CINXE.COM
Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study
<!DOCTYPE html> <html lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="https://www.facebook.com/2008/fbml"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <meta content="mdpi" name="sso-service" /> <meta content="width=device-width, initial-scale=1.0" name="viewport" /> <title>Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study</title><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/font-awesome.min.css?eb190a3a77e5e1ee?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery.multiselect.css?f56c135cbf4d1483?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/chosen.min.css?d7ca5ca9441ef9e1?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/main2.css?69b39374e6b554b7?1732286508"> <link rel="mask-icon" href="https://pub.mdpi-res.com/img/mask-icon-128.svg?c1c7eca266cd7013?1732286508" color="#4f5671"> <link rel="apple-touch-icon" sizes="180x180" href="https://pub.mdpi-res.com/icon/apple-touch-icon-180x180.png?1732286508"> <link rel="apple-touch-icon" sizes="152x152" href="https://pub.mdpi-res.com/icon/apple-touch-icon-152x152.png?1732286508"> <link rel="apple-touch-icon" sizes="144x144" href="https://pub.mdpi-res.com/icon/apple-touch-icon-144x144.png?1732286508"> <link rel="apple-touch-icon" sizes="120x120" href="https://pub.mdpi-res.com/icon/apple-touch-icon-120x120.png?1732286508"> <link rel="apple-touch-icon" sizes="114x114" href="https://pub.mdpi-res.com/icon/apple-touch-icon-114x114.png?1732286508"> <link rel="apple-touch-icon" sizes="76x76" href="https://pub.mdpi-res.com/icon/apple-touch-icon-76x76.png?1732286508"> <link rel="apple-touch-icon" sizes="72x72" href="https://pub.mdpi-res.com/icon/apple-touch-icon-72x72.png?1732286508"> <link rel="apple-touch-icon" sizes="57x57" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732286508"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732286508"> <link rel="apple-touch-icon-precomposed" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732286508"> <link rel="manifest" href="/manifest.json"> <meta name="theme-color" content="#ffffff"> <meta name="application-name" content=" "/> <link rel="apple-touch-startup-image" href="https://pub.mdpi-res.com/img/journals/electronics-logo-sq.png?8600e93ff98dbf14"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/img/journals/electronics-logo-sq.png?8600e93ff98dbf14"> <meta name="msapplication-TileImage" content="https://pub.mdpi-res.com/img/journals/electronics-logo-sq.png?8600e93ff98dbf14"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/xml2html/article-html.css?230b005b39af4260?1732286508"> <style> h2, #abstract .related_suggestion_title { } .batch_articles a { color: #000; } a, .batch_articles .authors a, a:focus, a:hover, a:active, .batch_articles a:focus, .batch_articles a:hover, li.side-menu-li a { } span.label a { color: #fff; } #main-content a.title-link:hover, #main-content a.title-link:focus, #main-content div.generic-item a.title-link:hover, #main-content div.generic-item a.title-link:focus { } #main-content #middle-column .generic-item.article-item a.title-link:hover, #main-content #middle-column .generic-item.article-item a.title-link:focus { } .art-authors a.toEncode { color: #333; font-weight: 700; } #main-content #middle-column ul li::before { } .accordion-navigation.active a.accordion__title, .accordion-navigation.active a.accordion__title::after { } .accordion-navigation li:hover::before, .accordion-navigation li:hover a, .accordion-navigation li:focus a { } .relative-size-container .relative-size-image .relative-size { } .middle-column__help__fixed a:hover i, } input[type="checkbox"]:checked:after { } input[type="checkbox"]:not(:disabled):hover:before { } #main-content .bolded-text { } #main-content .hypothesis-count-container { } #main-content .hypothesis-count-container:before { } .full-size-menu ul li.menu-item .dropdown-wrapper { } .full-size-menu ul li.menu-item > a.open::after { } #title-story .title-story-orbit .orbit-caption { #background: url('/img/design/000000_background.png') !important; background: url('/img/design/ffffff_background.png') !important; color: rgb(51, 51, 51) !important; } #main-content .content__container__orbit { background-color: #000 !important; } #main-content .content__container__journal { color: #fff; } .html-article-menu .row span { } .html-article-menu .row span.active { } .accordion-navigation__journal .side-menu-li.active::before, .accordion-navigation__journal .side-menu-li.active a { color: rgba(91,115,14,0.75) !important; font-weight: 700; } .accordion-navigation__journal .side-menu-li:hover::before , .accordion-navigation__journal .side-menu-li:hover a { color: rgba(91,115,14,0.75) !important; } .side-menu-ul li.active a, .side-menu-ul li.active, .side-menu-ul li.active::before { color: rgba(91,115,14,0.75) !important; } .side-menu-ul li.active a { } .result-selected, .active-result.highlighted, .active-result:hover, .result-selected, .active-result.highlighted, .active-result:focus { } .search-container.search-container__default-scheme { } nav.tab-bar .open-small-search.active:after { } .search-container.search-container__default-scheme .custom-accordion-for-small-screen-link::after { color: #fff; } @media only screen and (max-width: 50em) { #main-content .content__container.journal-info { color: #fff; } #main-content .content__container.journal-info a { color: #fff; } } .button.button--color { } .button.button--color:hover, .button.button--color:focus { } .button.button--color-journal { position: relative; background-color: rgba(91,115,14,0.75); border-color: #fff; color: #fff !important; } .button.button--color-journal:hover::before { content: ''; position: absolute; top: 0; left: 0; height: 100%; width: 100%; background-color: #ffffff; opacity: 0.2; } .button.button--color-journal:visited, .button.button--color-journal:hover, .button.button--color-journal:focus { background-color: rgba(91,115,14,0.75); border-color: #fff; color: #fff !important; } .button.button--color path { } .button.button--color:hover path { fill: #fff; } #main-content #search-refinements .ui-slider-horizontal .ui-slider-range { } .breadcrumb__element:last-of-type a { } #main-header { } #full-size-menu .top-bar, #full-size-menu li.menu-item span.user-email { } .top-bar-section li:not(.has-form) a:not(.button) { } #full-size-menu li.menu-item .dropdown-wrapper li a:hover { } #full-size-menu li.menu-item a:hover, #full-size-menu li.menu.item a:focus, nav.tab-bar a:hover { } #full-size-menu li.menu.item a:active, #full-size-menu li.menu.item a.active { } #full-size-menu li.menu-item a.open-mega-menu.active, #full-size-menu li.menu-item div.mega-menu, a.open-mega-menu.active { } #full-size-menu li.menu-item div.mega-menu li, #full-size-menu li.menu-item div.mega-menu a { border-color: #9a9a9a; } div.type-section h2 { font-size: 20px; line-height: 26px; font-weight: 300; } div.type-section h3 { margin-left: 15px; margin-bottom: 0px; font-weight: 300; } .journal-tabs .tab-title.active a { } </style> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/slick.css?f38b2db10e01b157?1732286508"> <meta name="title" content="Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study"> <meta name="description" content="Correctly defining and grouping electrical feeders is of great importance for electrical system operators. In this paper, we compare two different clustering techniques, K-means and hierarchical agglomerative clustering, applied to real data from the east region of Paraguay. The raw data were pre-processed, resulting in four data sets, namely, (i) a weekly feeder demand, (ii) a monthly feeder demand, (iii) a statistical feature set extracted from the original data and (iv) a seasonal and daily consumption feature set obtained considering the characteristics of the Paraguayan load curve. Considering the four data sets, two clustering algorithms, two distance metrics and five linkage criteria a total of 36 models with the Silhouette, Davies–Bouldin and Calinski–Harabasz index scores was assessed. The K-means algorithms with the seasonal feature data sets showed the best performance considering the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index scores with a configuration of six clusters." > <link rel="image_src" href="https://pub.mdpi-res.com/img/journals/electronics-logo.png?8600e93ff98dbf14" > <meta name="dc.title" content="Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study"> <meta name="dc.creator" content="Félix Morales"> <meta name="dc.creator" content="Miguel García-Torres"> <meta name="dc.creator" content="Gustavo Velázquez"> <meta name="dc.creator" content="Federico Daumas-Ladouce"> <meta name="dc.creator" content="Pedro E. Gardel-Sotomayor"> <meta name="dc.creator" content="Francisco Gómez-Vela"> <meta name="dc.creator" content="Federico Divina"> <meta name="dc.creator" content="José Luis Vázquez Noguera"> <meta name="dc.creator" content="Carlos Sauer Ayala"> <meta name="dc.creator" content="Diego P. Pinto-Roa"> <meta name="dc.creator" content="Julio César Mello-Román"> <meta name="dc.creator" content="David Becerra-Alonso"> <meta name="dc.type" content="Article"> <meta name="dc.source" content="Electronics 2022, Vol. 11, Page 267"> <meta name="dc.date" content="2022-01-14"> <meta name ="dc.identifier" content="10.3390/electronics11020267"> <meta name="dc.publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/3.0/"> <meta name="dc.format" content="application/pdf" > <meta name="dc.language" content="en" > <meta name="dc.description" content="Correctly defining and grouping electrical feeders is of great importance for electrical system operators. In this paper, we compare two different clustering techniques, K-means and hierarchical agglomerative clustering, applied to real data from the east region of Paraguay. The raw data were pre-processed, resulting in four data sets, namely, (i) a weekly feeder demand, (ii) a monthly feeder demand, (iii) a statistical feature set extracted from the original data and (iv) a seasonal and daily consumption feature set obtained considering the characteristics of the Paraguayan load curve. Considering the four data sets, two clustering algorithms, two distance metrics and five linkage criteria a total of 36 models with the Silhouette, Davies–Bouldin and Calinski–Harabasz index scores was assessed. The K-means algorithms with the seasonal feature data sets showed the best performance considering the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index scores with a configuration of six clusters." > <meta name="dc.subject" content="energy" > <meta name="dc.subject" content="clustering" > <meta name="dc.subject" content="distribution network" > <meta name="dc.subject" content="feeder" > <meta name ="prism.issn" content="2079-9292"> <meta name ="prism.publicationName" content="Electronics"> <meta name ="prism.publicationDate" content="2022-01-14"> <meta name ="prism.volume" content="11"> <meta name ="prism.number" content="2"> <meta name ="prism.section" content="Article" > <meta name ="prism.startingPage" content="267" > <meta name="citation_issn" content="2079-9292"> <meta name="citation_journal_title" content="Electronics"> <meta name="citation_publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="citation_title" content="Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study"> <meta name="citation_publication_date" content="2022/1"> <meta name="citation_online_date" content="2022/01/14"> <meta name="citation_volume" content="11"> <meta name="citation_issue" content="2"> <meta name="citation_firstpage" content="267"> <meta name="citation_author" content="Morales, Félix"> <meta name="citation_author" content="García-Torres, Miguel"> <meta name="citation_author" content="Velázquez, Gustavo"> <meta name="citation_author" content="Daumas-Ladouce, Federico"> <meta name="citation_author" content="Gardel-Sotomayor, Pedro E."> <meta name="citation_author" content="Gómez-Vela, Francisco"> <meta name="citation_author" content="Divina, Federico"> <meta name="citation_author" content="Vázquez Noguera, José Luis"> <meta name="citation_author" content="Sauer Ayala, Carlos"> <meta name="citation_author" content="Pinto-Roa, Diego P."> <meta name="citation_author" content="Mello-Román, Julio César"> <meta name="citation_author" content="Becerra-Alonso, David"> <meta name="citation_doi" content="10.3390/electronics11020267"> <meta name="citation_id" content="mdpi-electronics11020267"> <meta name="citation_abstract_html_url" content="https://www.mdpi.com/2079-9292/11/2/267"> <meta name="citation_pdf_url" content="https://www.mdpi.com/2079-9292/11/2/267/pdf?version=1642490363"> <link rel="alternate" type="application/pdf" title="PDF Full-Text" href="https://www.mdpi.com/2079-9292/11/2/267/pdf?version=1642490363"> <meta name="fulltext_pdf" content="https://www.mdpi.com/2079-9292/11/2/267/pdf?version=1642490363"> <meta name="citation_fulltext_html_url" content="https://www.mdpi.com/2079-9292/11/2/267/htm"> <link rel="alternate" type="text/html" title="HTML Full-Text" href="https://www.mdpi.com/2079-9292/11/2/267/htm"> <meta name="fulltext_html" content="https://www.mdpi.com/2079-9292/11/2/267/htm"> <link rel="alternate" type="text/xml" title="XML Full-Text" href="https://www.mdpi.com/2079-9292/11/2/267/xml"> <meta name="fulltext_xml" content="https://www.mdpi.com/2079-9292/11/2/267/xml"> <meta name="citation_xml_url" content="https://www.mdpi.com/2079-9292/11/2/267/xml"> <meta name="twitter:card" content="summary" /> <meta name="twitter:site" content="@MDPIOpenAccess" /> <meta name="twitter:image" content="https://pub.mdpi-res.com/img/journals/electronics-logo-social.png?8600e93ff98dbf14" /> <meta property="fb:app_id" content="131189377574"/> <meta property="og:site_name" content="MDPI"/> <meta property="og:type" content="article"/> <meta property="og:url" content="https://www.mdpi.com/2079-9292/11/2/267" /> <meta property="og:title" content="Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study" /> <meta property="og:description" content="Correctly defining and grouping electrical feeders is of great importance for electrical system operators. In this paper, we compare two different clustering techniques, K-means and hierarchical agglomerative clustering, applied to real data from the east region of Paraguay. The raw data were pre-processed, resulting in four data sets, namely, (i) a weekly feeder demand, (ii) a monthly feeder demand, (iii) a statistical feature set extracted from the original data and (iv) a seasonal and daily consumption feature set obtained considering the characteristics of the Paraguayan load curve. Considering the four data sets, two clustering algorithms, two distance metrics and five linkage criteria a total of 36 models with the Silhouette, Davies–Bouldin and Calinski–Harabasz index scores was assessed. The K-means algorithms with the seasonal feature data sets showed the best performance considering the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index scores with a configuration of six clusters." /> <meta property="og:image" content="https://pub.mdpi-res.com/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g001-550.jpg?1642490444" /> <link rel="alternate" type="application/rss+xml" title="MDPI Publishing - Latest articles" href="https://www.mdpi.com/rss"> <meta name="google-site-verification" content="PxTlsg7z2S00aHroktQd57fxygEjMiNHydKn3txhvwY"> <meta name="facebook-domain-verification" content="mcoq8dtq6sb2hf7z29j8w515jjoof7" /> <script id="Cookiebot" data-cfasync="false" src="https://consent.cookiebot.com/uc.js" data-cbid="51491ddd-fe7a-4425-ab39-69c78c55829f" type="text/javascript" async></script> <!--[if lt IE 9]> <script>var browserIe8 = true;</script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/ie8foundationfix.css?50273beac949cbf0?1732286508"> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.6.2/html5shiv.js"></script> <script src="//s3.amazonaws.com/nwapi/nwmatcher/nwmatcher-1.2.5-min.js"></script> <script src="//html5base.googlecode.com/svn-history/r38/trunk/js/selectivizr-1.0.3b.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/respond.js/1.1.0/respond.min.js"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8patch.js?9e1d3c689a0471df?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/rem.min.js?94b62787dcd6d2f2?1732286508"></script> <![endif]--> <script type="text/plain" data-cookieconsent="statistics"> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-WPK7SW5'); </script> <script type="text/plain" data-cookieconsent="statistics"> _linkedin_partner_id = "2846186"; window._linkedin_data_partner_ids = window._linkedin_data_partner_ids || []; window._linkedin_data_partner_ids.push(_linkedin_partner_id); </script><script type="text/javascript"> (function(){var s = document.getElementsByTagName("script")[0]; var b = document.createElement("script"); b.type = "text/javascript";b.async = true; b.src = "https://snap.licdn.com/li.lms-analytics/insight.min.js"; s.parentNode.insertBefore(b, s);})(); </script> <script type="text/plain" data-cookieconsent="statistics" data-cfasync="false" src="//script.crazyegg.com/pages/scripts/0116/4951.js" async="async" ></script> </head> <body> <div class="direction direction_right" id="small_right" style="border-right-width: 0px; padding:0;"> <i class="fa fa-caret-right fa-2x"></i> </div> <div class="big_direction direction_right" id="big_right" style="border-right-width: 0px;"> <div style="text-align: right;"> Next Article in Journal<br> <div><a href="/2079-9292/11/2/270">Optimal Field Sampling of Arc Sources via Asymptotic Study of the Radiation Operator</a></div> </div> </div> <div class="direction" id="small_left" style="border-left-width: 0px"> <i class="fa fa-caret-left fa-2x"></i> </div> <div class="big_direction" id="big_left" style="border-left-width: 0px;"> <div> Previous Article in Journal<br> <div><a href="/2079-9292/11/2/268">Global Optimization in Robust Fractional Control of Uncertain Fractional Order Systems: A Thermal Application Using the STM32 Microcontroller</a></div> Previous Article in Special Issue<br> <div><a href="/2079-9292/10/6/657"><i>ImbTreeEntropy</i> and <i>ImbTreeAUC</i>: Novel R Packages for Decision Tree Learning on the Imbalanced Datasets</a></div> </div> </div> <div style="clear: both;"></div> <div id="menuModal" class="reveal-modal reveal-modal-new reveal-modal-menu" aria-hidden="true" data-reveal role="dialog"> <div class="menu-container"> <div class="UI_NavMenu"> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Journals</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about/journals">Active Journals</a> <a href="/about/journalfinder">Find a Journal</a> <a href="/about/journals/proposal">Journal Proposal</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <a href="/topics"> <h2>Topics</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Information</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; max-width: 200px; float: left;"> <a href="/authors">For Authors</a> <a href="/reviewers">For Reviewers</a> <a href="/editors">For Editors</a> <a href="/librarians">For Librarians</a> <a href="/publishing_services">For Publishers</a> <a href="/societies">For Societies</a> <a href="/conference_organizers">For Conference Organizers</a> </div> <div style="width: 100%; max-width: 250px; float: left;"> <a href="/openaccess">Open Access Policy</a> <a href="/ioap">Institutional Open Access Program</a> <a href="/special_issues_guidelines">Special Issues Guidelines</a> <a href="/editorial_process">Editorial Process</a> <a href="/ethics">Research and Publication Ethics</a> <a href="/apc">Article Processing Charges</a> <a href="/awards">Awards</a> <a href="/testimonials">Testimonials</a> </div> </div> </div> </div> <a href="/authors/english"> <h2>Editing Services</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Initiatives</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer">Sciforum</a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer">MDPI Books</a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer">Preprints.org</a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer">Scilit</a> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer">SciProfiles</a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer">Encyclopedia</a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer">JAMS</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>About</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about">Overview</a> <a href="/about/contact">Contact</a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer">Careers</a> <a href="/about/announcements">News</a> <a href="/about/press">Press</a> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer">Blog</a> </div> </div> </div> </div> </div> <div class="menu-container__buttons"> <a class="button UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> </div> </div> </div> <div id="captchaModal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-label="Captcha" aria-hidden="true" role="dialog"></div> <div id="actionDisabledModal" class="reveal-modal" data-reveal aria-labelledby="actionDisableModalTitle" aria-hidden="true" role="dialog" style="width: 300px;"> <h2 id="actionDisableModalTitle">Notice</h2> <form action="/email/captcha" method="post" id="emailCaptchaForm"> <div class="row"> <div id="js-action-disabled-modal-text" class="small-12 columns"> </div> <div id="js-action-disabled-modal-submit" class="small-12 columns" style="margin-top: 10px; display: none;"> You can make submissions to other journals <a href="https://susy.mdpi.com/user/manuscripts/upload">here</a>. </div> </div> </form> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="rssNotificationModal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="rssNotificationModalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="rssNotificationModalTitle">Notice</h2> <p> You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader. </p> </div> </div> <div class="row"> <div class="small-12 columns"> <a class="button button--color js-rss-notification-confirm">Continue</a> <a class="button button--grey" onclick="$(this).closest('.reveal-modal').find('.close-reveal-modal').click(); return false;">Cancel</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="drop-article-label-openaccess" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to <a href="https://www.mdpi.com/openaccess">https://www.mdpi.com/openaccess</a>. </p> </div> <div id="drop-article-label-feature" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications. </p> <p> Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers. </p> </div> <div id="drop-article-label-choice" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal. <div style="margin-top: -10px;"> <div id="drop-article-label-choice-journal-link" style="display: none; margin-top: -10px; padding-top: 10px;"> </div> </div> </p> </div> <div id="drop-article-label-resubmission" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Original Submission Date Received: <span id="drop-article-label-resubmission-date"></span>. </p> </div> <div id="container"> <noscript> <div id="no-javascript"> You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled. </div> </noscript> <div class="fixed"> <nav class="tab-bar show-for-medium-down"> <div class="row full-width collapse"> <div class="medium-3 small-4 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1732286508" style="width: 64px;" title="MDPI Open Access Journals"> </a> </div> <div class="medium-3 small-4 columns right-aligned"> <div class="show-for-medium-down"> <a href="#" style="display: none;"> <i class="material-icons" onclick="$('#menuModal').foundation('reveal', 'close'); return false;">clear</i> </a> <a class="js-toggle-desktop-layout-link" title="Toggle desktop layout" style="display: none;" href="/toggle_desktop_layout_cookie"> <i class="material-icons">zoom_out_map</i> </a> <a href="#" class="js-open-small-search open-small-search"> <i class="material-icons show-for-small only">search</i> </a> <a title="MDPI main page" class="js-open-menu" data-reveal-id="menuModal" href="#"> <i class="material-icons">menu</i> </a> </div> </div> </div> </nav> </div> <section class="main-section"> <header> <div class="full-size-menu show-for-large-up"> <div class="row full-width"> <div class="large-1 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1732286508" title="MDPI Open Access Journals"> </a> </div> <div class="large-8 columns text-right UI_NavMenu"> <ul> <li class="menu-item"> <a href="/about/journals" data-dropdown="journals-dropdown" aria-controls="journals-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Journals</a> <ul id="journals-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about/journals"> Active Journals </a> </li> <li> <a href="/about/journalfinder"> Find a Journal </a> </li> <li> <a href="/about/journals/proposal"> Journal Proposal </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/topics">Topics</a> </li> <li class="menu-item"> <a href="/authors" data-dropdown="information-dropdown" aria-controls="information-dropdown" aria-expanded="false" data-options="is_hover:true; hover_timeout:200">Information</a> <ul id="information-dropdown" class="f-dropdown dropdown-wrapper" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-5 columns right-border"> <ul> <li> <a href="/authors">For Authors</a> </li> <li> <a href="/reviewers">For Reviewers</a> </li> <li> <a href="/editors">For Editors</a> </li> <li> <a href="/librarians">For Librarians</a> </li> <li> <a href="/publishing_services">For Publishers</a> </li> <li> <a href="/societies">For Societies</a> </li> <li> <a href="/conference_organizers">For Conference Organizers</a> </li> </ul> </div> <div class="small-7 columns"> <ul> <li> <a href="/openaccess">Open Access Policy</a> </li> <li> <a href="/ioap">Institutional Open Access Program</a> </li> <li> <a href="/special_issues_guidelines">Special Issues Guidelines</a> </li> <li> <a href="/editorial_process">Editorial Process</a> </li> <li> <a href="/ethics">Research and Publication Ethics</a> </li> <li> <a href="/apc">Article Processing Charges</a> </li> <li> <a href="/awards">Awards</a> </li> <li> <a href="/testimonials">Testimonials</a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/authors/english">Editing Services</a> </li> <li class="menu-item"> <a href="/about/initiatives" data-dropdown="initiatives-dropdown" aria-controls="initiatives-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Initiatives</a> <ul id="initiatives-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> </li> <li> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> </li> <li> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> </li> <li> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> </li> <li> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer"> SciProfiles </a> </li> <li> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> </li> <li> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/about" data-dropdown="about-dropdown" aria-controls="about-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">About</a> <ul id="about-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about"> Overview </a> </li> <li> <a href="/about/contact"> Contact </a> </li> <li> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Careers </a> </li> <li> <a href="/about/announcements"> News </a> </li> <li> <a href="/about/press"> Press </a> </li> <li> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer"> Blog </a> </li> </ul> </div> </div> </li> </ul> </li> </ul> </div> <div class="large-3 columns text-right full-size-menu__buttons"> <div> <a class="button button--default-inversed UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> <a class="button button--default js-journal-active-only-link js-journal-active-only-submit-link UC_NavSubmitButton" href=" https://susy.mdpi.com/user/manuscripts/upload?journal=electronics " data-disabledmessage="new submissions are not possible.">Submit</a> </div> </div> </div> </div> <div class="header-divider"> </div> <div class="search-container hide-for-small-down row search-container__homepage-scheme"> <form id="basic_search" style="background-color: inherit !important;" class="large-12 medium-12 columns " action="/search" method="get"> <div class="row search-container__main-elements"> <div class="large-2 medium-2 small-12 columns text-right1 small-only-text-left"> <div class="show-for-medium-up"> <div class="search-input-label"> </div> </div> <span class="search-container__title">Search<span class="hide-for-medium"> for Articles</span><span class="hide-for-small">:</span></span> </div> <div class="custom-accordion-for-small-screen-content"> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Title / Keyword</div> </div> <input type="text" placeholder="Title / Keyword" id="q" tabindex="1" name="q" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Author / Affiliation / Email</div> </div> <input type="text" id="authors" placeholder="Author / Affiliation / Email" tabindex="2" name="authors" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Journal</div> </div> <select id="journal" tabindex="3" name="journal" class="chosen-select"> <option value="">All Journals</option> <option value="acoustics" > Acoustics </option> <option value="amh" > Acta Microbiologica Hellenica (AMH) </option> <option value="actuators" > Actuators </option> <option value="admsci" > Administrative Sciences </option> <option value="adolescents" > Adolescents </option> <option value="arm" > Advances in Respiratory Medicine (ARM) </option> <option value="aerobiology" > Aerobiology </option> <option value="aerospace" > Aerospace </option> <option value="agriculture" > Agriculture </option> <option value="agriengineering" > AgriEngineering </option> <option value="agrochemicals" > Agrochemicals </option> <option value="agronomy" > Agronomy </option> <option value="ai" > AI </option> <option value="air" > Air </option> <option value="algorithms" > Algorithms </option> <option value="allergies" > Allergies </option> <option value="alloys" > Alloys </option> <option value="analytica" > Analytica </option> <option value="analytics" > Analytics </option> <option value="anatomia" > Anatomia </option> <option value="anesthres" > Anesthesia Research </option> <option value="animals" > Animals </option> <option value="antibiotics" > Antibiotics </option> <option value="antibodies" > Antibodies </option> <option value="antioxidants" > Antioxidants </option> <option value="applbiosci" > Applied Biosciences </option> <option value="applmech" > Applied Mechanics </option> <option value="applmicrobiol" > Applied Microbiology </option> <option value="applnano" > Applied Nano </option> <option value="applsci" > Applied Sciences </option> <option value="asi" > Applied System Innovation (ASI) </option> <option value="appliedchem" > AppliedChem </option> <option value="appliedmath" > AppliedMath </option> <option value="aquacj" > Aquaculture Journal </option> <option value="architecture" > Architecture </option> <option value="arthropoda" > Arthropoda </option> <option value="arts" > Arts </option> <option value="astronomy" > Astronomy </option> <option value="atmosphere" > Atmosphere </option> <option value="atoms" > Atoms </option> <option value="audiolres" > Audiology Research </option> <option value="automation" > Automation </option> <option value="axioms" > Axioms </option> <option value="bacteria" > Bacteria </option> <option value="batteries" > Batteries </option> <option value="behavsci" > Behavioral Sciences </option> <option value="beverages" > Beverages </option> <option value="BDCC" > Big Data and Cognitive Computing (BDCC) </option> <option value="biochem" > BioChem </option> <option value="bioengineering" > Bioengineering </option> <option value="biologics" > Biologics </option> <option value="biology" > Biology </option> <option value="blsf" > Biology and Life Sciences Forum </option> <option value="biomass" > Biomass </option> <option value="biomechanics" > Biomechanics </option> <option value="biomed" > BioMed </option> <option value="biomedicines" > Biomedicines </option> <option value="biomedinformatics" > BioMedInformatics </option> <option value="biomimetics" > Biomimetics </option> <option value="biomolecules" > Biomolecules </option> <option value="biophysica" > Biophysica </option> <option value="biosensors" > Biosensors </option> <option value="biotech" > BioTech </option> <option value="birds" > Birds </option> <option value="blockchains" > Blockchains </option> <option value="brainsci" > Brain Sciences </option> <option value="buildings" > Buildings </option> <option value="businesses" > Businesses </option> <option value="carbon" > C </option> <option value="cancers" > Cancers </option> <option value="cardiogenetics" > Cardiogenetics </option> <option value="catalysts" > Catalysts </option> <option value="cells" > Cells </option> <option value="ceramics" > Ceramics </option> <option value="challenges" > Challenges </option> <option value="ChemEngineering" > ChemEngineering </option> <option value="chemistry" > Chemistry </option> <option value="chemproc" > Chemistry Proceedings </option> <option value="chemosensors" > Chemosensors </option> <option value="children" > Children </option> <option value="chips" > Chips </option> <option value="civileng" > CivilEng </option> <option value="cleantechnol" > Clean Technologies (Clean Technol.) </option> <option value="climate" > Climate </option> <option value="ctn" > Clinical and Translational Neuroscience (CTN) </option> <option value="clinbioenerg" > Clinical Bioenergetics </option> <option value="clinpract" > Clinics and Practice </option> <option value="clockssleep" > Clocks & Sleep </option> <option value="coasts" > Coasts </option> <option value="coatings" > Coatings </option> <option value="colloids" > Colloids and Interfaces </option> <option value="colorants" > Colorants </option> <option value="commodities" > Commodities </option> <option value="complications" > Complications </option> <option value="compounds" > Compounds </option> <option value="computation" > Computation </option> <option value="csmf" > Computer Sciences & Mathematics Forum </option> <option value="computers" > Computers </option> <option value="condensedmatter" > Condensed Matter </option> <option value="conservation" > Conservation </option> <option value="constrmater" > Construction Materials </option> <option value="cmd" > Corrosion and Materials Degradation (CMD) </option> <option value="cosmetics" > Cosmetics </option> <option value="covid" > COVID </option> <option value="crops" > Crops </option> <option value="cryo" > Cryo </option> <option value="cryptography" > Cryptography </option> <option value="crystals" > Crystals </option> <option value="cimb" > Current Issues in Molecular Biology (CIMB) </option> <option value="curroncol" > Current Oncology </option> <option value="dairy" > Dairy </option> <option value="data" > Data </option> <option value="dentistry" > Dentistry Journal </option> <option value="dermato" > Dermato </option> <option value="dermatopathology" > Dermatopathology </option> <option value="designs" > Designs </option> <option value="diabetology" > Diabetology </option> <option value="diagnostics" > Diagnostics </option> <option value="dietetics" > Dietetics </option> <option value="digital" > Digital </option> <option value="disabilities" > Disabilities </option> <option value="diseases" > Diseases </option> <option value="diversity" > Diversity </option> <option value="dna" > DNA </option> <option value="drones" > Drones </option> <option value="ddc" > Drugs and Drug Candidates (DDC) </option> <option value="dynamics" > Dynamics </option> <option value="earth" > Earth </option> <option value="ecologies" > Ecologies </option> <option value="econometrics" > Econometrics </option> <option value="economies" > Economies </option> <option value="education" > Education Sciences </option> <option value="electricity" > Electricity </option> <option value="electrochem" > Electrochem </option> <option value="electronicmat" > Electronic Materials </option> <option value="electronics" selected='selected'> Electronics </option> <option value="ecm" > Emergency Care and Medicine </option> <option value="encyclopedia" > Encyclopedia </option> <option value="endocrines" > Endocrines </option> <option value="energies" > Energies </option> <option value="esa" > Energy Storage and Applications (ESA) </option> <option value="eng" > Eng </option> <option value="engproc" > Engineering Proceedings </option> <option value="entropy" > Entropy </option> <option value="environsciproc" > Environmental Sciences Proceedings </option> <option value="environments" > Environments </option> <option value="epidemiologia" > Epidemiologia </option> <option value="epigenomes" > Epigenomes </option> <option value="ebj" > European Burn Journal (EBJ) </option> <option value="ejihpe" > European Journal of Investigation in Health, Psychology and Education (EJIHPE) </option> <option value="fermentation" > Fermentation </option> <option value="fibers" > Fibers </option> <option value="fintech" > FinTech </option> <option value="fire" > Fire </option> <option value="fishes" > Fishes </option> <option value="fluids" > Fluids </option> <option value="foods" > Foods </option> <option value="forecasting" > Forecasting </option> <option value="forensicsci" > Forensic Sciences </option> <option value="forests" > Forests </option> <option value="fossstud" > Fossil Studies </option> <option value="foundations" > Foundations </option> <option value="fractalfract" > Fractal and Fractional (Fractal Fract) </option> <option value="fuels" > Fuels </option> <option value="future" > Future </option> <option value="futureinternet" > Future Internet </option> <option value="futurepharmacol" > Future Pharmacology </option> <option value="futuretransp" > Future Transportation </option> <option value="galaxies" > Galaxies </option> <option value="games" > Games </option> <option value="gases" > Gases </option> <option value="gastroent" > Gastroenterology Insights </option> <option value="gastrointestdisord" > Gastrointestinal Disorders </option> <option value="gastronomy" > Gastronomy </option> <option value="gels" > Gels </option> <option value="genealogy" > Genealogy </option> <option value="genes" > Genes </option> <option