminum electrode. Operating costs at the optimum conditions were calculated as US$ 0.37/m3 (US$ 0.038/kg COD) for Al electrode. These results demonstrate that the EC process is a promising technology to remove nutrients from fishery wastewaters, as the process has both a high efficiency of nutrient removal, and low energy requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title="electrocoagulation">electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20industry" title=" food industry"> food industry</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/52114/operating-parameters-and-costs-assessments-of-a-real-fishery-wastewater-effluent-treated-by-electrocoagulation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Bio-Desalination and Bioremediation of Agroindustrial Wastewaters Using Yarrowia Lipolytica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selma%20Hamimed">Selma Hamimed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelwaheb%20Chatti"> Abdelwaheb Chatti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study deals with the biological treatment of saline wastewaters generated by various agro-food industries using Yarrowia lipolytica. The ability of this yeast was studied on the mixture of olive mill wastewater and tuna wash processing wastewater. Results showed that the high proportion of olive mill wastewater in the mixture about (75:25) is the suitable one for the highest Y. lipolytica biomass production, reaching 11.3 g L⁻¹ after seven days. In addition, results showed significant removal of chemical oxygen demand (COD) and phosphorous of 97.49 % and 98.90 %, respectively. On the other hand, Y. lipolytica was found to be effective to desalinate all mixtures reaching a removal of 92.21 %. Moreover, the analytical results using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) confirmed the biosorption of NaCl on the surface of the yeast as nanocrystals form with a size of 47.3 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocrystallization%20of%20NaCl" title="nanocrystallization of NaCl">nanocrystallization of NaCl</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=yarrowia%20lipolytica" title=" yarrowia lipolytica"> yarrowia lipolytica</a> </p> <a href="https://publications.waset.org/abstracts/139746/bio-desalination-and-bioremediation-of-agroindustrial-wastewaters-using-yarrowia-lipolytica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Heterogeneous Photocatalytic Degradation of Ibuprofen in Ultrapure Water, Municipal and Pharmaceutical Industry Wastewaters Using a TiO2/UV-LED System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Jallouli">Nabil Jallouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Luisa%20M.%20Pastrana-Mart%C3%ADnez"> Luisa M. Pastrana-Martínez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20R.%20Ribeiro"> Ana R. Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuno%20F.%20F.%20Moreira"> Nuno F. F. Moreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Joaquim%20L.%20Faria"> Joaquim L. Faria</a>, <a href="https://publications.waset.org/abstracts/search?q=Olfa%20Hentati"> Olfa Hentati</a>, <a href="https://publications.waset.org/abstracts/search?q=Adri%C3%A1n%20M.%20T.%20Silva"> Adrián M. T. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ksibi"> Mohamed Ksibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Degradation and mineralization of ibuprofen (IBU) were investigated using Ultraviolet (UV) Light Emitting Diodes (LEDs) in TiO2 photocatalysis. Samples of ultrapure water (UP) and a secondary treated effluent of a municipal wastewater treatment plant (WWTP), both spiked with IBU, as well as a highly concentrated IBU (230 mgL-1) pharmaceutical industry wastewater (PIWW), were tested in the TiO2/UV-LED system. Three operating parameters, namely, pH, catalyst load and number of LEDs were optimized. The process efficiency was evaluated in terms of IBU removal using high performance liquid chromatography (HPLC) and ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Additionally, the mineralization was investigated by determining the dissolved organic carbon (DOC) content. The chemical structures of transformation products were proposed based on the data obtained using liquid chromatography with a high resolution mass spectrometer ion trap/time-of-flight (LC-MS-IT-TOF). A possible pathway of IBU degradation was accordingly proposed. Bioassays were performed using the marine bacterium Vibrio fischeri to evaluate the potential acute toxicity of original and treated wastewaters. TiO2 heterogeneous photocatalysis was efficient to remove IBU from UP and from PIWW, and less efficient in treating the wastewater from the municipal WWTP. The acute toxicity decreased by ca. 40% after treatment, regardless of the studied matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20toxicity" title="acute toxicity">acute toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibuprofen" title=" Ibuprofen"> Ibuprofen</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-LEDs" title=" UV-LEDs"> UV-LEDs</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewaters" title=" wastewaters"> wastewaters</a> </p> <a href="https://publications.waset.org/abstracts/76746/heterogeneous-photocatalytic-degradation-of-ibuprofen-in-ultrapure-water-municipal-and-pharmaceutical-industry-wastewaters-using-a-tio2uv-led-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Assessment of Wastewater Reuse Potential for an Enamel Coating Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guclu%20Insel">Guclu Insel</a>, <a href="https://publications.waset.org/abstracts/search?q=Efe%20Gumuslu"> Efe Gumuslu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulten%20Yuksek"> Gulten Yuksek</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilay%20Sayi%20Ucar"> Nilay Sayi Ucar</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Ubay%20Cokgor"> Emine Ubay Cokgor</a>, <a href="https://publications.waset.org/abstracts/search?q=Tugba%20Olmez%20Hanci"> Tugba Olmez Hanci</a>, <a href="https://publications.waset.org/abstracts/search?q=Didem%20Okutman%20Tas"> Didem Okutman Tas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatos%20Germirli%20Babuna"> Fatos Germirli Babuna</a>, <a