CINXE.COM
Spazio di Hilbert - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="it" dir="ltr"> <head> <meta charset="UTF-8"> <title>Spazio di Hilbert - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )itwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","gennaio","febbraio","marzo","aprile","maggio","giugno","luglio","agosto","settembre","ottobre","novembre","dicembre"],"wgRequestId":"ebca0b27-1ba4-43a4-9f14-7752365aa665","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Spazio_di_Hilbert","wgTitle":"Spazio di Hilbert","wgCurRevisionId":141992867,"wgRevisionId":141992867,"wgArticleId":66262,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["P10037 letta da Wikidata","P9621 letta da Wikidata","P1417 letta da Wikidata","P2812 letta da Wikidata","P7554 letta da Wikidata","Voci con codice Thesaurus BNCF","Voci con codice LCCN","Voci con codice GND","Voci con codice BNE","Voci con codice BNF","Voci con codice J9U","Voci con codice NDL","Voci non biografiche con codici di controllo di autorità","Spazi di Hilbert","Algebra multilineare","Teoria degli operatori"],"wgPageViewLanguage": "it","wgPageContentLanguage":"it","wgPageContentModel":"wikitext","wgRelevantPageName":"Spazio_di_Hilbert","wgRelevantArticleId":66262,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"it","pageLanguageDir":"ltr","pageVariantFallbacks":"it"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q190056","wgCheckUserClientHintsHeadersJsApi":["brands","architecture", "bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.coloriDarkMode-default":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp", "ext.gadget.MainPageWikiList","ext.gadget.stru-commonsupload","ext.gadget.HiddenCat","ext.gadget.ReferenceTooltips","ext.gadget.TitoloErrato","ext.gadget.NewSection","ext.gadget.RichiediRevisioneBozza","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=it&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=it&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=it&modules=ext.gadget.coloriDarkMode-default&only=styles&skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=it&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/7/79/Hilbert.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1626"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/7/79/Hilbert.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="1084"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="867"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Spazio di Hilbert - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//it.m.wikipedia.org/wiki/Spazio_di_Hilbert"> <link rel="alternate" type="application/x-wiki" title="Modifica" href="/w/index.php?title=Spazio_di_Hilbert&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (it)"> <link rel="EditURI" type="application/rsd+xml" href="//it.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://it.wikipedia.org/wiki/Spazio_di_Hilbert"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it"> <link rel="alternate" type="application/atom+xml" title="Feed Atom di Wikipedia" href="/w/index.php?title=Speciale:UltimeModifiche&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Spazio_di_Hilbert rootpage-Spazio_di_Hilbert skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Vai al contenuto</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principale" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principale</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principale</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">nascondi</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigazione </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Pagina_principale" title="Visita la pagina principale [z]" accesskey="z"><span>Pagina principale</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Speciale:UltimeModifiche" title="Elenco delle ultime modifiche del sito [r]" accesskey="r"><span>Ultime modifiche</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Speciale:PaginaCasuale" title="Mostra una pagina a caso [x]" accesskey="x"><span>Una voce a caso</span></a></li><li id="n-nearby-pages-title" class="mw-list-item"><a href="/wiki/Speciale:NelleVicinanze"><span>Nelle vicinanze</span></a></li><li id="n-vetrina" class="mw-list-item"><a href="/wiki/Wikipedia:Vetrina"><span>Vetrina</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Aiuto:Aiuto" title="Pagine di aiuto"><span>Aiuto</span></a></li><li id="n-Sportello-informazioni" class="mw-list-item"><a href="/wiki/Aiuto:Sportello_informazioni"><span>Sportello informazioni</span></a></li> </ul> </div> </div> <div id="p-Comunità" class="vector-menu mw-portlet mw-portlet-Comunità" > <div class="vector-menu-heading"> Comunità </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-portal" class="mw-list-item"><a href="/wiki/Portale:Comunit%C3%A0" title="Descrizione del progetto, cosa puoi fare, dove trovare le cose"><span>Portale Comunità</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:Bar"><span>Bar</span></a></li><li id="n-wikipediano" class="mw-list-item"><a href="/wiki/Wikipedia:Wikipediano"><span>Il Wikipediano</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="/wiki/Wikipedia:Contatti"><span>Contatti</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Pagina_principale" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="L'enciclopedia libera" src="/static/images/mobile/copyright/wikipedia-tagline-it.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Speciale:Ricerca" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Cerca in Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Ricerca</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Cerca in Wikipedia" aria-label="Cerca in Wikipedia" autocapitalize="sentences" title="Cerca in Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Speciale:Ricerca"> </div> <button class="cdx-button cdx-search-input__end-button">Ricerca</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Strumenti personali"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Modifica la dimensione, la larghezza e il colore del testo" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Aspetto" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Aspetto</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_it.wikipedia.org&uselang=it" class=""><span>Fai una donazione</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:CreaUtenza&returnto=Spazio+di+Hilbert" title="Si consiglia di registrarsi e di effettuare l'accesso, anche se non è obbligatorio" class=""><span>registrati</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:Entra&returnto=Spazio+di+Hilbert" title="Si consiglia di effettuare l'accesso, anche se non è obbligatorio [o]" accesskey="o" class=""><span>entra</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Altre opzioni" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti personali" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Strumenti personali</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu utente" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_it.wikipedia.org&uselang=it"><span>Fai una donazione</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:CreaUtenza&returnto=Spazio+di+Hilbert" title="Si consiglia di registrarsi e di effettuare l'accesso, anche se non è obbligatorio"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>registrati</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:Entra&returnto=Spazio+di+Hilbert" title="Si consiglia di effettuare l'accesso, anche se non è obbligatorio [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>entra</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pagine per utenti anonimi <a href="/wiki/Aiuto:Benvenuto" aria-label="Ulteriori informazioni sulla contribuzione"><span>ulteriori informazioni</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Speciale:MieiContributi" title="Un elenco delle modifiche fatte da questo indirizzo IP [y]" accesskey="y"><span>contributi</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Speciale:MieDiscussioni" title="Discussioni sulle modifiche fatte da questo indirizzo IP [n]" accesskey="n"><span>discussioni</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Indice" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Indice</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">nascondi</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Inizio</div> </a> </li> <li id="toc-Storia" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Storia"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Storia</span> </div> </a> <ul id="toc-Storia-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definizione" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definizione"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definizione</span> </div> </a> <ul id="toc-Definizione-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proprietà" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Proprietà"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Proprietà</span> </div> </a> <ul id="toc-Proprietà-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spazi_di_Hilbert_separabili" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Spazi_di_Hilbert_separabili"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Spazi di Hilbert separabili</span> </div> </a> <ul id="toc-Spazi_di_Hilbert_separabili-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spazi_di_Hilbert_in_meccanica_quantistica" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Spazi_di_Hilbert_in_meccanica_quantistica"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Spazi di Hilbert in meccanica quantistica</span> </div> </a> <ul id="toc-Spazi_di_Hilbert_in_meccanica_quantistica-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Esempi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Esempi"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Esempi</span> </div> </a> <button aria-controls="toc-Esempi-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Attiva/disattiva la sottosezione Esempi</span> </button> <ul id="toc-Esempi-sublist" class="vector-toc-list"> <li id="toc-Spazi_di_Hilbert_di_dimensione_finita" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spazi_di_Hilbert_di_dimensione_finita"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Spazi di Hilbert di dimensione finita</span> </div> </a> <ul id="toc-Spazi_di_Hilbert_di_dimensione_finita-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Successioni_a_quadrato_sommabile" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Successioni_a_quadrato_sommabile"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Successioni a quadrato sommabile</span> </div> </a> <ul id="toc-Successioni_a_quadrato_sommabile-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lo_spazio_L²" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lo_spazio_L²"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Lo spazio L²</span> </div> </a> <ul id="toc-Lo_spazio_L²-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spazi_di_Sobolev" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Spazi_di_Sobolev"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Spazi di Sobolev</span> </div> </a> <ul id="toc-Spazi_di_Sobolev-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Note" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Note"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Note</span> </div> </a> <ul id="toc-Note-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliografia" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliografia"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Bibliografia</span> </div> </a> <ul id="toc-Bibliografia-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Voci_correlate" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Voci_correlate"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Voci correlate</span> </div> </a> <ul id="toc-Voci_correlate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Altri_progetti" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Altri_progetti"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Altri progetti</span> </div> </a> <ul id="toc-Altri_progetti-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Collegamenti_esterni" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Collegamenti_esterni"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Collegamenti esterni</span> </div> </a> <ul id="toc-Collegamenti_esterni-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Indice" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Mostra/Nascondi l'indice" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Mostra/Nascondi l'indice</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Spazio di Hilbert</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Vai a una voce in un'altra lingua. Disponibile in 59 lingue" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-59" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">59 lingue</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Hilbert-ruimte" title="Hilbert-ruimte - afrikaans" lang="af" hreflang="af" data-title="Hilbert-ruimte" data-language-autonym="Afrikaans" data-language-local-name="afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%81%D8%B6%D8%A7%D8%A1_%D9%87%D9%8A%D9%84%D8%A8%D8%B1%D8%AA" title="فضاء هيلبرت - arabo" lang="ar" hreflang="ar" data-title="فضاء