value="geographies" > Geographies </option> <option value="geohazards" > GeoHazards </option> <option value="geomatics" > Geomatics </option> <option value="geometry" > Geometry </option> <option value="geosciences" > Geosciences </option> <option value="geotechnics" > Geotechnics </option> <option value="geriatrics" > Geriatrics </option> <option value="glacies" > Glacies </option> <option value="gucdd" > Gout, Urate, and Crystal Deposition Disease (GUCDD) </option> <option value="grasses" > Grasses </option> <option value="hardware" > Hardware </option> <option value="healthcare" > Healthcare </option> <option value="hearts" > Hearts </option> <option value="hemato" > Hemato </option> <option value="hematolrep" > Hematology Reports </option> <option value="heritage" > Heritage </option> <option value="histories" > Histories </option> <option value="horticulturae" > Horticulturae </option> <option value="hospitals" > Hospitals </option> <option value="humanities" > Humanities </option> <option value="humans" > Humans </option> <option value="hydrobiology" > Hydrobiology </option> <option value="hydrogen" > Hydrogen </option> <option value="hydrology" > Hydrology </option> <option value="hygiene" > Hygiene </option> <option value="immuno" > Immuno </option> <option value="idr" > Infectious Disease Reports </option> <option value="informatics" > Informatics </option> <option value="information" > Information </option> <option value="infrastructures" > Infrastructures </option> <option value="inorganics" > Inorganics </option> <option value="insects" > Insects </option> <option value="instruments" > Instruments </option> <option value="iic" > Intelligent Infrastructure and Construction </option> <option value="ijerph" > International Journal of Environmental Research and Public Health (IJERPH) </option> <option value="ijfs" > International Journal of Financial Studies (IJFS) </option> <option value="ijms" > International Journal of Molecular Sciences (IJMS) </option> <option value="IJNS" > International Journal of Neonatal Screening (IJNS) </option> <option value="ijpb" > International Journal of Plant Biology (IJPB) </option> <option value="ijt" > International Journal of Topology </option> <option value="ijtm" > International Journal of Translational Medicine (IJTM) </option> <option value="ijtpp" > International Journal of Turbomachinery, Propulsion and Power (IJTPP) </option> <option value="ime" > International Medical Education (IME) </option> <option value="inventions" > Inventions </option> <option value="IoT" > IoT </option> <option value="ijgi" > ISPRS International Journal of Geo-Information (IJGI) </option> <option value="J" > J </option> <option value="jal" > Journal of Ageing and Longevity (JAL) </option> <option value="jcdd" > Journal of Cardiovascular Development and Disease (JCDD) </option> <option value="jcto" > Journal of Clinical & Translational Ophthalmology (JCTO) </option> <option value="jcm" > Journal of Clinical Medicine (JCM) </option> <option value="jcs" > Journal of Composites Science (J. Compos. Sci.) </option> <option value="jcp" > Journal of Cybersecurity and Privacy (JCP) </option> <option value="jdad" > Journal of Dementia and Alzheimer's Disease (JDAD) </option> <option value="jdb" > Journal of Developmental Biology (JDB) </option> <option value="jeta" > Journal of Experimental and Theoretical Analyses (JETA) </option> <option value="jfb" > Journal of Functional Biomaterials (JFB) </option> <option value="jfmk" > Journal of Functional Morphology and Kinesiology (JFMK) </option> <option value="jof" > Journal of Fungi (JoF) </option> <option value="jimaging" > Journal of Imaging (J. Imaging) </option> <option value="jintelligence" > Journal of Intelligence (J. Intell.) </option> <option value="jlpea" > Journal of Low Power Electronics and Applications (JLPEA) </option> <option value="jmmp" > Journal of Manufacturing and Materials Processing (JMMP) </option> <option value="jmse" > Journal of Marine Science and Engineering (JMSE) </option> <option value="jmahp" > Journal of Market Access & Health Policy (JMAHP) </option> <option value="jmp" > Journal of Molecular Pathology (JMP) </option> <option value="jnt" > Journal of Nanotheranostics (JNT) </option> <option value="jne" > Journal of Nuclear Engineering (JNE) </option> <option value="ohbm" > Journal of Otorhinolaryngology, Hearing and Balance Medicine (JOHBM) </option> <option value="jop" > Journal of Parks </option> <option value="jpm" > Journal of Personalized Medicine (JPM) </option> <option value="jpbi" > Journal of Pharmaceutical and BioTech Industry (JPBI) </option> <option value="jor" > Journal of Respiration (JoR) </option> <option value="jrfm" > Journal of Risk and Financial Management (JRFM) </option> <option value="jsan" > Journal of Sensor and Actuator Networks (JSAN) </option> <option value="joma" > Journal of the Oman Medical Association (JOMA) </option> <option value="jtaer" > Journal of Theoretical and Applied Electronic Commerce Research (JTAER) </option> <option value="jvd" > Journal of Vascular Diseases (JVD) </option> <option value="jox" > Journal of Xenobiotics (JoX) </option> <option value="jzbg" > Journal of Zoological and Botanical Gardens (JZBG) </option> <option value="journalmedia" > Journalism and Media </option> <option value="kidneydial" > Kidney and Dialysis </option> <option value="kinasesphosphatases" > Kinases and Phosphatases </option> <option value="knowledge" > Knowledge </option> <option value="labmed" > LabMed </option> <option value="laboratories" > Laboratories </option> <option value="land" > Land </option> <option value="languages" > Languages </option> <option value="laws" > Laws </option> <option value="life" > Life </option> <option value="limnolrev" > Limnological Review </option> <option value="lipidology" > Lipidology </option> <option value="liquids" > Liquids </option> <option value="literature" > Literature </option> <option value="livers" > Livers </option> <option value="logics" > Logics </option> <option value="logistics" > Logistics </option> <option value="lubricants" > Lubricants </option> <option value="lymphatics" > Lymphatics </option> <option value="make" > Machine Learning and Knowledge Extraction (MAKE) </option> <option value="machines" > Machines </option> <option value="macromol" > Macromol </option> <option value="magnetism" > Magnetism </option> <option value="magnetochemistry" > Magnetochemistry </option> <option value="marinedrugs" > Marine Drugs </option> <option value="materials" > Materials </option> <option value="materproc" > Materials Proceedings </option> <option value="mca" > Mathematical and Computational Applications (MCA) </option> <option value="mathematics" > Mathematics </option> <option value="medsci" > Medical Sciences </option> <option value="msf" > Medical Sciences Forum </option> <option value="medicina" > Medicina </option> <option value="medicines" > Medicines </option> <option value="membranes" > Membranes </option> <option value="merits" > Merits </option> <option value="metabolites" > Metabolites </option> <option value="metals" > Metals </option> <option value="meteorology" > Meteorology </option> <option value="methane" > Methane </option> <option value="mps" > Methods and Protocols (MPs) </option> <option value="metrics" > Metrics </option> <option value="metrology" > Metrology </option> <option value="micro" > Micro </option> <option value="microbiolres" > Microbiology Research </option> <option value="micromachines" > Micromachines </option> <option value="microorganisms" > Microorganisms </option> <option value="microplastics" > Microplastics </option> <option value="minerals" > Minerals </option> <option value="mining" > Mining </option> <option value="modelling" > Modelling </option> <option value="mmphys" > Modern Mathematical Physics </option> <option value="molbank" > Molbank </option> <option value="molecules" > Molecules </option> <option value="mti" > Multimodal Technologies and Interaction (MTI) </option> <option value="muscles" > Muscles </option> <option value="nanoenergyadv" > Nanoenergy Advances </option> <option value="nanomanufacturing" > Nanomanufacturing </option> <option value="nanomaterials" > Nanomaterials </option> <option value="ndt" > NDT </option> <option value="network" > Network </option> <option value="neuroglia" > Neuroglia </option> <option value="neurolint" > Neurology International </option> <option value="neurosci" > NeuroSci </option> <option value="nitrogen" > Nitrogen </option> <option value="ncrna" > Non-Coding RNA (ncRNA) </option> <option value="nursrep" > Nursing Reports </option> <option value="nutraceuticals" > Nutraceuticals </option> <option value="nutrients" > Nutrients </option> <option value="obesities" > Obesities </option> <option value="oceans" > Oceans </option> <option value="onco" > Onco </option> <option value="optics" > Optics </option> <option value="oral" > Oral </option> <option value="organics" > Organics </option> <option value="organoids" > Organoids </option> <option value="osteology" > Osteology </option> <option value="oxygen" > Oxygen </option> <option value="parasitologia" > Parasitologia </option> <option value="particles" > Particles </option> <option value="pathogens" > Pathogens </option> <option value="pathophysiology" > Pathophysiology </option> <option value="pediatrrep" > Pediatric Reports </option> <option value="pets" > Pets </option> <option value="pharmaceuticals" > Pharmaceuticals </option> <option value="pharmaceutics" > Pharmaceutics </option> <option value="pharmacoepidemiology" > Pharmacoepidemiology </option> <option value="pharmacy" > Pharmacy </option> <option value="philosophies" > Philosophies </option> <option value="photochem" > Photochem </option> <option value="photonics" > Photonics </option> <option value="phycology" > Phycology </option> <option value="physchem" > Physchem </option> <option value="psf" > Physical Sciences Forum </option> <option value="physics" > Physics </option> <option value="physiologia" > Physiologia </option> <option value="plants" > Plants </option> <option value="plasma" > Plasma </option> <option value="platforms" > Platforms </option> <option value="pollutants" > Pollutants </option> <option value="polymers" > Polymers </option> <option value="polysaccharides" > Polysaccharides </option> <option value="populations" > Populations </option> <option value="poultry" > Poultry </option> <option value="powders" > Powders </option> <option value="proceedings" > Proceedings </option> <option value="processes" > Processes </option> <option value="prosthesis" > Prosthesis </option> <option value="proteomes" > Proteomes </option> <option value="psychiatryint" > Psychiatry International </option> <option value="psychoactives" > Psychoactives </option> <option value="psycholint" > Psychology International </option> <option value="publications" > Publications </option> <option value="qubs" > Quantum Beam Science (QuBS) </option> <option value="quantumrep" > Quantum Reports </option> <option value="quaternary" > Quaternary </option> <option value="radiation" > Radiation </option> <option value="reactions" > Reactions </option> <option value="realestate" > Real Estate </option> <option value="receptors" > Receptors </option> <option value="recycling" > Recycling </option> <option value="rsee" > Regional Science and Environmental Economics (RSEE) </option> <option value="religions" > Religions </option> <option value="remotesensing" > Remote Sensing </option> <option value="reports" > Reports </option> <option value="reprodmed" > Reproductive Medicine (Reprod. Med.) </option> <option value="resources" > Resources </option> <option value="rheumato" > Rheumato </option> <option value="risks" > Risks </option> <option value="robotics" > Robotics </option> <option value="ruminants" > Ruminants </option> <option value="safety" > Safety </option> <option value="sci" > Sci </option> <option value="scipharm" > Scientia Pharmaceutica (Sci. Pharm.) </option> <option value="sclerosis" > Sclerosis </option> <option value="seeds" > Seeds </option> <option value="sensors" > Sensors </option> <option value="separations" > Separations </option> <option value="sexes" > Sexes </option> <option value="signals" > Signals </option> <option value="sinusitis" > Sinusitis </option> <option value="smartcities" > Smart Cities </option> <option value="socsci" > Social Sciences </option> <option value="siuj" > Société Internationale d’Urologie Journal (SIUJ) </option> <option value="societies" > Societies </option> <option value="software" > Software </option> <option value="soilsystems" > Soil Systems </option> <option value="solar" > Solar </option> <option value="solids" > Solids </option> <option value="spectroscj" > Spectroscopy Journal </option> <option value="sports" > Sports </option> <option value="standards" > Standards </option> <option value="stats" > Stats </option> <option value="stresses" > Stresses </option> <option value="surfaces" > Surfaces </option> <option value="surgeries" > Surgeries </option> <option value="std" > Surgical Techniques Development </option> <option value="sustainability" > Sustainability </option> <option value="suschem" > Sustainable Chemistry </option> <option value="symmetry" > Symmetry </option> <option value="synbio" > SynBio </option> <option value="systems" > Systems </option> <option value="targets" > Targets </option> <option value="taxonomy" > Taxonomy </option> <option value="technologies" > Technologies </option> <option value="telecom" > Telecom </option> <option value="textiles" > Textiles </option> <option value="thalassrep" > Thalassemia Reports </option> <option value="therapeutics" > Therapeutics </option> <option value="thermo" > Thermo </option> <option value="timespace" > Time and Space </option> <option value="tomography" > Tomography </option> <option value="tourismhosp" > Tourism and Hospitality </option> <option value="toxics" > Toxics </option> <option value="toxins" > Toxins </option> <option value="transplantology" > Transplantology </option> <option value="traumacare" > Trauma Care </option> <option value="higheredu" > Trends in Higher Education </option> <option value="tropicalmed" > Tropical Medicine and Infectious Disease (TropicalMed) </option> <option value="universe" > Universe </option> <option value="urbansci" > Urban Science </option> <option value="uro" > Uro </option> <option value="vaccines" > Vaccines </option> <option value="vehicles" > Vehicles </option> <option value="venereology" > Venereology </option> <option value="vetsci" > Veterinary Sciences </option> <option value="vibration" > Vibration </option> <option value="virtualworlds" > Virtual Worlds </option> <option value="viruses" > Viruses </option> <option value="vision" > Vision </option> <option value="waste" > Waste </option> <option value="water" > Water </option> <option value="wild" > Wild </option> <option value="wind" > Wind </option> <option value="women" > Women </option> <option value="world" > World </option> <option value="wevj" > World Electric Vehicle Journal (WEVJ) </option> <option value="youth" > Youth </option> <option value="zoonoticdis" > Zoonotic Diseases </option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Article Type</div> </div> <select id="article_type" tabindex="4" name="article_type" class="chosen-select"> <option value="">All Article Types</option> <option value="research-article">Article</option> <option value="review-article">Review</option> <option value="rapid-communication">Communication</option> <option value="editorial">Editorial</option> <option value="abstract">Abstract</option> <option value="book-review">Book Review</option> <option value="brief-communication">Brief Communication</option> <option value="brief-report">Brief Report</option> <option value="case-report">Case Report</option> <option value="clinicopathological-challenge">Clinicopathological Challenge</option> <option value="article-commentary">Comment</option> <option value="commentary">Commentary</option> <option value="concept-paper">Concept Paper</option> <option value="conference-report">Conference Report</option> <option value="correction">Correction</option> <option value="creative">Creative</option> <option value="data-descriptor">Data Descriptor</option> <option value="discussion">Discussion</option> <option value="Entry">Entry</option> <option value="essay">Essay</option> <option value="expression-of-concern">Expression of Concern</option> <option value="extended-abstract">Extended Abstract</option> <option value="field-guide">Field Guide</option> <option value="guidelines">Guidelines</option> <option value="hypothesis">Hypothesis</option> <option value="interesting-image">Interesting Images</option> <option value="letter">Letter</option> <option value="books-received">New Book Received</option> <option value="obituary">Obituary</option> <option value="opinion">Opinion</option> <option value="perspective">Perspective</option> <option value="proceedings">Proceeding Paper</option> <option value="project-report">Project Report</option> <option value="protocol">Protocol</option> <option value="registered-report">Registered Report</option> <option value="reply">Reply</option> <option value="retraction">Retraction</option> <option value="note">Short Note</option> <option value="study-protocol">Study Protocol</option> <option value="systematic_review">Systematic Review</option> <option value="technical-note">Technical Note</option> <option value="tutorial">Tutorial</option> <option value="viewpoint">Viewpoint</option> </select> </div> <div class="large-1 medium-1 small-6 end columns small-push-6 medium-reset-order large-reset-order js-search-collapsed-button-container"> <div class="search-input-label"> </div> <input type="submit" id="search" value="Search" class="button button--dark button--full-width searchButton1 US_SearchButton" tabindex="12"> </div> <div class="large-1 medium-1 small-6 end columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-collapsed-link-container"> <div class="search-input-label"> </div> <a class="main-search-clear search-container__link" href="#" onclick="openAdvanced(''); return false;">Advanced<span class="show-for-small-only"> Search</span></a> </div> </div> </div> <div class="search-container__advanced" style="margin-top: 0; padding-top: 0px; background-color: inherit; color: inherit;"> <div class="row"> <div class="large-2 medium-2 columns show-for-medium-up"> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Section</div> </div> <select id="section" tabindex="5" name="section" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Special Issue</div> </div> <select id="special_issue" tabindex="6" name="special_issue" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Volume</div> <input type="text" id="volume" tabindex="7" name="volume" placeholder="..." value="11" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Issue</div> <input type="text" id="issue" tabindex="8" name="issue" placeholder="..." value="2" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Number</div> <input type="text" id="number" tabindex="9" name="number" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Page</div> <input type="text" id="page" tabindex="10" name="page" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 columns small-push-6 medium-reset order large-reset-order medium-reset-order js-search-expanded-button-container"></div> <div class="large-1 medium-1 small-6 columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-expanded-link-container"></div> </div> </div> </form> <form id="advanced-search" class="large-12 medium-12 columns"> <div class="search-container__advanced"> <div id="advanced-search-template" class="row advanced-search-row"> <div class="large-2 medium-2 small-12 columns show-for-medium-up"> </div> <div class="large-2 medium-2 small-3 columns connector-div"> <div class="search-input-label"><span class="show-for-medium-up">Logical Operator</span><span class="show-for-small">Operator</span></div> <select class="connector"> <option value="and">AND</option> <option value="or">OR</option> </select> </div> <div class="large-3 medium-3 small-6 columns search-text-div"> <div class="search-input-label">Search Text</div> <input type="text" class="search-text" placeholder="Search text"> </div> <div class="large-2 medium-2 small-6 large-offset-0 medium-offset-0 small-offset-3 columns search-field-div"> <div class="search-input-label">Search Type</div> <select class="search-field"> <option value="all">All fields</option> <option value="title">Title</option> <option value="abstract">Abstract</option> <option value="keywords">Keywords</option> <option value="authors">Authors</option> <option value="affiliations">Affiliations</option> <option value="doi">Doi</option> <option value="full_text">Full Text</option> <option value="references">References</option> </select> </div> <div class="large-1 medium-1 small-3 columns"> <div class="search-input-label"> </div> <div class="search-action-div"> <div class="search-plus"> <i class="material-icons">add_circle_outline</i> </div> </div> <div class="search-action-div"> <div class="search-minus"> <i class="material-icons">remove_circle_outline</i> </div> </div> </div> <div class="large-1 medium-1 small-6 large-offset-0 medium-offset-0 small-offset-3 end columns"> <div class="search-input-label"> </div> <input class="advanced-search-button button button--dark search-submit" type="submit" value="Search"> </div> <div class="large-1 medium-1 small-6 end columns show-for-medium-up"></div> </div> </div> </form> </div> <div class="header-divider"> </div> <div class="breadcrumb row full-row"> <div class="breadcrumb__element"> <a href="/about/journals">Journals</a> </div> <div class="breadcrumb__element"> <a href="/journal/electronics">Electronics</a> </div> <div class="breadcrumb__element"> <a href="/2079-9292/11">Volume 11</a> </div> <div class="breadcrumb__element"> <a href="/2079-9292/11/2">Issue 2</a> </div> <div class="breadcrumb__element"> <a href="#">10.3390/electronics11020267</a> </div> </div> </header> <div id="main-content" class=""> <div class="row full-width row-fixed-left-column"> <div id="left-column" class="content__column large-3 medium-3 small-12 columns"> <div class="content__container"> <a href="/journal/electronics"> <img src="https://pub.mdpi-res.com/img/journals/electronics-logo.png?8600e93ff98dbf14" alt="electronics-logo" title="Electronics" style="max-height: 60px; margin: 0 0 0 0;"> </a> <div class="generic-item no-border"> <a class="button button--color button--full-width js-journal-active-only-link js-journal-active-only-submit-link UC_ArticleSubmitButton" href="https://susy.mdpi.com/user/manuscripts/upload?form%5Bjournal_id%5D%3D127" data-disabledmessage="creating new submissions is not possible."> Submit to this Journal </a> <a class="button button--color button--full-width js-journal-active-only-link UC_ArticleReviewButton" href="https://susy.mdpi.com/volunteer/journals/review" data-disabledmessage="volunteering as journal reviewer is not possible."> Review for this Journal </a> <a class="button button--color-inversed button--color-journal button--full-width js-journal-active-only-link UC_ArticleEditIssueButton" href="/journalproposal/sendproposalspecialissue/electronics" data-path="/2079-9292/11/2/267" data-disabledmessage="proposing new special issue is not possible."> Propose a Special Issue </a> </div> <div class="generic-item link-article-menu show-for-small"> <a href="#" class="link-article-menu show-for-small"> <span class="closed">►</span> <span class="open" style="display: none;">▼</span> Article Menu </a> </div> <div class="hide-small-down-initially UI_ArticleMenu"> <div class="generic-item"> <h2>Article Menu</h2> </div> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#academic_editors" class="accordion__title">Academic Editor</a> <div id="academic_editors" class="content active"> <div class="academic-editor-container " title=""> <div class="sciprofiles-link" style="display: inline-block"> <div class="sciprofiles-link__link"> <img class="sciprofiles-link__image" src="https://pub.mdpi-res.com/bundles/mdpisciprofileslink/img/unknown-user.png?1732286508" style="width: auto; height: 16px; border-radius: 50%;"> <span class="sciprofiles-link__name" style="line-height: 36px;">Cheng Siong Chin</span> </div> </div> </div> </div> </li> <li class="accordion-direct-link"> <a href="/2079-9292/11/2/267/scifeed_display" data-reveal-id="scifeed-modal" data-reveal-ajax="true">Subscribe SciFeed</a> </li> <li class="accordion-direct-link js-article-similarity-container" style="display: none"> <a href="#" class="js-similarity-related-articles">Recommended Articles</a> </li> <li class="accordion-navigation"> <a href="#related" class="accordion__title">Related Info Link</a> <div id="related" class="content UI_ArticleMenu_RelatedLinks"> <ul> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Analysis%20of%20Electric%20Energy%20Consumption%20Profiles%20Using%20a%20Machine%20Learning%20Approach%3A%20A%20Paraguayan%20Case%20Study" target="_blank" rel="noopener noreferrer">Google Scholar</a> </li> </ul> </div> </li> <li class="accordion-navigation"> <a href="#authors" class="accordion__title">More by Authors Links</a> <div id="authors" class="content UI_ArticleMenu_AuthorsLinks"> <ul class="side-menu-ul"> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on DOAJ</a> </li> <div id="AuthorDOAJExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22F%C3%A9lix%20Morales%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Morales, F.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Miguel%20Garc%C3%ADa-Torres%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">García-Torres, M.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Gustavo%20Vel%C3%A1zquez%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Velázquez, G.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Federico%20Daumas-Ladouce%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Daumas-Ladouce, F.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Pedro%20E.%20Gardel-Sotomayor%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Gardel-Sotomayor, P. E.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Francisco%20G%C3%B3mez-Vela%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Gómez-Vela, F.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Federico%20Divina%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Divina, F.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Jos%C3%A9%20Luis%20V%C3%A1zquez%20Noguera%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Vázquez Noguera, J. Luis</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Carlos%20Sauer%20Ayala%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Sauer Ayala, C.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Diego%20P.%20Pinto-Roa%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Pinto-Roa, D. P.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Julio%20C%C3%A9sar%20Mello-Rom%C3%A1n%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Mello-Román, J. César</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22David%20Becerra-Alonso%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Becerra-Alonso, D.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on Google Scholar</a> </li> <div id="AuthorGoogleExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=F%C3%A9lix%20Morales" target="_blank" rel="noopener noreferrer">Morales, F.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Miguel%20Garc%C3%ADa-Torres" target="_blank" rel="noopener noreferrer">García-Torres, M.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Gustavo%20Vel%C3%A1zquez" target="_blank" rel="noopener noreferrer">Velázquez, G.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Federico%20Daumas-Ladouce" target="_blank" rel="noopener noreferrer">Daumas-Ladouce, F.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Pedro%20E.%20Gardel-Sotomayor" target="_blank" rel="noopener noreferrer">Gardel-Sotomayor, P. E.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Francisco%20G%C3%B3mez-Vela" target="_blank" rel="noopener noreferrer">Gómez-Vela, F.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Federico%20Divina" target="_blank" rel="noopener noreferrer">Divina, F.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Jos%C3%A9%20Luis%20V%C3%A1zquez%20Noguera" target="_blank" rel="noopener noreferrer">Vázquez Noguera, J. Luis</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Carlos%20Sauer%20Ayala" target="_blank" rel="noopener noreferrer">Sauer Ayala, C.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Diego%20P.%20Pinto-Roa" target="_blank" rel="noopener noreferrer">Pinto-Roa, D. P.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Julio%20C%C3%A9sar%20Mello-Rom%C3%A1n" target="_blank" rel="noopener noreferrer">Mello-Román, J. César</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=David%20Becerra-Alonso" target="_blank" rel="noopener noreferrer">Becerra-Alonso, D.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on PubMed</a> </li> <div id="AuthorPubMedExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=F%C3%A9lix%20Morales" target="_blank" rel="noopener noreferrer">Morales, F.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Miguel%20Garc%C3%ADa-Torres" target="_blank" rel="noopener noreferrer">García-Torres, M.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Gustavo%20Vel%C3%A1zquez" target="_blank" rel="noopener noreferrer">Velázquez, G.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Federico%20Daumas-Ladouce" target="_blank" rel="noopener noreferrer">Daumas-Ladouce, F.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Pedro%20E.%20Gardel-Sotomayor" target="_blank" rel="noopener noreferrer">Gardel-Sotomayor, P. E.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Francisco%20G%C3%B3mez-Vela" target="_blank" rel="noopener noreferrer">Gómez-Vela, F.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Federico%20Divina" target="_blank" rel="noopener noreferrer">Divina, F.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Jos%C3%A9%20Luis%20V%C3%A1zquez%20Noguera" target="_blank" rel="noopener noreferrer">Vázquez Noguera, J. Luis</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Carlos%20Sauer%20Ayala" target="_blank" rel="noopener noreferrer">Sauer Ayala, C.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Diego%20P.%20Pinto-Roa" target="_blank" rel="noopener noreferrer">Pinto-Roa, D. P.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Julio%20C%C3%A9sar%20Mello-Rom%C3%A1n" target="_blank" rel="noopener noreferrer">Mello-Román, J. César</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=David%20Becerra-Alonso" target="_blank" rel="noopener noreferrer">Becerra-Alonso, D.</a> <li> </li> </ul> </div> </ul> </div> </li> </ul> <span style="display:none" id="scifeed_hidden_flag"></span> <span style="display:none" id="scifeed_subscribe_url">/ajax/scifeed/subscribe</span> </div> </div> <div class="content__container responsive-moving-container large medium active hidden" data-id="article-counters"> <div id="counts-wrapper" class="row generic-item no-border" data-equalizer> <div id="js-counts-wrapper__views" class="small-12 hide columns count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Article Views</span> <span class="count view-number"></span> </div> </a> </div> <div id="js-counts-wrapper__citations" class="small-12 columns hide count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Citations</span> <span class="count citations-number Var_ArticleMaxCitations">-</span> </div> </a> </div> </div> </div> <div class="content__container"> <div class="hide-small-down-initially"> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#table_of_contents" class="accordion__title">Table of Contents</a> <div id="table_of_contents" class="content active"> <div class="menu-caption" id="html-quick-links-title"></div> </div> </li> </ul> </div> </div> <!-- PubGrade code --> <div id="pbgrd-sky"></div> <script src="https://cdn.pbgrd.com/core-mdpi.js"></script> <style>.content__container { min-width: 300px; }</style> <!-- PubGrade code --> </div> <div id="middle-column" class="content__column large-9 medium-9 small-12 columns end middle-bordered"> <div class="middle-column__help"> <div class="middle-column__help__fixed show-for-medium-up"> <span id="js-altmetrics-donut" href="#" target="_blank" rel="noopener noreferrer" style="display: none;"> <span data-badge-type='donut' class='altmetric-embed' data-doi='10.3390/electronics11020267'></span> <span>Altmetric</span> </span> <a href="#" class="UA_ShareButton" data-reveal-id="main-share-modal" title="Share"> <i class="material-icons">share</i> <span>Share</span> </a> <a href="#" data-reveal-id="main-help-modal" title="Help"> <i class="material-icons">announcement</i> <span>Help</span> </a> <a href="javascript:void(0);" data-reveal-id="cite-modal" data-counterslink = "https://www.mdpi.com/2079-9292/11/2/267/cite" > <i class="material-icons">format_quote</i> <span>Cite</span> </a> <a href="https://sciprofiles.com/discussion-groups/public/10.3390/electronics11020267?utm_source=mpdi.com&utm_medium=publication&utm_campaign=discuss_in_sciprofiles" target="_blank" rel="noopener noreferrer" title="Discuss in Sciprofiles"> <i class="material-icons">question_answer</i> <span>Discuss in SciProfiles</span> </a> <a href="#" class="" data-hypothesis-trigger-endorses-tab title="Endorse"> <i data-hypothesis-endorse-trigger class="material-icons" >thumb_up</i> <div data-hypothesis-endorsement-count data-hypothesis-trigger-endorses-tab class="hypothesis-count-container"> ... </div> <span>Endorse</span> </a> <a href="#" data-hypothesis-trigger class="js-hypothesis-open UI_ArticleAnnotationsButton" title="Comment"> <i class="material-icons">textsms</i> <div data-hypothesis-annotation-count class="hypothesis-count-container"> ... </div> <span>Comment</span> </a> </div> <div id="main-help-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Need Help?</h2> </div> <div class="small-6 columns"> <h3>Support</h3> <p> Find support for a specific problem in the support section of our website. </p> <a target="_blank" href="/about/contactform" class="button button--color button--full-width"> Get Support </a> </div> <div class="small-6 columns"> <h3>Feedback</h3> <p> Please let us know what you think of our products and services. </p> <a target="_blank" href="/feedback/send" class="button button--color button--full-width"> Give Feedback </a> </div> <div class="small-6 columns end"> <h3>Information</h3> <p> Visit our dedicated information section to learn more about MDPI. </p> <a target="_blank" href="/authors" class="button button--color button--full-width"> Get Information </a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> <div class="middle-column__main "> <div class="page-highlight"> <style type="text/css"> img.review-status { width: 30px; } </style> <div id="jmolModal" class="reveal-modal" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <h2>JSmol Viewer</h2> <div class="row"> <div class="small-12 columns text-center"> <iframe style="width: 520px; height: 520px;" frameborder="0" id="jsmol-content"></iframe> <div class="content"></div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div itemscope itemtype="http://schema.org/ScholarlyArticle" id="abstract" class="abstract_div"> <div class="js-check-update-container"></div> <div class="html-content__container content__container content__container__combined-for-large__first" style="overflow: auto; position: inherit;"> <div class='html-profile-nav'> <div class='top-bar'> <div class='nav-sidebar-btn show-for-large-up' data-status='opened' > <i class='material-icons'>first_page</i> </div> <a id="js-button-download" class="button button--color-inversed" style="display: none;" href="/2079-9292/11/2/267/pdf?version=1642490363" data-name="Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study" data-journal="electronics"> <i class="material-icons custom-download"></i> Download PDF </a> <div class='nav-btn'> <i class='material-icons'>settings</i> </div> <a href="/2079-9292/11/2/267/reprints" id="js-button-reprints" class="button button--color-inversed"> Order Article Reprints </a> </div> <div class='html-article-menu'> <div class='html-first-step row'> <div class='html-font-family large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'> Font Type: </div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option"><i style='font-family:Arial, Arial, Helvetica, sans-serif;' data-fontfamily='Arial, Arial, Helvetica, sans-serif'>Arial</i></span> <span class="html-article-menu-option"><i style='font-family:Georgia1, Georgia, serif;' data-fontfamily='Georgia1, Georgia, serif'>Georgia</i></span> <span class="html-article-menu-option"><i style='font-family:Verdana, Verdana, Geneva, sans-serif;' data-fontfamily='Verdana, Verdana, Geneva, sans-serif' >Verdana</i></span> </div> </div> </div> <div class='html-font-resize large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Font Size:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-percent="100">Aa</span> <span class="html-article-menu-option a2" data-percent="120">Aa</span> <span class="html-article-menu-option a3" data-percent="160">Aa</span> </div> </div> </div> </div> <div class='row'> <div class='html-line-space large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Line Spacing:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-line-height="1.5em"> <i class="fa"></i> </span> <span class="html-article-menu-option a2" data-line-height="1.8em"> <i class="fa"></i> </span> <span class="html-article-menu-option a3" data-line-height="2.1em"> <i class="fa"></i> </span> </div> </div> </div> <div class='html-column-width large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Column Width:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-column-width="20%"> <i class="fa"></i> </span> <span class="html-article-menu-option a2" data-column-width="10%"> <i class="fa"></i> </span> <span class="html-article-menu-option a3" data-column-width="0%"> <i class="fa"></i> </span> </div> </div> </div> </div> <div class='row'> <div class='html-font-bg large-6 medium-6 small-12 columns end'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Background:</div> <div class='large-8 medium-8 small-12 columns'> <div class="html-article-menu-option html-nav-bg html-nav-bright" data-bg="bright"> <i class="fa fa-file-text"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-dark" data-bg="dark"> <i class="fa fa-file-text-o"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-creme" data-bg="creme"> <i class="fa fa-file-text"></i> </div> </div> </div> </div> </div> </div> </div> <article ><div class='html-article-content'> <span itemprop="publisher" content="Multidisciplinary Digital Publishing Institute"></span><span itemprop="url" content="https://www.mdpi.com/2079-9292/11/2/267"></span> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <h1 class="title hypothesis_container" itemprop="name"> Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study </h1> <div class="art-authors hypothesis_container"> by <span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6771598' data-options='is_hover:true, hover_timeout:5000'> Félix Morales</div><div id="profile-card-drop6771598" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Félix Morales</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/1892598?