href="https://publications.waset.org/abstracts/search?q=Derya%20Firat%20Ertem"> Derya Firat Ertem</a>, <a href="https://publications.waset.org/abstracts/search?q=Okmen%20Yildirim"> Okmen Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozge%20Erturan"> Ozge Erturan</a>, <a href="https://publications.waset.org/abstracts/search?q=Betul%20Kirci"> Betul Kirci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to eliminate water scarcity problems, effective precautions must be taken. Growing competition for water is increasingly forcing facilities to tackle their own water scarcity problems. At this point, application of wastewater reclamation and reuse results in considerable economic advantageous. In this study, an enamel coating facility, which is one of the high water consumed facilities, is evaluated in terms of its wastewater reuse potential. Wastewater reclamation and reuse can be defined as one of the best available techniques for this sector. Hence, process and pollution profiles together with detailed characterization of segregated wastewater sources are appraised in a way to find out the recoverable effluent streams arising from enamel coating operations. Daily, 170 m<sup>3</sup> of process water is required and 160 m<sup>3</sup> of wastewater is generated. The segregated streams generated by two enamel coating processes are characterized in terms of conventional parameters. Relatively clean segregated wastewater streams (reusable wastewaters) are separately collected and experimental treatability studies are conducted on it. The results reflected that the reusable wastewater fraction has an approximate amount of 110 m<sup>3</sup>/day that accounts for 68% of the total wastewaters. The need for treatment applicable on reusable wastewaters is determined by considering water quality requirements of various operations and characterization of reusable wastewater streams. Ultra-filtration (UF), Nano-filtration (NF) and Reverse Osmosis (RO) membranes are subsequently applied on reusable effluent fraction. Adequate organic matter removal is not obtained with the mentioned treatment sequence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enamel%20coating" title="enamel coating">enamel coating</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20reclamation" title=" wastewater reclamation"> wastewater reclamation</a> </p> <a href="https://publications.waset.org/abstracts/44839/assessment-of-wastewater-reuse-potential-for-an-enamel-coating-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Flocculation on the Treatment of Olive Oil Mill Wastewater: Pre-Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Hodaifa">G. Hodaifa</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20P%C3%A1ez"> J. A. Páez</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Agabo"> C. Agabo</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ramos"> E. Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Guti%C3%A9rrez"> J. C. Gutiérrez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rosal"> A. Rosal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the continuous two-phase decanter process used for olive oil production is the more internationally widespread. The wastewaters generated from this industry (OMW) is a real environmental problem because of its high organic load. Among proposed treatments for these wastewaters, the advanced oxidation technologies (Fenton process, ozone, photoFenton, etc.) are the most favourable. The direct application of these processes is somewhat expensive. Therefore, the application of a previous stage based on a flocculation-sedimentation operation is of high importance. In this research five commercial flocculants (three cationic, and two anionic) have been used to achieve the separation of phases (liquid clarified-sludge). For each flocculant, different concentrations (0-1000 mg/L) have been studied. In these experiments, sludge volume formed over time and the final water quality were determined. The final removal percentages of total phenols (11.3-25.1%), COD (5.6-20.4%), total carbon (2.3-26.5%), total organic carbon (1.50-23.8%), total nitrogen (1.45-24.8%), and turbidity (27.9-61.4%) were obtained. Also, the variation on the electric conductivity reduction percentage (1-8%) was determined. Finally, the best flocculants with highest removal percentages have been determined (QG2001 and Flocudex CS49). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flocculants" title="flocculants">flocculants</a>, <a href="https://publications.waset.org/abstracts/search?q=flocculation" title=" flocculation"> flocculation</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil%20mill%20wastewater" title=" olive oil mill wastewater"> olive oil mill wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/20372/flocculation-on-the-treatment-of-olive-oil-mill-wastewater-pre-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Hospital Wastewater Treatment by Ultrafiltration Membrane System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selin%20Top">Selin Top</a>, <a href="https://publications.waset.org/abstracts/search?q=Raul%20Marcos"> Raul Marcos</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sinan%20Bilgili"> M. Sinan Bilgili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although there have been several studies related to collection, temporary storage, handling and disposal of solid wastes generated by hospitals, there are only a few studies related to liquid wastes generated by hospitals or hospital wastewaters. There is an important amount of water consumptions in hospitals. While minimum domestic water consumption per person is 100 L/day, water consumption per bed in hospitals is generally ranged between 400-1200 L. This high amount of consumption causes high amount of wastewater. The quantity of wastewater produced in a hospital depends on different factors: bed numbers, hospital age, accessibility to water, general services present inside the structure (kitchen, laundry, laboratory, diagnosis, radiology, and air conditioning), number and type of wards and units, institution management policies and awareness in managing the structure in safeguarding the environment, climate and cultural and geographic factors. In