هيلبرت" data-language-autonym="العربية" data-language-local-name="arabo" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Espaciu_de_Hilbert" title="Espaciu de Hilbert - asturiano" lang="ast" hreflang="ast" data-title="Espaciu de Hilbert" data-language-autonym="Asturianu" data-language-local-name="asturiano" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Hilbert_f%C9%99zas%C4%B1" title="Hilbert fəzası - azerbaigiano" lang="az" hreflang="az" data-title="Hilbert fəzası" data-language-autonym="Azərbaycanca" data-language-local-name="azerbaigiano" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%93%D0%B8%D0%BB%D1%8C%D0%B1%D0%B5%D1%80%D1%82_%D0%B0%D1%80%D0%B0%D1%83%D1%8B%D2%93%D1%8B" title="Гильберт арауығы - baschiro" lang="ba" hreflang="ba" data-title="Гильберт арауығы" data-language-autonym="Башҡортса" data-language-local-name="baschiro" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A5%D0%B8%D0%BB%D0%B1%D0%B5%D1%80%D1%82%D0%BE%D0%B2%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE" title="Хилбертово пространство - bulgaro" lang="bg" hreflang="bg" data-title="Хилбертово пространство" data-language-autonym="Български" data-language-local-name="bulgaro" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B9%E0%A6%BF%E0%A6%B2%E0%A6%AC%E0%A6%BE%E0%A6%B0%E0%A7%8D%E0%A6%9F_%E0%A6%9C%E0%A6%97%E0%A7%8E" title="হিলবার্ট জগৎ - bengalese" lang="bn" hreflang="bn" data-title="হিলবার্ট জগৎ" data-language-autonym="বাংলা" data-language-local-name="bengalese" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Espai_de_Hilbert" title="Espai de Hilbert - catalano" lang="ca" hreflang="ca" data-title="Espai de Hilbert" data-language-autonym="Català" data-language-local-name="catalano" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%A8%DB%86%D8%B4%D8%A7%DB%8C%DB%8C%DB%8C_%DA%BE%DB%8C%D9%84%D8%A8%DB%8E%D8%B1%D8%AA" title="بۆشاییی ھیلبێرت - curdo centrale" lang="ckb" hreflang="ckb" data-title="بۆشاییی ھیلبێرت" data-language-autonym="کوردی" data-language-local-name="curdo centrale" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Hilbert%C5%AFv_prostor" title="Hilbertův prostor - ceco" lang="cs" hreflang="cs" data-title="Hilbertův prostor" data-language-autonym="Čeština" data-language-local-name="ceco" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Hilbertrum" title="Hilbertrum - danese" lang="da" hreflang="da" data-title="Hilbertrum" data-language-autonym="Dansk" data-language-local-name="danese" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Hilbertraum" title="Hilbertraum - tedesco" lang="de" hreflang="de" data-title="Hilbertraum" data-language-autonym="Deutsch" data-language-local-name="tedesco" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A7%CF%8E%CF%81%CE%BF%CF%82_%CE%A7%CE%AF%CE%BB%CE%BC%CF%80%CE%B5%CF%81%CF%84" title="Χώρος Χίλμπερτ - greco" lang="el" hreflang="el" data-title="Χώρος Χίλμπερτ" data-language-autonym="Ελληνικά" data-language-local-name="greco" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en badge-Q17437798 badge-goodarticle mw-list-item" title="voce di qualità"><a href="https://en.wikipedia.org/wiki/Hilbert_space" title="Hilbert space - inglese" lang="en" hreflang="en" data-title="Hilbert space" data-language-autonym="English" data-language-local-name="inglese" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Hilberta_spaco" title="Hilberta spaco - esperanto" lang="eo" hreflang="eo" data-title="Hilberta spaco" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Espacio_de_Hilbert" title="Espacio de Hilbert - spagnolo" lang="es" hreflang="es" data-title="Espacio de Hilbert" data-language-autonym="Español" data-language-local-name="spagnolo" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Hilberti_ruum" title="Hilberti ruum - estone" lang="et" hreflang="et" data-title="Hilberti ruum" data-language-autonym="Eesti" data-language-local-name="estone" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Hilberten_espazio" title="Hilberten espazio - basco" lang="eu" hreflang="eu" data-title="Hilberten espazio" data-language-autonym="Euskara" data-language-local-name="basco" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D8%B6%D8%A7%DB%8C_%D9%87%DB%8C%D9%84%D8%A8%D8%B1%D8%AA" title="فضای هیلبرت - persiano" lang="fa" hreflang="fa" data-title="فضای هیلبرت" data-language-autonym="فارسی" data-language-local-name="persiano" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Hilbertin_avaruus" title="Hilbertin avaruus - finlandese" lang="fi" hreflang="fi" data-title="Hilbertin avaruus" data-language-autonym="Suomi" data-language-local-name="finlandese" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Espace_de_Hilbert" title="Espace de Hilbert - francese" lang="fr" hreflang="fr" data-title="Espace de Hilbert" data-language-autonym="Français" data-language-local-name="francese" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Espazo_de_Hilbert" title="Espazo de Hilbert - galiziano" lang="gl" hreflang="gl" data-title="Espazo de Hilbert" data-language-autonym="Galego" data-language-local-name="galiziano" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A8%D7%97%D7%91_%D7%94%D7%99%D7%9C%D7%91%D7%A8%D7%98" title="מרחב הילברט - ebraico" lang="he" hreflang="he" data-title="מרחב הילברט" data-language-autonym="עברית" data-language-local-name="ebraico" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Hilbert-t%C3%A9r" title="Hilbert-tér - ungherese" lang="hu" hreflang="hu" data-title="Hilbert-tér" data-language-autonym="Magyar" data-language-local-name="ungherese" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%80%D5%AB%D5%AC%D5%A2%D5%A5%D6%80%D5%BF%D5%B5%D5%A1%D5%B6_%D5%BF%D5%A1%D6%80%D5%A1%D5%AE%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Հիլբերտյան տարածություն - armeno" lang="hy" hreflang="hy" data-title="Հիլբերտյան տարածություն" data-language-autonym="Հայերեն" data-language-local-name="armeno" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Ruang_Hilbert" title="Ruang Hilbert - indonesiano" lang="id" hreflang="id" data-title="Ruang Hilbert" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonesiano" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Hilbert-r%C3%BAm" title="Hilbert-rúm - islandese" lang="is" hreflang="is" data-title="Hilbert-rúm" data-language-autonym="Íslenska" data-language-local-name="islandese" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E7%A9%BA%E9%96%93" title="ヒルベルト空間 - giapponese" lang="ja" hreflang="ja" data-title="ヒルベルト空間" data-language-autonym="日本語" data-language-local-name="giapponese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%9E%90%EB%B2%A0%EB%A5%B4%ED%8A%B8_%EA%B3%B5%EA%B0%84" title="힐베르트 공간 - coreano" lang="ko" hreflang="ko" data-title="힐베르트 공간" data-language-autonym="한국어" data-language-local-name="coreano" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%93%D0%B8%D0%BB%D1%8C%D0%B1%D0%B5%D1%80%D1%82_%D0%BC%D0%B5%D0%B9%D0%BA%D0%B8%D0%BD%D0%B4%D0%B8%D0%B3%D0%B8" title="Гильберт мейкиндиги - kirghiso" lang="ky" hreflang="ky" data-title="Гильберт мейкиндиги" data-language-autonym="Кыргызча" data-language-local-name="kirghiso" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Hilberto_erdv%C4%97" title="Hilberto erdvė - lituano" lang="lt" hreflang="lt" data-title="Hilberto erdvė" data-language-autonym="Lietuvių" data-language-local-name="lituano" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A5%D0%B8%D0%BB%D0%B1%D0%B5%D1%80%D1%82%D0%B8%D0%B9%D0%BD_%D0%BE%D1%80%D0%BE%D0%BD_%D0%B7%D0%B0%D0%B9" title="Хилбертийн орон зай - mongolo" lang="mn" hreflang="mn" data-title="Хилбертийн орон зай" data-language-autonym="Монгол" data-language-local-name="mongolo" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Ruang_Hilbert" title="Ruang Hilbert - malese" lang="ms" hreflang="ms" data-title="Ruang Hilbert" data-language-autonym="Bahasa Melayu" data-language-local-name="malese" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Hilbertruimte" title="Hilbertruimte - olandese" lang="nl" hreflang="nl" data-title="Hilbertruimte" data-language-autonym="Nederlands" data-language-local-name="olandese" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Hilbertrom" title="Hilbertrom - norvegese nynorsk" lang="nn" hreflang="nn" data-title="Hilbertrom" data-language-autonym="Norsk nynorsk" data-language-local-name="norvegese nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Hilbert-rom" title="Hilbert-rom - norvegese bokmål" lang="nb" hreflang="nb" data-title="Hilbert-rom" data-language-autonym="Norsk bokmål" data-language-local-name="norvegese bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B9%E0%A8%BF%E0%A8%B2%E0%A8%AC%E0%A8%B0%E0%A8%9F_%E0%A8%B8%E0%A8%AA%E0%A9%87%E0%A8%B8" title="ਹਿਲਬਰਟ ਸਪੇਸ - punjabi" lang="pa" hreflang="pa" data-title="ਹਿਲਬਰਟ ਸਪੇਸ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Przestrze%C5%84_Hilberta" title="Przestrzeń Hilberta - polacco" lang="pl" hreflang="pl" data-title="Przestrzeń Hilberta" data-language-autonym="Polski" data-language-local-name="polacco" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%DB%81%D9%84%D8%A8%D8%B1%D9%B9_%D8%B3%D9%BE%DB%8C%D8%B3" title="ہلبرٹ سپیس - Western Punjabi" lang="pnb" hreflang="pnb" data-title="ہلبرٹ سپیس" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Espa%C3%A7o_de_Hilbert" title="Espaço de Hilbert - portoghese" lang="pt" hreflang="pt" data-title="Espaço de Hilbert" data-language-autonym="Português" data-language-local-name="portoghese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Spa%C8%9Biu_Hilbert" title="Spațiu Hilbert - rumeno" lang="ro" hreflang="ro" data-title="Spațiu Hilbert" data-language-autonym="Română" data-language-local-name="rumeno" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%93%D0%B8%D0%BB%D1%8C%D0%B1%D0%B5%D1%80%D1%82%D0%BE%D0%B2%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE" title="Гильбертово пространство - russo" lang="ru" hreflang="ru" data-title="Гильбертово пространство" data-language-autonym="Русский" data-language-local-name="russo" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Hilbert_space" title="Hilbert space - scozzese" lang="sco" hreflang="sco" data-title="Hilbert space" data-language-autonym="Scots" data-language-local-name="scozzese" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Hilbertov_prostor" title="Hilbertov prostor - serbo-croato" lang="sh" hreflang="sh" data-title="Hilbertov prostor" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="serbo-croato" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Hilbert_space" title="Hilbert space - Simple English" lang="en-simple" hreflang="en-simple" data-title="Hilbert space" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Hilbertov_priestor" title="Hilbertov priestor - slovacco" lang="sk" hreflang="sk" data-title="Hilbertov priestor" data-language-autonym="Slovenčina" data-language-local-name="slovacco" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Hilbertov_prostor" title="Hilbertov prostor - sloveno" lang="sl" hreflang="sl" data-title="Hilbertov prostor" data-language-autonym="Slovenščina" data-language-local-name="sloveno" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Hap%C3%ABsira_e_Hilbertit" title="Hapësira e Hilbertit - albanese" lang="sq" hreflang="sq" data-title="Hapësira e Hilbertit" data-language-autonym="Shqip" data-language-local-name="albanese" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A5%D0%B8%D0%BB%D0%B1%D0%B5%D1%80%D1%82%D0%BE%D0%B2_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%BE%D1%80" title="Хилбертов простор - serbo" lang="sr" hreflang="sr" data-title="Хилбертов простор" data-language-autonym="Српски / srpski" data-language-local-name="serbo" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Hilbertrum" title="Hilbertrum - svedese" lang="sv" hreflang="sv" data-title="Hilbertrum" data-language-autonym="Svenska" data-language-local-name="svedese" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Espasyong_Hilbert" title="Espasyong Hilbert - tagalog" lang="tl" hreflang="tl" data-title="Espasyong Hilbert" data-language-autonym="Tagalog" data-language-local-name="tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Hilbert_uzay%C4%B1" title="Hilbert uzayı - turco" lang="tr" hreflang="tr" data-title="Hilbert uzayı" data-language-autonym="Türkçe" data-language-local-name="turco" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%93%D1%96%D0%BB%D1%8C%D0%B1%D0%B5%D1%80%D1%82%D1%96%D0%B2_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%96%D1%80" title="Гільбертів простір - ucraino" lang="uk" hreflang="uk" data-title="Гільбертів простір" data-language-autonym="Українська" data-language-local-name="ucraino" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Gilbert_fazosi" title="Gilbert fazosi - uzbeco" lang="uz" hreflang="uz" data-title="Gilbert fazosi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="uzbeco" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Kh%C3%B4ng_gian_Hilbert" title="Không gian Hilbert - vietnamita" lang="vi" hreflang="vi" data-title="Không gian Hilbert" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamita" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%B8%8C%E5%B0%94%E4%BC%AF%E7%89%B9%E7%A9%BA%E9%97%B4" title="希尔伯特空间 - wu" lang="wuu" hreflang="wuu" data-title="希尔伯特空间" data-language-autonym="吴语" data-language-local-name="wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%B8%8C%E5%B0%94%E4%BC%AF%E7%89%B9%E7%A9%BA%E9%97%B4" title="希尔伯特空间 - cinese" lang="zh" hreflang="zh" data-title="希尔伯特空间" data-language-autonym="中文" data-language-local-name="cinese" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%B8%8C%E7%88%BE%E4%BC%AF%E7%89%B9%E7%A9%BA%E9%96%93" title="希爾伯特空間 - cinese classico" lang="lzh" hreflang="lzh" data-title="希爾伯特空間" data-language-autonym="文言" data-language-local-name="cinese classico" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%9B%82%E6%8B%94%E7%A9%BA%E9%96%93" title="囂拔空間 - cantonese" lang="yue" hreflang="yue" data-title="囂拔空間" data-language-autonym="粵語" data-language-local-name="cantonese" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q190056#sitelinks-wikipedia" title="Modifica collegamenti interlinguistici" class="wbc-editpage">Modifica collegamenti</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespace"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Spazio_di_Hilbert" title="Vedi la voce [c]" accesskey="c"><span>Voce</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussione:Spazio_di_Hilbert" rel="discussion" title="Vedi le discussioni relative a questa pagina [t]" accesskey="t"><span>Discussione</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Cambia versione linguistica" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">italiano</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Visite"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Spazio_di_Hilbert"><span>Leggi</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Spazio_di_Hilbert&veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Spazio_di_Hilbert&action=edit" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Spazio_di_Hilbert&action=history" title="Versioni precedenti di questa pagina [h]" accesskey="h"><span>Cronologia</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Strumenti</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Strumenti</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">nascondi</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Altre opzioni" > <div class="vector-menu-heading"> Azioni </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Spazio_di_Hilbert"><span>Leggi</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Spazio_di_Hilbert&veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Spazio_di_Hilbert&action=edit" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Spazio_di_Hilbert&action=history"><span>Cronologia</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Generale </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Speciale:PuntanoQui/Spazio_di_Hilbert" title="Elenco di tutte le pagine che sono collegate a questa [j]" accesskey="j"><span>Puntano qui</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Speciale:ModificheCorrelate/Spazio_di_Hilbert" rel="nofollow" title="Elenco delle ultime modifiche alle pagine collegate a questa [k]" accesskey="k"><span>Modifiche correlate</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Speciale:PagineSpeciali" title="Elenco di tutte le pagine speciali [q]" accesskey="q"><span>Pagine speciali</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Spazio_di_Hilbert&oldid=141992867" title="Collegamento permanente a questa versione di questa pagina"><span>Link permanente</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Spazio_di_Hilbert&action=info" title="Ulteriori informazioni su questa pagina"><span>Informazioni pagina</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Speciale:Cita&page=Spazio_di_Hilbert&id=141992867&wpFormIdentifier=titleform" title="Informazioni su come citare questa pagina"><span>Cita questa voce</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Speciale:UrlShortener&url=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FSpazio_di_Hilbert"><span>Ottieni URL breve</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Speciale:QrCode&url=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FSpazio_di_Hilbert"><span>Scarica codice QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Stampa/esporta </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Speciale:Libro&bookcmd=book_creator&referer=Spazio+di+Hilbert"><span>Crea un libro</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Speciale:DownloadAsPdf&page=Spazio_di_Hilbert&action=show-download-screen"><span>Scarica come PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Spazio_di_Hilbert&printable=yes" title="Versione stampabile di questa pagina [p]" accesskey="p"><span>Versione stampabile</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In altri progetti </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Hilbert_space" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q190056" title="Collegamento all'elemento connesso dell'archivio dati [g]" accesskey="g"><span>Elemento Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Aspetto</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">nascondi</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Da Wikipedia, l'enciclopedia libera.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="it" dir="ltr"><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Hilbert.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/Hilbert.jpg/220px-Hilbert.jpg" decoding="async" width="220" height="298" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/Hilbert.jpg/330px-Hilbert.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/7/79/Hilbert.jpg 2x" data-file-width="437" data-file-height="592" /></a><figcaption><a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a>.</figcaption></figure> <p>In <a href="/wiki/Matematica" title="Matematica">matematica</a> uno <b>spazio di Hilbert</b> è uno <a href="/wiki/Spazio_vettoriale" title="Spazio vettoriale">spazio vettoriale</a> completo secondo la norma indotta da un certo prodotto scalare. </p><p>La nozione di spazio di Hilbert è stata introdotta dal celebre matematico <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a> all'inizio del <a href="/wiki/XX_secolo" title="XX secolo">XX secolo</a> e ha fornito un enorme contributo allo sviluppo dell'<a href="/wiki/Analisi_funzionale" title="Analisi funzionale">analisi funzionale</a> e <a href="/wiki/Analisi_armonica" title="Analisi armonica">armonica</a>. Il suo interesse principale risiede nella conservazione di alcune proprietà degli spazi euclidei in spazi di funzioni infinito-dimensionali. Grazie alla definizione di spazio di Hilbert è possibile formalizzare la teoria delle <a href="/wiki/Serie_di_Fourier" title="Serie di Fourier">serie di Fourier</a> e generalizzarla a <a href="/wiki/Base_di_uno_spazio_vettoriale" class="mw-redirect" title="Base di uno spazio vettoriale">basi</a> arbitrarie. </p><p>Esso generalizza la nozione di <a href="/wiki/Spazio_euclideo" title="Spazio euclideo">spazio euclideo</a> ed <a href="/wiki/Euristica" title="Euristica">euristicamente</a> uno spazio di Hilbert è un insieme con una struttura lineare (spazio vettoriale) su cui è definito un <a href="/wiki/Prodotto_scalare" title="Prodotto scalare">prodotto scalare</a> (quindi è possibile parlare di <a href="/wiki/Norma_(matematica)" title="Norma (matematica)">norma</a>, <a href="/wiki/Distanza_(matematica)" title="Distanza (matematica)">distanze</a>, <a href="/wiki/Angolo" title="Angolo">angoli</a>, <a href="/wiki/Prodotto_scalare#Ortogonalità" title="Prodotto scalare">ortogonalità</a>) e tale che sia garantita la <a href="/wiki/Spazio_metrico_completo" title="Spazio metrico completo">completezza</a>, ossia che qualunque <a href="/wiki/Successione_di_Cauchy" title="Successione di Cauchy">successione di Cauchy</a> ammetta come <a href="/wiki/Limite_di_una_successione" title="Limite di una successione">limite</a> un elemento dello spazio stesso. Nelle applicazioni i <a href="/wiki/Vettore_(matematica)" title="Vettore (matematica)">vettori</a> elementi di uno spazio di Hilbert sono frequentemente <a href="/wiki/Successione_(matematica)" title="Successione (matematica)">successioni</a> di <a href="/wiki/Numero_complesso" title="Numero complesso">numeri complessi</a> o <a href="/wiki/Funzione_(matematica)" title="Funzione (matematica)">funzioni</a>. </p><p>È cruciale nella formalizzazione matematica della <a href="/wiki/Meccanica_quantistica" title="Meccanica quantistica">meccanica quantistica</a> (si veda la relativa sezione sottostante per maggiori dettagli). </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Storia">Storia</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_di_Hilbert&veaction=edit&section=1" title="Modifica la sezione Storia" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_di_Hilbert&action=edit&section=1" title="Edit section's source code: Storia"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Gli <i>spazi di Hilbert</i> sono stati introdotti da David Hilbert nell'ambito delle <a href="/wiki/Equazione_integrale" title="Equazione integrale">equazioni integrali</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> <a href="/wiki/John_von_Neumann" title="John von Neumann">John von Neumann</a> fu il primo a utilizzare la denominazione <i>der abstrakte Hilbertsche Raum</i> (lo spazio astratto di Hilbert) nel suo celebre lavoro sugli <a href="/wiki/Operatore_hermitiano" class="mw-redirect" title="Operatore hermitiano">operatori hermitiani</a> non limitati del 1929.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Allo stesso von Neumann si deve la comprensione dell'importanza di questa struttura matematica, che egli utilizzò ampiamente nel suo approccio rigoroso alla meccanica quantistica.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> Ben presto, il nome <i>spazio di Hilbert</i> divenne di largo uso nella matematica.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Definizione">Definizione</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_di_Hilbert&veaction=edit&section=2" title="Modifica la sezione Definizione" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_di_Hilbert&action=edit&section=2" title="Edit section's source code: Definizione"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Uno spazio di Hilbert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {H} =(H,\langle \cdot ,\cdot \rangle )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">H</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>H</mi> <mo>,</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mo>⋅<!-- ⋅ --></mo> <mo>,</mo> <mo>⋅<!-- ⋅ --></mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {H} =(H,\langle \cdot ,\cdot \rangle )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/328133d783bcc14a4ae8ce563ad2c78f28ad27af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.234ex; height:2.843ex;" alt="{\displaystyle \mathbf {H} =(H,\langle \cdot ,\cdot \rangle )}"></span> è uno <a href="/wiki/Spazio_vettoriale" title="Spazio vettoriale">spazio vettoriale</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> reale o complesso<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> sul quale è definito un <a href="/wiki/Forma_sesquilineare#Prodotto_interno" title="Forma sesquilineare">prodotto interno</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \cdot ,\cdot \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mo>⋅<!-- ⋅ --></mo> <mo>,</mo> <mo>⋅<!-- ⋅ --></mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \cdot ,\cdot \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a50080b735975d8001c9552ac2134b49ad534c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.137ex; height:2.843ex;" alt="{\displaystyle \langle \cdot ,\cdot \rangle }"></span> tale che, detta <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a15022657616b297a2c995d1b314a3aa3442c0cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.293ex; height:2.176ex;" alt="{\displaystyle \mathrm {d} }"></span> la <a href="/wiki/Distanza_(matematica)" title="Distanza (matematica)">distanza</a> indotta da <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \cdot ,\cdot \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mo>⋅<!-- ⋅ --></mo> <mo>,</mo> <mo>⋅<!-- ⋅ --></mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \cdot ,\cdot \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a50080b735975d8001c9552ac2134b49ad534c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.137ex; height:2.843ex;" alt="{\displaystyle \langle \cdot ,\cdot \rangle }"></span> su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span>, lo <a href="/wiki/Spazio_metrico" title="Spazio metrico">spazio metrico</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (H,\mathrm {d} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>H</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (H,\mathrm {d} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1fd3aa2cc29bb1990371318f9cd6d05af4cf9c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.199ex; height:2.843ex;" alt="{\displaystyle (H,\mathrm {d} )}"></span> sia <a href="/wiki/Spazio_metrico_completo" title="Spazio metrico completo">completo</a>. Uno spazio di Hilbert è dunque uno <a href="/wiki/Spazio_prehilbertiano" title="Spazio prehilbertiano">spazio prehilbertiano</a>, in cui il prodotto interno definisce una <a href="/wiki/Norma_(matematica)" title="Norma (matematica)">norma</a>, attraverso la quale si definisce una distanza che è tale da rendere lo <a href="/wiki/Spazio_metrico" title="Spazio metrico">spazio</a> completo. </p><p>Esplicitamente, detto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> uno <a href="/wiki/Spazio_vettoriale" title="Spazio vettoriale">spazio vettoriale</a> sul <a href="/wiki/Campo_(matematica)" title="Campo (matematica)">campo</a> <a href="/wiki/Numero_reale" title="Numero reale">reale</a> o <a href="/wiki/Numero_complesso" title="Numero complesso">complesso</a> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \cdot ,\cdot \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mo>⋅<!