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=F%C3%A9lix%20Morales" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=F%C3%A9lix%20Morales&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=F%C3%A9lix%20Morales" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6771598" href="/cdn-cgi/l/email-protection#456a262b216826222c6a296a2028242c296835372a312026312c2a2b66757575777321742375267574757d742075757527757d757475717470757274237721752475757526757175747176752075777575"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0001-9850-9937" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6771599' data-options='is_hover:true, hover_timeout:5000'> Miguel García-Torres</div><div id="profile-card-drop6771599" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/profiles/397285/thumb/Miguel_Garcia_Torres.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Miguel García-Torres</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/397285?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Miguel%20Garc%C3%ADa-Torres" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Miguel%20Garc%C3%ADa-Torres&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Miguel%20Garc%C3%ADa-Torres" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1,2,*</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6771599" href="/cdn-cgi/l/email-protection#153a767b713876727c3a793a7078747c793865677a617076617c7a7b3625252574237125762473257025212576242c2771242d247125272126252d2470"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0002-6867-7080" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6771600' data-options='is_hover:true, hover_timeout:5000'> Gustavo Velázquez</div><div id="profile-card-drop6771600" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Gustavo Velázquez</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/author/cDJXMGVzVFhIR1U5SEd5RzNSQzBZemVNc0MyK2gvRHVvVUlNZUVXQjJpVT0=?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Gustavo%20Vel%C3%A1zquez" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Gustavo%20Vel%C3%A1zquez&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Gustavo%20Vel%C3%A1zquez" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6771600" href="/cdn-cgi/l/email-protection#547b373a307937333d7b387b3139353d387924263b203137203d3b3a776464656662636560656764626565646c606d656564666436646265306562656664666530666365666462606d646664676566606d65636531"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0001-8891-7208" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6771601' data-options='is_hover:true, hover_timeout:5000'> Federico Daumas-Ladouce</div><div id="profile-card-drop6771601" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Federico Daumas-Ladouce</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/author/VkRXTWJwa2xldGN1UmtTY2w5eHpXYXo1ZHhsZjRaaWI4Y3pKcGxWRVJZST0=?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Federico%20Daumas-Ladouce" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Federico%20Daumas-Ladouce&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Federico%20Daumas-Ladouce" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6771601" href="/cdn-cgi/l/email-protection#5b7438353f76383c327437743e363a3237762b29342f3e382f323435786b6b6b686d6d6b696b686a6f6b3d6b6e6b626f636b696b6c6a686b396b6c6a6e696d6a686b6c6f636b686b696a686f636a6d6a3d"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0001-5441-5736" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6771602' data-options='is_hover:true, hover_timeout:5000'> Pedro E. Gardel-Sotomayor</div><div id="profile-card-drop6771602" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Pedro E. Gardel-Sotomayor</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/1831512?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Pedro%20E.%20Gardel-Sotomayor" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Pedro%20E.%20Gardel-Sotomayor&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Pedro%20E.%20Gardel-Sotomayor" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1,3</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6771602" href="/cdn-cgi/l/email-protection#cfe0aca1abe2aca8a6e0a3e0aaa2aea6a3e2bfbda0bbaaacbba6a0a1ecfffffefaf8fffefbfffdfea9faaafef8fefefffdfefbfefafeacfcfffffafefefaaafefafefbfffafaaafffffff6"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0003-3161-8383" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6771603' data-options='is_hover:true, hover_timeout:5000'> Francisco Gómez-Vela</div><div id="profile-card-drop6771603" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/profiles/396129/thumb/Francisco_Antonio_Gomez_Vela_PhD.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Francisco Gómez-Vela</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/396129?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Francisco%20G%C3%B3mez-Vela" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Francisco%20G%C3%B3mez-Vela&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Francisco%20G%C3%B3mez-Vela" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 2</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6771603" href="/cdn-cgi/l/email-protection#97b8f4f9f3baf4f0feb8fbb8f2faf6fefbbae7e5f8e3f2f4e3fef8f9b4a7a7a7a6a1a1a7aea7f5a7a4a6f4a5a1a6a4a6a1a7aea3afa7a4a6a2"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0001-7376-5790" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6771604' data-options='is_hover:true, hover_timeout:5000'> Federico Divina</div><div id="profile-card-drop6771604" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/profiles/374718/thumb/Federico_Divina.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Federico Divina</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/374718?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Federico%20Divina" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Federico%20Divina&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Federico%20Divina" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 2</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6771604" href="/cdn-cgi/l/email-protection#3c135f5258115f5b5513501359515d5550114c4e5348595f485553521f0c0c0c0e0a0a0c5a0d0c0c5a0c040c0b0e0a0d0f0d0a0c0508040c0f0d09"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0002-0964-9506" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6771605' data-options='is_hover:true, hover_timeout:5000'> José Luis Vázquez Noguera</div><div id="profile-card-drop6771605" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">José Luis Vázquez Noguera</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/1797563?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Jos%C3%A9%20Luis%20V%C3%A1zquez%20Noguera" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Jos%C3%A9%20Luis%20V%C3%A1zquez%20Noguera&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Jos%C3%A9%20Luis%20V%C3%A1zquez%20Noguera" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6771605" href="/cdn-cgi/l/email-protection#507f333e347d3337397f3c7f353d31393c7d20223f24353324393f3e7360606065663161696036646461336032616061326136603661606231613660326464603660356136646461316163"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0002-9766-4182" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6771606' data-options='is_hover:true, hover_timeout:5000'> Carlos Sauer Ayala</div><div id="profile-card-drop6771606" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Carlos Sauer Ayala</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/1666015?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Carlos%20Sauer%20Ayala" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Carlos%20Sauer%20Ayala&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Carlos%20Sauer%20Ayala" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 4</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6771606" href="/cdn-cgi/l/email-protection#99b6faf7fdb4fafef0b6f5b6fcf4f8f0f5b4e9ebf6edfcfaedf0f6f7baa9a9a8a9afaaa9aba8afa9afa8a8abaaa9f8a9fda9adadfda8afa9fda9abadfda8aaa8f8"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0001-6578-2769" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6771607' data-options='is_hover:true, hover_timeout:5000'> Diego P. Pinto-Roa</div><div id="profile-card-drop6771607" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Diego P. Pinto-Roa</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/805622?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Diego%20P.%20Pinto-Roa" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Diego%20P.%20Pinto-Roa&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Diego%20P.%20Pinto-Roa" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1,5</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6771607" href="/cdn-cgi/l/email-protection#9db2fef3f9b0fefaf4b2f1b2f8f0fcf4f1b0edeff2e9f8fee9f4f2f3beadadaca9aba9adf9adfcacadadffafa9aca9adffada5a9fcacacadfcada8a9fcaca9acf9"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0003-2479-9876" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6771608' data-options='is_hover:true, hover_timeout:5000'> Julio César Mello-Román</div><div id="profile-card-drop6771608" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/profiles/637417/thumb/Julio_César_Mello_Román.jpeg" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Julio César Mello-Román</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/637417?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Julio%20C%C3%A9sar%20Mello-Rom%C3%A1n" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Julio%20C%C3%A9sar%20Mello-Rom%C3%A1n&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Julio%20C%C3%A9sar%20Mello-Rom%C3%A1n" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6771608" href="/cdn-cgi/l/email-protection#dff0bcb1bbf2bcb8b6f0b3f0bab2beb6b3f2afadb0abbabcabb6b0b1fcefefeeb9e9beefe9efecefeaebebefe8efb9efe9efe9efeaedbeeeb9efbdebebefb9efbaeeb9ebebeebeeeec"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0002-3698-4043" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a> and </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6771609' data-options='is_hover:true, hover_timeout:5000'> David Becerra-Alonso</div><div id="profile-card-drop6771609" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">David Becerra-Alonso</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/658009?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=David%20Becerra-Alonso" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=David%20Becerra-Alonso&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=David%20Becerra-Alonso" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 6</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6771609" href="/cdn-cgi/l/email-protection#af80ccc1cb82ccc8c680c380cac2cec6c382dfddc0dbcaccdbc6c0c18c9f9f9f99999b9f9e9f989f9e9e999e999f9a9d9b9e9e9f979fcd9ecb9fcd9f979f9a9bce9f9e9e98"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0001-5174-7743" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a></span> </div> <div class="nrm"></div> <span style="display:block; height:6px;"></span> <div></div> <div style="margin: 5px 0 15px 0;" class="hypothesis_container"> <div class="art-affiliations"> <div class="affiliation "> <div class="affiliation-item"><sup>1</sup></div> <div class="affiliation-name ">Computer Engineer Department, Universidad Americana, Asunción 1100, Paraguay</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>2</sup></div> <div class="affiliation-name ">Data Science and Big Data Lab, Pablo de Olavide University, 41013 Seville, Spain</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>3</sup></div> <div class="affiliation-name ">Facultad de Ciencias y Tecnológia, Universidad Católica, Campus Alto Párana, Hernandarias 100519, Paraguay</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>4</sup></div> <div class="affiliation-name ">Departamento de Ingeniería Industrial, Facultad de Ingeniería, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>5</sup></div> <div class="affiliation-name ">Facultad Politécnica, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>6</sup></div> <div class="affiliation-name ">Department of Quantitative Methods, Universidad Loyola Andalucía, 14004 Seville, Spain</div> </div> <div class="affiliation"> <div class="affiliation-item"><sup>*</sup></div> <div class="affiliation-name ">Author to whom correspondence should be addressed. </div> </div> </div> </div> <div class="bib-identity" style="margin-bottom: 10px;"> <em>Electronics</em> <b>2022</b>, <em>11</em>(2), 267; <a href="https://doi.org/10.3390/electronics11020267">https://doi.org/10.3390/electronics11020267</a> </div> <div class="pubhistory" style="font-weight: bold; padding-bottom: 10px;"> <span style="display: inline-block">Submission received: 31 October 2021</span> / <span style="display: inline-block">Revised: 31 December 2021</span> / <span style="display: inline-block">Accepted: 7 January 2022</span> / <span style="display: inline-block">Published: 14 January 2022</span> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/electronics/special_issues/mlbd ">Applications of Machine Learning in Big Data</a>)<br/> </div> <div class="highlight-box1"> <div class="download"> <a class="button button--color-inversed button--drop-down" data-dropdown="drop-download-724926" aria-controls="drop-supplementary-724926" aria-expanded="false"> Download <i class="material-icons">keyboard_arrow_down</i> </a> <div id="drop-download-724926" class="f-dropdown label__btn__dropdown label__btn__dropdown--button" data-dropdown-content aria-hidden="true" tabindex="-1"> <a class="UD_ArticlePDF" href="/2079-9292/11/2/267/pdf?version=1642490363" data-name="Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study" data-journal="electronics">Download PDF</a> <br/> <a id="js-pdf-with-cover-access-captcha" href="#" data-target="/2079-9292/11/2/267/pdf-with-cover" class="accessCaptcha">Download PDF with Cover</a> <br/> <a id="js-xml-access-captcha" href="#" data-target="/2079-9292/11/2/267/xml" class="accessCaptcha">Download XML</a> <br/> <a href="/2079-9292/11/2/267/epub" id="epub_link">Download Epub</a> <br/> </div> <div class="js-browse-figures" style="display: inline-block;"> <a href="#" class="button button--color-inversed margin-bottom-10 openpopupgallery UI_BrowseArticleFigures" data-target='article-popup' data-counterslink = "https://www.mdpi.com/2079-9292/11/2/267/browse" >Browse Figures</a> </div> <div id="article-popup" class="popupgallery" style="display: inline; line-height: 200%"> <a href="https://pub.mdpi-res.com/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g001.png?1642490444" title=" <strong>Figure 1</strong><br/> <p>Combo bar chart representing the percentage and total numbers of outliers detected on each feeder.</p> "> </a> <a href="https://pub.mdpi-res.com/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g002.png?1642490444" title=" <strong>Figure 2</strong><br/> <p>Combo bar chart representing the number and percentage of records per feeder.</p> "> </a> <a href="https://pub.mdpi-res.com/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g003.png?1642490444" title=" <strong>Figure 3</strong><br/> <p>Time periods considered based on the behavior of the Paraguayan electricity demand.</p> "> </a> <a href="https://pub.mdpi-res.com/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g004.png?1642490444" title=" <strong>Figure 4</strong><br/> <p>The four data sets that were formed from the hourly electricity consumption records of the feeders.</p> "> </a> <a href="https://pub.mdpi-res.com/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g005.png?1642490444" title=" <strong>Figure 5</strong><br/> <p>Euclidean. and DTW distance measurements applied to feeders D3 and E2.</p> "> </a> <a href="https://pub.mdpi-res.com/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g006.png?1642490444" title=" <strong>Figure 6</strong><br/> <p>Pipeline describing the steps followed to obtain the representative clusters.</p> "> </a> <a href="https://pub.mdpi-res.com/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g007.png?1642490444" title=" <strong>Figure 7</strong><br/> <p>Variation in the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index scores with respect to the number of clusters considered, for the K-means and hierarchical algorithms, with the ward, complete, centroid and average criteria for the latter.</p> "> </a> <a href="https://pub.mdpi-res.com/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g008.png?1642490444" title=" <strong>Figure 8</strong><br/> <p>Relationship between the clusters determined by the K-means and hierarchical model with the ward criterion for K = 6.</p> "> </a> <a href="https://pub.mdpi-res.com/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g009.png?1642490444" title=" <strong>Figure 9</strong><br/> <p>Consumption profiles determined in the K-means based model, where (<b>a</b>) belongs to the box plot of the mean daily consumption for each cluster and (<b>b</b>) corresponds to the mean consumption depending on the summer and winter seasons, as well as weekdays and weekends.</p> "> </a> </div> <a class="button button--color-inversed" href="/2079-9292/11/2/267/notes">Versions Notes</a> </div> </div> <div class="responsive-moving-container small hidden" data-id="article-counters" style="margin-top: 15px;"></div> <div class="html-dynamic"> <section> <div class="art-abstract art-abstract-new in-tab hypothesis_container"> <p> <div><section class="html-abstract" id="html-abstract"> <h2 id="html-abstract-title">Abstract</h2><b>:</b> <div class="html-p">Correctly defining and grouping electrical feeders is of great importance for electrical system operators. In this paper, we compare two different clustering techniques, K-means and hierarchical agglomerative clustering, applied to real data from the east region of Paraguay. The raw data were pre-processed, resulting in four data sets, namely, (i) a weekly feeder demand, (ii) a monthly feeder demand, (iii) a statistical feature set extracted from the original data and (iv) a seasonal and daily consumption feature set obtained considering the characteristics of the Paraguayan load curve. Considering the four data sets, two clustering algorithms, two distance metrics and five linkage criteria a total of 36 models with the Silhouette, Davies–Bouldin and Calinski–Harabasz index scores was assessed. The K-means algorithms with the seasonal feature data sets showed the best performance considering the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index scores with a configuration of six clusters.</div> </section> <div id="html-keywords"> <div class="html-gwd-group"><div id="html-keywords-title">Keywords: </div><a href="/search?q=energy">energy</a>; <a href="/search?q=clustering">clustering</a>; <a href="/search?q=distribution+network">distribution network</a>; <a href="/search?q=feeder">feeder</a></div> <div> </div> </div> </div> </p> </div> </section> </div> <div class="hypothesis_container"> <ul class="menu html-nav" data-prev-node="#html-quick-links-title"> </ul> <div class="html-body"> <section id='sec1-electronics-11-00267' type='intro'><h2 data-nested='1'> 1. Introduction</h2><div class='html-p'>In electric distribution networks, the identification of electric load profiles is of great interest for electric energy distribution network planners and operators [<a href="#B1-electronics-11-00267" class="html-bibr">1</a>] (DNOs). The grouping distribution of feeders can be useful for tasks such as the simulation of the impact of new grid technologies, new tariffs, or network re-configurations [<a href="#B2-electronics-11-00267" class="html-bibr">2</a>]. Furthermore, the identification of a set of representative feeders allows the load distribution to be modeled avoiding an exhaustive simulation process on every feeder of the network.</div><div class='html-p'>To identify representative feeders, operators often use deterministic and aggregated load models [<a href="#B3-electronics-11-00267" class="html-bibr">3</a>]. This approach is straightforward to apply and clear to assess. However, it fails in the presence of uncertainties leading to suboptimal solutions. In order to integrate the uncertainties, probabilistic and optimization load modeling approaches have been applied [<a href="#B4-electronics-11-00267" class="html-bibr">4</a>]. Despite the improvement with respect to the aggregated model, they require detailed knowledge or assumptions at an appliance level [<a href="#B5-electronics-11-00267" class="html-bibr">5</a>]. To overcome this problem, the clustering approach finds the best model according to the data. In this approach, different electric characteristics are taken into consideration to generate the model [<a href="#B2-electronics-11-00267" class="html-bibr">2</a>]. In [<a href="#B6-electronics-11-00267" class="html-bibr">6</a>], a data-driven time series clustering method is proposed to provide meaningful and intuitive profiles to describe the behaviors of consumers at the local electrical grid level. Other important applications of electrical consumption clustering include the characterization of load curves in a real distribution system [<a href="#B7-electronics-11-00267" class="html-bibr">7</a>] and load profiling for tariff design and load forecasting or distribution planning [<a href="#B8-electronics-11-00267" class="html-bibr">8</a>].</div><div class='html-p'>The application of descriptive analyses to electric consumption data allows insights about electrical usage behaviour to be obtained. For example, in [<a href="#B9-electronics-11-00267" class="html-bibr">9</a>], a clustering analysis is applied for the determination of the optimal placement of distributed generation sources in electrical distribution systems. The results reveal that the feeders with peak demand in the early afternoon are more likely to be better candidates for distributed photovoltaic generation. Another interesting application is the demand-side management. In [<a href="#B10-electronics-11-00267" class="html-bibr">10</a>], the clustering analysis is helpful for identifying different consumption profiles and implementing demand-side response programs or specific incentives to modify consumer demand.</div><div class='html-p'>In this work, we address this problem by applying two clustering strategies on a data set containing electric consumption data generated in Paraguay and provided by the Paraguayan electric company. In particular, we applied K-means and hierarchical agglomerative clustering and analyzed the results. Moreover, since clustering techniques use a distance measure to establish the clusters, we evaluated two different measures, the Euclidean and the dynamic time warping (DTW) measures [<a href="#B11-electronics-11-00267" class="html-bibr">11</a>]. DTW was considered convenient since data are organized as time series.</div><div class='html-p'>The data corresponded to the eastern region of the country and were recorded from January 2017 to December 2020, with measurements recorded every hour and a half. It is important to remark that these data were obtained and made public as part of the same research protect that made this paper possible [<a href="#B12-electronics-11-00267" class="html-bibr">12</a>]. In order to be used, the raw data were processed to obtain the following four data sets applicable to the clustering analysis:</div><div class='html-p'><ul class='html-order'><li><div class='html-p'>Weekly time series data, where the consumption of each feeder was aggregated on a weekly basis;</div></li><li><div class='html-p'>Monthly time series data, where the consumption of each feeder was aggregated on a monthly basis;</div></li><li><div class='html-p'>Statistical data set—a set of statistical features was calculated from the raw data;</div></li><li><div class='html-p'>Seasonal and daily load curve feature data set—a set of features based on the daily load curve and seasonal consumption variations was computed.</div></li></ul></div><div class='html-p'>We can summarize the contributions of this work as follows:</div><div class='html-p'><ul class='html-bullet'><li><div class='html-p'>Analysis and comparison of the performance of different clustering algorithms using real electricity consumption data collected from a Paraguayan electricity provider.</div></li><li><div class='html-p'>Study of the suitability of four different data processing strategies.</div></li><li><div class='html-p'>Evaluation of the influence of distance metrics and linkage criteria for this particular case study.</div></li></ul></div><div class='html-p'>The rest of the paper is organized as follows: In <a href="#sec2-electronics-11-00267" class="html-sec">Section 2</a>, related works are presented. Then, the raw data, data processing, clustering algorithms and related techniques are described in <a href="#sec3-electronics-11-00267" class="html-sec">Section 3</a>. <a href="#sec4-electronics-11-00267" class="html-sec">Section 4</a> shows the algorithms results and, finally, in <a href="#sec5-electronics-11-00267" class="html-sec">Section 5</a>, the conclusions and future work are proposed.</div></section><section id='sec2-electronics-11-00267' type=''><h2 data-nested='1'> 2. Related Works</h2><div class='html-p'>There is a growing concern to address energy-related problems such as electricity consumption, load and demand. Understanding different energy consumption patterns or measuring the environmental impact of energy production can help the adoption of new policies according to demand–response scenarios [<a href="#B13-electronics-11-00267" class="html-bibr">13</a>], as well as more sustainable energy policies [<a href="#B14-electronics-11-00267" class="html-bibr">14</a>]. In the literature, much attention has been given to electricity consumption prediction [<a href="#B15-electronics-11-00267" class="html-bibr">15</a>]. In [<a href="#B16-electronics-11-00267" class="html-bibr">16</a>], for example, Walket et al. applied several learning algorithms—boosted tree, random forest, support vector machine (SVM) and artificial neural networks—to predict commercial building electricity demands. Liu et al. [<a href="#B17-electronics-11-00267" class="html-bibr">17</a>] applied SVM to public buildings’ energy consumption from Wuhan (China). In this case, the energy consumption data were combined with climatic and time-cycle factors. Many other works using the supervised approach can be found [<a href="#B18-electronics-11-00267" class="html-bibr">18</a>,<a href="#B19-electronics-11-00267" class="html-bibr">19</a>,<a href="#B20-electronics-11-00267" class="html-bibr">20</a>].</div><div class='html-p'>Clustering, although to a lesser extent than said predictive methods, has also been studied in the literature. There are several relevant works in the field. For example, Diao et al. [<a href="#B21-electronics-11-00267" class="html-bibr">21</a>] used a clustering approach to identify and classify the behaviour of occupants analysing energy consumption outcomes and energy time use data. Pérez-Chacón et al. [<a href="#B22-electronics-11-00267" class="html-bibr">22</a>] applied this approach to extract the energy consumption pattern of smart cities in a big data context. The method proposed was tested using electricity consumption during the years 2011–2017 for eight buildings in a public university. Divina et al. [<a href="#B23-electronics-11-00267" class="html-bibr">23</a>] applied the biclustering approach to find anomalies in the energy consumption pattern of smart buildings from a Spanish university campus. In [<a href="#B24-electronics-11-00267" class="html-bibr">24</a>], Pinto-Roa et al. proposed to extend an evolutionary algorithm to the time-series approach to identify consumption user profiles.</div><div class='html-p'>Feature extraction is another interesting approach. It entails proposing new features from the original ones to enhance relevant information. In this context, disregarding temporal information results in the loss of time-related information and redundancy of features. In this context, Meng et al. [<a href="#B25-electronics-11-00267" class="html-bibr">25</a>] applied a discrete wavelet transform (DWT) to decompose the raw data. The DWT is not only capable of extracting the rising trend and periodic waves, but it can also distinguish stochastic behavior. Neural networks (NN) were used to predict periodic waves, which can simulate their increasing amplitude. For this work, in which electric energy consumption data from China were under analysis, the results suggest the competitiveness of the proposal for a forecasting purpose. In [<a href="#B26-electronics-11-00267" class="html-bibr">26</a>], Luo et al. developed an integrated artificial intelligence-based approach that was combined with an evolutionary algorithm to enhance an adaptive deep neural network model. The proposal was tested on hourly energy consumption data. Liang et al. [<a href="#B27-electronics-11-00267" class="html-bibr">27</a>] presented a hybrid model. Such model combined empirical mode decomposition, minimal redundancy, maximal relevance and general regression neural network with fruit fly optimization algorithm. This approach, called EMD-mRMR-FOA-GRNN, was validated using load data from the Chinese city of Langfang. Finally, a systematic time series feature extraction method called hierarchical time series feature extraction was proposed by Ouyanf et al. [<a href="#B28-electronics-11-00267" class="html-bibr">28</a>]. This model was used for supervised binary classification tasks and only used user registration information and daily energy consumption data to detect anomaly consumption users with an output of stealing probability. The performance of this proposal was tested using data from over 100,000 customers.</div></section><section id='sec3-electronics-11-00267' type=''><h2 data-nested='1'> 3. Materials and Methods</h2><div class='html-p'>This section introduces the nature of the electric energy consumption data and provides the basic concepts of time series and feature-based clustering. The data used in this work, the characteristics calculated for the feature-based clustering approach and the basic notions of the clustering algorithms used are all described here.</div><div class='html-p'>Electric energy consumption data are usually represented as a time series through a discrete sequence of data points measured at equal time intervals.</div><div class='html-p'>Let <math display='inline'><semantics> <mrow> <mi>X</mi> <mo>=</mo> <msubsup> <mrow> <mo>{</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>}</mo> </mrow> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </msubsup> </mrow> </semantics></math> be a set of <span class='html-italic'>N</span> univariate time series, where <math display='inline'><semantics> <mrow> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>=</mo> <msubsup> <mrow> <mo>{</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>}</mo> </mrow> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> </mrow> </semantics></math> is one of them and is characterized by <span class='html-italic'>T</span> real values. Thus, the sample <span class='html-italic'>X</span> can be represented through a matrix <math display='inline'><semantics> <msub> <mi>H</mi> <mrow> <mi>N</mi> <mo>×</mo> <mi>T</mi> </mrow> </msub> </semantics></math>.</div><div class='html-p'>In the context of these particular data, each time series represents a sequence of sensor data collected over time. Therefore, the data can be viewed as an <math display='inline'><semantics> <mrow> <mi>N</mi> <mo>×</mo> <mi>T</mi> </mrow> </semantics></math> energy consumption data matrix EM. EM is a real matrix, where each element <math display='inline'><semantics> <msub> <mi>e</mi> <mrow> <mi>i</mi> <mi>t</mi> </mrow> </msub> </semantics></math> represents the electric energy consumption of a feeder (expressed in kWh) as measured by sensor <span class='html-italic'>i</span> at the hour <span class='html-italic'>t</span>.</div><div class='html-p'>Another approach to represent the electric energy consumption is to calculate a set of features representing each electric consumption sequence instead of considering it as a time series [<a href="#B29-electronics-11-00267" class="html-bibr">29</a>]. The main advantages of this feature-based clustering method are: the ability to reduce the dimensionality of the original time series; the fact that it is less sensitive to missing values; and the fact that it can handle different lengths of time series [<a href="#B29-electronics-11-00267" class="html-bibr">29</a>]. The two feature data set representations implemented in this paper are described in <a href="#sec3dot3-electronics-11-00267" class="html-sec">Section 3.3</a>.</div><section id='sec3dot1-electronics-11-00267' type=''><h4 class='html-italic' data-nested='2'> 3.1. Data</h4><div class='html-p'>The data set used in this work contained 2,967,224 records of electric consumption measured in amperage from January 2017 to December 2020 (4 years) of 115 feeders distributed in 17 substations of the eastern region in Paraguay.</div><div class='html-p'>The data set, named “Electricity consumption and meteorological data of Alto Paraná, Paraguay”, is freely and publicly available at [<a href="#B12-electronics-11-00267" class="html-bibr">12</a>].</div></section><section id='sec3dot2-electronics-11-00267' type=''><h4 class='html-italic' data-nested='2'> 3.2. Data Preprocessing</h4><div class='html-p'>A couple of transformations were applied to the data set to reduce the error in the results. The first step was normalizing the time stamp value. For example, 23:59:59 on a given day was converted to 00:00:00 of the next day. The elimination of negative and zero electric consumption records was applied. Since the collected data did not have a standard timing interval (records were saved every thirty minutes in some periods; in others every hour), the next step was the hourly frequency normalization. All records that did not match an o’clock time were removed from the set. Before the outlier detection and data imputation phase, feeders with less than <math display='inline'><semantics> <mrow> <mn>90</mn> <mo>%</mo> </mrow> </semantics></math> of records were discarded. After all the preprocessing, 24 records per day from each feeder were expected over four years, i.e., feeders with less than 31.536 records were removed.</div><div class='html-p'>The result of these steps is a reduced data set made of 55 feeders distributed in 14 substations with at least <math display='inline'><semantics> <mrow> <mn>90</mn> <mo>%</mo> </mrow> </semantics></math> of recorded hourly data during said four-year period.</div><div class='html-p'>With the reduced data set, outlier detection was performed using the algorithm proposed by Vallis et al. [<a href="#B30-electronics-11-00267" class="html-bibr">30</a>]. This algorithm requires a full data set. Thus, a linear interpolation to fill the gaps was needed before running it.</div><div class='html-p'>The Box–Cox transformation [<a href="#B31-electronics-11-00267" class="html-bibr">31</a>] was also used to stabilize the variance in the data, so that they remained stationary and obtained an additive time series as described by Chatfiel [<a href="#B32-electronics-11-00267" class="html-bibr">32</a>] and Hyndman et al. [<a href="#B33-electronics-11-00267" class="html-bibr">33</a>]. This resulted in <math display='inline'><semantics> <msup> <mi>X</mi> <mo>*</mo> </msup> </semantics></math> as the Box–Cox transformation of <span class='html-italic'>X</span>. Given the time series <math display='inline'><semantics> <msup> <mi>X</mi> <mo>*</mo> </msup> </semantics></math>, this algorithm implements the Seasonal and Trend decomposition using LOESS (STL) [<a href="#B34-electronics-11-00267" class="html-bibr">34</a>] to obtain the components of seasonality <math display='inline'><semantics> <msub> <mi>S</mi> <msup> <mi>x</mi> <mo>*</mo> </msup> </msub> </semantics></math>, trend <math display='inline'><semantics> <msub> <mi>T</mi> <msup> <mi>x</mi> <mo>*</mo> </msup> </msub> </semantics></math> and remainder <math display='inline'><semantics> <msub> <mi>R</mi> <msup> <mi>x</mi> <mo>*</mo> </msup> </msub> </semantics></math>, such that <math display='inline'><semantics> <mrow> <msup> <mi>X</mi> <mo>*</mo> </msup> <mo>=</mo> <msub> <mi>S</mi> <msup> <mi>x</mi> <mo>*</mo> </msup> </msub> <mo>+</mo> <msub> <mi>T</mi> <msup> <mi>x</mi> <mo>*</mo> </msup> </msub> <mo>+</mo> <msub> <mi>R</mi> <msup> <mi>x</mi> <mo>*</mo> </msup> </msub> </mrow> </semantics></math>. This decomposition method allows the seasonal component to be varied according to the nature of the series; simultaneously, it is robust to the presence of outliers.