our country, characterization of hospital wastewaters conducted by classical parameters in a very few studies. However, as mentioned above, this type of wastewaters may contain different compounds than domestic wastewaters. Hospital Wastewater (HWW) is wastewater generated from all activities of the hospital, medical and non medical. Nowadays, hospitals are considered as one of the biggest sources of wastewater along with urban sources, agricultural effluents and industrial sources. As a health-care waste, hospital wastewater has the same quality as municipal wastewater, but may also potentially contain various hazardous components due to using disinfectants, pharmaceuticals, radionuclides and solvents making not suitable the connection of hospital wastewater to the municipal sewage network. These characteristics may represent a serious health hazard and children, adults and animals all have the potential to come into contact with this water. Therefore, the treatment of hospital wastewater is an important current interest point to focus on. This paper aims to approach on the investigation of hospital wastewater treatment by membrane systems. This study aim is to determined hospital wastewater’s characterization and also evaluates the efficiency of hospital wastewater treatment by high pressure filtration systems such as ultrafiltration (UF). Hospital wastewater samples were taken directly from sewage system from Şişli Etfal Training and Research Hospital, located in the district of Şişli, in the European part of Istanbul. The hospital is a 784 bed tertiary care center with a daily outpatient department of 3850 patients. Ultrafiltration membrane is used as an experimental treatment and the influence of the pressure exerted on the membranes was examined, ranging from 1 to 3 bar. The permeate flux across the membrane was observed to define the flooding membrane points. The global COD and BOD5 removal efficiencies were 54% and 75% respectively for ultrafiltration, all the SST removal efficiencies were above 90% and a successful removal of the pathological bacteria measured was achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hospital%20wastewater" title="hospital wastewater">hospital wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafiltration" title=" ultrafiltration"> ultrafiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/13130/hospital-wastewater-treatment-by-ultrafiltration-membrane-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Biosorption of Metal Ions from Sarcheshmeh Acid Mine Drainage by Immobilized Bacillus thuringiensis in a Fixed-Bed Column </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Khosravi">V. Khosravi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20D.%20Ardejani"> F. D. Ardejani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aryafar"> A. Aryafar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sedighi"> M. Sedighi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals have a damaging impact for the environment, animals and humans due to their extreme toxicity and removing them from wastewaters is a very important and interesting task in the field of water pollution control. Biosorption is a relatively new method for treatment of wastewaters and recovery of heavy metals. In this study, a continuous fixed bed study was carried out by using Bacillus thuringiensis as a biosorbent for the removal of Cu and Mn ions from Sarcheshmeh Acid Mine Drainage (AMD). The effect of operating parameters such as flow rate and bed height on the sorption characteristics of B. thuringiensis was investigated at pH 6.0 for each metal ion. The experimental results showed that the breakthrough time decreased with increasing flow rate and decreasing bed height. The data also indicated that the equilibrium uptake of both metals increased with decreasing flow rate and increasing bed height. BDST, Thomas, and Yoon–Nelson models were applied to experimental data to predict the breakthrough curves. All models were found suitable for describing the whole dynamic behavior of the column with respect to flow rate and bed height. In order to regenerate the adsorbent, an elution step was carried out with 1 M HCl and five adsorption-desorption cycles were carried out in continuous manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20mine%20drainage" title="acid mine drainage">acid mine drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=bacillus%20thuringiensis" title=" bacillus thuringiensis"> bacillus thuringiensis</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=cu%20and%20mn%20ions" title=" cu and mn ions"> cu and mn ions</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20bed" title=" fixed bed"> fixed bed</a> </p> <a href="https://publications.waset.org/abstracts/42630/biosorption-of-metal-ions-from-sarcheshmeh-acid-mine-drainage-by-immobilized-bacillus-thuringiensis-in-a-fixed-bed-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Removal and/or Recovery of Phosphates by Precipitation as Ferric Phosphate from the Effluent of a Municipal Wastewater Treatment Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyriaki%20Kalaitzidou">Kyriaki Kalaitzidou</a>, <a href="https://publications.waset.org/abstracts/search?q=Athanasia%20Tolkou"> Athanasia Tolkou</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20Raptopoulou"> Christina Raptopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=Manassis%20Mitrakas"> Manassis Mitrakas</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasios%20Zouboulis"> Anastasios Zouboulis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phosphate rock is the main source of phosphorous (P) in fertilizers and is essential for high crop yield in agriculture; currently, it is considered as a critical element, phasing scarcity. Chemical precipitation, which is a commonly used method of phosphorous removal from wastewaters, finds its significance in that phosphates may be precipitated in appropriate chemical forms that can be reused-recovered. Most often phosphorous is removed from wastewaters in the form of insoluble phosphate salts, by using salts (coagulants) of multivalent metal ions, most frequently iron, aluminum, calcium, or magnesium. The removal degree is