-- ⋅ --></mo> <mo>,</mo> <mo>⋅<!-- ⋅ --></mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \cdot ,\cdot \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a50080b735975d8001c9552ac2134b49ad534c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.137ex; height:2.843ex;" alt="{\displaystyle \langle \cdot ,\cdot \rangle }"></span> un <a href="/wiki/Prodotto_scalare" title="Prodotto scalare">prodotto scalare</a> (nel caso complesso, una <a href="/wiki/Forma_hermitiana" class="mw-redirect" title="Forma hermitiana">forma hermitiana</a>) definito positivo su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span>, allora è naturalmente definita una <a href="/wiki/Norma_(matematica)" title="Norma (matematica)">norma</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\cdot \|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>⋅<!-- ⋅ --></mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\cdot \|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/113f0d8fe6108fc1c5e9802f7c3f634f5480b3d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.004ex; height:2.843ex;" alt="{\displaystyle \|\cdot \|}"></span> sullo stesso spazio ponendo: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|v\|:={\sqrt {\langle v,v\rangle }},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>v</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>v</mi> <mo>,</mo> <mi>v</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|v\|:={\sqrt {\langle v,v\rangle }},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a80001095ae79e1d3cc483e3e6162b2ffaaf8a93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.267ex; height:4.843ex;" alt="{\displaystyle \|v\|:={\sqrt {\langle v,v\rangle }},}"></span></dd></dl> <p>per ogni vettore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v\in V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>∈<!-- ∈ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v\in V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99886ebbde63daa0224fb9bf56fa11b3c8a6f4fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.756ex; height:2.176ex;" alt="{\displaystyle v\in V}"></span>. Con tale norma, lo spazio ha la struttura di <a href="/wiki/Spazio_normato" title="Spazio normato">spazio normato</a>. </p><p>Si può associare a uno spazio normato <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (V,\|\cdot \|)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>V</mi> <mo>,</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>⋅<!-- ⋅ --></mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (V,\|\cdot \|)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4e526bdae005c0e68b3b63affd59ab4a22f8a5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.634ex; height:2.843ex;" alt="{\displaystyle (V,\|\cdot \|)}"></span> una naturale <a href="/wiki/Spazio_metrico" title="Spazio metrico">struttura metrica</a>, ottenuta definendo la <a href="/wiki/Distanza_(matematica)" title="Distanza (matematica)">distanza</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a15022657616b297a2c995d1b314a3aa3442c0cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.293ex; height:2.176ex;" alt="{\displaystyle \mathrm {d} }"></span> come: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} (u,v):=\|u-v\|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>u</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} (u,v):=\|u-v\|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/988412d3c9525bd0f0ba3b77b7dfab6910d94bae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.961ex; height:2.843ex;" alt="{\displaystyle \mathrm {d} (u,v):=\|u-v\|}"></span> per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u,v\in V.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>∈<!-- ∈ --></mo> <mi>V</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u,v\in V.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab9bdfe5b0436db70a05ebf3a408fa0c6fc810b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.766ex; height:2.509ex;" alt="{\displaystyle u,v\in V.}"></span></dd></dl> <p>Secondo la usuale identificazione di uno spazio vettoriale con uno <a href="/wiki/Spazio_affine" title="Spazio affine">spazio affine</a> costruito prendendo come punti i vettori stessi, si pone come distanza tra due vettori la norma della loro differenza. Nel caso in cui la norma derivi da un prodotto scalare, vale dunque la seguente uguaglianza: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} (u,v)={\sqrt {\langle u-v,u-v\rangle }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>u</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mo>,</mo> <mi>u</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} (u,v)={\sqrt {\langle u-v,u-v\rangle }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a1299e5a2716671082a5e12c6622bb0a137a4e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:26.101ex; height:4.843ex;" alt="{\displaystyle \mathrm {d} (u,v)={\sqrt {\langle u-v,u-v\rangle }}.}"></span></dd></dl> <p>La presenza di un prodotto scalare fornisce il modo di definire in generale alcune nozioni proprie dell'ambito degli spazi di Hilbert. Dati due vettori <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u,\,v\in H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>v</mi> <mo>∈<!-- ∈ --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u,\,v\in H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5e6a0164c9ca9b126e5170ce0c69a58abc32750" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.783ex; height:2.509ex;" alt="{\displaystyle u,\,v\in H}"></span>, si può definire l'angolo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> da essi formato mediante la relazione: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos {\theta }={\frac {\langle u,v\rangle }{\|u\|\,\|v\|}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>θ<!-- θ --></mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mrow> <mrow> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>u</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>v</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos {\theta }={\frac {\langle u,v\rangle }{\|u\|\,\|v\|}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9aa075e34298b98ed22da5a329251b4192aa9a6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:16.664ex; height:6.509ex;" alt="{\displaystyle \cos {\theta }={\frac {\langle u,v\rangle }{\|u\|\,\|v\|}}.}"></span></dd></dl> <p>Coerentemente con la precedente definizione, dato un insieme qualsiasi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subset H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>⊂<!-- ⊂ --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subset H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a72856a1bbbdf50aabb6c591ce456fab150491db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.228ex; height:2.176ex;" alt="{\displaystyle K\subset H}"></span>, si definisce il <a href="/wiki/Complemento_ortogonale" class="mw-redirect" title="Complemento ortogonale">complemento ortogonale</a> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> come il <a href="/wiki/Sottospazio_vettoriale" title="Sottospazio vettoriale">sottospazio</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K^{\perp }=\{v\in H\ |\langle u,v\rangle =0\ \forall u\in K\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msup> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>v</mi> <mo>∈<!-- ∈ --></mo> <mi>H</mi> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mn>0</mn> <mtext> </mtext> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>u</mi> <mo>∈<!-- ∈ --></mo> <mi>K</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K^{\perp }=\{v\in H\ |\langle u,v\rangle =0\ \forall u\in K\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/deedc63ebb4ee0a92030d69e2b2eb2be1942f03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.605ex; height:3.176ex;" alt="{\displaystyle K^{\perp }=\{v\in H\ |\langle u,v\rangle =0\ \forall u\in K\}.}"></span></dd></dl> <p>In particolare, due vettori <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> si dicono <a href="/wiki/Perpendicolarit%C3%A0" title="Perpendicolarità">ortogonali</a> se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle u,v\rangle =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle u,v\rangle =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/387ba1508966878a7437d870071b2057ae4a27fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.561ex; height:2.843ex;" alt="{\displaystyle \langle u,v\rangle =0}"></span>, ossia se l'uno è nel complemento ortogonale dell'altro. Inoltre, una famiglia di vettori si dice <a href="/wiki/Base_ortonormale" title="Base ortonormale">ortonormale</a> se i vettori che la compongono sono a due a due ortogonali e hanno norma 1. </p><p>Dati due vettori <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v,e\in H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>,</mo> <mi>e</mi> <mo>∈<!-- ∈ --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v,e\in H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb2cc3700ff2447b5eb574b99a19881da45cef18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.149ex; height:2.509ex;" alt="{\displaystyle v,e\in H}"></span>, si definisce la <i>componente</i> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> lungo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd253103f0876afc68ebead27a5aa9867d927467" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle e}"></span> lo scalare <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle v,e\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>v</mi> <mo>,</mo> <mi>e</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle v,e\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4577dbb18cd6665d24a92fda1451903e3d846572" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.054ex; height:2.843ex;" alt="{\displaystyle \langle v,e\rangle }"></span>, e la <a href="/wiki/Proiezione_(geometria)" title="Proiezione (geometria)">proiezione</a> di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd253103f0876afc68ebead27a5aa9867d927467" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle e}"></span> il vettore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\langle v,e\rangle }{\langle e,e\rangle }}\,e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>v</mi> <mo>,</mo> <mi>e</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mrow> <mrow> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>e</mi> <mo>,</mo> <mi>e</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\langle v,e\rangle }{\langle e,e\rangle }}\,e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb96f5785520182e6110bc1c146a53f923a44153" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:7.361ex; height:6.509ex;" alt="{\displaystyle {\frac {\langle v,e\rangle }{\langle e,e\rangle }}\,e}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Proprietà"><span id="Propriet.C3.A0"></span>Proprietà</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_di_Hilbert&veaction=edit&section=3" title="Modifica la sezione Proprietà" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_di_Hilbert&action=edit&section=3" title="Edit section's source code: Proprietà"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Le proprietà seguenti, valide per gli <a href="/wiki/Spazio_euclideo" title="Spazio euclideo">spazi euclidei</a>, si estendono anche agli spazi di Hilbert. </p> <ul><li>Vale la <a href="/wiki/Disuguaglianza_di_Cauchy-Schwarz" title="Disuguaglianza di Cauchy-Schwarz">disuguaglianza di Cauchy-Schwarz</a>:</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\left\langle v,w\right\rangle |^{2}\leq \left\langle v,v\right\rangle \left\langle w,w\right\rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow> <mo>⟨</mo> <mrow> <mi>v</mi> <mo>,</mo> <mi>w</mi> </mrow> <mo>⟩</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>≤<!-- ≤ --></mo> <mrow> <mo>⟨</mo> <mrow> <mi>v</mi> <mo>,</mo> <mi>v</mi> </mrow> <mo>⟩</mo> </mrow> <mrow> <mo>⟨</mo> <mrow> <mi>w</mi> <mo>,</mo> <mi>w</mi> </mrow> <mo>⟩</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\left\langle v,w\right\rangle |^{2}\leq \left\langle v,v\right\rangle \left\langle w,w\right\rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d4ee5a03cccd5953cfc7e9d2009797f601e880e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.547ex; height:3.343ex;" alt="{\displaystyle |\left\langle v,w\right\rangle |^{2}\leq \left\langle v,v\right\rangle \left\langle w,w\right\rangle .}"></span></dd></dl></dd></dl> <ul><li>La norma indotta dal prodotto scalare soddisfa l'<a href="/wiki/Legge_del_parallelogramma" title="Legge del parallelogramma">identità del parallelogramma</a>:</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|v+w\|^{2}+\|v-w\|^{2}=2\|v\|^{2}+2\|w\|^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>v</mi> <mo>+</mo> <mi>w</mi> <msup> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>v</mi> <mo>−<!