</div><div class='html-p'>After this, the remainder component was recalculated as <math display='inline'><semantics> <mrow> <msub> <mi>R</mi> <msup> <mi>x</mi> <mo>*</mo> </msup> </msub> <mo>=</mo> <msup> <mi>X</mi> <mo>*</mo> </msup> <mo>−</mo> <msub> <mi>S</mi> <msup> <mi>x</mi> <mo>*</mo> </msup> </msub> <mo>−</mo> <msup> <mover accent="true"> <mi>X</mi> <mo stretchy="false">˜</mo> </mover> <mo>*</mo> </msup> </mrow> </semantics></math>, where <math display='inline'><semantics> <msup> <mover accent="true"> <mi>X</mi> <mo stretchy="false">˜</mo> </mover> <mo>*</mo> </msup> </semantics></math> is the median of the data considering a non-overlapping moving window of two-week length as described in [<a href="#B30-electronics-11-00267" class="html-bibr">30</a>]. Then, the generalized extreme studentized deviate (ESD) test [<a href="#B35-electronics-11-00267" class="html-bibr">35</a>] was applied over the resulting remainder component using both median and median absolute deviation to detect outliers as described by Vallis et al. [<a href="#B30-electronics-11-00267" class="html-bibr">30</a>].</div><div class='html-p'>Finally, the inverse Box–Cox transformation was run. The outliers, as well as the interpolated values that were added at the beginning of this phase, were removed. The outliers quantity per feeder is shown in <a href="#electronics-11-00267-f001" class="html-fig">Figure 1</a>.</div><div class='html-p'>After all outliers and unwanted records were discarded, the historical average data imputation technique [<a href="#B36-electronics-11-00267" class="html-bibr">36</a>] was applied to estimate each missing record <math display='inline'><semantics> <msub> <mi>y</mi> <mi>i</mi> </msub> </semantics></math> as an average of <math display='inline'><semantics> <msub> <mi>N</mi> <mi mathvariant="script">H</mi> </msub> </semantics></math> representative historical records <math display='inline'><semantics> <mrow> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <mi>j</mi> <mo>∈</mo> <mi mathvariant="script">H</mi> </mrow> </semantics></math>, where <math display='inline'><semantics> <mrow> <mo>∣</mo> <mi mathvariant="script">H</mi> <mo>∣</mo> <mo>=</mo> <msub> <mi>N</mi> <mi mathvariant="script">H</mi> </msub> </mrow> </semantics></math>. The set <math display='inline'><semantics> <mi mathvariant="script">H</mi> </semantics></math> included all historical records where the day of the week (DOW) is the same as the one on the missing record and within selected spans of it. The DOW guaranteed that historical means were calculated over records of the same days of the week and similar seasonal characteristics. The selected DOW span for this analysis was ±6 weeks. The resulting data set contained 1,848,947 records of 55 feeders distributed over 14 substations. <a href="#electronics-11-00267-f002" class="html-fig">Figure 2</a> shows the percentage and number of records per feeder.</div></section><section id='sec3dot3-electronics-11-00267' type=''><h4 class='html-italic' data-nested='2'> 3.3. Data Sets and Features</h4><div class='html-p'>In this section, the making of the four data sets used is explained.</div><div class='html-p'>The first data set provided the weekly demand registered by the feeders. Calculations considered a Sunday-to-Saturday span, resulting in a time series of 207 records. Sunday was chosen because the time series of the feeders began on that day, on 1 January 2017. Thus, an equitable distribution of the days for each week was obtained from the start. However, some days were dropped, even in the middle of the time series, due to missing data and some weeks yielded data with less than seven days.</div><div class='html-p'>The second data set contained the monthly demand, with a time series of 48 records. As on the first data set, some months had fewer data than others due to discarded data. December 2020 was the month with the fewest observations, only 16 days.</div><div class='html-p'>The third data set was considered from the work performed by Rasanen et al. [<a href="#B29-electronics-11-00267" class="html-bibr">29</a>]. Seven statistical features were extracted from each of the feeders in a window of size equal to one calendar week <math display='inline'><semantics> <msub> <mi>N</mi> <mi>i</mi> </msub> </semantics></math> throughout the entire time series, where <math display='inline'><semantics> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mn>207</mn> </mrow> </semantics></math> weeks. It should be noted that, although <math display='inline'><semantics> <msub> <mi>N</mi> <mi>i</mi> </msub> </semantics></math> corresponds to one week, it presents different lengths due to missing values in certain weeks.</div><div class='html-p'>Therefore, the features used were: mean (<math display='inline'><semantics> <mi>μ</mi> </semantics></math>), standard deviation (<math display='inline'><semantics> <mi>σ</mi> </semantics></math>), skewness (<math display='inline'><semantics> <mi mathvariant="script">S</mi> </semantics></math>), kurtosis (<math display='inline'><semantics> <mi mathvariant="script">K</mi> </semantics></math>), maximum Lyapunov exponent (<math display='inline'><semantics> <mi>λ</mi> </semantics></math>), energy (<math display='inline'><semantics> <mi mathvariant="script">E</mi> </semantics></math>) and periodicity (<math display='inline'><semantics> <mi mathvariant="script">P</mi> </semantics></math>). The mean, calculated by Equation (<a href="#FD1-electronics-11-00267" class="html-disp-formula">1</a>), indicates the central value of the analyzed data. In contrast, the standard deviation (Equation (<a href="#FD2-electronics-11-00267" class="html-disp-formula">2</a>)) indicates a measure of the dispersion of the data. <div class='html-disp-formula-info' id='FD1-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>μ</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>N</mi> <mi>i</mi> </msub> </mfrac> <munderover> <mo>∑</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>i</mi> </msub> </munderover> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> </div> <div class='l'> <label >(1)</label> </div> </div><div class='html-disp-formula-info' id='FD2-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>σ</mi> <mi>i</mi> </msub> <mo>=</mo> <msqrt> <mrow> <mfrac> <mn>1</mn> <msub> <mi>N</mi> <mi>i</mi> </msub> </mfrac> <munderover> <mo>∑</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>i</mi> </msub> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>−</mo> <msub> <mi>μ</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </semantics></math> </div> <div class='l'> <label >(2)</label> </div> </div></div><div class='html-p'>Skewness (Equation (<a href="#FD3-electronics-11-00267" class="html-disp-formula">3</a>)) is a measure that indicates the degree of asymmetry in the distribution of the demand data [<a href="#B37-electronics-11-00267" class="html-bibr">37</a>]. Kurtosis (Equation (<a href="#FD4-electronics-11-00267" class="html-disp-formula">4</a>)) is related to the tails in the distribution. High Kurtosis indicates greater extremity of deviations [<a href="#B37-electronics-11-00267" class="html-bibr">37</a>]. <div class='html-disp-formula-info' id='FD3-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi mathvariant="script">S</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>N</mi> <mi>i</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>σ</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>3</mn> </msup> </mrow> </mfrac> <munderover> <mo>∑</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>i</mi> </msub> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>−</mo> <msub> <mi>μ</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>3</mn> </msup> </mrow> </semantics></math> </div> <div class='l'> <label >(3)</label> </div> </div><div class='html-disp-formula-info' id='FD4-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi mathvariant="script">K</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>N</mi> <mi>i</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>σ</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>4</mn> </msup> </mrow> </mfrac> <munderover> <mo>∑</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>i</mi> </msub> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>−</mo> <msub> <mi>μ</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>4</mn> </msup> </mrow> </semantics></math> </div> <div class='l'> <label >(4)</label> </div> </div></div><div class='html-p'>Likewise, chaotic dynamical systems are common natural and artificial phenomena, including energy demand. The measured time series comes from the attractor of an unknown system with a certain ergodicity. In other words, it refers to a set of numerical values towards which the system evolves. This ergodicity contains the attractor information [<a href="#B38-electronics-11-00267" class="html-bibr">38</a>]. The maximum Lyapunov exponent (MLE) is the most used quantity measured on chaotic systems, as it describes the exponential divergence of nearby trajectories. For the case of a time series <math display='inline'><semantics> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <msub> <mi>N</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>, a <math display='inline'><semantics> <mi mathvariant="sans-serif">ν</mi> </semantics></math>-dimensional phase attractor with delay coordinates is considered, i.e., a point on the attractor is represented by <math display='inline'><semantics> <mrow> <mo>{</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> <mo>+</mo> <mi>τ</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> <mo>+</mo> <mn>2</mn> <mi>τ</mi> </mrow> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> <mo>+</mo> <mo>(</mo> <mi mathvariant="sans-serif">ν</mi> <mo>−</mo> <mn>1</mn> <mo>)</mo> <mi>τ</mi> </mrow> </msub> <mo>}</mo> </mrow> </semantics></math>, where <math display='inline'><semantics> <mi>τ</mi> </semantics></math> describes the almost arbitrarily considered delay and <math display='inline'><semantics> <mi mathvariant="sans-serif">ν</mi> </semantics></math> the embedding dimension. Then, a initial point <math display='inline'><semantics> <mrow> <mo>{</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>τ</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>+</mo> <mn>2</mn> <mi>τ</mi> </mrow> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mi mathvariant="sans-serif">ν</mi> <mo>−</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>τ</mi> </mrow> </msub> <mo>}</mo> </mrow> </semantics></math> is chosen and the nearest neighbor to it is determined [<a href="#B39-electronics-11-00267" class="html-bibr">39</a>]. The initial separation between these two selected points is represented by the vector <math display='inline'><semantics> <mrow> <mi>δ</mi> <msub> <mi mathvariant="bold-italic">Z</mi> <mn>0</mn> </msub> </mrow> </semantics></math>. Therefore, the system diverges approximately at a rate given by <math display='inline'><semantics> <mrow> <mi>δ</mi> <msub> <mi mathvariant="bold-italic">Z</mi> <mi>t</mi> </msub> <mo>=</mo> <msup> <mi mathvariant="normal">e</mi> <mrow> <mi>λ</mi> <mo>(</mo> <mi>t</mi> <mo>×</mo> <mo>Δ</mo> <mi>t</mi> <mo>)</mo> </mrow> </msup> <mi>δ</mi> <msub> <mi mathvariant="bold-italic">Z</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, where <math display='inline'><semantics> <mi>λ</mi> </semantics></math> is the maximum Lyapunov exponent and <math display='inline'><semantics> <mrow> <mo>Δ</mo> <mi>t</mi> </mrow> </semantics></math> the sampling period. Hereof, <math display='inline'><semantics> <mi>λ</mi> </semantics></math> became more accurate when <math display='inline'><semantics> <mrow> <mi>t</mi> <mo>→</mo> <msub> <mi>N</mi> <mi>i</mi> </msub> </mrow> </semantics></math>. Therefore, it was estimated as the mean rate of separation of the nearest neighbors across the samples. Thus, the MLE was expressed according to Equation (<a href="#FD5-electronics-11-00267" class="html-disp-formula">5</a>). <div class='html-disp-formula-info' id='FD5-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>λ</mi> <mi>i</mi> </msub> <mo>=</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>N</mi> <mi>i</mi> </msub> <mo>×</mo> <mo>Δ</mo> <mi>t</mi> </mrow> </mfrac> <mo form="prefix">ln</mo> <mfrac> <mrow> <mo>|</mo> <mi>δ</mi> <msub> <mi mathvariant="bold-italic">Z</mi> <mi>t</mi> </msub> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mi>δ</mi> <msub> <mi mathvariant="bold-italic">Z</mi> <mn>0</mn> </msub> <mo>|</mo> </mrow> </mfrac> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(5)</label> </div> </div></div><div class='html-p'>The energy present was also considered and was obtained using the fast Fourier transform (FFT) [<a href="#B40-electronics-11-00267" class="html-bibr">40</a>]. For this purpose, the resulting Fourier transform sequence was comprised by <math display='inline'><semantics> <mrow> <msub> <mi mathvariant="script">X</mi> <mi>i</mi> </msub> <mrow> <mo>[</mo> <mi mathvariant="double-struck">k</mi> <mo>]</mo> </mrow> <mo>=</mo> <msub> <mi mathvariant="script">X</mi> <mi>i</mi> </msub> <mrow> <mo>[</mo> <mn>1</mn> <mo>]</mo> </mrow> <mo>,</mo> <msub> <mi mathvariant="script">X</mi> <mi>i</mi> </msub> <mrow> <mo>[</mo> <mn>2</mn> <mo>]</mo> </mrow> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi mathvariant="script">X</mi> <mi>i</mi> </msub> <mrow> <mo>[</mo> <msub> <mi>N</mi> <mi>i</mi> </msub> <mo>]</mo> </mrow> </mrow> </semantics></math>. Given this, the energy calculation was performed by adding the squares of the magnitudes of the resultant components; then, it was divided by the length of the sequence (<math display='inline'><semantics> <msub> <mi>N</mi> <mi>i</mi> </msub> </semantics></math>) to normalize the calculated measurement (Equation (<a href="#FD6-electronics-11-00267" class="html-disp-formula">6</a>)). <div class='html-disp-formula-info' id='FD6-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi mathvariant="script">E</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mstyle displaystyle="true"> <munderover> <mo>∑</mo> <mrow> <mi mathvariant="double-struck">k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>i</mi> </msub> </munderover> </mstyle> <msup> <mrow> <mo>|</mo> <mi mathvariant="script">X</mi> <mrow> <mo>[</mo> <mi mathvariant="double-struck">k</mi> <mo>]</mo> </mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> <msub> <mi>N</mi> <mi>i</mi> </msub> </mfrac> </mrow> </semantics></math> </div> <div class='l'> <label >(6)</label> </div> </div></div><div class='html-p'>Finally, another highly relevant measure to assimilate the behavior of the time series is periodicity. To obtain it, a periodogram was determined to estimate the power spectral density, which also uses the FFT as the basis of the calculation. This function indicates the distribution of the frequencies present in the signal given by the time series. Hereof, the most powerful frequency was selected and converted into an hourly period value via Equation (<a href="#FD7-electronics-11-00267" class="html-disp-formula">7</a>). <div class='html-disp-formula-info' id='FD7-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi mathvariant="script">P</mi> <mi>i</mi> </msub> <mo>=</mo> <munder> <mo form="prefix">argmax</mo> <mi mathvariant="script">T</mi> </munder> <msub> <mi mathvariant="script">P</mi> <mrow> <mi>x</mi> <mi>x</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>ω</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(7)</label> </div> </div> where <math display='inline'><semantics> <mrow> <msub> <mi mathvariant="script">P</mi> <mrow> <mi>x</mi> <mi>x</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>ω</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> represents the power spectral density in the frequency domain <math display='inline'><semantics> <mi>ω</mi> </semantics></math> and <math display='inline'><semantics> <mi mathvariant="script">T</mi> </semantics></math> the period converted to hours, in which the power is higher.</div><div class='html-p'>The fourth data set was built in order to capture seasonal and daily effects on the energy demand, as in Haben et al. [<a href="#B41-electronics-11-00267" class="html-bibr">41</a>]. Consequently, each day was divided into five relevant periods that characterized the behavior of daily demand as shown in <a href="#electronics-11-00267-f003" class="html-fig">Figure 3</a>. It is important to note that these periods were defined considering the Paraguayan electricity demand curve. Therefore, they are different from the proposal presented in [<a href="#B41-electronics-11-00267" class="html-bibr">41</a>]. The intervals of the chosen time periods are detailed in <a href="#electronics-11-00267-t001" class="html-table">Table 1</a>.</div><div class='html-p'>The features to be used were defined, taking into consideration such periods. For a specific feeder and each period <math display='inline'><semantics> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> </mrow> </semantics></math> over the entire time series, <math display='inline'><semantics> <msub> <mi>P</mi> <mi>i</mi> </msub> </semantics></math> was represented as the mean electricity demand with <math display='inline'><semantics> <msub> <mi>σ</mi> <mi>p</mi> </msub> </semantics></math> corresponding to its standard deviation. Meanwhile, <math display='inline'><semantics> <mover accent="true"> <mi>P</mi> <mo stretchy="false">^</mo> </mover> </semantics></math> was considered as the mean daily demand over the complete time series. In each period, the mean demands corresponding to the summer and winter seasons, <math display='inline'><semantics> <msubsup> <mi>P</mi> <mi>i</mi> <mi>S</mi> </msubsup> </semantics></math> and <math display='inline'><semantics> <msubsup> <mi>P</mi> <mi>i</mi> <mi>W</mi> </msubsup> </semantics></math>, respectively, were also computed. Similarly, the mean demands on weekdays and weekends were considered in each period of the entire time series. They were noted as <math display='inline'><semantics> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mi>W</mi> <mi>D</mi> </mrow> </msubsup> </semantics></math> and <math display='inline'><semantics> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mi>W</mi> <mi>E</mi> </mrow> </msubsup> </semantics></math>, respectively. As a result, the following eight features were extracted:</div><div class='html-p'><ul class='html-bullet'><li><div class='html-p'>Features from 1 to 5: The relative average power in each time period over the entire time series given by <div class='html-disp-formula-info' id='FD8-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <msubsup> <mi>P</mi> <mi>i</mi> <mi>R</mi> </msubsup> <mo>=</mo> <mfrac> <msub> <mi>P</mi> <mi>i</mi> </msub> <mover accent="true"> <mi>P</mi> <mo stretchy="false">^</mo> </mover> </mfrac> <mspace width="1.em"/> <mi>for</mi> <mspace width="1.em"/> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mn>5</mn> </mrow> </semantics></math> </div> <div class='l'> <label >(8)</label> </div> </div></div></li><li><div class='html-p'>Feature 6: Mean relative standard deviation over the entire time series given by <div class='html-disp-formula-info' id='FD9-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <mover accent="true"> <mi>σ</mi> <mo stretchy="false">^</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> <munderover> <mo>∑</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>5</mn> </munderover> <mfrac> <msub> <mi>σ</mi> <mi>i</mi> </msub> <msub> <mi>P</mi> <mi>i</mi> </msub> </mfrac> </mrow> </semantics></math> </div> <div class='l'> <label >(9)</label> </div> </div></div></li><li><div class='html-p'>Feature 7: A seasonal score given by <div class='html-disp-formula-info' id='FD10-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <mi mathvariant="script">S</mi> <mo>=</mo> <munderover> <mo>∑</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>5</mn> </munderover> <mfrac> <mrow> <mo>|</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>W</mi> </msubsup> <mo>−</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mi>S</mi> </msubsup> <mo>|</mo> </mrow> <msub> <mi>P</mi> <mi>i</mi> </msub> </mfrac> </mrow> </semantics></math> </div> <div class='l'> <label >(10)</label> </div> </div></div></li><li><div class='html-p'>Feature 8: A weekend vs. weekday difference score given by <div class='html-disp-formula-info' id='FD11-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <mi mathvariant="script">W</mi> <mo>=</mo> <munderover> <mo>∑</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>5</mn> </munderover> <mfrac> <mrow> <mo>|</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mi>W</mi> <mi>D</mi> </mrow> </msubsup> <mo>−</mo> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mi>W</mi> <mi>E</mi> </mrow> </msubsup> <mo>|</mo> </mrow> <msub> <mi>P</mi> <mi>i</mi> </msub> </mfrac> </mrow> </semantics></math> </div> <div class='l'> <label >(11)</label> </div> </div></div></li></ul></div><div class='html-p'>It is important to mention that, for each data set obtained, the values of the preprocessed time series were scaled within a <math display='inline'><semantics> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math> range for each feeder, through the transformation <math display='inline'><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>s</mi> <mi>c</mi> <mi>a</mi> <mi>l</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>x</mi> <mo>−</mo> <msub> <mi>x</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>x</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>−</mo> <msub> <mi>x</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </semantics></math>, since, otherwise, the clustering process would have been carried out as a function of the mean daily demand [<a href="#B42-electronics-11-00267" class="html-bibr">42</a>]. Finally, the conformed data sets are represented in <a href="#electronics-11-00267-f004" class="html-fig">Figure 4</a>.</div></section><section id='sec3dot4-electronics-11-00267' type=''><h4 class='html-italic' data-nested='2'> 3.4. Distance Measurements</h4><div class='html-p'>The work aims to find similarities in feeder consumption. Thus, it was essential to determine appropriate distance measures. Since one of the strategies was based on feature extraction, the use of Euclidean distance was reasonable. However, when considering the strategy based on patterns present in the consumption time series, the distance measure based on dynamic time warping (DTW) proved to be a better choice [<a href="#B43-electronics-11-00267" class="html-bibr">43</a>], although the Euclidean distance showed some promising results that should be considered for experimentation [<a href="#B7-electronics-11-00267" class="html-bibr">7</a>].</div><div class='html-p'>Therefore, for the time series approach, the definition of the Euclidean distance is such that, given two time series <math display='inline'><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>x</mi> <mi>N</mi> </msub> <mo>)</mo> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mo>(</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>y</mi> <mi>N</mi> </msub> <mo>)</mo> </mrow> </semantics></math> of lengths <span class='html-italic'>N</span>, is represented as <div class='html-disp-formula-info' id='FD12-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>d</mi> <mi>e</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <munderover> <mo>∑</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <mrow> <mo>∥</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>−</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>∥</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </semantics></math> </div> <div class='l'> <label >(12)</label> </div> </div></div><div class='html-p'>In the case of feature extraction, <span class='html-italic'>x</span> and <span class='html-italic'>y</span> correspond to the arrangement of the considered features.</div><div class='html-p'>On the other hand, the DTW algorithm presents an efficient method that minimizes shifting and distortion effects. It includes a transformation that allows similar shapes with different phases between time series to be detected [<a href="#B44-electronics-11-00267" class="html-bibr">44</a>]. Given the time series <math display='inline'><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>x</mi> <mi>N</mi> </msub> <mo>)</mo> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mo>(</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>y</mi> <mi>N</mi> </msub> <mo>)</mo> </mrow> </semantics></math> of lengths <span class='html-italic'>N</span>, a cost matrix is created with objects that correspond to the all pairwise distance between the <span class='html-italic'>x</span> and <span class='html-italic'>y</span> components, such that <span class='html-italic'>M</span>: <math display='inline'><semantics> <mrow> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>∥</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>−</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>∥</mo> </mrow> </mrow> </semantics></math> for <math display='inline'><semantics> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>∈</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mi>N</mi> <mo>]</mo> </mrow> </semantics></math>. From here, the optimal warping path <math display='inline'><semantics> <mrow> <mi>w</mi> <mi>p</mi> <mo>=</mo> <mo>(</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>p</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> </semantics></math> is determined, where <math display='inline'><semantics> <mrow> <msub> <mi>p</mi> <mo>ℓ</mo> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mo>ℓ</mo> </msub> <mo>,</mo> <msub> <mi>j</mi> <mo>ℓ</mo> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> represents the pair of indices of the selected components in the matrix <span class='html-italic'>M</span>. The value of L corresponding to the length of <math display='inline'><semantics> <mrow> <mi>w</mi> <mi>p</mi> </mrow> </semantics></math> is such that <math display='inline'><semantics> <mrow> <mi>N</mi> <mo>≤</mo> <mi>L</mi> <mo><</mo> <mn>2</mn> <mo>×</mo> <mi>N</mi> </mrow> </semantics></math>. For the determination of <span class='html-italic'>wp</span>, there are three conditions to be followed. The first one corresponds to the boundary condition, in which <math display='inline'><semantics> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <msub> <mi>p</mi> <mi>L</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mi>N</mi> <mo>,</mo> <mi>N</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>; thus, it is ensured that such a path starts at the beginning of both series and closes at the end. The second refers to the monotonicity condition, where it is fulfilled that <math display='inline'><semantics> <mrow> <msub> <mi>i</mi> <mrow> <mo>ℓ</mo> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mo>≤</mo> <msub> <mi>i</mi> <mo>ℓ</mo> </msub> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <msub> <mi>j</mi> <mrow> <mo>ℓ</mo> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mo>≤</mo> <msub> <mi>j</mi> <mo>ℓ</mo> </msub> </mrow> </semantics></math>, in order to preserve the time-ordering of points. The third condition is known as the step size condition, whose criterion limits the warping path of the long jumps while aligning the series. This last condition is formulated as <math display='inline'><semantics> <mrow> <msub> <mi>p</mi> <mo>ℓ</mo> </msub> <mo>−</mo> <msub> <mi>p</mi> <mrow> <mo>ℓ</mo> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mo>∈</mo> <mrow> <mo>{</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </mrow> </semantics></math>. Then, <math display='inline'><semantics> <mrow> <mi>w</mi> <mi>p</mi> </mrow> </semantics></math> is composed in such a way that the cost function <math display='inline'><semantics> <mrow> <msub> <mi>m</mi> <mrow> <mi>w</mi> <mi>p</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>∑</mo> <mrow> <mo>ℓ</mo> <mo>=</mo> <mn>1</mn> </mrow> <mi>L</mi> </msubsup> <msub> <mi>m</mi> <mrow> <msub> <mi>i</mi> <mo>ℓ</mo> </msub> <mo>,</mo> <msub> <mi>j</mi> <mo>ℓ</mo> </msub> </mrow> </msub> </mrow> </semantics></math> is minimized. Finally, the DTW distance is expressed as <div class='html-disp-formula-info' id='FD13-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>d</mi> <mrow> <mi>D</mi> <mi>T</mi> <mi>W</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>m</mi> <mrow> <mi>w</mi> <mi>p</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(13)</label> </div> </div></div><div class='html-p'><a href="#electronics-11-00267-f005" class="html-fig">Figure 5</a> shows the difference between the components considered for the calculation of the distance between the D3 and E2 feeders, both Euclidean and DTW. The latter shows that the pairs of components considered were not necessarily located in the same temporal location.</div></section><section id='sec3dot5-electronics-11-00267' type=''><h4 class='html-italic' data-nested='2'> 3.5. Clustering Techniques</h4><div class='html-p'>In machine learning, clustering refers to the process of grouping a sample of objects according to a similarity measure. Classically, clustering is defined as follows: Let <math display='inline'><semantics> <mi mathvariant="script">O</mi> </semantics></math> be a set of <math display='inline'><semantics> <msub> <mi>n</mi> <mi>o</mi> </msub> </semantics></math> objects described by <span class='html-italic'>d</span> features <math display='inline'><semantics> <msub> <mo mathvariant="italic">⨏</mo> <mi>j</mi> </msub> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>d</mi> </mrow> </semantics></math>, so that <math display='inline'><semantics> <msub> <mi>o</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </semantics></math> denotes the value of the feature <math display='inline'><semantics> <msub> <mo mathvariant="italic">⨏</mo> <mi>j</mi> </msub> </semantics></math> for the object <math display='inline'><semantics> <msub> <mi>o</mi> <mi>i</mi> </msub> </semantics></math>.</div><div class='html-p'>Clustering aims to group the <math display='inline'><semantics> <msub> <mi>n</mi> <mi>o</mi> </msub> </semantics></math> objects into K clusters <math display='inline'><semantics> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi>C</mi> <mi>K</mi> </msub> </mrow> </semantics></math> so that objects in the same cluster are more similar than those in other clusters.</div><div class='html-p'>The clustering algorithms used in this work are K-means [<a href="#B45-electronics-11-00267" class="html-bibr">45</a>] and hierarchical clustering [<a href="#B46-electronics-11-00267" class="html-bibr">46</a>]. The following section describes both strategies.</div><section id='sec3dot5dot1-electronics-11-00267' type=''><h4 class='' data-nested='3'> 3.5.1. K-Means</h4><div class='html-p'>The K-means algorithm is one of the simplest and most widely used clustering techniques. It determines cluster centroids belonging to a data set, according to a K value representing the number of clusters in which they are to be partitioned. In particular, the algorithm repeatedly performs two steps for this purpose. First, it assigns the closest centroid (<math display='inline'><semantics> <msub> <mi>c</mi> <mi>k</mi> </msub> </semantics></math>) to each data in order to minimize the sum of squared distance as expressed by Equation (<a href="#FD14-electronics-11-00267" class="html-disp-formula">14</a>); then, it recalculates the centroids based on the mean of the data that were assigned to it, until it finds no variation or reaches a predefined number of iterations [<a href="#B47-electronics-11-00267" class="html-bibr">47</a>]. <div class='html-disp-formula-info' id='FD14-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <mi>E</mi> <mo>=</mo> <munderover> <mo>∑</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </munderover> <munder> <mo>∑</mo> <mrow> <mi>o</mi> <mo>∈</mo> <msub> <mi>C</mi> <mi>k</mi> </msub> </mrow> </munder> <msup> <mrow> <mo>∥</mo> <mi>o</mi> <mo>−</mo> <msub> <mi>c</mi> <mi>k</mi> </msub> <mo>∥</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> </div> <div class='l'> <label >(14)</label> </div> </div></div><div class='html-p'>It is worth noticing that the initialization of the centroids can be carried out randomly. Nevertheless, for this work, the Kmeans++ optimization method was used, thus selecting the starting points with a probability weighted by the distance from the previously chosen initial centroids [<a href="#B48-electronics-11-00267" class="html-bibr">48</a>]. In addition, it should be noted that, when K-means was applied on the time series data with the DTW distance measurement, the centroids were calculated using the DTW barycenter averaging (DBA) algorithm [<a href="#B49-electronics-11-00267" class="html-bibr">49</a>].</div></section><section id='sec3dot5dot2-electronics-11-00267' type=''><h4 class='' data-nested='3'> 3.5.2. Hierarchical Clustering</h4><div class='html-p'>Hierarchical clustering allows the construction of a hierarchy structure or linkage between the clusters formed, which can be either agglomerative or divisive. In the agglomerative method, each object is initially considered as a group. Then, the groups are iteratively combined to form an ascending hierarchy of groups until a single root group is reached. In contrast, the divisive method considers the complete set of objects as a single cluster. Then, it iteratively splits the clusters to achieve a top-down hierarchy where each object represents a single cluster [<a href="#B47-electronics-11-00267" class="html-bibr">47</a>].</div><div class='html-p'>The final structure of the clusters obtained is called a tree or dendrogram. The process carried out to obtain the dendrogram requires determining the similarity between the objects with the use of a linkage criterion [<a href="#B50-electronics-11-00267" class="html-bibr">50</a>]. In this work, a focus on the agglomerative method was given, using the linkage criteria summarized in <a href="#electronics-11-00267-t002" class="html-table">Table 2</a>. The application is described given two clusters, <math display='inline'><semantics> <msub> <mi>C</mi> <mi>i</mi> </msub> </semantics></math> and <math display='inline'><semantics> <msub> <mi>C</mi> <mi>j</mi> </msub> </semantics></math>.</div><div class='html-p'>This approach was been applied to time series data. For example, in [<a href="#B51-electronics-11-00267" class="html-bibr">51</a>], the hierarchical algorithm was applied using the DTW distance.</div></section><section id='sec3dot5dot3-electronics-11-00267' type=''><h4 class='' data-nested='3'> 3.5.3. K-Spectral Centroid</h4><div class='html-p'>K-spectral centroid [<a href="#B52-electronics-11-00267" class="html-bibr">52</a>] (K-SC) allows clusters to be found in the time series based on the distinctive temporal pattern of the time series. It is an iterative algorithm similar to the classical K-means clustering algorithm, but performs an efficient centroid calculation under a scale-invariant and shift-invariant distance metric.</div><div class='html-p'>Similar to K-means, K-SC alternates between two steps to minimize the sum of squared distances; however, the distance metric is not Euclidean, but is given by <div class='html-disp-formula-info' id='FD15-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>d</mi> <mrow> <mi>S</mi> <mi>C</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow> <mi>γ</mi> <mo>,</mo> <mi>q</mi> </mrow> </munder> <mfrac> <mrow> <mo>∥</mo> <mi>x</mi> <mo>−</mo> <mi>γ</mi> <msub> <mi>y</mi> <mi>q</mi> </msub> <mo>∥</mo> </mrow> <mrow> <mo>∥</mo> <mi>x</mi> <mo>∥</mo> </mrow> </mfrac> </mrow> </semantics></math> </div> <div class='l'> <label >(15)</label> </div> </div> where <span class='html-italic'>x</span> and <span class='html-italic'>y</span> correspond to time series, <math display='inline'><semantics> <msub> <mi>y</mi> <mi>q</mi> </msub> </semantics></math> corresponds to the time series shifted by <span class='html-italic'>q</span> time units and <math display='inline'><semantics> <mi>γ</mi> </semantics></math> is a scaling coefficient to time series. This measure finds the optimal alignment and the scaling coefficient for matching the shapes of the two time series. As a result, it allows one to compute the cluster centroids more appropriately by better acquiring the temporal patterns of the data. Thus, this algorithm was applied to the weekly and monthly time series of electricity demand.</div></section></section><section id='sec3dot6-electronics-11-00267' type=''><h4 class='html-italic' data-nested='2'> 3.6. Cluster Validity Indices</h4><div class='html-p'>Since the task of grouping objects that share similar characteristics belongs to the area of unsupervised methods, it is challenging, at first, to select the number of sets to be considered. For this purpose, several clustering validation indices provide a quantitative criterion about the number of clusters formed. In this work, the Silhouette, Davies–Bouldin and Calinski–Harabasz validation indices were considered. They have shown promising results in comparative studies [<a href="#B53-electronics-11-00267" class="html-bibr">53</a>] and also provide enough information to select the most optimal configuration.</div><div class='html-p'>The Silhouette index describes a measure of quality based on how similar an object is to those belonging to the same cluster (cohesion) in contrast to how dissimilar it is from those belonging to the nearest cluster (separation) [<a href="#B54-electronics-11-00267" class="html-bibr">54</a>]. This index is normalized within a <math display='inline'><semantics> <mrow> <mo>[</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo>+</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math> range, where high values indicate a good conformation of the objects based on their similarities concerning the distinctions of the other clusters. In this case, the average of the Silhouette index scores for each component of a given cluster was considered. Since <math display='inline'><semantics> <msub> <mi>α</mi> <mi>i</mi> </msub> </semantics></math> represents the average distance of an <span class='html-italic'>i</span>-th sample for the others in the same cluster and <math display='inline'><semantics> <msub> <mi>β</mi> <mi>i</mi> </msub> </semantics></math> represents the average distance of the same sample with respect to those in the nearest cluster, the Silhouette index for a sample is represented by <div class='html-disp-formula-info' id='FD16-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mo mathvariant="italic">⟆</mo> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>β</mi> <mi>i</mi> </msub> <mo>−</mo> <msub> <mi>α</mi> <mi>i</mi> </msub> </mrow> <mrow> <mo movablelimits="true" form="prefix">max</mo> <mo>(</mo> <msub> <mi>α</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>β</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mfrac> </mrow> </semantics></math> </div> <div class='l'> <label >(16)</label> </div> </div></div><div class='html-p'>Therefore, the average score of the Silhouette index is given by <div class='html-disp-formula-info' id='FD17-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <mi>S</mi> <mi>I</mi> <mi>L</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mo>∑</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mo mathvariant="italic">⟆</mo> <mi>i</mi> </mrow> </semantics></math> </div> <div class='l'> <label >(17)</label> </div> </div> where <span class='html-italic'>N</span> corresponds to the total amount of samples.