affected by various factors, such as pH, chemical agent dose, temperature, etc. In this study, phosphate precipitation from the secondary (biologically treated) effluent of a municipal wastewater treatment plant is examined. Using chlorosulfate (FeClSO4) it was attempted to either remove and/or recover PO43-. Results showed that the use of Fe3+ can achieve residual concentrations lower than the commonly applied legislation limit of PO43- (i.e. 3 mg PO43-/L) by adding 7.5 mg/L Fe3+ in the secondary effluent with an initial concentration of about 10 mg PO43-/L and at pH range between 6 to 9. In addition, the formed sediment has a percentage of almost 24% PO43- content. Therefore, simultaneous removal and recovery of PO43- as ferric phosphate can be achieved, making it possible for the ferric phosphate to be re-used as a possible (secondary) fertilizer source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferric%20phosphate" title="ferric phosphate">ferric phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus%20recovery" title=" phosphorus recovery"> phosphorus recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus%20removal" title=" phosphorus removal"> phosphorus removal</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/23640/removal-andor-recovery-of-phosphates-by-precipitation-as-ferric-phosphate-from-the-effluent-of-a-municipal-wastewater-treatment-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Toxicity Analysis of Metal Coating Industry Wastewaters by Phytotoxicity Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukru%20Dursun">Sukru Dursun</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Cansu%20Ayturan"> Zeynep Cansu Ayturan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Maroof"> Mostafa Maroof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal coating which is important method used for protecting metals against oxidation and corrosion, decreasing friction, protecting metals from chemicals, easing cleaning of the metals. There are several methods used for metal coating such as hot-dip galvanizing, thermal spraying, electroplating and sherardizing. Method which will be used for metal coating depends on the type of metal. The materials mostly used for coating are zinc, nickel, brass, chrome, gold, cadmium, copper, brass, and silver. Within these materials, chrome ion has significant negative impacts on human, other living organisms and environment. Moreover, especially on human chrome may cause lung cancer, stomach ulcer, kidney and liver function disorders and death. Therefore, wastewaters of metal coating industry including chrome should be treated very carefully. In this study, wastewater containing chrome produced by metal coating industry was analysed with phytotoxicity method that is based on measuring the reaction of some plant species against different concentrations of chrome solution. Main plants used for phytotoxicity tests are Lepidium sativum and Lemna minor. Owing to phytotoxicity test, assessing the negative effects of chrome which may harm plants and offering more accurate wastewater treatment techniques against chromium wastewater is possible. Furthermore, the results taken from phytotoxicity tests were analysed with respect to their variance and their importance against different concentrations of chrome solution were determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20coating%20wastewater" title="metal coating wastewater">metal coating wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=chrome" title=" chrome"> chrome</a>, <a href="https://publications.waset.org/abstracts/search?q=phytotoxicity" title=" phytotoxicity"> phytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=Lepidium%20sativum" title=" Lepidium sativum"> Lepidium sativum</a>, <a href="https://publications.waset.org/abstracts/search?q=Lemna%20minor" title=" Lemna minor"> Lemna minor</a> </p> <a href="https://publications.waset.org/abstracts/55957/toxicity-analysis-of-metal-coating-industry-wastewaters-by-phytotoxicity-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Adsorption of Heavy Metals Using Chemically-Modified Tea Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phillip%20Ahn">Phillip Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Bryan%20Kim"> Bryan Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper is perhaps the most prevalent heavy metal used in the manufacturing industries, from food additives to metal-mechanic factories. Common methodologies to remove copper are expensive and produce undesired by-products. A good decontaminating candidate should be environment-friendly, inexpensive, and capable of eliminating low concentrations of the metal. This work suggests chemically modified spent tea leaves of chamomile, peppermint and green tea in their thiolated, sulfonated and carboxylated forms as candidates for the removal of copper from solutions. Batch experiments were conducted to maximize the adsorption of copper (II) ions. Effects such as acidity, salinity, adsorbent dose, metal concentration, and presence of surfactant were explored. Experimental data show that maximum adsorption is reached at neutral pH. The results indicate that Cu(II) can be removed up to 53%, 22% and 19% with the thiolated, carboxylated and sulfonated adsorbents, respectively. Maximum adsorption of copper on TPM (53%) is achieved with 150 mg and decreases with the presence of salts and surfactants. Conversely, sulfonated and carboxylated adsorbents show better adsorption in the presence of surfactants. Time-dependent experiments show that adsorption is reached in less than 25 min for TCM and 5 min for SCM. Instrumental analyses determined the presence of active functional groups, thermal resistance, and scanning electron microscopy, indicating that both adsorbents are promising materials for the selective recovery and treatment of metal ions from wastewaters. Finally, columns were prepared with these adsorbents to explore their application in scaled-up processes, with very positive results. A long-term goal involves the recycling of the exhausted adsorbent and/or their use in the preparation of biofuels due to changes in materials’ structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20removal" title="heavy