-- − --></mo> <mi>w</mi> <msup> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>2</mn> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>v</mi> <msup> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>w</mi> <msup> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|v+w\|^{2}+\|v-w\|^{2}=2\|v\|^{2}+2\|w\|^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e28514e3552b8f1a68d187f7d969f6d643d354ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.324ex; height:3.176ex;" alt="{\displaystyle \|v+w\|^{2}+\|v-w\|^{2}=2\|v\|^{2}+2\|w\|^{2}.}"></span></dd></dl></dd></dl> <ul><li>Vale il <a href="/wiki/Teorema_di_Pitagora" title="Teorema di Pitagora">teorema di Pitagora</a> (sotto il nome di <a href="/wiki/Identit%C3%A0_di_Parseval" title="Identità di Parseval">identità di Parseval</a>), ovvero se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{v_{k}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{v_{k}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4280d14d6302d784391afb2edd2c9ecdaafdfb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.541ex; height:2.843ex;" alt="{\displaystyle \{v_{k}\}}"></span> è una successione di vettori a due a due ortogonali si ha:</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|\sum _{k=1}^{\infty }v_{k}\right\|^{2}=\sum _{k=1}^{\infty }\|v_{k}\|^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo symmetric="true">‖</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mo symmetric="true">‖</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|\sum _{k=1}^{\infty }v_{k}\right\|^{2}=\sum _{k=1}^{\infty }\|v_{k}\|^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d78894bd427eccd86e45e7754518f064eab0979" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.42ex; height:7.676ex;" alt="{\displaystyle \left\|\sum _{k=1}^{\infty }v_{k}\right\|^{2}=\sum _{k=1}^{\infty }\|v_{k}\|^{2}.}"></span></dd></dl></dd></dl> <ul><li>Per spazi di Hilbert sui complessi, vale l'identità di polarizzazione:<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup></li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle v,w\rangle ={\frac {1}{4}}\left(||v+w||^{2}-||v-w||^{2}+i||v+iw||^{2}-i||v-iw||^{2}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>v</mi> <mo>,</mo> <mi>w</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>v</mi> <mo>+</mo> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>v</mi> <mo>−<!-- − --></mo> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>v</mi> <mo>+</mo> <mi>i</mi> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>v</mi> <mo>−<!-- − --></mo> <mi>i</mi> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle v,w\rangle ={\frac {1}{4}}\left(||v+w||^{2}-||v-w||^{2}+i||v+iw||^{2}-i||v-iw||^{2}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8b5d2512c09565e6ce1fe0f9ef4b75b80731fb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:63.755ex; height:5.176ex;" alt="{\displaystyle \langle v,w\rangle ={\frac {1}{4}}\left(||v+w||^{2}-||v-w||^{2}+i||v+iw||^{2}-i||v-iw||^{2}\right).}"></span></dd></dl></dd></dl> <ul><li>Vale la <a href="/wiki/Disuguaglianza_di_Bessel" title="Disuguaglianza di Bessel">disuguaglianza di Bessel</a>, ovvero se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{e_{n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{e_{n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b317b7b77905703972faebf73d6af0a5c9db74dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.627ex; height:2.843ex;" alt="{\displaystyle \{e_{n}\}}"></span> è un <a href="/wiki/Insieme_numerabile" title="Insieme numerabile">insieme numerabile</a> di vettori ortonormali allora per ogni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> vale:</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle v,v\rangle =\|v\|^{2}\geq \sum _{k=1}^{\infty }|\langle v,e_{k}\rangle |^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>v</mi> <mo>,</mo> <mi>v</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>v</mi> <msup> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>≥<!-- ≥ --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>v</mi> <mo>,</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle v,v\rangle =\|v\|^{2}\geq \sum _{k=1}^{\infty }|\langle v,e_{k}\rangle |^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebe2016b64ee9606528dbbda8967ac1f1b48cdaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:28.682ex; height:6.843ex;" alt="{\displaystyle \langle v,v\rangle =\|v\|^{2}\geq \sum _{k=1}^{\infty }|\langle v,e_{k}\rangle |^{2}.}"></span></dd></dl></dd></dl> <ul><li>Ogni spazio di Hilbert è naturalmente uno <a href="/wiki/Spazio_di_Banach" title="Spazio di Banach">spazio di Banach</a>. Viceversa, uno spazio di Banach è anche di Hilbert <a href="/wiki/Se_e_solo_se" title="Se e solo se">se e solo se</a> la sua norma è indotta da un prodotto scalare, o, equivalentemente, se esso è <i>autoduale</i> (ossia, se esso si può identificare con il suo <a href="/wiki/Spazio_duale" title="Spazio duale">spazio duale</a>).</li> <li>Ogni spazio di Hilbert ha una <a href="/wiki/Base_ortonormale" title="Base ortonormale">base ortonormale</a>, detta solitamente <a href="/wiki/Base_hilbertiana" class="mw-redirect" title="Base hilbertiana">base hilbertiana</a>. Una tale base è un insieme di vettori ortonormali, che <a href="/wiki/Span_lineare" class="mw-redirect" title="Span lineare">generano</a> un sottospazio <a href="/wiki/Insieme_denso" title="Insieme denso">denso</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Spazi_di_Hilbert_separabili">Spazi di Hilbert separabili</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_di_Hilbert&veaction=edit&section=4" title="Modifica la sezione Spazi di Hilbert separabili" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_di_Hilbert&action=edit&section=4" title="Edit section's source code: Spazi di Hilbert separabili"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Uno <a href="/wiki/Spazio_topologico" title="Spazio topologico">spazio topologico</a> è detto <a href="/wiki/Spazio_separabile" title="Spazio separabile">separabile</a> se contiene un sottoinsieme <a href="/wiki/Insieme_denso" title="Insieme denso">denso</a> e <a href="/wiki/Insieme_numerabile" title="Insieme numerabile">numerabile</a>. Gli spazi di Hilbert finito dimensionali sono sempre separabili. Nel caso infinito dimensionale, invece, ci sono sia esempi di spazi separabili sia di non separabili. I primi sono di grande interesse nelle applicazioni, e su di essi si è costruita una teoria piuttosto ricca. Si può informalmente affermare che, tra gli spazi infinito dimensionali, gli spazi di Hilbert separabili sono quelli che più assomigliano agli spazi finito dimensionali, e sono pertanto più facili da studiare. </p><p>Uno spazio di Hilbert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> è separabile se e solo se ha una base ortonormale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> di <a href="/wiki/Cardinalit%C3%A0" title="Cardinalità">cardinalità</a> finita o numerabile. Se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> ha <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> elementi allora <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> è <a href="/wiki/Isomorfismo" title="Isomorfismo">isomorfo</a> a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> oppure <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a53b4e76242764d1bca004168353c380fef25258" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {C} ^{n}}"></span>. Se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> ha un'infinità numerabile di elementi allora <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> è isomorfo allo spazio <a href="/wiki/Spazio_l2" title="Spazio l2"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84708bbc21c20c9834e0e57746dbbc437414c350" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.748ex; height:2.509ex;" alt="{\displaystyle l_{2}}"></span></a>. </p><p>Una base ortonormale è ottenuta applicando l'<a href="/wiki/Algoritmo_di_Gram-Schmidt" class="mw-redirect" title="Algoritmo di Gram-Schmidt">algoritmo di Gram-Schmidt</a> a un insieme denso numerabile. Viceversa, il <a href="/wiki/Span_lineare" class="mw-redirect" title="Span lineare">sottospazio generato</a> da una base ortonormale è un insieme denso nello spazio di Hilbert. In uno spazio di Hilbert provvisto di una base hilbertiana <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{e_{i}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{e_{i}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d45dea23899c892d30b142d73ed0fa19233ee4a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.208ex; height:2.843ex;" alt="{\displaystyle \{e_{i}\}}"></span> numerabile è possibile esprimere ogni vettore, norma o prodotto scalare come somma di una <a href="/wiki/Serie_convergente" title="Serie convergente">serie convergente</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v=\sum _{i=1}^{\infty }\langle v,e_{i}\rangle e_{i}\qquad \|v\|^{2}=\sum _{i=1}^{\infty }|\langle v,e_{i}\rangle |^{2}\qquad \langle v,w\rangle =\sum _{i=1}^{\infty }\langle v,e_{i}\rangle \langle e_{i},w\rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>v</mi> <mo>,</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="2em" /> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>v</mi> <msup> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>v</mi> <mo>,</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="2em" /> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>v</mi> <mo>,</mo> <mi>w</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>v</mi> <mo>,</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>w</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v=\sum _{i=1}^{\infty }\langle v,e_{i}\rangle e_{i}\qquad \|v\|^{2}=\sum _{i=1}^{\infty }|\langle v,e_{i}\rangle |^{2}\qquad \langle v,w\rangle =\sum _{i=1}^{\infty }\langle v,e_{i}\rangle \langle e_{i},w\rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26cd634b418a7bcb743041671b358e81be5b7f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:69.138ex; height:6.843ex;" alt="{\displaystyle v=\sum _{i=1}^{\infty }\langle v,e_{i}\rangle e_{i}\qquad \|v\|^{2}=\sum _{i=1}^{\infty }|\langle v,e_{i}\rangle |^{2}\qquad \langle v,w\rangle =\sum _{i=1}^{\infty }\langle v,e_{i}\rangle \langle e_{i},w\rangle .}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Spazi_di_Hilbert_in_meccanica_quantistica">Spazi di Hilbert in meccanica quantistica</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_di_Hilbert&veaction=edit&section=5" title="Modifica la sezione Spazi di Hilbert in meccanica quantistica" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_di_Hilbert&action=edit&section=5" title="Edit section's source code: Spazi di Hilbert in meccanica quantistica"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Gli spazi di Hilbert hanno un ruolo centrale in <a href="/wiki/Meccanica_quantistica" title="Meccanica quantistica">meccanica quantistica</a>. I <a href="/wiki/Postulati_della_meccanica_quantistica" title="Postulati della meccanica quantistica">postulati della meccanica quantistica</a> vengono formulati (in particolare nell'interpretazione di Copenaghen) facendo uso degli spazi di Hilbert e dei suoi elementi. Riportiamo qui i primi due postulati in forma riassunta, rimandando all'articolo specifico per una trattazione più dettagliata. </p><p>Postulato 1) lo <a href="/wiki/Stato_quantico" title="Stato quantico">stato</a> di un sistema fisico è rappresentato da un elemento di uno spazio di Hilbert (nella <a href="/wiki/Notazione_bra-ket" title="Notazione bra-ket">notazione di Dirac</a> questo viene detto 'ket'); lo stato fisico contiene tutte le informazioni riguardo tutti i parametri fisici che in principio possono essere conosciuti (cioè misurati). Postulato 2) ad ogni parametro fisico misurabile è associato un <a href="/wiki/Operatore_autoaggiunto" title="Operatore autoaggiunto">operatore hermitiano</a> definito sullo spazio di Hilbert degli stati; i possibili risultati della misura sono gli <a href="/wiki/Autovettore_e_autovalore" title="Autovettore e autovalore">autovalori</a> dell'operatore; lo stato del sistema subito dopo una misura è l'<a href="/wiki/Autovettore_e_autovalore" title="Autovettore e autovalore">autovettore</a> dell'operatore (detto anche autostato) corrispondente all'autovalore ottenuto come risultato della misura; se si conosce lo stato del sistema prima della misura, rappresentato da un certo elemento (vettore) dello spazio di Hilbert, non è possibile conoscere il risultato della misura, ma è possibile conoscere la <a href="/wiki/Probabilit%C3%A0" title="Probabilità">probabilità</a> di ogni risultato possibile; in particolare, la probabilità di un risultato possibile della misura (autovalore) è proporzionale alla <a href="/wiki/Proiezione_(geometria)" title="Proiezione (geometria)">proiezione</a> dello stato del sistema prima della misura, sull'autostato dell'operatore corrispondente a tale autovalore. </p> <div class="mw-heading mw-heading2"><h2 id="Esempi">Esempi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_di_Hilbert&veaction=edit&section=6" title="Modifica la sezione Esempi" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_di_Hilbert&action=edit&section=6" title="Edit section's source code: Esempi"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Spazi_di_Hilbert_di_dimensione_finita">Spazi di Hilbert di dimensione finita</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_di_Hilbert&veaction=edit&section=7" title="Modifica la sezione Spazi di Hilbert di dimensione finita" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_di_Hilbert&action=edit&section=7" title="Edit section's source code: Spazi di Hilbert di dimensione finita"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Lo spazio vettoriale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> dei vettori di numeri reali:</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}=(a_{1},a_{2},\ldots ,a_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}=(a_{1},a_{2},\ldots ,a_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cb62d8f50dbfa3c4d1f91297d68820f21db2a3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.366ex; height:2.843ex;" alt="{\displaystyle {\vec {a}}=(a_{1},a_{2},\ldots ,a_{n})}"></span></dd></dl></dd> <dd>con il <i>prodotto scalare euclideo</i>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle {\vec {a}},{\vec {b}}\right\rangle =\sum _{i=1}^{n}a_{i}b_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>⟨</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mo>⟩</mo> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle {\vec {a}},{\vec {b}}\right\rangle =\sum _{i=1}^{n}a_{i}b_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8e9a818409a46a7e8ef3fd443bdb9e70a53cd58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:16.865ex; height:6.843ex;" alt="{\displaystyle \left\langle {\vec {a}},{\vec {b}}\right\rangle =\sum _{i=1}^{n}a_{i}b_{i}}"></span></dd></dl></dd> <dd>è uno spazio di Hilbert reale di <a href="/wiki/Dimensione_(spazio_vettoriale)" title="Dimensione (spazio vettoriale)">dimensione</a> finita <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, detto <a href="/wiki/Spazio_euclideo" title="Spazio euclideo">spazio euclideo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensionale.</dd></dl> <ul><li>Lo spazio vettoriale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a53b4e76242764d1bca004168353c380fef25258" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {C} ^{n}}"></span> dei vettori di numeri complessi:</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}=(a_{1},a_{2},\ldots ,a_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}=(a_{1},a_{2},\ldots ,a_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cb62d8f50dbfa3c4d1f91297d68820f21db2a3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.366ex; height:2.843ex;" alt="{\displaystyle {\vec {a}}=(a_{1},a_{2},\ldots ,a_{n})}"></span></dd></dl></dd> <dd>dotato della forma hermitiana standard: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle {\vec {a}},{\vec {b}}\right\rangle =\sum _{i=1}^{n}a_{i}^{*}b_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>⟨</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mo>⟩</mo> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msubsup> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle {\vec {a}},{\vec {b}}\right\rangle =\sum _{i=1}^{n}a_{i}^{*}b_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d54448fa61c941d38648cd97cfbe43b85afb3c9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.12ex; height:6.843ex;" alt="{\displaystyle \left\langle {\vec {a}},{\vec {b}}\right\rangle =\sum _{i=1}^{n}a_{i}^{*}b_{i}}"></span></dd></dl></dd> <dd>è uno spazio di Hilbert complesso di dimensione finita <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Successioni_a_quadrato_sommabile">Successioni a quadrato sommabile</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_di_Hilbert&veaction=edit&section=8" title="Modifica la sezione Successioni a quadrato sommabile" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_di_Hilbert&action=edit&section=8" title="Edit section's source code: Successioni a quadrato sommabile"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r130657691">body:not(.skin-minerva) .mw-parser-output .vedi-anche{font-size:95%}</style><style data-mw-deduplicate="TemplateStyles:r139142988">.mw-parser-output .hatnote-content{align-items:center;display:flex}.mw-parser-output .hatnote-icon{flex-shrink:0}.mw-parser-output .hatnote-icon img{display:flex}.mw-parser-output .hatnote-text{font-style:italic}body:not(.skin-minerva) .mw-parser-output .hatnote{border:1px solid #CCC;display:flex;margin:.5em 0;padding:.2em .5em}body:not(.skin-minerva) .mw-parser-output .hatnote-text{padding-left:.5em}body.skin-minerva .mw-parser-output .hatnote-icon{padding-right:8px}body.skin-minerva .mw-parser-output .hatnote-icon img{height:auto;width:16px}body.skin--responsive .mw-parser-output .hatnote a.new{color:#d73333}body.skin--responsive .mw-parser-output .hatnote a.new:visited{color:#a55858}</style> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Spazio_l2" title="Spazio l2">Spazio l2</a></b>.</span></div> </div> <p>Lo spazio delle <a href="/wiki/Successione_(matematica)" title="Successione (matematica)">successioni</a> di numeri reali a quadrato sommabile: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l^{2}(\mathbb {R} )=\left\{(x_{n})_{n\in \mathbb {N} },x_{i}\in \mathbb {R} \ {\Bigg |}\ \sum _{k=1}^{\infty }|x_{k}|^{2}<\infty \right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.470em" minsize="2.470em">|</mo> </mrow> </mrow> <mtext> </mtext> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo><</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l^{2}(\mathbb {R} )=\left\{(x_{n})_{n\in \mathbb {N} },x_{i}\in \mathbb {R} \ {\Bigg |}\ \sum _{k=1}^{\infty }|x_{k}|^{2}<\infty \right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33f77ccdc45c81450ab1726c11ba61566ef57ca3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:43.746ex; height:7.509ex;" alt="{\displaystyle l^{2}(\mathbb {R} )=\left\{(x_{n})_{n\in \mathbb {N} },x_{i}\in \mathbb {R} \ {\Bigg |}\ \sum _{k=1}^{\infty }|x_{k}|^{2}<\infty \right\}}"></span></dd></dl> <p>dotato del <a href="/wiki/Prodotto_scalare" title="Prodotto scalare">prodotto scalare</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle (x_{n})_{n\in \mathbb {N} }|(y_{n})_{n\in \mathbb {N} }\rangle =\sum _{k=1}^{\infty }x_{k}y_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle (x_{n})_{n\in \mathbb {N} }|(y_{n})_{n\in \mathbb {N} }\rangle =\sum _{k=1}^{\infty }x_{k}y_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f938466848d8ddd8711a76d6af5a6341bbadb19d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:29.47ex; height:6.843ex;" alt="{\displaystyle \langle (x_{n})_{n\in \mathbb {N} }|(y_{n})_{n\in \mathbb {N} }\rangle =\sum _{k=1}^{\infty }x_{k}y_{k}}"></span></dd></dl> <p>è uno spazio di Hilbert separabile di dimensione infinita. Lo stesso vale per l'analogo complesso: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l^{2}(\mathbb {C} )=\left\{(x_{n})_{n\in \mathbb {N} },x_{i}\in \mathbb {C} \ {\Bigg |}\ \sum _{k=1}^{\infty }|x_{k}|^{2}<\infty \right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.470em" minsize="2.470em">|</mo> </mrow> </mrow> <mtext> </mtext> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo><</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l^{2}(\mathbb {C} )=\left\{(x_{n})_{n\in \mathbb {N} },x_{i}\in \mathbb {C} \ {\Bigg |}\ \sum _{k=1}^{\infty }|x_{k}|^{2}<\infty \right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cbae6191d37d6e32617aed0a308896268d60699" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:43.746ex; height:7.509ex;" alt="{\displaystyle l^{2}(\mathbb {C} )=\left\{(x_{n})_{n\in \mathbb {N} },x_{i}\in \mathbb {C} \ {\Bigg |}\ \sum _{k=1}^{\infty }|x_{k}|^{2}<\infty \right\}}"></span></dd></dl> <p>dotato del <a href="/wiki/Prodotto_hermitiano" class="mw-redirect" title="Prodotto hermitiano">prodotto hermitiano</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle (x_{n})_{n\in \mathbb {N} }|(y_{n})_{n\in \mathbb {N} }\rangle =\sum _{k=1}^{\infty }x_{k}^{*}y_{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msubsup> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle (x_{n})_{n\in \mathbb {N} }|(y_{n})_{n\in \mathbb {N} }\rangle =\sum _{k=1}^{\infty }x_{k}^{*}y_{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6d27e1e576ec2980ab499fa99db126d86d2a032" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:30.117ex; height:6.843ex;" alt="{\displaystyle \langle (x_{n})_{n\in \mathbb {N} }|(y_{n})_{n\in \mathbb {N} }\rangle =\sum _{k=1}^{\infty }x_{k}^{*}y_{k}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Lo_spazio_L²"><span id="Lo_spazio_L.C2.B2"></span>Lo spazio L²</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_di_Hilbert&veaction=edit&section=9" title="Modifica la sezione Lo spazio L²" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_di_Hilbert&action=edit&section=9" title="Edit section's source code: Lo spazio L²"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r130657691"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r139142988"> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Funzione_a_quadrato_sommabile" title="Funzione a quadrato sommabile">Funzione a quadrato sommabile</a></b> e <b><a href="/wiki/Spazio_Lp" title="Spazio Lp">Spazio Lp</a></b>.</span></div> </div> <p>Lo spazio <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> delle <a href="/wiki/Funzione_misurabile" title="Funzione misurabile">funzioni misurabili</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> su un aperto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\subset \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>⊂<!-- ⊂ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\subset \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/318775bb74ed5ea047c4b1208f62992b4a4e4e2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.738ex; height:2.343ex;" alt="{\displaystyle A\subset \mathbb {R} ^{n}}"></span>, a valori complessi e di <i>quadrato sommabile</i>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V=\left\{f:A\longrightarrow \mathbb {C} \ {\Bigg |}\ \int _{A}|f(x)|^{2}dx<\infty \right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mi>f</mi> <mo>:</mo> <mi>A</mi> <mo stretchy="false">⟶<!-- ⟶ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.470em" minsize="2.470em">|</mo> </mrow> </mrow> <mtext> </mtext> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo><</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V=\left\{f:A\longrightarrow \mathbb {C} \ {\Bigg |}\ \int _{A}|f(x)|^{2}dx<\infty \right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64a898ba7ff083df6a93f22e2aabe7042d50c7d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:40.178ex; height:6.176ex;" alt="{\displaystyle V=\left\{f:A\longrightarrow \mathbb {C} \ {\Bigg |}\ \int _{A}|f(x)|^{2}dx<\infty \right\}}"></span></dd></dl> <p>è uno spazio vettoriale complesso, e la forma: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f,g\rangle =\int _{A}f(x)^{*}g(x)dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle f,g\rangle =\int _{A}f(x)^{*}g(x)dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebbbc4ba3daf23aaf41169562c18e6a92a5d79d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.753ex; height:5.676ex;" alt="{\displaystyle \langle f,g\rangle =\int _{A}f(x)^{*}g(x)dx}"></span></dd></dl> <p>è <a href="/wiki/Forma_sesquilineare" title="Forma sesquilineare">hermitiana</a>. Tale spazio non è però di Hilbert, poiché la forma hermitiana è solo <i>semi-definita positiva</i>: esistono infatti funzioni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> non nulle, ma tali che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f,f\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>f</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle f,f\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/414d9ab6f4b66826c083908416f14dbc115e6e25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.4ex; height:2.843ex;" alt="{\displaystyle \langle f,f\rangle }"></span> è nullo. Ad esempio una funzione che vale 1 su un punto fissato di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, e 0 in tutti gli altri punti di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> ha questa proprietà (più in generale, l'integrale di una funzione che vale 0 fuori di un <a href="/wiki/Insieme_di_misura_nulla" class="mw-redirect" title="Insieme di misura nulla">insieme di misura nulla</a> ha integrale nullo). </p><p>Per ovviare a questo problema, si definisce lo spazio come quoziente di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> tramite la <a href="/wiki/Relazione_di_equivalenza" title="Relazione di equivalenza">relazione di equivalenza</a> che identifica due funzioni misurabili se differiscono solo su un insieme di misura nulla. La proiezione della forma hermitiana <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \cdot ,\cdot \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mo>⋅<!-- ⋅ --></mo> <mo>,</mo> <mo>⋅<!