</div><div class='html-p'>The Davies–Bouldin validation index represents the average similarity between clusters [<a href="#B55-electronics-11-00267" class="html-bibr">55</a>]. In this case, the cohesion estimation is based on the average distance <math display='inline'><semantics> <msub> <mi>δ</mi> <mi>i</mi> </msub> </semantics></math> between the centroid of a considered cluster <span class='html-italic'>i</span> and the objects that conform it. The separation is represented by the distance <math display='inline'><semantics> <msub> <mi mathvariant="script">D</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </semantics></math> between the centroids of the cluster <span class='html-italic'>i</span> and another cluster <span class='html-italic'>j</span>. Thus, <div class='html-disp-formula-info' id='FD18-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>δ</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>δ</mi> <mi>j</mi> </msub> </mrow> <msub> <mi mathvariant="script">D</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mfrac> </mrow> </semantics></math> </div> <div class='l'> <label >(18)</label> </div> </div> is maximized, where <math display='inline'><semantics> <msub> <mi>δ</mi> <mi>j</mi> </msub> </semantics></math> represents the cohesion estimation for cluster <span class='html-italic'>j</span>. Therefore, the Davies–Bouldin index is represented by the expression <div class='html-disp-formula-info' id='FD19-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <mi>D</mi> <mi>B</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mi>K</mi> </mfrac> <munderover> <mo>∑</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </munderover> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow> <mi>i</mi> <mo>≠</mo> <mi>j</mi> </mrow> </munder> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </semantics></math> </div> <div class='l'> <label >(19)</label> </div> </div> where <span class='html-italic'>K</span> indicates the number of clusters. The lowest score that can be obtained for this index is 0; values close to it indicate better clustering.</div><div class='html-p'>Finally, the Calinski–Harabasz validation index measures the ratio of the sum of the between-cluster dispersion and within-cluster dispersion for all clusters [<a href="#B56-electronics-11-00267" class="html-bibr">56</a>]. In this sense, dispersion is defined as the sum of the squared distances. Therefore, when considering a set of objects <math display='inline'><semantics> <mi mathvariant="script">O</mi> </semantics></math> of size <math display='inline'><semantics> <msub> <mi>n</mi> <mi>o</mi> </msub> </semantics></math>, which have been clustered in one of the <span class='html-italic'>K</span> clusters, it is necessary to determine both the between-cluster dispersion matrix <span class='html-italic'>B</span> and the within-cluster dispersion matrix <span class='html-italic'>W</span>, expressed as <div class='html-disp-formula-info' id='FD20-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <mi>B</mi> <mo>=</mo> <munderover> <mo>∑</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </munderover> <msub> <mi>n</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>−</mo> <msub> <mi>c</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>−</mo> <msub> <mi>c</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mrow> </semantics></math> </div> <div class='l'> <label >(20)</label> </div> </div><div class='html-disp-formula-info' id='FD21-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <mi>W</mi> <mo>=</mo> <munderover> <mo>∑</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </munderover> <munder> <mo>∑</mo> <mrow> <mi>x</mi> <mo>∈</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> </mrow> </munder> <mrow> <mo>(</mo> <mi>x</mi> <mo>−</mo> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>−</mo> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mrow> </semantics></math> </div> <div class='l'> <label >(21)</label> </div> </div> where <math display='inline'><semantics> <msub> <mi>C</mi> <mi>i</mi> </msub> </semantics></math> indicates the set of objects belonging to cluster <span class='html-italic'>i</span>, <math display='inline'><semantics> <msub> <mi>c</mi> <mi>i</mi> </msub> </semantics></math> the center of cluster <span class='html-italic'>i</span>, <math display='inline'><semantics> <msub> <mi>c</mi> <mi>o</mi> </msub> </semantics></math> the center of <math display='inline'><semantics> <mi mathvariant="script">O</mi> </semantics></math> and <math display='inline'><semantics> <msub> <mi>n</mi> <mi>i</mi> </msub> </semantics></math> the number of objects in cluster <span class='html-italic'>i</span>. Once this is carried out, the traces <math display='inline'><semantics> <mrow> <mi>t</mi> <mi>r</mi> <mo>(</mo> <mi>B</mi> <mo>)</mo> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <mi>t</mi> <mi>r</mi> <mo>(</mo> <mi>W</mi> <mo>)</mo> </mrow> </semantics></math> corresponding to the matrices <span class='html-italic'>B</span> and <span class='html-italic'>W</span>, respectively, are considered. With them, the Calinski–Harabasz index is defined as <div class='html-disp-formula-info' id='FD22-electronics-11-00267'> <div class='f'> <math display='block'><semantics> <mrow> <mi>C</mi> <mi>H</mi> <mo>=</mo> <mfrac> <mrow> <mi>t</mi> <mi>r</mi> <mo>(</mo> <mi>B</mi> <mo>)</mo> </mrow> <mrow> <mi>t</mi> <mi>r</mi> <mo>(</mo> <mi>W</mi> <mo>)</mo> </mrow> </mfrac> <mo>×</mo> <mfrac> <mrow> <msub> <mi>n</mi> <mi>o</mi> </msub> <mo>−</mo> <mi>K</mi> </mrow> <mrow> <mi>K</mi> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </semantics></math> </div> <div class='l'> <label >(22)</label> </div> </div></div><div class='html-p'>High scores indicate well separated and dense clusters, which is expected when the clustering algorithm is correctly applied.</div></section><section id='sec3dot7-electronics-11-00267' type=''><h4 class='html-italic' data-nested='2'> 3.7. Workflow</h4><div class='html-p'>As shown in <a href="#electronics-11-00267-f006" class="html-fig">Figure 6</a>, this work followed a rigorous process to determine the necessary tools for experimentation. The starting point was collecting available data from the studied feeders, followed by the corresponding preprocessing to correct the anomalies present. Once this stage was completed, four sets were generated based on the above description.</div><div class='html-p'>The description of the different models induced on each data set are presented in <a href="#electronics-11-00267-t003" class="html-table">Table 3</a>. It gives a better appreciation of the configurations to be taken into account. For each data set, both the K-means and hierarchical clustering algorithms were applied, considering the corresponding variation depending on the nature of the data. Thus, for data belonging to time series, the analyses were performed for Euclidean distance measurement and DTW. On feature-based data, the only distance applied was the Euclidean distance. Likewise, for the models where the hierarchical algorithm was applied, the linkage criteria set out in <a href="#electronics-11-00267-t002" class="html-table">Table 2</a> were taken into account. Therefore, each model was assigned an identifier for further analyses based on the results.</div><div class='html-p'>After the learning process was completed for different cluster sets, the validation index scores were considered to determine the best performing model and the optimal number of these clusters. Finally, the results were plotted to visualize the characteristics possessed by the conformed clusters, as shown in the next section.</div></section></section><section id='sec4-electronics-11-00267' type='results'><h2 data-nested='1'> 4. Results</h2><div class='html-p'>This section presents the results obtained from the numerical experimentation carried out using the previously defined models. The objectives defined in this work are the following:</div><div class='html-p'><ul class='html-bullet'><li><div class='html-p'>Comparison of the different clustering techniques studied to identify the best models according to the cluster validity index measures.</div></li><li><div class='html-p'>Analysis of the consumption data of the best model found.l.</div></li></ul></div><div class='html-p'>For the comparison of the different models, the number of clusters was varied from two to ten. For each model, the Silhouette, Davies–Bouldin and Calinski–Harabasz index scores were calculated. However, only the Silhouette index was taken into account because of its data independence [<a href="#B54-electronics-11-00267" class="html-bibr">54</a>].</div><div class='html-p'>However, since the preliminary results based on the Silhouette score yielded the best configuration of only two clusters, which did not imply a good solution to the problem, considering it did not give the DNOs the opportunity to assess different options, the scores based on the local maximum were also considered. This opened a broader range of clustering possibilities. The same consideration was also given to the Calinski–Harabasz index. In contrast, the local minimum was considered for the Davies–Bouldin index.</div><section id='sec4dot1-electronics-11-00267' type=''><h4 class='html-italic' data-nested='2'> 4.1. Model Comparison</h4><div class='html-p'>Once the defined models had been subjected to the variation of the different numbers of clusters, the best 15 models were selected as indicated in <a href="#electronics-11-00267-t004" class="html-table">Table 4</a>.</div><div class='html-p'>Models using the data set based on seasonal demand characteristics showed better results than on other data sets. The above indicates that the differences in energy consumption in different seasons of the year and the variation in consumption during the week provided more relevant information to characterize the similarities among feeders. In addition, there was repeatability in terms of the number of clusters present for different models, i.e., four, six, or seven clusters generally showed good results. It is important to highlight that the models that made use of the data set based on time series also showed good results, since they appeared in the ranking, starting from the 12th position. Under this aspect, the K-SC algorithm had a higher relevance with respect to the others used in this strategy. However, its scores were well below those of the models based on seasonal features mentioned above. On the other hand, those models based on statistical characteristics are not presented in the table due to their poor performance.</div><div class='html-p'>Additionally, with respect to the distance metrics applied to the time series and used in the described algorithms, both the DTW methods used in K-means and the K-SC metric showed better results in contrast to the Euclidean distance, as shown in <a href="#electronics-11-00267-t004" class="html-table">Table 4</a>. On the other hand, there was no relevant difference in the results obtained by the types of linkage criteria applied to the hierarchical algorithm, since the Silhouette indices were very similar.</div><div class='html-p'>These results were further analyzed considering the other validation indices mentioned. Since the models to be compared now shared the same data set, there was a concordance between the scores obtained by the Calinski–Harabasz and the Davies–Bouldin indices.</div><div class='html-p'>Therefore, according to <a href="#electronics-11-00267-f007" class="html-fig">Figure 7</a>, which shows the variation in the validation indices based on the change in the number of groupings considered, it was possible to make a more concrete determination of the best configuration. The points where a local maximum appeared in the curve produced by the Silhouette scores were marked with a vertical dashed line. It intercepted with the other curves formed for a more evident appreciation of the comparable values.</div><div class='html-p'>Firstly, the points where both the Silhouette and Davies–Bouldin scores produced better results simultaneously were determined. These corresponded to the points for the Davies–Bouldin curve where there was a local minimum and where it intersected the vertical dashed line. Therefore, there were only two cases where this condition was fulfilled. One corresponded to the K-means algorithm and the other to the hierarchical algorithm with the ward criterion, both under the consideration of K = 6 clusters.</div><div class='html-p'>Similarly, the points where the Silhouette and Calinski–Harabasz scores presented the best results together were also determined. In this case, it is necessary to point out those values that belonged to a local maximum in the Calinski–Harabasz curve and, likewise, intersected with the vertical dashed line. Thus, five points were detected where these considerations were satisfied. For the K-means algorithm, it was found at K = 6. Regarding the hierarchical algorithms, with the complete criterion, one was found at K = 7. Finally, with the centroid criterion, both for K = 6 and K = 8 were found. Thus, the conditions were verified. When considering the average criterion, there was a point at K = 5 that also satisfied the requirements.</div><div class='html-p'>As a result, the model based on the K-means algorithm for K = 6 clusters showed the best configuration concerning the scores of the validation indices as a whole, as the preferable results coincided with this one. Therefore, it is important to note that, in the clusters formed, the objects presented a good similarity between those belonging to the same cluster and dissimilarity between the objects of nearby clusters. Likewise, the conformations presented a low dispersion, thus yielding dense clusters.</div><div class='html-p'>However, while the model based on the hierarchical algorithm with the ward criterion for K = 6 did not perform well for the Calinski–Harabasz index, it did well with the remaining validation indices. Therefore, it was relevant to compare to determine the differences between the resulting clusters in contrast to the K-means cluster for the same number of clusters. Given the comparison illustrated in <a href="#electronics-11-00267-f008" class="html-fig">Figure 8</a>, corresponding to the clusters formed by the K-means model in contrast to those obtained from the hierarchical model with Ward’s criterion for K = 6, two of them shared the same objects, that is, the same feeders, which indicates an important relationship between those that made up these clusters. In contrast, the remaining clusters differed in several ways between the two models. Cluster 4 of the hierarchical model included all the objects of its homonym belonging to the K-means model. However, it also included some objects of Clusters 3 and 5 from the latter. Another essential aspect was observed in Cluster 2 of K-means, formed by Clusters 2 and 3 of the hierarchical model.</div></section><section id='sec4dot2-electronics-11-00267' type=''><h4 class='html-italic' data-nested='2'> 4.2. Analysis of Selected Model</h4><div class='html-p'>Given the previous analysis of the validation indices, the K-means model with K=6 clusters was selected for use. Therefore, we proceeded to analyze the consumption curves for the clusters determined.</div><div class='html-p'><a href="#electronics-11-00267-f009" class="html-fig">Figure 9</a>a shows a box plot of the average daily consumption of all clusters. Cluster 4 had a very distinct behavior on electricity consumption throughout the day, when compared to the other clusters. In this case, the feeders that made up this cluster showed a prominent peak at midday, with no other peak at night as usual. The other clusters considered, in turn, presented a similar behavior with the consumption curve. There were more pronounced peaks both at midday and at night. However, there were slight differences in the level of consumption.</div><div class='html-p'>The fact that there was not a very marked distinction in these graphs is because the clustering was performed based on the consumption characteristics of the seasons, that is, the difference between certain times of the day, weekdays or weekends and the seasons of the year. For this purpose, a better analysis is presented in <a href="#electronics-11-00267-f009" class="html-fig">Figure 9</a>b. Here, the centroid of each cluster is presented as daily consumption, where the summer and winter seasons were considered, as well as the weekdays and weekends for each of them. Daily consumption was similar for both weekdays and weekends in summer for all clusters, except for Cluster 4. In winter, Cluster 5 showed a considerable drop in its consumption that differed from the other clusters. In summer, although there were differences, they were not so significant. The changes in the consumption levels of Clusters 1 and 3 were also notable. In summer, Cluster 1 had a higher consumption than Cluster 3; however, in winter, this was reversed.</div><div class='html-p'>In a nutshell, the feeders present in each defined cluster were exposed. Cluster 1 contained feeders A1, N1, M5, L3, K3, I1, I2, I5, D1, N4 and C2. Cluster 2 was made up of H3, M6, G3, L1, I3, E4, G1, H1, E7, F1 and I4. Cluster 3 contained feeders C1, K2, M4, A2, K1, J1, B5, H2, G4, G2, E6, E1, E2 and D3. Cluster 4 grouped feeders B1, B3 and B4. Cluster 5 contained E3 and L4. Finally, Cluster 6 was made up of feeders M7, N2, D2, M3, H4, M1, B2, N3, E5, F2, H5, M2 and L2.</div></section></section><section id='sec5-electronics-11-00267' type='discussion'><h2 data-nested='1'> 5. Discussion</h2><div class='html-p'>In this paper, a cluster analysis of real data from the Paraguayan eastern region’s electric power system is presented for the first time. The data contain four years of hourly electric consumption of 115 feeders distributed in 17 substations.</div><div class='html-p'>The data were pre-processed to generate four data sets useful for the clustering algorithms according to the following: (i) weekly demand, (ii) monthly demand, (iii) a statistical feature set and (iv) a seasonal and daily consumption feature set.</div><div class='html-p'>The K-means and the hierarchical agglomerative clustering algorithms were used with the Euclidean and the dynamic time warping (DTW) measures as distance metrics. For the hierarchical algorithm, five linkage criteria were tested. In this context, a total of 36 different models were tested on the four data sets. The results were evaluated with three index scores, the Silhouette, Davies–Bouldin and the Calinski–Harabasz.</div><div class='html-p'>The seasonal feature set obtained the best results; this was expected, considering that this feature set was designed thinking in terms of the electric consumption curve with a particular daily period of the Paraguayan load curve. The K-means showed slightly better performance than hierarchical agglomerative clustering, although the difference was not significant, even among the linkage criteria used in the latter. The K-means with the seasonal features data set obtained the best Silhouette score of 0.432 with four clusters. However, when all three metrics were considered, the K-means with six clusters presented the best performance. All tested models, K-means, hierarchical and K-SC, exhibited the worse performance on both time series and statistical based data sets when compared to models using the seasonal feature data set. However, metrics applied to time series for handling time shifting, such as DTW and K-SC’s own metric, yielded better results than the Euclidean distance.</div><div class='html-p'>The three metrics considered in this paper did not score the same cluster configuration as the best. Therefore, different options and optimal local results were assessed. Showing more than one result gave the DNOs the opportunity to analyze different quality options before deciding whether they may be studying new tariff incentives, the impact of distributed generation, or new distribution network structures.</div><div class='html-p'>In future works, other clustering algorithms, such as kernel DBScan, modified fuzzy c-means, or k-medoids-based genetic clustering [<a href="#B57-electronics-11-00267" class="html-bibr">57</a>], may be implemented on the data set. In addition, a biclustering approach [<a href="#B23-electronics-11-00267" class="html-bibr">23</a>] is proposed as an interesting alternative for future works of this research. We also plan to apply the methods studied in this work to other real world data.</div></section> </div> <div class="html-back"> <section class='html-notes'><h2 >Author Contributions</h2><div class='html-p'>Conceptualization, F.M., M.G.-T. and P.E.G.-S.; methodology, M.G.-T., P.E.G.-S. and C.S.A.; software, F.M.; validation, M.G.-T. and P.E.G.-S.; formal analysis, M.G.-T., P.E.G.-S., C.S.A. and D.P.P.-R.; investigation, F.M., M.G.-T., P.E.G.-S. and D.P.P.-R.; resources, F.M., G.V. and F.D.-L; data curation, G.V. and F.D.-L.; writing—original draft preparation, F.M., M.G.-T., P.E.G.-S., D.P.P.-R. and C.S.A.; writing—review and editing, M.G.-T., P.E.G.-S., C.S.A., F.G.-V., F.D., J.L.V.N., D.P.P.-R., J.C.M.-R. and D.B.-A.; visualization, F.M., G.V. and F.D.-L.; supervision, M.G.-T. and P.E.G.-S. All authors have read and agreed to the published version of the manuscript.</div></section><section class='html-notes'><h2 >Funding</h2><div class='html-p'>This research project was funded by CONACYT, Paraguay, under Grant PINV18-661.</div></section><section class='html-notes'><h2 >Data Availability Statement</h2><div class='html-p'>The data that support the findings of this study are openly available in mendeley at <a href='https://data.mendeley.com/datasets/hzfwzzsk8f/4' target='_blank' rel="noopener noreferrer">https://data.mendeley.com/datasets/hzfwzzsk8f/4</a>, accessed on 6 January 2022, doi:10.17632/hzfwzzsk8f.4. More information about the data is available at [<a href="#B12-electronics-11-00267" class="html-bibr">12</a>].</div></section><section id='html-ack' class='html-ack'><h2 >Acknowledgments</h2><div class='html-p'>This work was supported by CONACYT, Paraguay, under Grant PINV18-661.</div></section><section class='html-notes'><h2 >Conflicts of Interest</h2><div class='html-p'>The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.</div></section><section id='html-glossary'><h2 >List of Symbols</h2><div class='html-p'>The following symbols are used in this manuscript:</div><table class='html-array_table'><tbody ><tr ><td align='left' valign='middle' class='html-align-left' ><b>Symbol</b></td><td align='left' valign='middle' class='html-align-left' ><b>Description</b></td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>x</mi> <mo>,</mo> <mi>X</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>Y</mi> </mrow> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Time series</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <msup> <mi>X</mi> <mo>*</mo> </msup> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Box–Cox transformation of time series</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <msub> <mi>S</mi> <msup> <mi>x</mi> <mo>*</mo> </msup> </msub> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Seasonal component of time series</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <msub> <mi>T</mi> <msup> <mi>x</mi> <mo>*</mo> </msup> </msub> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Trend component of time series</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <msub> <mi>R</mi> <msup> <mi>x</mi> <mo>*</mo> </msup> </msub> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Remainder component of time series</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mi mathvariant="script">H</mi> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Historical records where DOW is the same as the one on the missing record</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mi>μ</mi> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Mean</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mi>σ</mi> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Standard deviation</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mi mathvariant="script">S</mi> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Skewness</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mi mathvariant="script">K</mi> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Kurtosis</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'><semantics> <mrow> <mi>δ</mi> <msub> <mi mathvariant="bold-italic">Z</mi> <mn>0</mn> </msub> </mrow> </semantics></math> </td><td align='left' valign='middle' class='html-align-left' >Initial separation vector</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>δ</mi> <msub> <mi mathvariant="bold-italic">Z</mi> <mi>t</mi> </msub> </mrow> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Separation vector</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mi>λ</mi> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Maximum Lyapunov exponent</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mi mathvariant="script">T</mi> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Period</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mi mathvariant="script">P</mi> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Periodicity</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <msub> <mi mathvariant="script">P</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>ω</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Power spectral density</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mi mathvariant="script">E</mi> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Energy</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><span class='html-italic'>P</span></td><td align='left' valign='middle' class='html-align-left' >Mean electricity demand</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mover accent="true"> <mi>P</mi> <mo stretchy="false">^</mo> </mover> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Mean daily demand over a complete time series</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <msup> <mi>P</mi> <mi>S</mi> </msup> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Mean summer demand</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <msup> <mi>P</mi> <mi>W</mi> </msup> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Mean winter demand</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <msup> <mi>P</mi> <mrow> <mi>W</mi> <mi>D</mi> </mrow> </msup> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Mean weekday demand</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <msup> <mi>P</mi> <mrow> <mi>W</mi> <mi>E</mi> </mrow> </msup> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Mean weekend demand</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <msup> <mi>P</mi> <mi>R</mi> </msup> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Relative average power</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mover accent="true"> <mi>σ</mi> <mo stretchy="false">^</mo> </mover> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Mean relative standard deviation</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mi mathvariant="script">S</mi> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Seasonal score</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mi mathvariant="script">W</mi> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Weekend vs. weekday difference score</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mi mathvariant="script">O</mi> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Set of objects</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <msub> <mi>n</mi> <mi>o</mi> </msub> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Size of a set of objects</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><span class='html-italic'>C</span></td><td align='left' valign='middle' class='html-align-left' >Cluster</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><span class='html-italic'>c</span></td><td align='left' valign='middle' class='html-align-left' >Centroid of a cluster</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><span class='html-italic'>E</span></td><td align='left' valign='middle' class='html-align-left' >Sum of squared distances between objects and their centroid in all clusters</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <msub> <mi>d</mi> <mi>e</mi> </msub> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Euclidean distance</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <msub> <mi>d</mi> <mrow> <mi>D</mi> <mi>T</mi> <mi>W</mi> </mrow> </msub> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Dynamic time warping distance</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><span class='html-italic'>M</span></td><td align='left' valign='middle' class='html-align-left' >Cost matrix for DTW</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>w</mi> <mi>p</mi> </mrow> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Optimal warping path</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <msub> <mi>m</mi> <mrow> <mi>w</mi> <mi>p</mi> </mrow> </msub> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Cost function for DTW</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mi>α</mi> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Average distance of a sample with respect to the others in the same cluster</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mi>β</mi> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Average distance of the same sample with respect to those in the nearest cluster</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><span class='html-italic'>⟆</span></td><td align='left' valign='middle' class='html-align-left' >Silhouette index for a sample</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>S</mi> <mi>I</mi> <mi>L</mi> </mrow> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Average score of the Silhouette index (Silhouette index)</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mi>δ</mi> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Average distance between the centroid of a considered cluster and the objects that conform it</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mi mathvariant="script">D</mi> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Distance between centroids of two clusters</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><span class='html-italic'>R</span></td><td align='left' valign='middle' class='html-align-left' >Similarity score between clusters</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>D</mi> <mi>B</mi> </mrow> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Davies–Bouldin index</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><span class='html-italic'>B</span></td><td align='left' valign='middle' class='html-align-left' >Between-cluster dispersion matrix</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><span class='html-italic'>W</span></td><td align='left' valign='middle' class='html-align-left' >Within-cluster dispersion matrix</td></tr><tr ><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>C</mi> <mi>H</mi> </mrow> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' >Calinski–Harabasz index</td></tr></tbody></table></section><section id='html-glossary'><h2 >Abbreviations</h2><div class='html-p'>The following abbreviations are used in this manuscript: <table class='html-array_table'><tbody ><tr ><td align='left' valign='middle' class='html-align-left' >DNOs</td><td align='left' valign='middle' class='html-align-left' >Distribution network operators</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >DWT</td><td align='left' valign='middle' class='html-align-left' >Discrete wavelet transform</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >NN</td><td align='left' valign='middle' class='html-align-left' >Neural networks</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >SVM</td><td align='left' valign='middle' class='html-align-left' >Support vector machine</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >DTW</td><td align='left' valign='middle' class='html-align-left' >Dynamic time warping</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >LD</td><td align='left' valign='middle' class='html-align-left' >Linear dichroism</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >DOW</td><td align='left' valign='middle' class='html-align-left' >Day of the week</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >MLE</td><td align='left' valign='middle' class='html-align-left' >Maximum Lyapunov exponent</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >FFT</td><td align='left' valign='middle' class='html-align-left' >Fast Fourier transform</td></tr></tbody></table></div></section><section id='html-references_list'><h2>References</h2><ol class='html-xx'><li id='B1-electronics-11-00267' class='html-x' data-content='1.'>Schneider, K.P.; Chen, Y.; Engle, D.; Chassin, D. A taxonomy of North American radial distribution feeders. In Proceedings of the IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; pp. 1–6. [<a href="https://scholar.google.com/scholar_lookup?title=A+taxonomy+of+North+American+radial+distribution+feeders&conference=Proceedings+of+the+IEEE+Power+&+Energy+Society+General+Meeting&author=Schneider,+K.P.&author=Chen,+Y.&author=Engle,+D.&author=Chassin,+D.&publication_year=2009&pages=1%E2%80%936" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B2-electronics-11-00267' class='html-x' data-content='2.'>Jneid, J. <span class='html-italic'>Cluster Analysis for Medium Voltage Distribution Feeders</span>; McGill University: Montreal, QC, Canada, 2020. [<a href="https://scholar.google.com/scholar_lookup?title=Cluster+Analysis+for+Medium+Voltage+Distribution+Feeders&author=Jneid,+J.&publication_year=2020" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B3-electronics-11-00267' class='html-x' data-content='3.'>Bernards, R.; Morren, J.; Slootweg, H. Incorporating the smart grid concept in network planning practices. In Proceedings of the 2015 50th International Universities Power Engineering Conference (UPEC), Stoke-on-Trent, UK, 1–4 September 2015; pp. 1–5. [<a href="https://scholar.google.com/scholar_lookup?title=Incorporating+the+smart+grid+concept+in+network+planning+practices&conference=Proceedings+of+the+2015+50th+International+Universities+Power+Engineering+Conference+(UPEC)&author=Bernards,+R.&author=Morren,+J.&author=Slootweg,+H.&publication_year=2015&pages=1%E2%80%935" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B4-electronics-11-00267' class='html-x' data-content='4.'>Parada, V.; Ferland, J.A.; Arias, M.; Daniels, K. Optimization of electrical distribution feeders using simulated annealing. <span class='html-italic'>IEEE Trans. Power Deliv.</span> <b>2004</b>, <span class='html-italic'>19</span>, 1135–1141. [<a href="https://scholar.google.com/scholar_lookup?title=Optimization+of+electrical+distribution+feeders+using+simulated+annealing&author=Parada,+V.&author=Ferland,+J.A.&author=Arias,+M.&author=Daniels,+K.&publication_year=2004&journal=IEEE+Trans.+Power+Deliv.&volume=19&pages=1135%E2%80%931141&doi=10.1109/TPWRD.2004.829091" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/TPWRD.2004.829091" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B5-electronics-11-00267' class='html-x' data-content='5.'>Collin, A.J.; Tsagarakis, G.; Kiprakis, A.E.; McLaughlin, S. Development of low-voltage load models for the residential load sector. <span class='html-italic'>IEEE Trans. Power Syst.</span> <b>2014</b>, <span class='html-italic'>29</span>, 2180–2188. [<a href="https://scholar.google.com/scholar_lookup?title=Development+of+low-voltage+load+models+for+the+residential+load+sector&author=Collin,+A.J.&author=Tsagarakis,+G.&author=Kiprakis,+A.E.&author=McLaughlin,+S.&publication_year=2014&journal=IEEE+Trans.+Power+Syst.&volume=29&pages=2180%E2%80%932188&doi=10.1109/TPWRS.2014.2301949" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/TPWRS.2014.2301949" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B6-electronics-11-00267' class='html-x' data-content='6.'>Agner, F. <span class='html-italic'>Creating Electrical Load Profiles Through Time Series Clustering</span>; Technical Report for Lund University: Lund, Sweden, 2019. [<a href="https://scholar.google.com/scholar_lookup?title=Creating+Electrical+Load+Profiles+Through+Time+Series+Clustering&author=Agner,+F.&publication_year=2019" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B7-electronics-11-00267' class='html-x' data-content='7.'>Ullón, H.R.; Ugarte, L.F.; Lacusta, E., Jr.; de Almeida, M.C. Characterization of load curves in a real distribution system based on K-MEANS algorithm with time-series data. In Proceedings of the Congresso Brasileiro de Automática-CBA, Gramado, Brazil, 12 September 2020; Volume 2. [<a href="https://scholar.google.com/scholar_lookup?title=Characterization+of+load+curves+in+a+real+distribution+system+based+on+K-MEANS+algorithm+with+time-series+data&conference=Proceedings+of+the+Congresso+Brasileiro+de+Autom%C3%A1tica-CBA&author=Ull%C3%B3n,+H.R.&author=Ugarte,+L.F.&author=Lacusta,+E.,+Jr.&author=de+Almeida,+M.C.&publication_year=2020" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B8-electronics-11-00267' class='html-x' data-content='8.'