metal removal">heavy metal removal</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewaters" title=" wastewaters"> wastewaters</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20remediation" title=" water remediation"> water remediation</a> </p> <a href="https://publications.waset.org/abstracts/41163/adsorption-of-heavy-metals-using-chemically-modified-tea-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Biosorption of Methylene Blue and Acid Red-88 from Wastewater by Using Cypress Cones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Onur%20Yel">Onur Yel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study represents the removal of harmful dye substances from wastewaters by using waste and cheap adsorbents. Rapid population growth and industrialization occasion anthropogenic pollution which gives irreversible damage to the environment. One of the ways in which water pollution occurs is caused by the release of the dyestuffs in the textile industry. The release of dyestuffs to the environment directly damages the living creatures that have acquired water habitat. Especially, wastewater cannot be used for nutritional purposes. In addition, some adsorbents have mutagenic and/or carcinogenic effects. By blocking photosynthesis, it hinders the inhibition of photosynthetic bacteria in the water, which damages the ecological balance and also causes the formation of malodorous compounds. Moreover, the lack of oxygen can pose a serious danger to the lives of other living organisms that need oxygen. In recent years, some physical and chemical methods are preferred for the removal of dyestuffs. However, the utilization of these methods is expensive. For this reason, the availability of new and cheap adsorbents becomes the more significant issue. In this study, an investigation of various variables on the removal of Methylene Blue and Acid Red-88 dyestuffs from wastewaters by the usage of pulverized cypress cones has been carried out. Thus, various masses of absorbent (0.1-0.25-0.5-1-2-4-5 grams) are used in 50, 100, 150, 200, 300 ppm concentrations of Methylene Blue and Acid Red-88 dyestuffs’ solutions, and with a variety of the interaction time (0.25-0.5-1-2-4-5 hours). The mixtures were centrifuged and the absorbance of the filtrates was measured on a UV spectrophotometer to determine their remaining concentrations. In the study, the highest removal ratio of Acid Red-88 dyestuff was found to be 81% at 200 ppm of dyestuff with 2 grams of adsorbent at 300 minutes. For Methylene Blue experiments, the removal percentage was found as 98% where 2 grams of adsorbent is used in 200 ppm dyestuff solution at 120 minutes of interaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20red-88" title="acid red-88">acid red-88</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=cypress%20cones" title=" cypress cones"> cypress cones</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pollution" title=" water pollution"> water pollution</a> </p> <a href="https://publications.waset.org/abstracts/93987/biosorption-of-methylene-blue-and-acid-red-88-from-wastewater-by-using-cypress-cones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Application of Modified Vermiculite for Cationic Textile Dyestuffs Removal: Sorption and Regeneration Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Stawi%C5%84ski">W. Stawiński</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Wegrzyn"> A. Wegrzyn</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20Freitas"> O. M. Freitas</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Figueiredo"> S. A. Figueiredo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is a life supporting resource, crucial for humanity and essential for natural ecosystems, which have been endangered by developing industry and increasing human population. Dyes are common in effluents discharged by various industries such as paper, plastics, food, cosmetics, and textile. They produce toxic effects on animals and disturb natural biological processes in receiving waters. Having complex molecular structure and resistance to biological decomposition they are problematic and difficult to be treated by conventional methods. In the search of efficient and sustainable method, sorption has been getting more interest in application to wastewaters treatment. Clays are minerals that have a layer structure based on phyllosilicate sheets that may carry a charge, which is balanced by ions located between the sheets. These charge-balancing ions can be exchanged resulting in very good ion-exchange properties of the material. Modifications of clays enhance their properties, producing a good and inexpensive sorbent for the removal of pollutants from wastewaters. The presented work proves that the treatment of a clay, vermiculite, with nitric acid followed by washing in citric acid strongly increases the sorption of two cationic dyes, methylene blue (C.I. 52015) and astrazon red (C.I. 110825). Desorption studies showed that the best eluent for regeneration is a solution of NaCl in ethanol. Cycles of sorption and desorption in column system showed no significant deterioration of sorption capacity and proved that the material shows a very good performance as sorbent, which can be recycled and reused. The results obtained open new possibilities of further modifications on vermiculite and modifications of other materials in order to get very efficient sorbents useful for wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cationic%20dyestuffs" title="cationic dyestuffs">cationic dyestuffs</a>, <a href="https://publications.waset.org/abstracts/search?q=sorption%20and%20regeneration" title=" sorption and regeneration"> sorption and regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=vermiculite" title=" vermiculite"> vermiculite</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/27639/application-of-modified-vermiculite-for-cationic-textile-dyestuffs-removal-sorption-and-regeneration-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Design, Construction and Evaluation of a Mechanical Vapor Compression Distillation System for Wastewater Treatment in a Poultry Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20S.