-- ⋅ --></mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \cdot ,\cdot \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a50080b735975d8001c9552ac2134b49ad534c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.137ex; height:2.843ex;" alt="{\displaystyle \langle \cdot ,\cdot \rangle }"></span> su questo spazio è definita positiva, e la struttura che ne risulta è uno spazio di Hilbert, che viene indicato con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}(A,\mathbb {C} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}(A,\mathbb {C} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ee82407beca02480dfdbdfc77335bfe61452fb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.901ex; height:3.176ex;" alt="{\displaystyle L^{2}(A,\mathbb {C} )}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Spazi_di_Sobolev">Spazi di Sobolev</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_di_Hilbert&veaction=edit&section=10" title="Modifica la sezione Spazi di Sobolev" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_di_Hilbert&action=edit&section=10" title="Edit section's source code: Spazi di Sobolev"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Gli elementi di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba162c66ca85776c83557af5088cc6f8584d1912" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.637ex; height:2.676ex;" alt="{\displaystyle L^{2}}"></span> non sono, in generale, <a href="/wiki/Funzione_continua" title="Funzione continua">funzioni continue</a>. Per questo motivo non è possibile definirne direttamente la derivata, che deve essere definita quindi in maniera diversa. Lo spazio delle funzioni derivabili debolmente <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> volte viene indicato tramite <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H^{k}(A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H^{k}(A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1881c081a70445931b01371b9a8d0e04cffc7dae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.745ex; height:3.176ex;" alt="{\displaystyle H^{k}(A)}"></span>. Di questi tipi di spazi si occupa la teoria degli <a href="/wiki/Spazio_di_Sobolev" title="Spazio di Sobolev">spazi di Sobolev</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Note">Note</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_di_Hilbert&veaction=edit&section=11" title="Modifica la sezione Note" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_di_Hilbert&action=edit&section=11" title="Edit section's source code: Note"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><a href="#cite_ref-1"><b>^</b></a> <span class="reference-text">Per un'introduzione storica più dettagliata al contesto intellettuale in cui sono nate le idee che hanno dato vita allo studio degli <i>spazi di Hilbert</i>, si veda Boyer <i>History of Mathematics</i> capp. 27 e 28.</span> </li> <li id="cite_note-2"><a href="#cite_ref-2"><b>^</b></a> <span class="reference-text">von Neumann J. <i>Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren</i>.</span> </li> <li id="cite_note-3"><a href="#cite_ref-3"><b>^</b></a> <span class="reference-text">Nell'approccio di von Neumann, la meccanica quantistica viene studiata mediante <a href="/wiki/C*-algebra" title="C*-algebra">C<sup>*</sup>-algebre</a>. Tuttavia ogni C<sup>*</sup>-algebra è una sottoalgebra dell'algebra degli operatori limitati su di uno spazio di Hilbert. Di qui l'importanza di tali spazi in questo contesto. È interessante notare che questo approccio alla meccanica quantistica è stato cominciato da von Neumann proprio insieme con Hilbert.</span> </li> <li id="cite_note-4"><a href="#cite_ref-4"><b>^</b></a> <span class="reference-text">Dopo Von Neumann, uno dei primi usi documentati del nome <i>spazio di Hilbert</i> si trova in Weyl, <i>The Theory of Groups and Quantum Mechanics</i>.</span> </li> <li id="cite_note-5"><a href="#cite_ref-5"><b>^</b></a> <span class="reference-text">Per semplicità, si omettono nella definizione la presenza delle operazioni di somma e moltiplicazione per scalari proprie di uno spazio vettoriale, e si identifica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> con l'insieme stesso su cui lo spazio vettoriale è costruito.</span> </li> <li id="cite_note-6"><a href="#cite_ref-6"><b>^</b></a> <span class="reference-text">Le convenzioni usate da fisici e matematici per il prodotto scalare complesso non è concorde: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (ax,by)=ab^{*}(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>,</mo> <mi>b</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (ax,by)=ab^{*}(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9da7ce9fb9655d42c4594e1b643ab1ff17c8de8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.264ex; height:2.843ex;" alt="{\displaystyle (ax,by)=ab^{*}(x,y)}"></span> per i matematici mentre <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (ax,by)=a^{*}b(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>,</mo> <mi>b</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mi>b</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (ax,by)=a^{*}b(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b079601b7caed541d9f7867acf9ef5e807437709" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.264ex; height:2.843ex;" alt="{\displaystyle (ax,by)=a^{*}b(x,y)}"></span> per i fisici (l'asterisco indica il complesso coniugato). Tale discrepanza è dovuta ai formalismi bra-ket di <a href="/wiki/Paul_Dirac" title="Paul Dirac">Paul Dirac</a> usati nella meccanica quantistica. Per cui secondo la sua convenzione l'identità di polarizzazione diviene <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle v,w\rangle ={\frac {1}{4}}\left(||v+w||^{2}-||v-w||^{2}-i||v+iw||^{2}+i||v-iw||^{2}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>v</mi> <mo>,</mo> <mi>w</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>v</mi> <mo>+</mo> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>v</mi> <mo>−<!-- − --></mo> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>v</mi> <mo>+</mo> <mi>i</mi> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>v</mi> <mo>−<!-- − --></mo> <mi>i</mi> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle v,w\rangle ={\frac {1}{4}}\left(||v+w||^{2}-||v-w||^{2}-i||v+iw||^{2}+i||v-iw||^{2}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6459163e58face2b438575a3c33dae84f184c547" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:62.721ex; height:5.176ex;" alt="{\displaystyle \langle v,w\rangle ={\frac {1}{4}}\left(||v+w||^{2}-||v-w||^{2}-i||v+iw||^{2}+i||v-iw||^{2}\right)}"></span></dd></dl> </span></li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Bibliografia">Bibliografia</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_di_Hilbert&veaction=edit&section=12" title="Modifica la sezione Bibliografia" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_di_Hilbert&action=edit&section=12" title="Edit section's source code: Bibliografia"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Carl B. Boyer, <a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema0000boye_y4y8"><span style="font-style:italic;">History of Mathematics</span></a>, 2nd edition, New York, <a href="/wiki/John_Wiley_%26_Sons" title="John Wiley & Sons">John Wiley & Sons</a>, 1989, <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Speciale:RicercaISBN/0-471-54397-7" title="Speciale:RicercaISBN/0-471-54397-7">0-471-54397-7</a>.</cite></li> <li><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Jean Dieudonné, <span style="font-style:italic;">Foundations of Modern Analysis</span>, Academic Press, 1960.</cite></li> <li><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Avner Friedman, <a rel="nofollow" class="external text" href="https://archive.org/details/foundationsofmod0000frie_j3p0"><span style="font-style:italic;">Foundations of Modern Analysis</span></a>, New York, Courier Dover Publications, 1982 <abbr title="Data di edizione originale">[1970]</abbr>, <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Speciale:RicercaISBN/0-486-64062-0" title="Speciale:RicercaISBN/0-486-64062-0">0-486-64062-0</a>.</cite></li> <li><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="tedesco">DE</abbr></span>) <a href="/wiki/John_von_Neumann" title="John von Neumann">John von Neumann</a>, <span style="font-style:italic;">Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren</span>, in <span style="font-style:italic;">Mathematische Annalen</span>, vol. 102, 1929, pp. 49-131.</cite></li> <li><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Hermann Weyl</a>, <a rel="nofollow" class="external text" href="https://archive.org/details/theoryofgroupsqu0000weyl"><span style="font-style:italic;">The Theory of Groups and Quantum Mechanics</span></a>, a cura di Dover Press, 1950 <abbr title="Data di edizione originale">[1931]</abbr>, <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Speciale:RicercaISBN/0-486-60269-9" title="Speciale:RicercaISBN/0-486-60269-9">0-486-60269-9</a>.</cite></li> <li><cite id="CITEREFrudin" class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Walter Rudin, <span style="font-style:italic;">Real and Complex Analysis</span>, Mladinska Knjiga, <a href="/wiki/McGraw-Hill_Education" title="McGraw-Hill Education">McGraw-Hill</a>, 1970, <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Speciale:RicercaISBN/0-07-054234-1" title="Speciale:RicercaISBN/0-07-054234-1">0-07-054234-1</a>.</cite></li></ul> <div class="mw-heading mw-heading2"><h2 id="Voci_correlate">Voci correlate</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_di_Hilbert&veaction=edit&section=13" title="Modifica la sezione Voci correlate" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_di_Hilbert&action=edit&section=13" title="Edit section's source code: Voci correlate"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Forma_sesquilineare" title="Forma sesquilineare">Forma sesquilineare</a></li> <li><a href="/wiki/Prodotto_scalare" title="Prodotto scalare">Prodotto scalare</a></li> <li><a href="/wiki/Spazio_di_Banach" title="Spazio di Banach">Spazio di Banach</a></li> <li><a href="/wiki/Spazio_duale" title="Spazio duale">Spazio duale</a></li> <li><a href="/wiki/Spazio_metrico" title="Spazio metrico">Spazio metrico</a></li> <li><a href="/wiki/Spazio_prehilbertiano" title="Spazio prehilbertiano">Spazio prehilbertiano</a></li> <li><a href="/wiki/Spazio_vettoriale" title="Spazio vettoriale">Spazio vettoriale</a></li> <li><a href="/wiki/Spazio_vettoriale_topologico" title="Spazio vettoriale topologico">Spazio vettoriale topologico</a></li> <li><a href="/wiki/Spazio_di_Hilbert_allargato" title="Spazio di Hilbert allargato">Spazio di Hilbert allargato</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Altri_progetti">Altri progetti</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_di_Hilbert&veaction=edit&section=14" title="Modifica la sezione Altri progetti" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_di_Hilbert&action=edit&section=14" title="Edit section's source code: Altri progetti"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <div id="interProject" class="toccolours" style="display: none; clear: both; margin-top: 2em"><p id="sisterProjects" style="background-color: #efefef; color: black; font-weight: bold; margin: 0"><span>Altri progetti</span></p><ul title="Collegamenti verso gli altri progetti Wikimedia"> <li class="" title=""><span class="plainlinks" title="commons:Category:Hilbert space"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Hilbert_space?uselang=it">Wikimedia Commons</a></span></li></ul></div> <ul><li><span typeof="mw:File"><a href="https://commons.wikimedia.org/wiki/?uselang=it" title="Collabora a Wikimedia Commons"><img alt="Collabora a Wikimedia Commons" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png" decoding="async" width="18" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/27px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/36px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> <span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/?uselang=it">Wikimedia Commons</a></span> contiene immagini o altri file sullo <b><span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Hilbert_space?uselang=it">spazio di Hilbert</a></span></b></li></ul> <div class="mw-heading mw-heading2"><h2 id="Collegamenti_esterni">Collegamenti esterni</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spazio_di_Hilbert&veaction=edit&section=15" title="Modifica la sezione Collegamenti esterni" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spazio_di_Hilbert&action=edit&section=15" title="Edit section's source code: Collegamenti esterni"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li class="mw-empty-elt"></li> <li><cite id="CITEREFEnciclopedia_della_scienza_e_della_tecnica" class="citation libro" style="font-style:normal"> Arrigo Cellina, <a rel="nofollow" class="external text" href="https://www.treccani.it/enciclopedia/spazio-di-hilbert_(Enciclopedia-della-Scienza-e-della-Tecnica)/"><span style="font-style:italic;">spazio di Hilbert</span></a>, in <span style="font-style:italic;">Enciclopedia della scienza e della tecnica</span>, <a href="/wiki/Istituto_dell%27Enciclopedia_Italiana" title="Istituto dell'Enciclopedia Italiana">Istituto dell'Enciclopedia Italiana</a>, 2007-2008.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q190056#P10037" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFEnciclopedia_della_Matematica" class="citation libro" style="font-style:normal"> <a rel="nofollow" class="external text" href="https://www.treccani.it/enciclopedia/spazio-di-hilbert_(Enciclopedia-della-Matematica)/"><span style="font-style:italic;">Hilbert, spazio di</span></a>, in <span style="font-style:italic;">Enciclopedia della Matematica</span>, <a href="/wiki/Istituto_dell%27Enciclopedia_Italiana" title="Istituto dell'Enciclopedia Italiana">Istituto dell'Enciclopedia Italiana</a>, 2013.