>Panapakidis, I.; Alexiadis, M.; Papagiannis, G. Load profiling in the deregulated electricity markets: A review of the applications. In Proceedings of the 9th International Conference on the European Energy Market, Piscataway, NJ, USA, 10–12 May 2012; pp. 1–8. [<a href="https://scholar.google.com/scholar_lookup?title=Load+profiling+in+the+deregulated+electricity+markets:+A+review+of+the+applications&conference=Proceedings+of+the+9th+International+Conference+on+the+European+Energy+Market&author=Panapakidis,+I.&author=Alexiadis,+M.&author=Papagiannis,+G.&publication_year=2012&pages=1%E2%80%938" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B9-electronics-11-00267' class='html-x' data-content='9.'>Scarlatache, F.; Grigoraş, G.; Chicco, G.; Cârţină, G. Using k-means clustering method in determination of the optimal placement of distributed generation sources in electrical distribution systems. In Proceedings of the 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, Romania, 24–26 May 2012; pp. 953–958. [<a href="https://scholar.google.com/scholar_lookup?title=Using+k-means+clustering+method+in+determination+of+the+optimal+placement+of+distributed+generation+sources+in+electrical+distribution+systems&conference=Proceedings+of+the+13th+International+Conference+on+Optimization+of+Electrical+and+Electronic+Equipment+(OPTIM)&author=Scarlatache,+F.&author=Grigora%C5%9F,+G.&author=Chicco,+G.&author=C%C3%A2r%C5%A3in%C4%83,+G.&publication_year=2012&pages=953%E2%80%93958" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B10-electronics-11-00267' class='html-xx' data-content='10.'>Lee, E.; Kim, J.; Jang, D. Load profile segmentation for effective residential demand response program: Method and evidence from Korean pilot study. <span class='html-italic'>Energies</span> <b>2020</b>, <span class='html-italic'>13</span>, 1348. [<a href="https://scholar.google.com/scholar_lookup?title=Load+profile+segmentation+for+effective+residential+demand+response+program:+Method+and+evidence+from+Korean+pilot+study&author=Lee,+E.&author=Kim,+J.&author=Jang,+D.&publication_year=2020&journal=Energies&volume=13&pages=1348" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B11-electronics-11-00267' class='html-xx' data-content='11.'>Sakoe, H.; Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. <span class='html-italic'>IEEE Trans. Acoust. Speech, Signal Process.</span> <b>1978</b>, <span class='html-italic'>26</span>, 43–49. [<a href="https://scholar.google.com/scholar_lookup?title=Dynamic+programming+algorithm+optimization+for+spoken+word+recognition&author=Sakoe,+H.&author=Chiba,+S.&publication_year=1978&journal=IEEE+Trans.+Acoust.+Speech,+Signal+Process.&volume=26&pages=43%E2%80%9349&doi=10.1109/TASSP.1978.1163055" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/TASSP.1978.1163055" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://pdfs.semanticscholar.org/18f3/55d7ef4aa9f82bf5c00f84e46714efa5fd77.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B12-electronics-11-00267' class='html-xx' data-content='12.'>Velázquez, G.; Morales, F.; García-Torres, M.; Gómez-Vela, F.; Divina, F.; Vázquez Noguera, J.; Daumas-Ladouce, F.; Sauer Ayala, C.; Pinto-Roa, D.P.; Gardel-Sotomayor, P.E.; et al. Distribution level Electric current consumption and meteorological data set of the East region of Paraguay. <span class='html-italic'>Data Brief</span> <b>2021</b>, <span class='html-italic'>10</span>, 107699. [<a href="https://scholar.google.com/scholar_lookup?title=Distribution+level+Electric+current+consumption+and+meteorological+data+set+of+the+East+region+of+Paraguay&author=Vel%C3%A1zquez,+G.&author=Morales,+F.&author=Garc%C3%ADa-Torres,+M.&author=G%C3%B3mez-Vela,+F.&author=Divina,+F.&author=V%C3%A1zquez+Noguera,+J.&author=Daumas-Ladouce,+F.&author=Sauer+Ayala,+C.&author=Pinto-Roa,+D.P.&author=Gardel-Sotomayor,+P.E.&publication_year=2021&journal=Data+Brief&volume=10&pages=107699&doi=10.1016/j.dib.2021.107699" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.dib.2021.107699" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B13-electronics-11-00267' class='html-xx' data-content='13.'>Campillo, J.; Wallin, F.; Torstensson, D.; Vassileva, I. Energy demand model design for forecasting electricity consumption and simulating demand response scenarios in Sweden. In Proceedings of the 4th International Conference in Applied Energy 2012, Suzhou, China, 5–8 July 2012. [<a href="https://scholar.google.com/scholar_lookup?title=Energy+demand+model+design+for+forecasting+electricity+consumption+and+simulating+demand+response+scenarios+in+Sweden&conference=Proceedings+of+the+4th+International+Conference+in+Applied+Energy+2012&author=Campillo,+J.&author=Wallin,+F.&author=Torstensson,+D.&author=Vassileva,+I.&publication_year=2012" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B14-electronics-11-00267' class='html-xx' data-content='14.'>Medina, A.; Cámara, Á.; Monrobel, J.R. Measuring the socioeconomic and environmental effects of energy efficiency investments for a more sustainable Spanish economy. <span class='html-italic'>Sustainability</span> <b>2016</b>, <span class='html-italic'>8</span>, 1039. [<a href="https://scholar.google.com/scholar_lookup?title=Measuring+the+socioeconomic+and+environmental+effects+of+energy+efficiency+investments+for+a+more+sustainable+Spanish+economy&author=Medina,+A.&author=C%C3%A1mara,+%C3%81.&author=Monrobel,+J.R.&publication_year=2016&journal=Sustainability&volume=8&pages=1039" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B15-electronics-11-00267' class='html-xx' data-content='15.'>Abdel-Aal, R.E.; Al-Garni, A.Z. Forecasting monthly electric energy consumption in eastern Saudi Arabia using univariate time-series analysis. <span class='html-italic'>Energy</span> <b>1997</b>, <span class='html-italic'>22</span>, 1059–1069. [<a href="https://scholar.google.com/scholar_lookup?title=Forecasting+monthly+electric+energy+consumption+in+eastern+Saudi+Arabia+using+univariate+time-series+analysis&author=Abdel-Aal,+R.E.&author=Al-Garni,+A.Z.&publication_year=1997&journal=Energy&volume=22&pages=1059%E2%80%931069&doi=10.1016/S0360-5442(97)00032-7" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S0360-5442(97)00032-7" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B16-electronics-11-00267' class='html-xx' data-content='16.'>Walker, S.; Khan, W.; Katic, K.; Maassen, W.; Zeiler, W. Accuracy of different machine learning algorithms and added-value of predicting aggregated-level energy performance of commercial buildings. <span class='html-italic'>Energy Build.</span> <b>2020</b>, <span class='html-italic'>209</span>, 109705. [<a href="https://scholar.google.com/scholar_lookup?title=Accuracy+of+different+machine+learning+algorithms+and+added-value+of+predicting+aggregated-level+energy+performance+of+commercial+buildings&author=Walker,+S.&author=Khan,+W.&author=Katic,+K.&author=Maassen,+W.&author=Zeiler,+W.&publication_year=2020&journal=Energy+Build.&volume=209&pages=109705&doi=10.1016/j.enbuild.2019.109705" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.enbuild.2019.109705" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B17-electronics-11-00267' class='html-xx' data-content='17.'>Liu, Y.; Chen, H.; Zhang, L.; Wu, X.; Wang, X.j. Energy consumption prediction and diagnosis of public buildings based on support vector machine learning: A case study in China. <span class='html-italic'>J. Clean. Prod.</span> <b>2020</b>, <span class='html-italic'>272</span>, 122542. [<a href="https://scholar.google.com/scholar_lookup?title=Energy+consumption+prediction+and+diagnosis+of+public+buildings+based+on+support+vector+machine+learning:+A+case+study+in+China&author=Liu,+Y.&author=Chen,+H.&author=Zhang,+L.&author=Wu,+X.&author=Wang,+X.j.&publication_year=2020&journal=J.+Clean.+Prod.&volume=272&pages=122542&doi=10.1016/j.jclepro.2020.122542" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jclepro.2020.122542" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B18-electronics-11-00267' class='html-xx' data-content='18.'>Zheng, H.; Yuan, J.; Chen, L. Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation. <span class='html-italic'>Energies</span> <b>2017</b>, <span class='html-italic'>10</span>, 1168. [<a href="https://scholar.google.com/scholar_lookup?title=Short-Term+Load+Forecasting+Using+EMD-LSTM+Neural+Networks+with+a+Xgboost+Algorithm+for+Feature+Importance+Evaluation&author=Zheng,+H.&author=Yuan,+J.&author=Chen,+L.&publication_year=2017&journal=Energies&volume=10&pages=1168&doi=10.3390/en10081168" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/en10081168" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.mdpi.com/1996-1073/10/8/1168/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B19-electronics-11-00267' class='html-xx' data-content='19.'>Chitsaz, H.; Shaker, H.; Zareipour, H.; Wood, D.; Amjady, N. Short-term electricity load forecasting of buildings in microgrids. <span class='html-italic'>Energy Build</span> <b>2015</b>, <span class='html-italic'>99</span>, 50–60. [<a href="https://scholar.google.com/scholar_lookup?title=Short-term+electricity+load+forecasting+of+buildings+in+microgrids&author=Chitsaz,+H.&author=Shaker,+H.&author=Zareipour,+H.&author=Wood,+D.&author=Amjady,+N.&publication_year=2015&journal=Energy+Build&volume=99&pages=50%E2%80%9360&doi=10.1016/j.enbuild.2015.04.011" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.enbuild.2015.04.011" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B20-electronics-11-00267' class='html-xx' data-content='20.'>Kelo, S.; Dudul, S. A wavelet Elman neural network for short-term electrical load prediction under the influence of temperature. <span class='html-italic'>Int. J. Electr. Power Energy Syst.</span> <b>2012</b>, <span class='html-italic'>43</span>, 1063–1071. [<a href="https://scholar.google.com/scholar_lookup?title=A+wavelet+Elman+neural+network+for+short-term+electrical+load+prediction+under+the+influence+of+temperature&author=Kelo,+S.&author=Dudul,+S.&publication_year=2012&journal=Int.+J.+Electr.+Power+Energy+Syst.&volume=43&pages=1063%E2%80%931071&doi=10.1016/j.ijepes.2012.06.009" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.ijepes.2012.06.009" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B21-electronics-11-00267' class='html-xx' data-content='21.'>Diao, L.; Sun, Y.; Chen, Z.; Chen, J. Modeling energy consumption in residential buildings: A bottom-up analysis based on occupant behavior pattern clustering and stochastic simulation. <span class='html-italic'>Energy Build.</span> <b>2017</b>, <span class='html-italic'>147</span>, 47–66. [<a href="https://scholar.google.com/scholar_lookup?title=Modeling+energy+consumption+in+residential+buildings:+A+bottom-up+analysis+based+on+occupant+behavior+pattern+clustering+and+stochastic+simulation&author=Diao,+L.&author=Sun,+Y.&author=Chen,+Z.&author=Chen,+J.&publication_year=2017&journal=Energy+Build.&volume=147&pages=47%E2%80%9366&doi=10.1016/j.enbuild.2017.04.072" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.enbuild.2017.04.072" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B22-electronics-11-00267' class='html-xx' data-content='22.'>Pérez-Chacón, R.; Luna-Romera, J.M.; Troncoso, A.; Martínez-Álvarez, F.; Riquelme, J.C. Big data analytics for discovering electricity consumption patterns in smart cities. <span class='html-italic'>Energies</span> <b>2018</b>, <span class='html-italic'>11</span>, 683. [<a href="https://scholar.google.com/scholar_lookup?title=Big+data+analytics+for+discovering+electricity+consumption+patterns+in+smart+cities&author=P%C3%A9rez-Chac%C3%B3n,+R.&author=Luna-Romera,+J.M.&author=Troncoso,+A.&author=Mart%C3%ADnez-%C3%81lvarez,+F.&author=Riquelme,+J.C.&publication_year=2018&journal=Energies&volume=11&pages=683&doi=10.3390/en11030683" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/en11030683" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.mdpi.com/1996-1073/11/3/683/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B23-electronics-11-00267' class='html-xx' data-content='23.'>Divina, F.; Goméz Vela, F.A.; García Torres, M. Biclustering of smart building electric energy consumption data. <span class='html-italic'>Appl. Sci.</span> <b>2019</b>, <span class='html-italic'>9</span>, 222. [<a href="https://scholar.google.com/scholar_lookup?title=Biclustering+of+smart+building+electric+energy+consumption+data&author=Divina,+F.&author=Gom%C3%A9z+Vela,+F.A.&author=Garc%C3%ADa+Torres,+M.&publication_year=2019&journal=Appl.+Sci.&volume=9&pages=222&doi=10.3390/app9020222" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/app9020222" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.mdpi.com/2076-3417/9/2/222/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B24-electronics-11-00267' class='html-xx' data-content='24.'>Pinto-Roa1, D.P.; Medina, H.; Román, F.; García-Torres, M.; Divina, F.; Gómez-Vela, F.; Morales, F.; Velázquez, G.; Daumas, F.; Noguera, J.L.V.; et al. Parallel evolutionary biclustering of short-term electric energy consumption. In Proceedings of the 2nd International Conference on Machine Learning & Trends (MLT 2021), London, UK, 24–25 July 2021; Volume 11. [<a href="https://scholar.google.com/scholar_lookup?title=Parallel+evolutionary+biclustering+of+short-term+electric+energy+consumption&conference=Proceedings+of+the+2nd+International+Conference+on+Machine+Learning+&+Trends+(MLT+2021)&author=Pinto-Roa1,+D.P.&author=Medina,+H.&author=Rom%C3%A1n,+F.&author=Garc%C3%ADa-Torres,+M.&author=Divina,+F.&author=G%C3%B3mez-Vela,+F.&author=Morales,+F.&author=Vel%C3%A1zquez,+G.&author=Daumas,+F.&author=Noguera,+J.L.V.&publication_year=2021" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B25-electronics-11-00267' class='html-xx' data-content='25.'>Meng, M.; Niu, D.; Sun, W. Forecasting Monthly Electric Energy Consumption Using Feature Extraction. <span class='html-italic'>Energies</span> <b>2011</b>, <span class='html-italic'>4</span>, 1495–1507. [<a href="https://scholar.google.com/scholar_lookup?title=Forecasting+Monthly+Electric+Energy+Consumption+Using+Feature+Extraction&author=Meng,+M.&author=Niu,+D.&author=Sun,+W.&publication_year=2011&journal=Energies&volume=4&pages=1495%E2%80%931507&doi=10.3390/en4101495" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/en4101495" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.mdpi.com/1996-1073/4/10/1495/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B26-electronics-11-00267' class='html-xx' data-content='26.'>Luo, X.; Oyedele, L.O.; Ajayi, A.O.; Akinade, O.O.; Owolabi, H.A.; Ahmed, A. Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings. <span class='html-italic'>Renew. Sustain. Energy Rev.</span> <b>2020</b>, <span class='html-italic'>131</span>, 109980. [<a href="https://scholar.google.com/scholar_lookup?title=Feature+extraction+and+genetic+algorithm+enhanced+adaptive+deep+neural+network+for+energy+consumption+prediction+in+buildings&author=Luo,+X.&author=Oyedele,+L.O.&author=Ajayi,+A.O.&author=Akinade,+O.O.&author=Owolabi,+H.A.&author=Ahmed,+A.&publication_year=2020&journal=Renew.+Sustain.+Energy+Rev.&volume=131&pages=109980&doi=10.1016/j.rser.2020.109980" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.rser.2020.109980" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B27-electronics-11-00267' class='html-xx' data-content='27.'>Liang, Y.; Niu, D.; Hong, W.C. Short term load forecasting based on feature extraction and improved general regression neural network model. <span class='html-italic'>Energy</span> <b>2019</b>, <span class='html-italic'>166</span>, 653–663. [<a href="https://scholar.google.com/scholar_lookup?title=Short+term+load+forecasting+based+on+feature+extraction+and+improved+general+regression+neural+network+model&author=Liang,+Y.&author=Niu,+D.&author=Hong,+W.C.&publication_year=2019&journal=Energy&volume=166&pages=653%E2%80%93663&doi=10.1016/j.energy.2018.10.119" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.energy.2018.10.119" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B28-electronics-11-00267' class='html-xx' data-content='28.'>Ouyang, Z.; Sun, X.; Yue, D. Hierarchical time series feature extraction for power consumption anomaly detection. In <span class='html-italic'>Advanced Computational Methods in Energy, Power, Electric Vehicles, and Their Integration</span>; Springer: Singapore, 2017; pp. 267–275. [<a href="https://scholar.google.com/scholar_lookup?title=Hierarchical+time+series+feature+extraction+for+power+consumption+anomaly+detection&author=Ouyang,+Z.&author=Sun,+X.&author=Yue,+D.&publication_year=2017&pages=267%E2%80%93275" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B29-electronics-11-00267' class='html-xx' data-content='29.'>Räsänen, T.; Kolehmainen, M. Feature-based clustering for electricity use time series data. In Proceedings of the International Conference on Adaptive and Natural Computing Algorithms, Kuopio, Finland, 23–25 April 2009; pp. 401–412. [<a href="https://scholar.google.com/scholar_lookup?title=Feature-based+clustering+for+electricity+use+time+series+data&conference=Proceedings+of+the+International+Conference+on+Adaptive+and+Natural+Computing+Algorithms&author=R%C3%A4s%C3%A4nen,+T.&author=Kolehmainen,+M.&publication_year=2009&pages=401%E2%80%93412" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B30-electronics-11-00267' class='html-xx' data-content='30.'>Vallis, O.; Hochenbaum, J.; Kejariwal, A. A novel technique for long-term anomaly detection in the cloud. In Proceedings of the 6th {USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud 14), Philadelphia, PA, USA, 17–18 June 2014. [<a href="https://scholar.google.com/scholar_lookup?title=A+novel+technique+for+long-term+anomaly+detection+in+the+cloud&conference=Proceedings+of+the+6th+%7BUSENIX%7D+Workshop+on+Hot+Topics+in+Cloud+Computing+(HotCloud+14)&author=Vallis,+O.&author=Hochenbaum,+J.&author=Kejariwal,+A.&publication_year=2014" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B31-electronics-11-00267' class='html-xx' data-content='31.'>Box, G.E.; Cox, D.R. An analysis of transformations. <span class='html-italic'>J. R. Stat. Soc. Ser.</span> <b>1964</b>, <span class='html-italic'>26</span>, 211–243. [<a href="https://scholar.google.com/scholar_lookup?title=An+analysis+of+transformations&author=Box,+G.E.&author=Cox,+D.R.&publication_year=1964&journal=J.+R.+Stat.+Soc.+Ser.&volume=26&pages=211%E2%80%93243&doi=10.1111/j.2517-6161.1964.tb00553.x" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1111/j.2517-6161.1964.tb00553.x" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B32-electronics-11-00267' class='html-xx' data-content='32.'>Chatfield, C. <span class='html-italic'>The Analysis of Time Series: An Introduction</span>; Chapman and Hall/CRC: New York, NY, USA, 2003. [<a href="https://scholar.google.com/scholar_lookup?title=The+Analysis+of+Time+Series:+An+Introduction&author=Chatfield,+C.&publication_year=2003" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B33-electronics-11-00267' class='html-xx' data-content='33.'>Hyndman, R.J.; Athanasopoulos, G. <span class='html-italic'>Forecasting: Principles and Practice</span>; OTexts: Melbourne, Australia, 2018. [<a href="https://scholar.google.com/scholar_lookup?title=Forecasting:+Principles+and+Practice&author=Hyndman,+R.J.&author=Athanasopoulos,+G.&publication_year=2018" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B34-electronics-11-00267' class='html-xx' data-content='34.'>Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition. <span class='html-italic'>J. Off. Stat.</span> <b>1990</b>, <span class='html-italic'>6</span>, 3–73. [<a href="https://scholar.google.com/scholar_lookup?title=STL:+A+seasonal-trend+decomposition&author=Cleveland,+R.B.&author=Cleveland,+W.S.&author=McRae,+J.E.&author=Terpenning,+I.&publication_year=1990&journal=J.+Off.+Stat.&volume=6&pages=3%E2%80%9373" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B35-electronics-11-00267' class='html-xx' data-content='35.'>Rosner, B. Percentage points for a generalized ESD many-outlier procedure. <span class='html-italic'>Technometrics</span> <b>1983</b>, <span class='html-italic'>25</span>, 165–172. [<a href="https://scholar.google.com/scholar_lookup?title=Percentage+points+for+a+generalized+ESD+many-outlier+procedure&author=Rosner,+B.&publication_year=1983&journal=Technometrics&volume=25&pages=165%E2%80%93172&doi=10.1080/00401706.1983.10487848" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1080/00401706.1983.10487848" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B36-electronics-11-00267' class='html-xx' data-content='36.'>Peppanen, J.; Zhang, X.; Grijalva, S.; Reno, M.J. Handling bad or missing smart meter data through advanced data imputation. In Proceedings of the 2016 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), Oshawa, ON, Canada, 6–9 September 2016; pp. 1–5. [<a href="https://scholar.google.com/scholar_lookup?title=Handling+bad+or+missing+smart+meter+data+through+advanced+data+imputation&conference=Proceedings+of+the+2016+IEEE+Power+Energy+Society+Innovative+Smart+Grid+Technologies+Conference+(ISGT)&author=Peppanen,+J.&author=Zhang,+X.&author=Grijalva,+S.&author=Reno,+M.J.&publication_year=2016&pages=1%E2%80%935&doi=10.1109/ISGT.2016.7781213" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/ISGT.2016.7781213" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B37-electronics-11-00267' class='html-xx' data-content='37.'>Weisstein, E.W. 2002. Available online: <a href='https://mathworld.wolfram.com/' target='_blank' rel="noopener noreferrer" >https://mathworld.wolfram.com/</a> (accessed on 6 January 2022).</li><li id='B38-electronics-11-00267' class='html-xx' data-content='38.'>Liu, Z. Chaotic time series analysis. <span class='html-italic'>Math. Probl. Eng.</span> <b>2010</b>, <span class='html-italic'>2010</span>, 720190. [<a href="https://scholar.google.com/scholar_lookup?title=Chaotic+time+series+analysis&author=Liu,+Z.&publication_year=2010&journal=Math.+Probl.+Eng.&volume=2010&pages=720190&doi=10.1155/2010/720190" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1155/2010/720190" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://downloads.hindawi.com/journals/mpe/2010/720190.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B39-electronics-11-00267' class='html-xx' data-content='39.'>Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. <span class='html-italic'>Phys. Nonlinear Phenom.</span> <b>1985</b>, <span class='html-italic'>16</span>, 285–317. [<a href="https://scholar.google.com/scholar_lookup?title=Determining+Lyapunov+exponents+from+a+time+series&author=Wolf,+A.&author=Swift,+J.B.&author=Swinney,+H.L.&author=Vastano,+J.A.&publication_year=1985&journal=Phys.+Nonlinear+Phenom.&volume=16&pages=285%E2%80%93317&doi=10.1016/0167-2789(85)90011-9" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/0167-2789(85)90011-9" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://chaos.utexas.edu/manuscripts/1085774778.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B40-electronics-11-00267' class='html-xx' data-content='40.'>Heckbert, P. Fourier transforms and the fast Fourier transform (FFT) algorithm. <span class='html-italic'>Comput. Graph.</span> <b>1995</b>, <span class='html-italic'>2</span>, 15–463. [<a href="https://scholar.google.com/scholar_lookup?title=Fourier+transforms+and+the+fast+Fourier+transform+(FFT)+algorithm&author=Heckbert,+P.&publication_year=1995&journal=Comput.+Graph.&volume=2&pages=15%E2%80%93463" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B41-electronics-11-00267' class='html-xx' data-content='41.'>Haben, S.; Singleton, C.; Grindrod, P. Analysis and clustering of residential customers energy behavioral demand using smart meter data. <span class='html-italic'>IEEE Trans. Smart Grid</span> <b>2015</b>, <span class='html-italic'>7</span>, 136–144. [<a href="https://scholar.google.com/scholar_lookup?title=Analysis+and+clustering+of+residential+customers+energy+behavioral+demand+using+smart+meter+data&author=Haben,+S.&author=Singleton,+C.&author=Grindrod,+P.&publication_year=2015&journal=IEEE+Trans.+Smart+Grid&volume=7&pages=136%E2%80%93144&doi=10.1109/TSG.2015.2409786" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/TSG.2015.2409786" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B42-electronics-11-00267' class='html-xx' data-content='42.'>Chicco, G. Overview and performance assessment of the clustering methods for electrical load pattern grouping. <span class='html-italic'>Energy</span> <b>2012</b>, <span class='html-italic'>42</span>, 68–80. [<a href="https://scholar.google.com/scholar_lookup?title=Overview+and+performance+assessment+of+the+clustering+methods+for+electrical+load+pattern+grouping&author=Chicco,+G.&publication_year=2012&journal=Energy&volume=42&pages=68%E2%80%9380&doi=10.1016/j.energy.2011.12.031" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.energy.2011.12.031" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B43-electronics-11-00267' class='html-xx' data-content='43.'>Cerquitelli, T.; Chicco, G.; Di Corso, E.; Ventura, F.; Montesano, G.; Armiento, M.; González, A.M.; Santiago, A.V. Clustering-based assessment of residential consumers from hourly-metered data. In Proceedings of the International Conference on Smart Energy Systems and Technologies (SEST), Piscataway, NJ, USA, 10–12 September 2018; pp. 1–6. [<a href="https://scholar.google.com/scholar_lookup?title=Clustering-based+assessment+of+residential+consumers+from+hourly-metered+data&conference=Proceedings+of+the+International+Conference+on+Smart+Energy+Systems+and+Technologies+(SEST)&author=Cerquitelli,+T.&author=Chicco,+G.&author=Di+Corso,+E.&author=Ventura,+F.&author=Montesano,+G.&author=Armiento,+M.&author=Gonz%C3%A1lez,+A.M.&author=Santiago,+A.V.&publication_year=2018&pages=1%E2%80%936" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B44-electronics-11-00267' class='html-xx' data-content='44.'>Senin, P. Dynamic time warping algorithm review. <span class='html-italic'>Inf. Comput. Sci. Dep. Univ. Hawaii Manoa Honolulu USA</span> <b>2008</b>, <span class='html-italic'>855</span>, 40. [<a href="https://scholar.google.com/scholar_lookup?title=Dynamic+time+warping+algorithm+review&author=Senin,+P.&publication_year=2008&journal=Inf.+Comput.+Sci.+Dep.+Univ.+Hawaii+Manoa+Honolulu+USA&volume=855&pages=40" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B45-electronics-11-00267' class='html-xx' data-content='45.'>Lloyd, S.P. Least Squares Quantization in PCM. <span class='html-italic'>IEEE Trans. Inf. Theory</span> <b>1982</b>, <span class='html-italic'>28</span>, 129–137. [<a href="https://scholar.google.com/scholar_lookup?title=Least+Squares+Quantization+in+PCM&author=Lloyd,+S.P.&publication_year=1982&journal=IEEE+Trans.+Inf.+Theory&volume=28&pages=129%E2%80%93137&doi=10.1109/TIT.1982.1056489" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/TIT.1982.1056489" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B46-electronics-11-00267' class='html-xx' data-content='46.'>Johnson, S.C. Hierarchical clustering schemes. <span class='html-italic'>Psychometrika</span> <b>1967</b>, <span class='html-italic'>32</span>, 241–254. [<a href="https://scholar.google.com/scholar_lookup?title=Hierarchical+clustering+schemes&author=Johnson,+S.C.&publication_year=1967&journal=Psychometrika&volume=32&pages=241%E2%80%93254&doi=10.1007/BF02289588" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/BF02289588" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B47-electronics-11-00267' class='html-xx' data-content='47.'>Rajabi, A.; Eskandari, M.; Ghadi, M.J.; Li, L.; Zhang, J.; Siano, P. A comparative study of clustering techniques for electrical load pattern segmentation. <span class='html-italic'>Renew. Sustain. Energy Rev.</span> <b>2020</b>, <span class='html-italic'>120</span>, 109628. [<a href="https://scholar.google.com/scholar_lookup?title=A+comparative+study+of+clustering+techniques+for+electrical+load+pattern+segmentation&author=Rajabi,+A.&author=Eskandari,+M.&author=Ghadi,+M.J.&author=Li,+L.&author=Zhang,+J.&author=Siano,+P.&publication_year=2020&journal=Renew.+Sustain.+Energy+Rev.&volume=120&pages=109628&doi=10.1016/j.rser.2019.109628" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.rser.2019.109628" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B48-electronics-11-00267' class='html-xx' data-content='48.'>Arthur, D.; Vassilvitskii, S. <span class='html-italic'>k-Means++: The Advantages of Careful Seeding</span>; Technical Report for Stanford Theory Group; Stanford University: Stanford, CA, USA, 2006. [<a href="https://scholar.google.com/scholar_lookup?title=k-Means++:+The+Advantages+of+Careful+Seeding&author=Arthur,+D.&author=Vassilvitskii,+S.&publication_year=2006" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B49-electronics-11-00267' class='html-xx' data-content='49.'>Petitjean, F.; Ketterlin, A.; Gançarski, P. A global averaging method for dynamic time warping, with applications to clustering. <span class='html-italic'>Pattern Recognit.</span> <b>2011</b>, <span class='html-italic'>44</span>, 678–693. [<a href="https://scholar.google.com/scholar_lookup?title=A+global+averaging+method+for+dynamic+time+warping,+with+applications+to+clustering&author=Petitjean,+F.&author=Ketterlin,+A.&author=Gan%C3%A7arski,+P.&publication_year=2011&journal=Pattern+Recognit.&volume=44&pages=678%E2%80%93693&doi=10.1016/j.patcog.2010.09.013" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.patcog.2010.09.013" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B50-electronics-11-00267' class='html-xx' data-content='50.'>Li, Z.; de Rijke, M. The impact of linkage methods in hierarchical clustering for active learning to rank. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Japan, 7–11 August 2017; pp. 941–944. [<a href="https://scholar.google.com/scholar_lookup?title=The+impact+of+linkage+methods+in+hierarchical+clustering+for+active+learning+to+rank&conference=Proceedings+of+the+40th+International+ACM+SIGIR+Conference+on+Research+and+Development+in+Information+Retrieval&author=Li,+Z.&author=de+Rijke,+M.&publication_year=2017&pages=941%E2%80%93944" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B51-electronics-11-00267' class='html-xx' data-content='51.'>Łuczak, M. Hierarchical clustering of time series data with parametric derivative dynamic time warping. <span class='html-italic'>Expert Syst. Appl.</span> <b>2016</b>, <span class='html-italic'>62</span>, 116–130. [<a href="https://scholar.google.com/scholar_lookup?title=Hierarchical+clustering+of+time+series+data+with+parametric+derivative+dynamic+time+warping&author=%C5%81uczak,+M.&publication_year=2016&journal=Expert+Syst.+Appl.&volume=62&pages=116%E2%80%93130&doi=10.1016/j.eswa.2016.06.012" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.eswa.2016.06.012" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B52-electronics-11-00267' class='html-xx' data-content='52.'>Yang, J.; Leskovec, J. Patterns of temporal variation in online media. In Proceedings of the Fourth ACM International Conference on Web SEARCH and Data Mining, Seattle, WA, USA, 11 August 2011; pp. 177–186. [<a href="https://scholar.google.com/scholar_lookup?title=Patterns+of+temporal+variation+in+online+media&conference=Proceedings+of+the+Fourth+ACM+International+Conference+on+Web+SEARCH+and+Data+Mining&author=Yang,+J.&author=Leskovec,+J.&publication_year=2011&pages=177%E2%80%93186" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B53-electronics-11-00267' class='html-xx' data-content='53.'>Arbelaitz, O.; Gurrutxaga, I.; Muguerza, J.; Pérez, J.M.; Perona, I. An extensive comparative study of cluster validity indices. <span class='html-italic'>Pattern Recognit.</span> <b>2013</b>, <span class='html-italic'>46</span>, 243–256. [<a href="https://scholar.google.com/scholar_lookup?title=An+extensive+comparative+study+of+cluster+validity+indices&author=Arbelaitz,+O.&author=Gurrutxaga,+I.&author=Muguerza,+J.&author=P%C3%A9rez,+J.M.&author=Perona,+I.&publication_year=2013&journal=Pattern+Recognit.&volume=46&pages=243%E2%80%93256&doi=10.1016/j.patcog.2012.07.021" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.patcog.2012.07.021" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B54-electronics-11-00267' class='html-xx' data-content='54.'>Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. <span class='html-italic'>J. Comput. Appl. Math.</span> <b>1987</b>, <span class='html-italic'>20</span>, 53–65. [<a href="https://scholar.google.com/scholar_lookup?title=Silhouettes:+A+graphical+aid+to+the+interpretation+and+validation+of+cluster+analysis&author=Rousseeuw,+P.J.&publication_year=1987&journal=J.+Comput.+Appl.+Math.&volume=20&pages=53%E2%80%9365&doi=10.1016/0377-0427(87)90125-7" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/0377-0427(87)90125-7" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B55-electronics-11-00267' class='html-xx' data-content='55.'>Davies, D.L.; Bouldin, D.W. A cluster separation measure. <span class='html-italic'>IEEE Trans. Pattern Anal. Mach. Intell.</span> <b>1979</b>, <span class='html-italic'>2</span>, 224–227. [<a href="https://scholar.google.com/scholar_lookup?title=A+cluster+separation+measure&author=Davies,+D.L.&author=Bouldin,+D.W.&publication_year=1979&journal=IEEE+Trans.+Pattern+Anal.+Mach.+Intell.&volume=2&pages=224%E2%80%93227&doi=10.1109/TPAMI.1979.4766909" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/TPAMI.1979.4766909" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B56-electronics-11-00267' class='html-xx' data-content='56.'>Caliński, T.; Harabasz, J. A dendrite method for cluster analysis. <span class='html-italic'>Commun. Stat.-Theory Methods</span> <b>1974</b>, <span class='html-italic'>3</span>, 1–27. [<a href="https://scholar.google.com/scholar_lookup?title=A+dendrite+method+for+cluster+analysis&author=Cali%C5%84ski,+T.&author=Harabasz,+J.&publication_year=1974&journal=Commun.+Stat.-Theory+Methods&volume=3&pages=1%E2%80%9327&doi=10.1080/03610927408827101" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1080/03610927408827101" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B57-electronics-11-00267' class='html-xx' data-content='57.'>Rani, S.; Sikka, G. Recent techniques of clustering of time series data: A survey. <span class='html-italic'>Int. J. Comput. Appl.</span> <b>2012</b>, <span class='html-italic'>52</span>, 1–59. [<a href="https://scholar.google.com/scholar_lookup?title=Recent+techniques+of+clustering+of+time+series+data:+A+survey&author=Rani,+S.&author=Sikka,+G.&publication_year=2012&journal=Int.+J.+Comput.+Appl.&volume=52&pages=1%E2%80%9359&doi=10.5120/8282-1278" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.5120/8282-1278" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li></ol></section><section id='FiguresandTables' type='display-objects'><div class="html-fig-wrap" id="electronics-11-00267-f001"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#fig_body_display_electronics-11-00267-f001"> <img alt="Electronics 11 00267 g001 550" data-large="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g001.png" data-original="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g001.png" data-lsrc="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g001-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#fig_body_display_electronics-11-00267-f001"></a> </div> </div> <div class="html-fig_description"> <b>Figure 1.</b> Combo bar chart representing the percentage and total numbers of outliers detected on each feeder. <!-- <p><a class="html-figpopup" href="#fig_body_display_electronics-11-00267-f001"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_electronics-11-00267-f001" > <div class="html-caption" > <b>Figure 1.</b> Combo bar chart representing the percentage and total numbers of outliers detected on each feeder.</div> <div class="html-img"><img alt="Electronics 11 00267 g001" data-large="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g001.png" data-original="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g001.png" data-lsrc="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g001.png" /></div> </div><div class="html-fig-wrap" id="electronics-11-00267-f002"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#fig_body_display_electronics-11-00267-f002"> <img alt="Electronics 11 00267 g002 550" data-large="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g002.png" data-original="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g002.png" data-lsrc="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g002-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#fig_body_display_electronics-11-00267-f002"></a> </div> </div> <div class="html-fig_description"> <b>Figure 2.</b> Combo bar chart representing the number and percentage of records per feeder. <!-- <p><a class="html-figpopup" href="#fig_body_display_electronics-11-00267-f002"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_electronics-11-00267-f002" > <div class="html-caption" > <b>Figure 2.</b> Combo bar chart representing the number and percentage of records per feeder.</div> <div class="html-img"><img alt="Electronics 11 00267 g002" data-large="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g002.png" data-original="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g002.png" data-lsrc="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g002.png" /></div> </div><div class="html-fig-wrap" id="electronics-11-00267-f003"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#fig_body_display_electronics-11-00267-f003"> <img alt="Electronics 11 00267 g003 550" data-large="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g003.png" data-original="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g003.png" data-lsrc="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g003-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#fig_body_display_electronics-11-00267-f003"></a> </div> </div> <div class="html-fig_description"> <b>Figure 3.</b> Time periods considered based on the behavior of the Paraguayan electricity demand. <!-- <p><a class="html-figpopup" href="#fig_body_display_electronics-11-00267-f003"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_electronics-11-00267-f003" > <div class="html-caption" > <b>Figure 3.</b> Time periods considered based on the behavior of the Paraguayan electricity demand.