%20Vera">Juan S. Vera</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20A.%20Gomez"> Miguel A. Gomez</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Gelvez"> Omar Gelvez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is Earth's most valuable resource, and the lack of it is currently a critical problem in today’s society. Non-treated wastewaters contribute to this situation, especially those coming from industrial activities, as they reduce the quality of the water bodies, annihilating all kind of life and bringing disease to people in contact with them. An effective solution for this problem is distillation, which removes most contaminants. However, this approach must also be energetically efficient in order to appeal to the industry. In this endeavour, most water distillation treatments fail, with the exception of the Mechanical Vapor Compression (MVC) distillation system, which has a great efficiency due to energy input by a compressor and the latent heat exchange. This paper presents the process of design, construction, and evaluation of a Mechanical Vapor Compression (MVC) distillation system for the main Colombian poultry company Avidesa Macpollo SA. The system will be located in the principal slaughterhouse in the state of Santander, and it will work along with the Gas Energy Mixing system (GEM) to treat the wastewaters from the plant. The main goal of the MVC distiller, rarely used in this type of application, is to reduce the chlorides, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) levels according to the state regulations since the GEM cannot decrease them enough. The MVC distillation system works with three components, the evaporator/condenser heat exchanger where the distillation takes place, a low-pressure compressor which gives the energy to create the temperature differential between the evaporator and condenser cavities and a preheater to save the remaining energy in the distillate. The model equations used to describe how the compressor power consumption, heat exchange area and distilled water are related is based on a thermodynamic balance and heat transfer analysis, with correlations taken from the literature. Finally, the design calculations and the measurements of the installation are compared, showing accordance with the predictions in distillate production and power consumption, changing the temperature difference of the evaporator/condenser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20vapor%20compression" title="mechanical vapor compression">mechanical vapor compression</a>, <a href="https://publications.waset.org/abstracts/search?q=distillation" title=" distillation"> distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a> </p> <a href="https://publications.waset.org/abstracts/90244/design-construction-and-evaluation-of-a-mechanical-vapor-compression-distillation-system-for-wastewater-treatment-in-a-poultry-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Development, Characterization and Performance Evaluation of a Weak Cation Exchange Hydrogel Using Ultrasonic Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20H.%20Sorour">Mohamed H. Sorour</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayam%20F.%20Shaalan"> Hayam F. Shaalan</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20A.%20Hani"> Heba A. Hani</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20S.%20Sayed"> Eman S. Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Amany%20A.%20El-Mansoup"> Amany A. El-Mansoup</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals (HMs) present an increasing threat to aquatic and soil environment. Thus, techniques should be developed for the removal and/or recovery of those HMs from point sources in the generating industries. This paper reports our endeavors concerning the development of in-house developed weak cation exchange polyacrylate hydrogel kaolin composites for heavy metals removal. This type of composite enables desirable characteristics and functions including mechanical strength, bed porosity and cost advantages. This paper emphasizes the effect of varying crosslinker (methylenebis(acrylamide)) concentration. The prepared cation exchanger has been subjected to intensive characterization using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF) and Brunauer Emmett and Teller (BET) method. Moreover, the performance was investigated using synthetic and real wastewater for an industrial complex east of Cairo. Simulated and real wastewater compositions addressed; Cr, Co, Ni, and Pb are in the range of (92-115), (91-103), (86-88) and (99-125), respectively. Adsorption experiments have been conducted in both batch and column modes. In general, batch tests revealed enhanced cation exchange capacities of 70, 72, 78.2 and 99.9 mg/g from single synthetic wastes while, removal efficiencies of 82.2, 86.4, 44.4 and 96% were obtained for Cr, Co, Ni and Pb, respectively from mixed synthetic wastes. It is concluded that the mixed synthetic and real wastewaters have lower adsorption capacities than single solutions. It is worth mentioned that Pb attained higher adsorption capacities with comparable results in all tested concentrations of synthetic and real wastewaters. Pilot scale experiments were also conducted for mixed synthetic waste in a fluidized bed column for 48 hour cycle time which revealed 86.4%, 58.5%, 66.8% and 96.9% removal efficiency for Cr, Co, Ni, and Pb, respectively with maximum regeneration was also conducted using saline and acid regenerants. Maximum regeneration efficiencies for the column studies higher than the batch ones about by about 30% to 60%. Studies are currently under way to enhance the regeneration efficiency to enable successful scaling up of the adsorption column. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyacrylate%20hydrogel%20kaolin" title="polyacrylate hydrogel kaolin">polyacrylate hydrogel kaolin</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20irradiation" title=" ultrasonic irradiation"> ultrasonic irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20and%20regeneration" title=" adsorption and regeneration"> adsorption and regeneration</a> </p> <a href="https://publications.waset.org/abstracts/99198/development-characterization-and-performance-evaluation-of-a-weak-cation-exchange-hydrogel-using-ultrasonic-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Recovery of Boron from Industrial Wastewater by Chemical Oxo-Precipitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yao-Hui%20Huang">Yao-Hui Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Chun%20Yen"> Ming-Chun Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jui-Yen%20Lin"> Jui-Yen Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Jen%20Shih"> Yu-Jen Shih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work investigated the reclamation of boron in industrial wastewaters by a chemical oxo-precipitation (COP) technique at room temperature. In COP, the boric acid was pretreated with H₂O₂, yielding various perborate anions. Afterwards, calcium chloride was used to efficiently remove boron through precipitation of calcium perborate. The important factors included reacted pH and the molar ratio of [Ca]/[B]. Under conditions of pH 11 and [Ca]/[B] of 1, the boron concentration could be reduced immediately from 600 ppm to 50 ppm in 10 minutes. The boron removal was enhanced with a higher [Ca]/[B], which further reduced boron to 20 ppm in 10 minutes. Nevertheless, the dissolution of carbon dioxide potentially affected the efficacy of COP and increased the boron concentration after 10 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxo-precipitation" title="chemical oxo-precipitation">chemical oxo-precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a> </p> <a href="https://publications.waset.org/abstracts/54161/recovery-of-boron-from-industrial-wastewater-by-chemical-oxo-precipitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Synergistic Sorption of Cr(VI) and Cu(II) onto Sweet Potato Vine from Binary Mixtures Cr(VI)-Cu(II)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chang%20Liu">Chang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuria%20Fiol"> Nuria Fiol</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Villaescusa"> Isabel Villaescusa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordi%20Poch"> Jordi Poch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last decades, biosorption has been an alternative to costly wastewaters treatment for metal removal. Most of the literature on metal biosorption was devoted to studying of single metal ions but nowadays studies on multi-components biosorption are booming. Hexavalent chromium is usually found in mixtures with divalent metal ions in industries wastewaters. However, studies on the simultaneous removal of Cr(VI) and divalent metals are hardly found and the cooperative or competitive mechanism governing each metal ions sorption is still unclear. In this work, simultaneous sorption of Cr(VI) and Cu(II) from their binary mixtures by using sweet potato vine (SPV) was investigated. Sweet potato is one of the four major grain crops in China. Each year about 2000 tons of SPV are generated as by-products. SPV could be a low-cost biosorbent for metal ions due to its rich in cellulose and lignin. In this work, the sorption of Cr(VI) and Cu(II) from their binary mixtures solutions was studied by using SPV sorbent. Equilibrium studies were carried out in binary mixtures in which Cr(VI) and Cu(II) concentration was both varied between 0.1 mM and 0.3 mM, Cr(VI) and Cu(II) single solutions were also prepared as comparison. All the experiments were performed at pH 3±0.05 under 30±2°C for 7 days to make sure sorption achieved equilibrium. Results showed that (i) chromium was partially (10.93%-42.04%) eliminated under studied conditions through reduction and sorption of hexavalent and trivalent forms. The presence of Cu(II) exerts a synergistic effect on the overall sorption process in all the cases of the 0.1-0.3 mM binary mixtures concentration range. (ii) Cr(VI) removal by SPV is favoured by the presence of Cu(II) in solution, because more protons needed for Cr(VI) reduction are available due to Cu(II)-proton competition; however sorption of the formed Cr(III) is unfavoured as a result of the competition between Cr(III) and Cu(II) for protons and sorbent active sites. (iii) Copper was partially (9.26%-13.91%) sorbed onto SPV under studied conditions. The presence of Cr(VI) in binary mixtures also exerts a synergistic effect on the Cu(II) removal in all the cases of the 0.1-0.3 mM binary mixtures concentration range. The results of the present work indicate that sweet potato vine can be successfully employed for the simultaneously removal of Cr(VI) and Cu(II) in binary mixtures, taking advantage of the synergistic effect provoked by one of the metal ion to each other, even though the acquisition of higher removal yields has to be further investigated. Acknowledgements—This work has been financially supported by Ministry of Human Resources and Social Security of PRC (Anhui15), Education Department of Anhui Province (KJ2016A270) and Anhui Normal University (2015rcpy33, 2014bsqdjj53). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sweet%20potato%20vine" title="sweet potato vine">sweet potato vine</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium%20reduction" title=" chromium reduction"> chromium reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=divalent%20metal" title=" divalent metal"> divalent metal</a>, <a href="https://publications.waset.org/abstracts/search?q=synergistic%20sorption" title=" synergistic sorption"> synergistic sorption</a> </p> <a href="https://publications.waset.org/abstracts/73432/synergistic-sorption-of-crvi-and-cuii-onto-sweet-potato-vine-from-binary-mixtures-crvi-cuii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Decolorization and Phenol Removal of Palm Oil Mill Effluent by Termite-Associated Yeast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Chaijak">P. Chaijak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lertworapreecha"> M. Lertworapreecha</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Sukkasem"> C. Sukkasem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A huge of dark color palm oil mill effluent (POME) cannot pass the discharge standard. It has been identified as the major contributor to the pollution load into ground water. Here, lignin-degrading yeast