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q190056#P9621" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFBritannica.com" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Stephan C. Carlson, <a rel="nofollow" class="external text" href="https://www.britannica.com/topic/Hilbert-space"><span style="font-style:italic;">Hilbert space</span></a>, su <span style="font-style:italic;"><a href="/wiki/Enciclopedia_Britannica" title="Enciclopedia Britannica">Enciclopedia Britannica</a></span>, Encyclopædia Britannica, Inc.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q190056#P1417" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFMathWorld" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Eric W. Weisstein, <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/HilbertSpace.html"><span style="font-style:italic;">Spazio di Hilbert</span></a>, su <span style="font-style:italic;"><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></span>, Wolfram Research.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q190056#P2812" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFSpringerEOM" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://encyclopediaofmath.org/wiki/Hilbert_space"><span style="font-style:italic;">Spazio di Hilbert</span></a>, su <span style="font-style:italic;"><a href="/wiki/Encyclopaedia_of_Mathematics" title="Encyclopaedia of Mathematics">Encyclopaedia of Mathematics</a></span>, Springer e European Mathematical Society.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q190056#P7554" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li>(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170710022616/https://terrytao.wordpress.com/2009/01/17/254a-notes-5-hilbert-spaces/">245B, notes 5: Hilbert spaces</a> by <a href="/wiki/Terence_Tao" title="Terence Tao">Terence Tao</a></li></ul> <style data-mw-deduplicate="TemplateStyles:r140554510">.mw-parser-output .CdA{border:1px solid #aaa;width:100%;margin:auto;font-size:90%;padding:2px}.mw-parser-output .CdA th{background-color:#f2f2f2;font-weight:bold;width:20%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .CdA{border-color:#54595D}html.skin-theme-clientpref-night .mw-parser-output .CdA th{background-color:#202122}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .CdA{border-color:#54595D}html.skin-theme-clientpref-os .mw-parser-output .CdA th{background-color:#202122}}</style><table class="CdA"><tbody><tr><th><a href="/wiki/Aiuto:Controllo_di_autorit%C3%A0" title="Aiuto:Controllo di autorità">Controllo di autorità</a></th><td><a href="/wiki/Nuovo_soggettario" title="Nuovo soggettario">Thesaurus BNCF</a> <span class="uid"><a rel="nofollow" class="external text" href="https://thes.bncf.firenze.sbn.it/termine.php?id=38484">38484</a></span><span style="font-weight:bold;"> ·</span> <a href="/wiki/Library_of_Congress_Control_Number" title="Library of Congress Control Number">LCCN</a> <span class="uid">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="http://id.loc.gov/authorities/subjects/sh85060803">sh85060803</a></span><span style="font-weight:bold;"> ·</span> <a href="/wiki/Gemeinsame_Normdatei" title="Gemeinsame Normdatei">GND</a> <span class="uid">(<span style="font-weight:bolder; font-size:80%"><abbr title="tedesco">DE</abbr></span>) <a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4159850-7">4159850-7</a></span><span style="font-weight:bold;"> ·</span> <a href="/wiki/Biblioteca_nazionale_di_Spagna" title="Biblioteca nazionale di Spagna">BNE</a> <span class="uid">(<span style="font-weight:bolder; font-size:80%"><abbr title="spagnolo">ES</abbr></span>) <a rel="nofollow" class="external text" href="http://catalogo.bne.es/uhtbin/authoritybrowse.cgi?action=display&authority_id=XX531621">XX531621</a> <a rel="nofollow" class="external text" href="http://datos.bne.es/resource/XX531621">(data)</a></span><span style="font-weight:bold;"> ·</span> <a href="/wiki/Biblioteca_nazionale_di_Francia" title="Biblioteca nazionale di Francia">BNF</a> <span class="uid">(<span style="font-weight:bolder; font-size:80%"><abbr title="francese">FR</abbr></span>) <a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb11979628h">cb11979628h</a> <a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb11979628h">(data)</a></span><span style="font-weight:bold;"> ·</span> <a href="/wiki/Biblioteca_nazionale_di_Israele" title="Biblioteca nazionale di Israele">J9U</a> <span class="uid">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr>, <abbr title="ebraico">HE</abbr></span>) <a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007560453005171">987007560453005171</a></span><span style="font-weight:bold;"> ·</span> <a href="/wiki/Biblioteca_della_Dieta_nazionale_del_Giappone" title="Biblioteca della Dieta nazionale del Giappone">NDL</a> <span class="uid">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr>, <abbr title="giapponese">JA</abbr></span>) <a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00563198">00563198</a></span></td></tr></tbody></table> <div class="noprint" style="width:100%; padding: 3px 0; display: flex; flex-wrap: wrap; row-gap: 4px; column-gap: 8px; box-sizing: border-box;"><div style="flex-basis: calc( 100% / 2 - 8px / 2 );"><style data-mw-deduplicate="TemplateStyles:r140555418">.mw-parser-output .itwiki-template-occhiello{width:100%;line-height:25px;border:1px solid #CCF;background-color:#F0EEFF;box-sizing:border-box}.mw-parser-output .itwiki-template-occhiello-progetto{background-color:#FAFAFA}@media screen{html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}</style><div class="itwiki-template-occhiello"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_katomic.svg" class="mw-file-description" title="Fisica"><img alt=" " src="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Nuvola_apps_katomic.svg/25px-Nuvola_apps_katomic.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Nuvola_apps_katomic.svg/38px-Nuvola_apps_katomic.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/55/Nuvola_apps_katomic.svg/50px-Nuvola_apps_katomic.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> <b><a href="/wiki/Portale:Fisica" title="Portale:Fisica">Portale Fisica</a></b></div></div><div style="flex-basis: calc( 100% / 2 - 8px / 2 );"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r140555418"><div class="itwiki-template-occhiello"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Crystal128-kmplot.svg" class="mw-file-description" title="Matematica"><img alt=" " src="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/25px-Crystal128-kmplot.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/38px-Crystal128-kmplot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/af/Crystal128-kmplot.svg/50px-Crystal128-kmplot.svg.png 2x" data-file-width="245" data-file-height="244" /></a></span> <b><a href="/wiki/Portale:Matematica" title="Portale:Matematica">Portale Matematica</a></b></div></div></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐66695f89d8‐xtczj Cached time: 20241119194331 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.404 seconds Real time usage: 0.660 seconds Preprocessor visited node count: 3032/1000000 Post‐expand include size: 20755/2097152 bytes Template argument size: 436/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 10583/5000000 bytes Lua time usage: 0.227/10.000 seconds Lua memory usage: 5237922/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 361.455 1 -total 41.04% 148.336 1 Template:Collegamenti_esterni 13.63% 49.267 2 Template:Vedi_anche 12.77% 46.163 1 Template:Interprogetto 11.74% 42.429 1 Template:Portale 11.66% 42.136 5 Template:Cita_libro 6.45% 23.311 2 Template:Icona_argomento 5.26% 18.995 1 Template:Controllo_di_autorità 1.33% 4.808 1 Template:Cita_pubblicazione 1.26% 4.568 1 Template:En --> <!-- Saved in parser cache with key itwiki:pcache:idhash:66262-0!canonical and timestamp 20241119194331 and revision id 141992867. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Estratto da "<a dir="ltr" href="https://it.wikipedia.org/w/index.php?title=Spazio_di_Hilbert&oldid=141992867">https://it.wikipedia.org/w/index.php?title=Spazio_di_Hilbert&oldid=141992867</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Categoria:Categorie" title="Categoria:Categorie">Categorie</a>: <ul><li><a href="/wiki/Categoria:Spazi_di_Hilbert" title="Categoria:Spazi di Hilbert">Spazi di Hilbert</a></li><li><a href="/wiki/Categoria:Algebra_multilineare" title="Categoria:Algebra multilineare">Algebra multilineare</a></li><li><a href="/wiki/Categoria:Teoria_degli_operatori" title="Categoria:Teoria degli operatori">Teoria degli operatori</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categorie nascoste: <ul><li><a href="/wiki/Categoria:P10037_letta_da_Wikidata" title="Categoria:P10037 letta da Wikidata">P10037 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P9621_letta_da_Wikidata" title="Categoria:P9621 letta da Wikidata">P9621 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P1417_letta_da_Wikidata" title="Categoria:P1417 letta da Wikidata">P1417 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P2812_letta_da_Wikidata" title="Categoria:P2812 letta da Wikidata">P2812 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P7554_letta_da_Wikidata" title="Categoria:P7554 letta da Wikidata">P7554 letta da Wikidata</a></li><li><a href="/wiki/Categoria:Voci_con_codice_Thesaurus_BNCF" title="Categoria:Voci con codice Thesaurus BNCF">Voci con codice Thesaurus BNCF</a></li><li><a href="/wiki/Categoria:Voci_con_codice_LCCN" title="Categoria:Voci con codice LCCN">Voci con codice LCCN</a></li><li><a href="/wiki/Categoria:Voci_con_codice_GND" title="Categoria:Voci con codice GND">Voci con codice GND</a></li><li><a href="/wiki/Categoria:Voci_con_codice_BNE" title="Categoria:Voci con codice BNE">Voci con codice BNE</a></li><li><a href="/wiki/Categoria:Voci_con_codice_BNF" title="Categoria:Voci con codice BNF">Voci con codice BNF</a></li><li><a href="/wiki/Categoria:Voci_con_codice_J9U" title="Categoria:Voci con codice J9U">Voci con codice J9U</a></li><li><a href="/wiki/Categoria:Voci_con_codice_NDL" title="Categoria:Voci con codice NDL">Voci con codice NDL</a></li><li><a href="/wiki/Categoria:Voci_non_biografiche_con_codici_di_controllo_di_autorit%C3%A0" title="Categoria:Voci non biografiche con codici di controllo di autorità">Voci non biografiche con codici di controllo di autorità</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Questa pagina è stata modificata per l'ultima volta il 4 nov 2024 alle 23:26.</li> <li id="footer-info-copyright">Il testo è disponibile secondo la <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it">licenza Creative Commons Attribuzione-Condividi allo stesso modo</a>; possono applicarsi condizioni ulteriori. Vedi le <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/it">condizioni d'uso</a> per i dettagli.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/it">Informativa sulla privacy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Sala_stampa/Wikipedia">Informazioni su Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Avvertenze_generali">Avvertenze</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Codice di condotta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Sviluppatori</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/it.wikipedia.org">Statistiche</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Dichiarazione sui cookie</a></li> <li id="footer-places-mobileview"><a href="//it.m.wikipedia.org/w/index.php?title=Spazio_di_Hilbert&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versione mobile</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-847495b4dd-cvd5h","wgBackendResponseTime":158,"wgPageParseReport":{"limitreport":{"cputime":"0.404","walltime":"0.660","ppvisitednodes":{"value":3032,"limit":1000000},"postexpandincludesize":{"value":20755,"limit":2097152},"templateargumentsize":{"value":436,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":10583,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 361.455 1 -total"," 41.04% 148.336 1 Template:Collegamenti_esterni"," 13.63% 49.267 2 Template:Vedi_anche"," 12.77% 46.163 1 Template:Interprogetto"," 11.74% 42.429 1 Template:Portale"," 11.66% 42.136 5 Template:Cita_libro"," 6.45% 23.311 2 Template:Icona_argomento"," 5.26% 18.995 1 Template:Controllo_di_autorità"," 1.33% 4.808 1 Template:Cita_pubblicazione"," 1.26% 4.568 1 Template:En"]},"scribunto":{"limitreport-timeusage":{"value":"0.227","limit":"10.000"},"limitreport-memusage":{"value":5237922,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-66695f89d8-xtczj","timestamp":"20241119194331","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Spazio di Hilbert","url":"https:\/\/it.wikipedia.org\/wiki\/Spazio_di_Hilbert","sameAs":"http:\/\/www.wikidata.org\/entity\/Q190056","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q190056","author":{"@type":"Organization","name":"Contributori ai progetti Wikimedia"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-12-22T21:05:04Z","dateModified":"2024-11-04T22:26:36Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/7\/79\/Hilbert.jpg","headline":"spazio vettoriale"}</script> </body> </html>