isolated from a termite nest was tested to treat the POME. Its lignin-degrading and decolorizing ability was determined. The result illustrated that <em>Galactomyces </em>sp. was successfully grown in POME. The decolorizing test demonstrated that 40% of <em>Galactomyces </em>sp. could reduce the color of POME (50% v/v) about 74-75% in 5 days without nutrient supplement. The result suggested that <em>G. reessii </em>has a potential to apply for decolorizing the dark wastewater like POME and other industrial wastewaters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decolorization" title="decolorization">decolorization</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent" title=" palm oil mill effluent"> palm oil mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=termite" title=" termite"> termite</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a> </p> <a href="https://publications.waset.org/abstracts/64437/decolorization-and-phenol-removal-of-palm-oil-mill-effluent-by-termite-associated-yeast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Potential Ecological Risk Index of the Northern Egyptian Lagoons, South of Mediterranean Sea, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El-Bady">Mohamed El-Bady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Northern Egyptian Lagoons are (from east to west) Bardawil Lagoon, Manzala Lagoon, Burullus Lagoon, Edku Lagoons and Mariute Lagoon. These lagoons have been received the bulk of drainage water from the lands of Delta and from the other coastal areas. Where, the heavy metals can occur in Lagoons environments through a variety of sources, including industries, wastewaters and domestic effluents. The potential ecological risk index (RI) calculation of the bottom sediments of the northern lagoons depends on contamination factor (CF), potential ecological risk factor and proposed toxic response factor (Tr). Each lagoon with special indices according to its conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Northern%20Lagoons" title="Northern Lagoons">Northern Lagoons</a>, <a href="https://publications.waset.org/abstracts/search?q=Nile%20Delta" title=" Nile Delta"> Nile Delta</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20risk%20index" title=" ecological risk index"> ecological risk index</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination%20factor" title=" contamination factor"> contamination factor</a> </p> <a href="https://publications.waset.org/abstracts/48031/potential-ecological-risk-index-of-the-northern-egyptian-lagoons-south-of-mediterranean-sea-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Preparation and Performance Evaluation of Green Chlorine-Free Coagulants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huihui%20Zhang">Huihui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongzhi%20Zhang"> Zhongzhi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coagulation/flocculation is regarded a simple and effective wastewater treatment technology. Chlorine-containing coagulants may release chloride ions into the wastewater, causing corrosion. A green chlorine-free coagulant of polyaluminum ferric silicate (PSAF) was prepared by the copolymerization method to treat oily refractory wastewaters. Results showed that the highest removal efficiency of turbidity and chemical oxygen demand (COD) achieved 97.4% and 93.0% at a dosage of 700 mg/L, respectively. After PSAF coagulation, the chloride ion concentration was also almost the same as that in the raw wastewater. Thus, the chlorine-free coagulant is highly efficient and does not introduce additional chloride ions into the wastewater, avoiding corrosion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coagulation" title="coagulation">coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=chloride-free%20coagulant" title=" chloride-free coagulant"> chloride-free coagulant</a>, <a href="https://publications.waset.org/abstracts/search?q=oily%20refractory%20wastewater" title=" oily refractory wastewater"> oily refractory wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulation%20performance" title=" coagulation performance"> coagulation performance</a> </p> <a href="https://publications.waset.org/abstracts/138079/preparation-and-performance-evaluation-of-green-chlorine-free-coagulants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> The Improved Biofuel Cell for Electrical Power Generation from Wastewaters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Kilic">M. S. Kilic</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Korkut"> S. Korkut</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hazer"> B. Hazer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Newly synthesized Polypropylene-g-Polyethylene glycol polymer was first time used for a compartment-less enzymatic fuel cell. Working electrodes based on Polypropylene-g-Polyethylene glycol were operated as unmediated and mediated system (with ferrocene and gold/cobalt oxide nanoparticles). Glucose oxidase and bilirubin oxidase was selected as anodic and cathodic enzyme, respectively. Glucose was used as fuel in a single-compartment and membrane-less cell. Maximum power density was obtained as 0.65 nW cm-2, 65 nW cm-2, and 23500 nW cm-2 from the unmediated, ferrocene and gold/cobalt oxide modified polymeric film, respectively. Power density was calculated to be ~16000 nW cm-2 for undiluted wastewater sample with gold/cobalt oxide nanoparticles including system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilirubin%20oxidase" title="bilirubin oxidase">bilirubin oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20fuel%20cell" title=" enzymatic fuel cell"> enzymatic fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20oxidase" title=" glucose oxidase"> glucose oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/16725/the-improved-biofuel-cell-for-electrical-power-generation-from-wastewaters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wastewaters&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wastewaters&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wastewaters&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wastewaters&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10