</div> <div class="html-img"><img alt="Electronics 11 00267 g003" data-large="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g003.png" data-original="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g003.png" data-lsrc="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g003.png" /></div> </div><div class="html-fig-wrap" id="electronics-11-00267-f004"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#fig_body_display_electronics-11-00267-f004"> <img alt="Electronics 11 00267 g004 550" data-large="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g004.png" data-original="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g004.png" data-lsrc="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g004-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#fig_body_display_electronics-11-00267-f004"></a> </div> </div> <div class="html-fig_description"> <b>Figure 4.</b> The four data sets that were formed from the hourly electricity consumption records of the feeders. <!-- <p><a class="html-figpopup" href="#fig_body_display_electronics-11-00267-f004"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_electronics-11-00267-f004" > <div class="html-caption" > <b>Figure 4.</b> The four data sets that were formed from the hourly electricity consumption records of the feeders.</div> <div class="html-img"><img alt="Electronics 11 00267 g004" data-large="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g004.png" data-original="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g004.png" data-lsrc="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g004.png" /></div> </div><div class="html-fig-wrap" id="electronics-11-00267-f005"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#fig_body_display_electronics-11-00267-f005"> <img alt="Electronics 11 00267 g005 550" data-large="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g005.png" data-original="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g005.png" data-lsrc="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g005-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#fig_body_display_electronics-11-00267-f005"></a> </div> </div> <div class="html-fig_description"> <b>Figure 5.</b> Euclidean. and DTW distance measurements applied to feeders D3 and E2. <!-- <p><a class="html-figpopup" href="#fig_body_display_electronics-11-00267-f005"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_electronics-11-00267-f005" > <div class="html-caption" > <b>Figure 5.</b> Euclidean. and DTW distance measurements applied to feeders D3 and E2.</div> <div class="html-img"><img alt="Electronics 11 00267 g005" data-large="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g005.png" data-original="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g005.png" data-lsrc="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g005.png" /></div> </div><div class="html-fig-wrap" id="electronics-11-00267-f006"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#fig_body_display_electronics-11-00267-f006"> <img alt="Electronics 11 00267 g006 550" data-large="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g006.png" data-original="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g006.png" data-lsrc="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g006-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#fig_body_display_electronics-11-00267-f006"></a> </div> </div> <div class="html-fig_description"> <b>Figure 6.</b> Pipeline describing the steps followed to obtain the representative clusters. <!-- <p><a class="html-figpopup" href="#fig_body_display_electronics-11-00267-f006"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_electronics-11-00267-f006" > <div class="html-caption" > <b>Figure 6.</b> Pipeline describing the steps followed to obtain the representative clusters.</div> <div class="html-img"><img alt="Electronics 11 00267 g006" data-large="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g006.png" data-original="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g006.png" data-lsrc="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g006.png" /></div> </div><div class="html-fig-wrap" id="electronics-11-00267-f007"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#fig_body_display_electronics-11-00267-f007"> <img alt="Electronics 11 00267 g007 550" data-large="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g007.png" data-original="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g007.png" data-lsrc="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g007-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#fig_body_display_electronics-11-00267-f007"></a> </div> </div> <div class="html-fig_description"> <b>Figure 7.</b> Variation in the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index scores with respect to the number of clusters considered, for the K-means and hierarchical algorithms, with the ward, complete, centroid and average criteria for the latter. <!-- <p><a class="html-figpopup" href="#fig_body_display_electronics-11-00267-f007"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_electronics-11-00267-f007" > <div class="html-caption" > <b>Figure 7.</b> Variation in the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index scores with respect to the number of clusters considered, for the K-means and hierarchical algorithms, with the ward, complete, centroid and average criteria for the latter.</div> <div class="html-img"><img alt="Electronics 11 00267 g007" data-large="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g007.png" data-original="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g007.png" data-lsrc="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g007.png" /></div> </div><div class="html-fig-wrap" id="electronics-11-00267-f008"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#fig_body_display_electronics-11-00267-f008"> <img alt="Electronics 11 00267 g008 550" data-large="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g008.png" data-original="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g008.png" data-lsrc="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g008-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#fig_body_display_electronics-11-00267-f008"></a> </div> </div> <div class="html-fig_description"> <b>Figure 8.</b> Relationship between the clusters determined by the K-means and hierarchical model with the ward criterion for K = 6. <!-- <p><a class="html-figpopup" href="#fig_body_display_electronics-11-00267-f008"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_electronics-11-00267-f008" > <div class="html-caption" > <b>Figure 8.</b> Relationship between the clusters determined by the K-means and hierarchical model with the ward criterion for K = 6.</div> <div class="html-img"><img alt="Electronics 11 00267 g008" data-large="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g008.png" data-original="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g008.png" data-lsrc="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g008.png" /></div> </div><div class="html-fig-wrap" id="electronics-11-00267-f009"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#fig_body_display_electronics-11-00267-f009"> <img alt="Electronics 11 00267 g009 550" data-large="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g009.png" data-original="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g009.png" data-lsrc="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g009-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#fig_body_display_electronics-11-00267-f009"></a> </div> </div> <div class="html-fig_description"> <b>Figure 9.</b> Consumption profiles determined in the K-means based model, where (<b>a</b>) belongs to the box plot of the mean daily consumption for each cluster and (<b>b</b>) corresponds to the mean consumption depending on the summer and winter seasons, as well as weekdays and weekends. <!-- <p><a class="html-figpopup" href="#fig_body_display_electronics-11-00267-f009"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_electronics-11-00267-f009" > <div class="html-caption" > <b>Figure 9.</b> Consumption profiles determined in the K-means based model, where (<b>a</b>) belongs to the box plot of the mean daily consumption for each cluster and (<b>b</b>) corresponds to the mean consumption depending on the summer and winter seasons, as well as weekdays and weekends.</div> <div class="html-img"><img alt="Electronics 11 00267 g009" data-large="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g009.png" data-original="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g009.png" data-lsrc="/electronics/electronics-11-00267/article_deploy/html/images/electronics-11-00267-g009.png" /></div> </div><div class="html-table-wrap" id="electronics-11-00267-t001"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href='#table_body_display_electronics-11-00267-t001'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#table_body_display_electronics-11-00267-t001"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 1.</b> Time periods for seasonal data set consideration. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_electronics-11-00267-t001" > <div class="html-caption" ><b>Table 1.</b> Time periods for seasonal data set consideration.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Time Period</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Interval</th></tr></thead><tbody ><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >1</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >10:00 p.m.–04:00 a.m.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >05:00 a.m.–09:00 a.m.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >3</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >10:00 a.m.–01:00 p.m.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >4</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >02:00 p.m.–05:00 p.m.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >06:00 p.m.–09:00 p.m.</td></tr></tbody> </table> </div><div class="html-table-wrap" id="electronics-11-00267-t002"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href='#table_body_display_electronics-11-00267-t002'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#table_body_display_electronics-11-00267-t002"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 2.</b> Proposed linkage criteria for use in the hierarchical algorithm. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_electronics-11-00267-t002" > <div class="html-caption" ><b>Table 2.</b> Proposed linkage criteria for use in the hierarchical algorithm.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Criterion</th><th align='left' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-left' >Formula</th><th align='left' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-left' >Description</th></tr></thead><tbody ><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Single</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>D</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mspace width="3.33333pt"/> <mo>=</mo> <mspace width="3.33333pt"/> <munder> <mo movablelimits="false" form="prefix">min</mo> <mrow> <mi>o</mi> <mo>∈</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> <mo>,</mo> <mspace width="0.222222em"/> <msup> <mi>o</mi> <mo>′</mo> </msup> <mo>∈</mo> <msub> <mi>C</mi> <mi>j</mi> </msub> </mrow> </munder> <mi>d</mi> <mrow> <mo>(</mo> <mi>o</mi> <mo>,</mo> <msup> <mi>o</mi> <mo>′</mo> </msup> <mo>)</mo> </mrow> </mrow> </semantics> </math></td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >Determined by the distance of the nearest objects between clusters <math display='inline'><semantics> <msub> <mi>C</mi> <mi>i</mi> </msub> </semantics></math> and <math display='inline'><semantics> <msub> <mi>C</mi> <mi>j</mi> </msub> </semantics></math>.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Complete</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>D</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mspace width="3.33333pt"/> <mo>=</mo> <mspace width="3.33333pt"/> <munder> <mo movablelimits="false" form="prefix">max</mo> <mrow> <mi>o</mi> <mo>∈</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> <mo>,</mo> <mspace width="0.222222em"/> <msup> <mi>o</mi> <mo>′</mo> </msup> <mo>∈</mo> <msub> <mi>C</mi> <mi>j</mi> </msub> </mrow> </munder> <mi>d</mi> <mrow> <mo>(</mo> <mi>o</mi> <mo>,</mo> <msup> <mi>o</mi> <mo>′</mo> </msup> <mo>)</mo> </mrow> </mrow> </semantics> </math></td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >Determined by the distance of the farthest objects between clusters <math display='inline'><semantics> <msub> <mi>C</mi> <mi>i</mi> </msub> </semantics></math> and <math display='inline'><semantics> <msub> <mi>C</mi> <mi>j</mi> </msub> </semantics></math>.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Average</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>D</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mspace width="3.33333pt"/> <mo>=</mo> <mspace width="3.33333pt"/> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> <mo>|</mo> </mrow> </mfrac> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>|</mo> </mrow> </mfrac> <mstyle displaystyle="true"> <munder> <mo>∑</mo> <mrow> <mi>o</mi> <mo>∈</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> </mrow> </munder> </mstyle> <mstyle displaystyle="true"> <munder> <mo>∑</mo> <mrow> <msup> <mi>o</mi> <mo>′</mo> </msup> <mo>∈</mo> <msub> <mi>C</mi> <mi>j</mi> </msub> </mrow> </munder> </mstyle> <mi>d</mi> <mrow> <mo>(</mo> <mi>o</mi> <mo>,</mo> <msup> <mi>o</mi> <mo>′</mo> </msup> <mo>)</mo> </mrow> </mrow> </semantics> </math></td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >Determined by the average distance between the objects of clusters <math display='inline'><semantics> <msub> <mi>C</mi> <mi>i</mi> </msub> </semantics></math> and <math display='inline'><semantics> <msub> <mi>C</mi> <mi>j</mi> </msub> </semantics></math>.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Centroid</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>D</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mspace width="3.33333pt"/> <mo>=</mo> <mspace width="3.33333pt"/> <mi>d</mi> <mrow> <mo>(</mo> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>c</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics> </math></td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >Determined by the distance between the centroids <math display='inline'><semantics> <msub> <mi>c</mi> <mi>i</mi> </msub> </semantics></math> and <math display='inline'><semantics> <msub> <mi>c</mi> <mi>j</mi> </msub> </semantics></math> corresponding to clusters <math display='inline'><semantics> <msub> <mi>C</mi> <mi>i</mi> </msub> </semantics></math> and <math display='inline'><semantics> <msub> <mi>C</mi> <mi>j</mi> </msub> </semantics></math>, respectively.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Ward</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>D</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mspace width="3.33333pt"/> <mo>=</mo> <mspace width="3.33333pt"/> <mstyle displaystyle="true"> <munder> <mo>∑</mo> <mrow> <mi>o</mi> <mo>∈</mo> <msub> <mi>C</mi> <mi>i</mi> </msub> <mo>∪</mo> <msub> <mi>C</mi> <mi>j</mi> </msub> </mrow> </munder> </mstyle> <mi>d</mi> <msup> <mrow> <mo>(</mo> <mi>o</mi> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics> </math></td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >Determined by sum of the squares of the distance between all objects in cluster <math display='inline'><semantics> <msub> <mi>C</mi> <mi>i</mi> </msub> </semantics></math> and <math display='inline'><semantics> <msub> <mi>C</mi> <mi>j</mi> </msub> </semantics></math>, and <math display='inline'><semantics> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </semantics></math>, centroid of the new cluster merged from <math display='inline'><semantics> <msub> <mi>C</mi> <mi>i</mi> </msub> </semantics></math> and <math display='inline'><semantics> <msub> <mi>C</mi> <mi>j</mi> </msub> </semantics></math>.</td></tr></tbody> </table> </div><div class="html-table-wrap" id="electronics-11-00267-t003"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href='#table_body_display_electronics-11-00267-t003'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#table_body_display_electronics-11-00267-t003"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 3.</b> Description of the proposed models. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_electronics-11-00267-t003" > <div class="html-caption" ><b>Table 3.</b> Description of the proposed models.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Data Set</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Algorithm</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Distance</th><th align='left' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-left' >Linkage Criterion</th><th align='left' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-left' >Conformed Model ID</th></tr></thead><tbody ><tr ><td rowspan='13' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Weekly time series</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >K-Means</td><td align='center' valign='middle' class='html-align-center' >Euclidean</td><td align='left' valign='middle' class='html-align-left' >-</td><td align='left' valign='middle' class='html-align-left' >week_k-means_euclid</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >DTW</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >-</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >week_k-means_dtw</td></tr><tr ><td rowspan='10' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Hierarchical</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Euclidean</td><td align='left' valign='middle' class='html-align-left' >Single</td><td align='left' valign='middle' class='html-align-left' >week_hier_euclid_single</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Complete</td><td align='left' valign='middle' class='html-align-left' >week_hier_euclid_complete</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Average</td><td align='left' valign='middle' class='html-align-left' >week_hier_euclid_average</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Centroid</td><td align='left' valign='middle' class='html-align-left' >week_hier_euclid_centroid</td></tr><tr ><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >Ward</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >week_hier_euclid_ward</td></tr><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >DTW</td><td align='left' valign='middle' class='html-align-left' >Single</td><td align='left' valign='middle' class='html-align-left' >week_hier_dtw_single</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Complete</td><td align='left' valign='middle' class='html-align-left' >week_hier_dtw_complete</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Average</td><td align='left' valign='middle' class='html-align-left' >week_hier_dtw_average</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Centroid</td><td align='left' valign='middle' class='html-align-left' >week_hier_dtw_centroid</td></tr><tr ><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >Ward</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >week_hier_dtw_ward</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >K-Spectral Centroid</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >-</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >week_k-sc</td></tr><tr ><td rowspan='13' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Monthly time series</td><td rowspan='2' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >K-Means</td><td align='center' valign='middle' class='html-align-center' >Euclidean</td><td align='left' valign='middle' class='html-align-left' >-</td><td align='left' valign='middle' class='html-align-left' >month_k-means_euclid</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >DTW</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >-</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >month_k-means_dtw</td></tr><tr ><td rowspan='10' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Hierarchical</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Euclidean</td><td align='left' valign='middle' class='html-align-left' >Single</td><td align='left' valign='middle' class='html-align-left' >month_hier_euclid_single</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Complete</td><td align='left' valign='middle' class='html-align-left' >month_hier_euclid_complete</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Average</td><td align='left' valign='middle' class='html-align-left' >month_hier_euclid_average</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Centroid</td><td align='left' valign='middle' class='html-align-left' >month_hier_euclid_centroid</td></tr><tr ><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >Ward</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >month_hier_euclid_ward</td></tr><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >DTW</td><td align='left' valign='middle' class='html-align-left' >Single</td><td align='left' valign='middle' class='html-align-left' >month_hier_dtw_single</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Complete</td><td align='left' valign='middle' class='html-align-left' >month_hier_dtw_complete</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Average</td><td align='left' valign='middle' class='html-align-left' >month_hier_dtw_average</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Centroid</td><td align='left' valign='middle' class='html-align-left' >month_hier_dtw_centroid</td></tr><tr ><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >Ward</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >month_hier_dtw_ward</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >K-Spectral Centroid</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >-</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >month_k-sc</td></tr><tr ><td rowspan='6' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Statistical Based</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >K-Means</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Euclidean</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >-</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >stats_k-means</td></tr><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Hierarchical</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Euclidean</td><td align='left' valign='middle' class='html-align-left' >Single</td><td align='left' valign='middle' class='html-align-left' >stats_hier_single</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Complete</td><td align='left' valign='middle' class='html-align-left' >stats_hier_complete</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Average</td><td align='left' valign='middle' class='html-align-left' >stats_hier_average</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Centroid</td><td align='left' valign='middle' class='html-align-left' >stats_hier_centroid</td></tr><tr ><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >Ward</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >stats_hier_ward</td></tr><tr ><td rowspan='6' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Seasonal Based</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >K-Means</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Euclidean</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >-</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >seas_k-means</td></tr><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Hierarchical</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Euclidean</td><td align='left' valign='middle' class='html-align-left' >Single</td><td align='left' valign='middle' class='html-align-left' >seas_hier_single</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Complete</td><td align='left' valign='middle' class='html-align-left' >seas_hier_complete</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Average</td><td align='left' valign='middle' class='html-align-left' >seas_hier_average</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >Centroid</td><td align='left' valign='middle' class='html-align-left' >seas_hier_centroid</td></tr><tr ><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >Ward</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >seas_hier_ward</td></tr></tbody> </table> </div><div class="html-table-wrap" id="electronics-11-00267-t004"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href='#table_body_display_electronics-11-00267-t004'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2079-9292/11/2/267/display" href="#table_body_display_electronics-11-00267-t004"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 4.</b> Ranking of the 15 best models according to the Silhouette score. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_electronics-11-00267-t004" > <div class="html-caption" ><b>Table 4.</b> Ranking of the 15 best models according to the Silhouette score.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Rank</th><th align='left' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-left' >Model ID</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Silhouette Score</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Calinski–Harabasz Score</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Davies–Bouldin Score</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Clusters</th></tr></thead><tbody ><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >1</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >seas_k-means</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.432</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >69.439</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.789</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >4</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >seas_k-means</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.428</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >78.807</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.730</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >6</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >3</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >seas_hier_ward</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.421</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >67.129</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.723</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >6</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >4</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >seas_hier_complete</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.415</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >74.284</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.735</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >7</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >seas_hier_centroid</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.403</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >42.509</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.562</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >4</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >6</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >seas_hier_average</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.402</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >58.848</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.618</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >7</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >7</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >seas_hier_centroid</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.400</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >62.466</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.610</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >8</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >8</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >seas_hier_average</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.397</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >55.111</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.696</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >9</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >seas_hier_centroid</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.397</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >56.494</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.680</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >6</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >10</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >seas_hier_ward</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.393</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >72.616</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.749</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >9</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >11</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >seas_hier_complete</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.391</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >70.890</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.868</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >9</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >12</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >month_k-sc</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.250</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >6.236</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >1.791</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >9</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >13</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >week_k-means_dtw</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.239</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >13.915</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >1.601</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >3</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >14</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >week_hier_dtw_complete</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.224</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >12.066</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >1.280</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >4</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >15</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' >week_hier_euclid_complete</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.216</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >13.575</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >1.211</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5</td></tr></tbody> </table> </div></section><section class='html-fn_group'><table><tr id=''><td></td><td><div class='html-p'><b>Publisher’s Note:</b> MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.</div></td></tr></table></section> <section id="html-copyright"><br>© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<a href='https://creativecommons.org/licenses/by/4.0/' target='_blank' rel="noopener noreferrer" >https://creativecommons.org/licenses/by/4.0/</a>).</section> </div> </div> <div class="additional-content"> <h2><a name="cite"></a>Share and Cite</h2> <div class="social-media-links" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#92adb4f3ffe2a9e1e7f0f8f7f1e6afd4e0fdffb7a0a2dfd6c2dbb7a1d3b7a0a2b7a0a0d3fcf3feebe1fbe1b7a0a2fdf4b7a0a2d7fef7f1e6e0fbf1b7a0a2d7fcf7e0f5ebb7a0a2d1fdfce1e7ffe2e6fbfdfcb7a0a2c2e0fdf4fbfef7e1b7a0a2c7e1fbfcf5b7a0a2f3b7a0a2dff3f1fafbfcf7b7a0a2def7f3e0fcfbfcf5b7a0a2d3e2e2e0fdf3f1fab7a1d3b7a0a2d3b7a0a2c2f3e0f3f5e7f3ebf3fcb7a0a2d1f3e1f7b7a0a2c1e6e7f6ebb4e3e7fde6a9b4f3ffe2a9f0fdf6ebaffae6e6e2e1a8bdbde5e5e5bcfff6e2fbbcf1fdffbda3a6a6abaaa7a0b7a1d3b7a2d3b7a2d3d3fcf3feebe1fbe1b7a0a2fdf4b7a0a2d7fef7f1e6e0fbf1b7a0a2d7fcf7e0f5ebb7a0a2d1fdfce1e7ffe2e6fbfdfcb7a0a2c2e0fdf4fbfef7e1b7a0a2c7e1fbfcf5b7a0a2f3b7a0a2dff3f1fafbfcf7b7a0a2def7f3e0fcfbfcf5b7a0a2d3e2e2e0fdf3f1fab7a1d3b7a0a2d3b7a0a2c2f3e0f3f5e7f3ebf3fcb7a0a2d1f3e1f7b7a0a2c1e6e7f6ebb7a2d3b7a2d3d3f0e1e6e0f3f1e6b7a1d3b7a0a2d1fde0e0f7f1e6feebb7a0a2f6f7f4fbfcfbfcf5b7a0a2f3fcf6b7a0a2f5e0fde7e2fbfcf5b7a0a2f7fef7f1e6e0fbf1f3feb7a0a2f4f7f7f6f7e0e1b7a0a2fbe1b7a0a2fdf4b7a0a2f5e0f7f3e6b7a0a2fbffe2fde0e6f3fcf1f7b7a0a2f4fde0b7a0a2f7fef7f1e6e0fbf1f3feb7a0a2e1ebe1e6f7ffb7a0a2fde2f7e0f3e6fde0e1bcb7a0a2dbfcb7a0a2e6fafbe1b7a0a2e2f3e2f7e0b7a0d1b7a0a2e5f7b7a0a2f1fdffe2f3e0f7b7a0a2e6e5fdb7a0a2f6fbf4f4f7e0f7fce6b7a0a2f1fee7e1e6f7e0fbfcf5b7a0a2e6f7f1fafcfbe3e7f7e1b7a0d1b7a0a2d9bffff7f3fce1b7a0a2f3fcf6b7a0a2fafbf7e0f3e0f1fafbf1f3feb7a0a2f3f5f5fefdfff7e0f3e6fbe4f7b7a0a2f1fee7e1e6f7e0fbfcf5b7a0d1b7a0a2f3e2e2fefbf7f6b7a0a2e6fdb7a0a2e0f7f3feb7a0a2f6f3e6f3b7a0a2f4e0fdffb7a0a2e6faf7b7a0a2f7f3e1e6b7a0a2e0f7f5fbfdfcb7a0a2fdf4b7a0a2c2f3e0f3f5e7f3ebbcb7a0a2c6faf7b7a0a2e0f3e5b7a0a2f6f3e6f3b7a0a2e5f7e0f7b7a0a2e2e0f7bfe2e0fdf1f7e1e1f7f6b7a0d1b7a0a2e0f7e1e7fee6fbfcf5b7a0a2fbfcb7a0a2f4fde7e0b7a0a2f6f3e6f3b7a0a2e1f7e6e1b7a0d1b7a0a2fcf3fff7feebb7a0d1b7a0a2b7a0aafbb7a0abb7a0a2f3b7a0a2e5f7f7f9feebb7a0a2f4f7f7f6f7e0b7a0a2f6f7fff3fcf6b7a0d1b7a0a2b7a0aafbfbb7a0abb7a0a2f3b7a0a2fffdfce6fafeebb7a0a2f4f7f7f6f7e0b7a0a2f6f7fff3fcf6b7a0d1b7a0a2b7a0aafbfbfbb7a0abb7a0a2f3b7a0a2e1e6f3e6fbe1e6fbf1f3feb7a0a2f4f7f3e6e7e0f7b7a0a2e1f7e6b7a0a2f7eae6e0f3f1e6f7f6b7a0a2f4e0fdffb7a0a2e6faf7b7a0a2fde0fbf5fbfcf3feb7a0a2f6f3e6f3b7a0a2f3fcf6b7a0a2b7a0aafbe4b7a0abb7a0a2f3b7a0a2e1f7f3e1fdfcf3feb7a0a2f3fcf6b7a0a2f6f3fbfeebb7a0a2f1fdfce1e7ffe2e6fbfdfcb7a0a2f4f7f3e6e7e0f7b7a0a2e1f7e6b7a0a2fdf0e6f3fbfcf7f6b7a0a2f1fdfce1fbf6f7e0fbfcf5b7a0a2e6faf7b7a0a2f1faf3e0f3f1e6f7e0fbe1e6fbf1e1b7a0a2fdf4b7a0a2e6faf7b7a0a2c2f3e0f3f5e7f3ebf3fcb7a0a2fefdf3f6b7a0a2f1e7e0e4f7bcb7a0a2d1fdfce1fbf6f7e0fbfcf5b7a0a2e6faf7b7a0a2f4fde7e0b7a0a2f6f3e6f3b7a0a2e1f7e6e1b7a0d1b7a0a2e6e5fdb7a0a2f1fee7e1e6f7e0fbfcf5b7a0a2f3fef5fde0fbe6faffe1b7a0d1b7a0a2e6e5fdb7a0a2f6fbe1e6f3fcf1f7b7a0a2fff7e6e0fbf1e1b7a0a2f3fcf6b7a0a2f4fbe4f7b7a0a2fefbfcf9f3f5f7b7a0a2f1e0fbe6f7e0fbf3b7a0a2f3b7a0a2e6fde6f3feb7a0a2fdf4b7a0a2a1a4b7a0a2fffdf6f7fee1b7a0a2e5fbe6fab7a0a2e6faf7b7a0a2c1fbfefafde7f7e6e6f7b7a0d1b7a0a2d6f3e4fbf7e1b7a0a4fcf6f3e1fab7a1d0d0fde7fef6fbfcb7a0a2f3fcf6b7a0a2d1f3fefbfce1f9fbb7a0a4fcf6f3e1fab7a1d0daf3e0f3f0f3e1e8b7a0a2fbfcf6f7eab7a0a2e1f1fde0f7e1b7a0a2e5f3e1b7a0a2f3e1e1f7e1e1f7f6bcb7a0a2c6faf7b7a0a2d9bffff7f3fce1b7a0a2f3fef5fde0fbe6faffe1b7a0a2e5fbe6fab7a0a2e6faf7b7a0a2e1f7f3e1fdfcf3feb7a0a2f4f7f3e6e7e0f7b7a0a2f6f3e6f3b7a0a2e1f7e6e1b7a0a2e1fafde5f7f6b7a0a2e6faf7b7a0a2f0f7e1e6b7a0a2e2f7e0f4fde0fff3fcf1f7b7a0a2f1fdfce1fbf6f7e0fbfcf5b7a0a2e6faf7b7a0a2c1fbfefafde7f7e6e6f7b7a0d1b7a0a2d1f3fefbfce1f9fbb7a0a4fcf6f3e1fab7a1d0daf3e0f3f0f3e1e8b7a0a2f3fcf6b7a0a2d6f3e4fbf7e1b7a0a4fcf6f3e1fab7a1d0d0fde7fef6fbfcb7a0a2e4f3fefbf6f3e6fbfdfcb7a0a2fbfcf6f7eab7a0a2e1f1fde0f7e1b7a0a2e5fbe6fab7a0a2f3b7a0a2f1fdfcf4fbf5e7e0f3e6fbfdfcb7a0a2fdf4b7a0a2e1fbeab7a0a2f1fee7e1e6f7e0e1bc" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Analysis+of+Electric+Energy+Consumption+Profiles+Using+a+Machine+Learning+Approach%3A+A+Paraguayan+Case+Study&hashtags=mdpielectronics&url=https%3A%2F%2Fwww.mdpi.com%2F1449852&via=electronicsMDPI" onclick="windowOpen(this.href,600,800); return false" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.mdpi.com%2F1449852&title=Analysis%20of%20Electric%20Energy%20Consumption%20Profiles%20Using%20a%20Machine%20Learning%20Approach%3A%20A%20Paraguayan%20Case%20Study%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DCorrectly%20defining%20and%20grouping%20electrical%20feeders%20is%20of%20great%20importance%20for%20electrical%20system%20operators.%20In%20this%20paper%2C%20we%20compare%20two%20different%20clustering%20techniques%2C%20K-means%20and%20hierarchical%20agglomerative%20clustering%2C%20applied%20to%20real%20data%20from%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/1449852" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/1449852" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/1449852" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> </div> <div class="in-tab" style="padding-top: 0px!important; margin-top: 15px;"> <div><b>MDPI and ACS Style</b></div> <p> Morales, F.; García-Torres, M.; Velázquez, G.; Daumas-Ladouce, F.; Gardel-Sotomayor, P.E.; Gómez-Vela, F.; Divina, F.; Vázquez Noguera, J.L.; Sauer Ayala, C.; Pinto-Roa, D.P.; et al. Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study. <em>Electronics</em> <b>2022</b>, <em>11</em>, 267. https://doi.org/10.3390/electronics11020267 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Morales F, García-Torres M, Velázquez G, Daumas-Ladouce F, Gardel-Sotomayor PE, Gómez-Vela F, Divina F, Vázquez Noguera JL, Sauer Ayala C, Pinto-Roa DP, et al. Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study. <em>Electronics</em>. 2022; 11(2):267. https://doi.org/10.3390/electronics11020267 </p> <b>Chicago/Turabian Style</b><br> <p> Morales, Félix, Miguel García-Torres, Gustavo Velázquez, Federico Daumas-Ladouce, Pedro E. Gardel-Sotomayor, Francisco Gómez-Vela, Federico Divina, José Luis Vázquez Noguera, Carlos Sauer Ayala, Diego P. Pinto-Roa, and et al. 2022. "Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study" <em>Electronics</em> 11, no. 2: 267. https://doi.org/10.3390/electronics11020267 </p> <b>APA Style</b><br> <p> Morales, F., García-Torres, M., Velázquez, G., Daumas-Ladouce, F., Gardel-Sotomayor, P. E., Gómez-Vela, F., Divina, F., Vázquez Noguera, J. L., Sauer Ayala, C., Pinto-Roa, D. P., Mello-Román, J. C., & Becerra-Alonso, D. (2022). Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study. <em>Electronics</em>, <em>11</em>(2), 267. https://doi.org/10.3390/electronics11020267 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> <h2><a name="metrics"></a>Article Metrics</h2> <div class="row"> <div class="small-12 columns"> <div id="loaded_cite_count" style="display:none">No</div> <div id="framed_div_cited_count" class="in-tab" style="display: none; overflow: auto;"></div> <div id="loaded" style="display:none">No</div> <div id="framed_div" class="in-tab" style="display: none; margin-top: 10px;"></div> </div> <div class="small-12 columns"> <div id="article_stats_div" style="display: none; margin-bottom: 1em;"> <h3>Article Access Statistics</h3> <div id="article_stats_swf" ></div> For more information on the journal statistics, click <a href="/journal/electronics/stats">here</a>. <div class="info-box"> Multiple requests from the same IP address are counted as one view. </div> </div> </div> </div> </div> </div> </article> </div> </div></div> <div class="webpymol-controls webpymol-controls-template" style="margin-top: 10px; display: none;"> <a class="bzoom">Zoom</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="borient"> Orient </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="blines"> As Lines </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsticks"> As Sticks </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bcartoon"> As Cartoon </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsurface"> As Surface </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bprevscene">Previous Scene</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bnextscene">Next Scene</a> </div> <div id="scifeed-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="recommended-articles-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="author-biographies-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="cite-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Cite</h2> </div> <div class="small-12 columns"> <!-- BibTeX --> <form style="margin:0; padding:0; display:inline;" name="export-bibtex" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="724926"> <input type="hidden" name="export_format_top" value="bibtex"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- EndNote --> <form style="margin:0; padding:0; display:inline;" name="export-endnote" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="724926"> <input type="hidden" name="export_format_top" value="endnote_no_abstract"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- RIS --> <form style="margin:0; padding:0; display:inline;" name="export-ris" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="724926"> <input type="hidden" name="export_format_top" value="ris"> <input type="hidden" name="export_submit_top" value=""> </form> <div> Export citation file: <a href="javascript:window.document.forms['export-bibtex'].submit()">BibTeX</a> | <a href="javascript:window.document.forms['export-endnote'].submit()">EndNote</a> | <a href="javascript:window.document.forms['export-ris'].submit()">RIS</a> </div> </div> <div class="small-12 columns"> <div class="in-tab"> <div><b>MDPI and ACS Style</b></div> <p> Morales, F.; García-Torres, M.; Velázquez, G.; Daumas-Ladouce, F.; Gardel-Sotomayor, P.E.; Gómez-Vela, F.; Divina, F.; Vázquez Noguera, J.L.; Sauer Ayala, C.; Pinto-Roa, D.P.; et al. Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study. <em>Electronics</em> <b>2022</b>, <em>11</em>, 267. https://doi.org/10.3390/electronics11020267 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Morales F, García-Torres M, Velázquez G, Daumas-Ladouce F, Gardel-Sotomayor PE, Gómez-Vela F, Divina F, Vázquez Noguera JL, Sauer Ayala C, Pinto-Roa DP, et al. Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study. <em>Electronics</em>. 2022; 11(2):267. https://doi.org/10.3390/electronics11020267 </p> <b>Chicago/Turabian Style</b><br> <p> Morales, Félix, Miguel García-Torres, Gustavo Velázquez, Federico Daumas-Ladouce, Pedro E. Gardel-Sotomayor, Francisco Gómez-Vela, Federico Divina, José Luis Vázquez Noguera, Carlos Sauer Ayala, Diego P. Pinto-Roa, and et al. 2022. "Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study" <em>Electronics</em> 11, no. 2: 267. https://doi.org/10.3390/electronics11020267 </p> <b>APA Style</b><br> <p> Morales, F., García-Torres, M., Velázquez, G., Daumas-Ladouce, F., Gardel-Sotomayor, P. E., Gómez-Vela, F., Divina, F., Vázquez Noguera, J. L., Sauer Ayala, C., Pinto-Roa, D. P., Mello-Román, J. C., & Becerra-Alonso, D. (2022). Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study. <em>Electronics</em>, <em>11</em>(2), 267. https://doi.org/10.3390/electronics11020267 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> </div> </div> </div> </section> <div id="footer"> <div class="journal-info"> <span> <em><a class="Var_JournalInfo" href="/journal/electronics">Electronics</a></em>, EISSN 2079-9292, Published by MDPI </span> <div class="large-right"> <span> <a href="/rss/journal/electronics" class="rss-link">RSS</a> </span> <span> <a href="/journal/electronics/toc-alert">Content Alert</a> </span> </div> </div> <div class="row full-width footer-links" data-equalizer="footer" data-equalizer-mq="small"> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Further Information </h3> <a href="/apc"> Article Processing Charges </a> <a href="/about/payment"> Pay an Invoice </a> <a href="/openaccess"> Open Access Policy </a> <a href="/about/contact"> Contact MDPI </a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Jobs at MDPI </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Guidelines </h3> <a href="/authors"> For Authors </a> <a href="/reviewers"> For Reviewers </a> <a href="/editors"> For Editors </a> <a href="/librarians"> For Librarians </a> <a href="/publishing_services"> For Publishers </a> <a href="/societies"> For Societies </a> <a href="/conference_organizers"> For Conference Organizers </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns"> <h3> MDPI Initiatives </h3> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> <a href="https://sciprofiles.com?utm_source=mpdi.com&utm_medium=bottom_menu&utm_campaign=initiative" target="_blank" rel="noopener noreferrer"> SciProfiles </a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> <a href="/about/proceedings"> Proceedings Series </a> </div> <div class="large-2 large-push-4 medium-3 small-6 right-border-large-without columns UA_FooterFollowMDPI"> <h3> Follow MDPI </h3> <a href="https://www.linkedin.com/company/mdpi" target="_blank" rel="noopener noreferrer"> LinkedIn </a> <a href="https://www.facebook.com/MDPIOpenAccessPublishing" target="_blank" rel="noopener noreferrer"> Facebook </a> <a href="https://twitter.com/MDPIOpenAccess" target="_blank" rel="noopener noreferrer"> Twitter </a> </div> <div id="footer-subscribe" class="large-4 large-pull-8 medium-12 small-12 left-border-large columns"> <div class="footer-subscribe__container"> <img class="show-for-large-up" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-white-small.png?71d18e5f805839ab?1732286508" alt="MDPI" title="MDPI Open Access Journals" style="height: 50px; margin-bottom: 10px;"> <form id="newsletter" method="POST" action="/subscribe"> <p> Subscribe to receive issue release notifications and newsletters from MDPI journals </p> <select multiple id="newsletter-journal" class="foundation-select" name="journals[]"> <option value="acoustics">Acoustics</option> <option value="amh">Acta Microbiologica Hellenica</option> <option value="actuators">Actuators</option> <option value="admsci">Administrative Sciences</option> <option value="adolescents">Adolescents</option> <option value="arm">Advances in Respiratory Medicine</option> <option value="aerobiology">Aerobiology</option> <option value="aerospace">Aerospace</option> <option value="agriculture">Agriculture</option> <option value="agriengineering">AgriEngineering</option> <option value="agrochemicals">Agrochemicals</option> <option value="agronomy">Agronomy</option> <option value="ai">AI</option> <option value="air">Air</option> <option value="algorithms">Algorithms</option> <option value="allergies">Allergies</option> <option value="alloys">Alloys</option> <option value="analytica">Analytica</option> <option value="analytics">Analytics</option> <option value="anatomia">Anatomia</option> <option value="anesthres">Anesthesia Research</option> <option value="animals">Animals</option> <option value="antibiotics">Antibiotics</option> <option value="antibodies">Antibodies</option> <option value="antioxidants">Antioxidants</option> <option value="applbiosci">Applied Biosciences</option> <option value="applmech">Applied Mechanics</option> <option value="applmicrobiol">Applied Microbiology</option> <option value="applnano">Applied Nano</option> <option value="applsci">Applied Sciences</option> <option value="asi">Applied System Innovation</option> <option value="appliedchem">AppliedChem</option> <option value="appliedmath">AppliedMath</option> <option value="aquacj">Aquaculture Journal</option> <option value="architecture">Architecture</option> <option value="arthropoda">Arthropoda</option> <option value="arts">Arts</option> <option value="astronomy">Astronomy</option> <option value="atmosphere">Atmosphere</option> <option value="atoms">Atoms</option> <option value="audiolres">Audiology Research</option> <option value="automation">Automation</option> <option value="axioms">Axioms</option> <option value="bacteria">Bacteria</option> <option value="batteries">Batteries</option> <option value="behavsci">Behavioral Sciences</option> <option value="beverages">Beverages</option> <option value="BDCC">Big Data and Cognitive Computing</option> <option value="biochem">BioChem</option> <option value="bioengineering">Bioengineering</option> <option value="biologics">Biologics</option> <option value="biology">Biology</option> <option value="blsf">Biology and Life Sciences Forum</option> <option value="biomass">Biomass</option> <option value="biomechanics">Biomechanics</option> <option value="biomed">BioMed</option> <option value="biomedicines">Biomedicines</option> <option value="biomedinformatics">BioMedInformatics</option> <option value="biomimetics">Biomimetics</option> <option value="biomolecules">Biomolecules</option> <option value="biophysica">Biophysica</option> <option value="biosensors">Biosensors</option> <option value="biotech">BioTech</option> <option value="birds">Birds</option> <option value="blockchains">Blockchains</option> <option value="brainsci">Brain Sciences</option> <option value="buildings">Buildings</option> <option value="businesses">Businesses</option> <option value="carbon">C</option> <option value="cancers">Cancers</option> <option value="cardiogenetics">Cardiogenetics</option> <option value="catalysts">Catalysts</option> <option value="cells">Cells</option> <option value="ceramics">Ceramics</option> <option value="challenges">Challenges</option> <option value="ChemEngineering">ChemEngineering</option> <option value="chemistry">Chemistry</option> <option value="chemproc">Chemistry Proceedings</option> <option value="chemosensors">Chemosensors</option> <option value="children">Children</option> <option value="chips">Chips</option> <option value="civileng">CivilEng</option> <option value="cleantechnol">Clean Technologies</option> <option value="climate">Climate</option> <option value="ctn">Clinical and Translational Neuroscience</option> <option value="clinbioenerg">Clinical Bioenergetics</option> <option value="clinpract">Clinics and Practice</option> <option value="clockssleep">Clocks & Sleep</option> <option value="coasts">Coasts</option> <option value="coatings">Coatings</option> <option value="colloids">Colloids and Interfaces</option> <option value="colorants">Colorants</option> <option value="commodities">Commodities</option> <option value="complications">Complications</option> <option value="compounds">Compounds</option> <option value="computation">Computation</option> <option value="csmf">Computer Sciences & Mathematics Forum</option> <option value="computers">Computers</option> <option value="condensedmatter">Condensed Matter</option> <option value="conservation">Conservation</option> <option value="constrmater">Construction Materials</option> <option value="cmd">Corrosion and Materials Degradation</option> <option value="cosmetics">Cosmetics</option> <option value="covid">COVID</option> <option value="crops">Crops</option> <option value="cryo">Cryo</option> <option value="cryptography">Cryptography</option> <option value="crystals">Crystals</option> <option value="cimb">Current Issues in Molecular Biology</option> <option value="curroncol">Current Oncology</option> <option value="dairy">Dairy</option> <option value="data">Data</option> <option value="dentistry">Dentistry Journal</option> <option value="dermato">Dermato</option> <option value="dermatopathology">Dermatopathology</option> <option value="designs">Designs</option> <option value="diabetology">Diabetology</option> <option value="diagnostics">Diagnostics</option> <option value="dietetics">Dietetics</option> <option value="digital">Digital</option> <option value="disabilities">Disabilities</option> <option value="diseases">Diseases</option> <option value="diversity">Diversity</option> <option value="dna">DNA</option> <option value="drones">Drones</option> <option value="ddc">Drugs and Drug Candidates</option> <option value="dynamics">Dynamics</option> <option value="earth">Earth</option> <option value="ecologies">Ecologies</option> <option value="econometrics">Econometrics</option> <option value="economies">Economies</option> <option value="education">Education Sciences</option> <option value="electricity">Electricity</option> <option value="electrochem">Electrochem</option> <option value="electronicmat">Electronic Materials</option> <option value="electronics">Electronics</option> <option value="ecm">Emergency Care and Medicine</option> <option value="encyclopedia">Encyclopedia</option> <option value="endocrines">Endocrines</option> <option value="energies">Energies</option> <option value="esa">Energy Storage and Applications</option> <option value="eng">Eng</option> <option value="engproc">Engineering Proceedings</option> <option value="entropy">Entropy</option> <option value="environsciproc">Environmental Sciences Proceedings</option> <option value="environments">Environments</option> <option value="epidemiologia">Epidemiologia</option> <option value="epigenomes">Epigenomes</option> <option value="ebj">European Burn Journal</option> <option value="ejihpe">European Journal of Investigation in Health, Psychology and Education</option> <option value="fermentation">Fermentation</option> <option value="fibers">Fibers</option> <option value="fintech">FinTech</option> <option value="fire">Fire</option> <option value="fishes">Fishes</option> <option value="fluids">Fluids</option> <option value="foods">Foods</option> <option value="forecasting">Forecasting</option> <option value="forensicsci">Forensic Sciences</option> <option value="forests">Forests</option> <option value="fossstud">Fossil Studies</option> <option value="foundations">Foundations</option> <option value="fractalfract">Fractal and Fractional</option> <option value="fuels">Fuels</option> <option value="future">Future</option> <option value="futureinternet">Future Internet</option> <option value="futurepharmacol">Future Pharmacology</option> <option value="futuretransp">Future Transportation</option> <option value="galaxies">Galaxies</option> <option value="games">Games</option> <option value="gases">Gases</option> <option value="gastroent">Gastroenterology Insights</option> <option value="gastrointestdisord">Gastrointestinal Disorders</option> <option value="gastronomy">Gastronomy</option> <option value="gels">Gels</option> <option value="genealogy">Genealogy</option> <option value="genes">Genes</option> <option value="geographies">Geographies</option> <option value="geohazards">GeoHazards</option> <option value="geomatics">Geomatics</option> <option value="geometry">Geometry</option> <option value="geosciences">Geosciences</option> <option value="geotechnics">Geotechnics</option> <option value="geriatrics">Geriatrics</option> <option value="glacies">Glacies</option> <option value="gucdd">Gout, Urate, and Crystal Deposition Disease</option> <option value="grasses">Grasses</option> <option value="hardware">Hardware</option> <option value="healthcare">Healthcare</option> <option value="hearts">Hearts</option> <option value="hemato">Hemato</option> <option value="hematolrep">Hematology Reports</option> <option value="heritage">Heritage</option> <option value="histories">Histories</option> <option value="horticulturae">Horticulturae</option> <option value="hospitals">Hospitals</option> <option value="humanities">Humanities</option> <option value="humans">Humans</option> <option value="hydrobiology">Hydrobiology</option> <option value="hydrogen">Hydrogen</option> <option value="hydrology">Hydrology</option> <option value="hygiene">Hygiene</option> <option value="immuno">Immuno</option> <option value="idr">Infectious Disease Reports</option> <option value="informatics">Informatics</option> <option value="information">Information</option> <option value="infrastructures">Infrastructures</option> <option value="inorganics">Inorganics</option> <option value="insects">Insects</option> <option value="instruments">Instruments</option> <option value="iic">Intelligent Infrastructure and Construction</option> <option value="ijerph">International Journal of Environmental Research and Public Health</option> <option value="ijfs">International Journal of Financial Studies</option> <option value="ijms">International Journal of Molecular Sciences</option> <option value="IJNS">International Journal of Neonatal Screening</option> <option value="ijpb">International Journal of Plant Biology</option> <option value="ijt">International Journal of Topology</option> <option value="ijtm">International Journal of Translational Medicine</option> <option value="ijtpp">International Journal of Turbomachinery, Propulsion and Power</option> <option value="ime">International Medical Education</option> <option value="inventions">Inventions</option> <option value="IoT">IoT</option> <option value="ijgi">ISPRS International Journal of Geo-Information</option> <option value="J">J</option> <option value="jal">Journal of Ageing and Longevity</option> <option value="jcdd">Journal of Cardiovascular Development and Disease</option> <option value="jcto">Journal of Clinical & Translational Ophthalmology</option> <option value="jcm">Journal of Clinical Medicine</option> <option value="jcs">Journal of Composites Science</option> <option value="jcp">Journal of Cybersecurity and Privacy</option> <option value="jdad">Journal of Dementia and Alzheimer's Disease</option> <option value="jdb">Journal of Developmental Biology</option> <option value="jeta">Journal of Experimental and Theoretical Analyses</option> <option value="jfb">Journal of Functional Biomaterials</option> <option value="jfmk">Journal of Functional Morphology and Kinesiology</option> <option value="jof">Journal of Fungi</option> <option value="jimaging">Journal of Imaging</option> <option value="jintelligence">Journal of Intelligence</option> <option value="jlpea">Journal of Low Power Electronics and Applications</option> <option value="jmmp">Journal of Manufacturing and Materials Processing</option> <option value="jmse">Journal of Marine Science and Engineering</option> <option value="jmahp">Journal of Market Access & Health Policy</option> <option value="jmp">Journal of Molecular Pathology</option> <option value="jnt">Journal of Nanotheranostics</option> <option value="jne">Journal of Nuclear Engineering</option> <option value="ohbm">Journal of Otorhinolaryngology, Hearing and Balance Medicine</option> <option value="jop">Journal of Parks</option> <option value="jpm">Journal of Personalized Medicine</option> <option value="jpbi">Journal of Pharmaceutical and BioTech Industry</option> <option value="jor">Journal of Respiration</option> <option value="jrfm">Journal of Risk and Financial Management</option> <option value="jsan">Journal of Sensor and Actuator Networks</option> <option value="joma">Journal of the Oman Medical Association</option> <option value="jtaer">Journal of Theoretical and Applied Electronic Commerce Research</option> <option value="jvd">Journal of Vascular Diseases</option> <option value="jox">Journal of Xenobiotics</option> <option value="jzbg">Journal of Zoological and Botanical Gardens</option> <option value="journalmedia">Journalism and Media</option> <option value="kidneydial">Kidney and Dialysis</option> <option value="kinasesphosphatases">Kinases and Phosphatases</option> <option value="knowledge">Knowledge</option> <option value="labmed">LabMed</option> <option value="laboratories">Laboratories</option> <option value="land">Land</option> <option value="languages">Languages</option> <option value="laws">Laws</option> <option value="life">Life</option> <option value="limnolrev">Limnological Review</option> <option value="lipidology">Lipidology</option> <option value="liquids">Liquids</option> <option value="literature">Literature</option> <option value="livers">Livers</option> <option value="logics">Logics</option> <option value="logistics">Logistics</option> <option value="lubricants">Lubricants</option> <option value="lymphatics">Lymphatics</option> <option value="make">Machine Learning and Knowledge Extraction</option> <option value="machines">Machines</option> <option value="macromol">Macromol</option> <option value="magnetism">Magnetism</option> <option value="magnetochemistry">Magnetochemistry</option> <option value="marinedrugs">Marine Drugs</option> <option value="materials">Materials</option> <option value="materproc">Materials Proceedings</option> <option value="mca">Mathematical and Computational Applications</option> <option value="mathematics">Mathematics</option> <option value="medsci">Medical Sciences</option> <option value="msf">Medical Sciences Forum</option> <option value="medicina">Medicina</option> <option value="medicines">Medicines</option> <option value="membranes">Membranes</option> <option value="merits">Merits</option> <option value="metabolites">Metabolites</option> <option value="metals">Metals</option> <option value="meteorology">Meteorology</option> <option value="methane">Methane</option> <option value="mps">Methods and Protocols</option> <option value="metrics">Metrics</option> <option value="metrology">Metrology</option> <option value="micro">Micro</option> <option value="microbiolres">Microbiology Research</option> <option value="micromachines">Micromachines</option> <option value="microorganisms">Microorganisms</option> <option value="microplastics">Microplastics</option> <option value="minerals">Minerals</option> <option value="mining">Mining</option> <option value="modelling">Modelling</option> <option value="mmphys">Modern Mathematical Physics</option> <option value="molbank">Molbank</option> <option value="molecules">Molecules</option> <option value="mti">Multimodal Technologies and Interaction</option> <option value="muscles">Muscles</option> <option value="nanoenergyadv">Nanoenergy Advances</option> <option value="nanomanufacturing">Nanomanufacturing</option> <option value="nanomaterials">Nanomaterials</option> <option value="ndt">NDT</option> <option value="network">Network</option> <option value="neuroglia">Neuroglia</option> <option value="neurolint">Neurology International</option> <option value="neurosci">NeuroSci</option> <option value="nitrogen">Nitrogen</option> <option value="ncrna">Non-Coding RNA</option> <option value="nursrep">Nursing Reports</option> <option value="nutraceuticals">Nutraceuticals</option> <option value="nutrients">Nutrients</option> <option value="obesities">Obesities</option> <option value="oceans">Oceans</option> <option value="onco">Onco</option> <option value="optics">Optics</option> <option value="oral">Oral</option> <option value="organics">Organics</option> <option value="organoids">Organoids</option> <option value="osteology">Osteology</option> <option value="oxygen">Oxygen</option> <option value="parasitologia">Parasitologia</option> <option value="particles">Particles</option> <option value="pathogens">Pathogens</option> <option value="pathophysiology">Pathophysiology</option> <option value="pediatrrep">Pediatric Reports</option> <option value="pets">Pets</option> <option value="pharmaceuticals">Pharmaceuticals</option> <option value="pharmaceutics">Pharmaceutics</option> <option value="pharmacoepidemiology">Pharmacoepidemiology</option> <option value="pharmacy">Pharmacy</option> <option value="philosophies">Philosophies</option> <option value="photochem">Photochem</option> <option value="photonics">Photonics</option> <option value="phycology">Phycology</option> <option value="physchem">Physchem</option> <option value="psf">Physical Sciences Forum</option> <option value="physics">Physics</option> <option value="physiologia">Physiologia</option> <option value="plants">Plants</option> <option value="plasma">Plasma</option> <option value="platforms">Platforms</option> <option value="pollutants">Pollutants</option> <option value="polymers">Polymers</option> <option value="polysaccharides">Polysaccharides</option> <option value="populations">Populations</option> <option value="poultry">Poultry</option> <option value="powders">Powders</option> <option value="proceedings">Proceedings</option> <option value="processes">Processes</option> <option value="prosthesis">Prosthesis</option> <option value="proteomes">Proteomes</option> <option value="psychiatryint">Psychiatry International</option> <option value="psychoactives">Psychoactives</option> <option value="psycholint">Psychology International</option> <option value="publications">Publications</option> <option value="qubs">Quantum Beam Science</option> <option value="quantumrep">Quantum Reports</option> <option value="quaternary">Quaternary</option> <option value="radiation">Radiation</option> <option value="reactions">Reactions</option> <option value="realestate">Real Estate</option> <option value="receptors">Receptors</option> <option value="recycling">Recycling</option> <option value="rsee">Regional Science and Environmental Economics</option> <option value="religions">Religions</option> <option value="remotesensing">Remote Sensing</option> <option value="reports">Reports</option> <option value="reprodmed">Reproductive Medicine</option> <option value="resources">Resources</option> <option value="rheumato">Rheumato</option> <option value="risks">Risks</option> <option value="robotics">Robotics</option> <option value="ruminants">Ruminants</option> <option value="safety">Safety</option> <option value="sci">Sci</option> <option value="scipharm">Scientia Pharmaceutica</option> <option value="sclerosis">Sclerosis</option> <option value="seeds">Seeds</option> <option value="sensors">Sensors</option> <option value="separations">Separations</option> <option value="sexes">Sexes</option> <option value="signals">Signals</option> <option value="sinusitis">Sinusitis</option> <option value="smartcities">Smart Cities</option> <option value="socsci">Social Sciences</option> <option value="siuj">Société Internationale d’Urologie Journal</option> <option value="societies">Societies</option> <option value="software">Software</option> <option value="soilsystems">Soil Systems</option> <option value="solar">Solar</option> <option value="solids">Solids</option> <option value="spectroscj">Spectroscopy Journal</option> <option value="sports">Sports</option> <option value="standards">Standards</option> <option value="stats">Stats</option> <option value="stresses">Stresses</option> <option value="surfaces">Surfaces</option> <option value="surgeries">Surgeries</option> <option value="std">Surgical Techniques Development</option> <option value="sustainability">Sustainability</option> <option value="suschem">Sustainable Chemistry</option> <option value="symmetry">Symmetry</option> <option value="synbio">SynBio</option> <option value="systems">Systems</option> <option value="targets">Targets</option> <option value="taxonomy">Taxonomy</option> <option value="technologies">Technologies</option> <option value="telecom">Telecom</option> <option value="textiles">Textiles</option> <option value="thalassrep">Thalassemia Reports</option> <option value="therapeutics">Therapeutics</option> <option value="thermo">Thermo</option> <option value="timespace">Time and Space</option> <option value="tomography">Tomography</option> <option value="tourismhosp">Tourism and Hospitality</option> <option value="toxics">Toxics</option> <option value="toxins">Toxins</option> <option value="transplantology">Transplantology</option> <option value="traumacare">Trauma Care</option> <option value="higheredu">Trends in Higher Education</option> <option value="tropicalmed">Tropical Medicine and Infectious Disease</option> <option value="universe">Universe</option> <option value="urbansci">Urban Science</option> <option value="uro">Uro</option> <option value="vaccines">Vaccines</option> <option value="vehicles">Vehicles</option> <option value="venereology">Venereology</option> <option value="vetsci">Veterinary Sciences</option> <option value="vibration">Vibration</option> <option value="virtualworlds">Virtual Worlds</option> <option value="viruses">Viruses</option> <option value="vision">Vision</option> <option value="waste">Waste</option> <option value="water">Water</option> <option value="wild">Wild</option> <option value="wind">Wind</option> <option value="women">Women</option> <option value="world">World</option> <option value="wevj">World Electric Vehicle Journal</option> <option value="youth">Youth</option> <option value="zoonoticdis">Zoonotic Diseases</option> </select> <input name="email" type="email" placeholder="Enter your email address..." required="required" /> <button class="genericCaptcha button button--dark UA_FooterNewsletterSubscribeButton" type="submit">Subscribe</button> </form> </div> </div> </div> <div id="footer-copyright"> <div class="row"> <div class="columns large-6 medium-6 small-12 text-left"> © 1996-2024 MDPI (Basel, Switzerland) unless otherwise stated </div> <div class="columns large-6 medium-6 small-12 small-text-left medium-text-right large-text-right"> <a data-dropdown="drop-view-disclaimer" aria-controls="drop-view-disclaimer" aria-expanded="false" data-options="align:top; is_hover:true; hover_timeout:2000;"> Disclaimer </a> <div id="drop-view-disclaimer" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide text-left" data-dropdown-content aria-hidden="true" tabindex="-1"> Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. </div> <a href="/about/terms-and-conditions"> Terms and Conditions </a> <a href="/about/privacy"> Privacy Policy </a> </div> </div> </div> </div> <div id="cookie-notification" class="js-allow-cookies" style="display: none;"> <div class="columns large-10 medium-10 small-12"> We use cookies on our website to ensure you get the best experience.<br class="show-for-medium-up"/> Read more about our cookies <a href="/about/privacy">here</a>. </div> <div class="columns large-2 medium-2 small-12 small-only-text-left text-right"> <a class="button button--default" href="/accept_cookies">Accept</a> </div> </div> </div> <div id="main-share-modal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Share Link</h2> </div> <div class="small-12 columns"> <div class="social-media-links UA_ShareModalLinks" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#d5eaf3b4b8a5eea6a0b7bfb0b6a1e893a7bab8f0e7e59891859cf0e694f0e7e5f0e7e794bbb4b9aca6bca6f0e7e5bab3f0e7e590b9b0b6a1a7bcb6f0e7e590bbb0a7b2acf0e7e596babba6a0b8a5a1bcbabbf0e7e585a7bab3bcb9b0a6f0e7e580a6bcbbb2f0e7e5b4f0e7e598b4b6bdbcbbb0f0e7e599b0b4a7bbbcbbb2f0e7e594a5a5a7bab4b6bdf0e694f0e7e594f0e7e585b4a7b4b2a0b4acb4bbf0e7e596b4a6b0f0e7e586a1a0b1acf3a4a0baa1eef3b4b8a5eeb7bab1ace8bda1a1a5a6effafaa2a2a2fbb8b1a5bcfbb6bab8fae4e1e1ecede0e7f0e694f0e594f0e59494bbb4b9aca6bca6f0e7e5bab3f0e7e590b9b0b6a1a7bcb6f0e7e590bbb0a7b2acf0e7e596babba6a0b8a5a1bcbabbf0e7e585a7bab3bcb9b0a6f0e7e580a6bcbbb2f0e7e5b4f0e7e598b4b6bdbcbbb0f0e7e599b0b4a7bbbcbbb2f0e7e594a5a5a7bab4b6bdf0e694f0e7e594f0e7e585b4a7b4b2a0b4acb4bbf0e7e596b4a6b0f0e7e586a1a0b1acdfdf96baa7a7b0b6a1b9acf0e7e5b1b0b3bcbbbcbbb2f0e7e5b4bbb1f0e7e5b2a7baa0a5bcbbb2f0e7e5b0b9b0b6a1a7bcb6b4b9f0e7e5b3b0b0b1b0a7a6f0e7e5bca6f0e7e5bab3f0e7e5b2a7b0b4a1f0e7e5bcb8a5baa7a1b4bbb6b0f0e7e5b3baa7f0e7e5b0b9b0b6a1a7bcb6b4b9f0e7e5a6aca6a1b0b8f0e7e5baa5b0a7b4a1baa7a6fbf0e7e59cbbf0e7e5a1bdbca6f0e7e5a5b4a5b0a7f0e796f0e7e5a2b0f0e7e5b6bab8a5b4a7b0f0e7e5a1a2baf0e7e5b1bcb3b3b0a7b0bba1f0e7e5b6b9a0a6a1b0a7bcbbb2f0e7e5a1b0b6bdbbbca4a0b0a6f0e796f0e7e59ef8b8b0b4bba6f0e7e5b4bbb1f0e7e5bdbcb0a7b4a7b6bdbcb6b4b9f0e7e5b4b2b2b9bab8b0a7b4a1bca3b0f0e7e5b6b9a0a6a1b0a7bcbbb2f0e796f0e7e5b4a5a5b9bcb0b1f0e7e5a1baf0e7e5a7b0b4b9f0e7e5b1b4a1b4f0e7e5b3a7bab8f0e7e5a1bdb0f0e7e5b0b4a6a1f0e7e5a7b0b2bcbabbf0e7e5bab3f0e7e585b4a7b4b2a0b4acfbf0e7e581bdb0f0e7e5a7b4a2f0e7e5b1b4a1b4f0e7e5a2b0a7b0f0e7e5a5a7b0f8a5a7bab6b0a6a6b0b1f0e796f0e7e5a7b0a6a0b9a1bcbbb2f0e7e5bcbbf0e7e5b3baa0a7f0e7e5b1b4a1b4f0e7e5a6b0a1a6f0e796f0e7e5bbb4b8b0b9acf0e796f0e7e5f0e7edbcf0e7ecf0e7e5b4f0e7e5a2b0b0beb9acf0e7e5b3b0b0b1b0a7f0e7e5b1b0b8b4bbb1f0e796f0e7e5f0e7edbcbcf0e7ecf0e7e5b4f0e7e5b8babba1bdb9acf0e7e5b3b0b0b1b0a7f0e7e5b1b0b8b4bbb1f0e796f0e7e5f0e7edbcbcbcf0e7ecf0e7e5b4f0e7e5a6a1b4a1bca6a1bcb6b4b9f0e7e5b3b0b4a1a0a7b0f0e7e5a6b0a1f0e7e5b0ada1a7b4b6a1b0b1f0e7e5b3a7bab8f0e7e5a1bdb0f0e7e5baa7bcb2bcbbb4b9f0e7e5b1b4a1b4f0e7e5b4bbb1f0e7e5f0e7edbca3f0e7ecf0e7e5b4f0e7e5a6b0b4a6babbb4b9f0e7e5b4bbb1f0e7e5b1b4bcb9acf0e7e5b6babba6a0b8a5a1bcbabbf0e7e5b3b0b4a1a0a7b0f0e7e5a6b0a1f0e7e5bab7a1b4bcbbb0b1f0e7e5b6babba6bcb1b0a7bcbbb2f0e7e5a1bdb0f0e7e5b6bdb4a7b4b6a1b0a7bca6a1bcb6a6f0e7e5bab3f0e7e5a1bdb0f0e7e585b4a7b4b2a0b4acb4bbf0e7e5b9bab4b1f0e7e5b6a0a7a3b0fbf0e7e596babba6bcb1b0a7bcbbb2f0e7e5a1bdb0f0e7e5b3baa0a7f0e7e5b1b4a1b4f0e7e5a6b0a1a6f0e796f0e7e5a1a2baf0e7e5b6b9a0a6a1b0a7bcbbb2f0e7e5b4b9b2baa7bca1bdb8a6f0e796f0e7e5a1a2baf0e7e5b1bca6a1b4bbb6b0f0e7e5b8b0a1a7bcb6a6f0e7e5b4bbb1f0e7e5b3bca3b0f0e7e5b9bcbbbeb4b2b0f0e7e5b6a7bca1b0a7bcb4f0e7e5b4f0e7e5a1baa1b4b9f0e7e5bab3f0e7e5e6e3f0e7e5b8bab1b0b9a6f0e7e5a2bca1bdf0e7e5a1bdb0f0e7e586bcb9bdbaa0b0a1a1b0f0e796f0e7e591b4a3bcb0a6f090e7f0ede5f0ece697baa0b9b1bcbbf0e7e5b4bbb1f0e7e596b4b9bcbba6bebcf090e7f0ede5f0ece69db4a7b4b7b4a6aff0e7e5bcbbb1b0adf0e7e5a6b6baa7b0a6f0e7e5a2b4a6f0e7e5b4a6a6b0a6a6b0b1fbf0e7e581bdb0f0e7e59ef8b8b0b4bba6f0e7e5b4b9b2baa7bca1bdb8a6f0e7e5a2bca1bdf0e7e5a1bdb0f0e7e5a6b0b4a6babbb4b9f0e7e5b3b0b4a1a0a7b0f0e7e5b1b4a1b4f0e7e5a6b0a1a6f0e7e5a6bdbaa2b0b1f0e7e5a1bdb0f0e7e5b7b0a6a1f0e7e5a5b0a7b3baa7b8b4bbb6b0f0e7e5b6babba6bcb1b0a7bcbbb2f0e7e5a1bdb0f0e7e586bcb9bdbaa0b0a1a1b0f0e796f0e7e596b4b9bcbba6bebcf090e7f0ede5f0ece69db4a7b4b7b4a6aff0e7e5b4bbb1f0e7e591b4a3bcb0a6f090e7f0ede5f0ece697baa0b9b1bcbbf0e7e5a3b4b9bcb1b4a1bcbabbf0e7e5bcbbb1b0adf0e7e5a6b6baa7b0a6f0e7e5a2bca1bdf0e7e5b4f0e7e5b6babbb3bcb2a0a7b4a1bcbabbf0e7e5bab3f0e7e5a6bcadf0e7e5b6b9a0a6a1b0a7a6fb" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Analysis+of+Electric+Energy+Consumption+Profiles+Using+a+Machine+Learning+Approach%3A+A+Paraguayan+Case+Study&hashtags=mdpielectronics&url=https%3A%2F%2Fwww.mdpi.com%2F1449852&via=electronicsMDPI" onclick="windowOpen(this.href,600,800); return false" title="Twitter" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.mdpi.com%2F1449852&title=Analysis%20of%20Electric%20Energy%20Consumption%20Profiles%20Using%20a%20Machine%20Learning%20Approach%3A%20A%20Paraguayan%20Case%20Study%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DCorrectly%20defining%20and%20grouping%20electrical%20feeders%20is%20of%20great%20importance%20for%20electrical%20system%20operators.%20In%20this%20paper%2C%20we%20compare%20two%20different%20clustering%20techniques%2C%20K-means%20and%20hierarchical%20agglomerative%20clustering%2C%20applied%20to%20real%20data%20from%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/1449852" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/1449852" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/1449852" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> <a href="http://www.citeulike.org/posturl?url=https://www.mdpi.com/1449852" title="CiteULike" target="_blank" rel="noopener noreferrer"> <i class="fa fa-citeulike-square" style="font-size: 30px;"></i> </a> </div> </div> <div class="small-9 columns"> <input id="js-clipboard-text" type="text" readonly value="https://www.mdpi.com/1449852" /> </div> <div class="small-3 columns text-left"> <a class="button button--color js-clipboard-copy" data-clipboard-target="#js-clipboard-text">Copy</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="weixin-share-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="weixin-share-modal-title" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="weixin-share-modal-title" style="margin: 0;">Share</h2> </div> <div class="small-12 columns"> <div class="weixin-qr-code-section"> <?xml version="1.0" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg width="300" height="300" version="1.1" xmlns="http://www.w3.org/2000/svg"> <desc>https://www.mdpi.com/1449852</desc> <g id="elements" fill="black" stroke="none"> <rect x="0" y="0" width="12" height="12" /> <rect x="12" y="0" width="12" height="12" /> <rect x="24" y="0" width="12" height="12" /> <rect x="36" y="0" width="12" height="12" /> <rect x="48" y="0" width="12" height="12" /> <rect x="60" y="0" width="12" height="12" /> <rect x="72" y="0" width="12" height="12" /> <rect x="120" y="0" width="12" height="12" /> <rect x="168" y="0" width="12" height="12" /> <rect x="180" y="0" width="12" height="12" /> <rect x="216" y="0" width="12" height="12" /> <rect x="228" y="0" width="12" height="12" /> <rect x="240" y="0" width="12" height="12" /> <rect x="252" y="0" width="12" height="12" /> <rect x="264" y="0" width="12" height="12" /> <rect x="276" y="0" width="12" height="12" /> <rect x="288" y="0" width="12" height="12" /> <rect x="0" y="12" width="12" height="12" /> <rect x="72" y="12" width="12" height="12" /> <rect x="108" y="12" width="12" height="12" /> <rect x="180" y="12" width="12" height="12" /> <rect x="216" y="12" width="12" height="12" /> <rect x="288" y="12" width="12" height="12" /> <rect x="0" y="24" width="12" height="12" /> <rect x="24" y="24" width="12" height="12" /> <rect x="36" y="24" width="12" height="12" /> <rect x="48" y="24" width="12" height="12" /> <rect x="72" y="24" width="12" height="12" /> <rect x="96" y="24" width="12" height="12" /> <rect x="132" y="24" width="12" height="12" /> <rect x="180" y="24" width="12" height="12" /> <rect x="216" y="24" width="12" height="12" /> <rect x="240" y="24" width="12" height="12" /> <rect x="252" y="24" width="12" height="12" /> <rect x="264" y="24" width="12" height="12" /> <rect x="288" y="24" width="12" height="12" /> <rect x="0" y="36" width="12" height="12" /> <rect x="24" y="36" width="12" height="12" /> <rect x="36" y="36" width="12" height="12" /> <rect x="48" y="36" width="12" height="12" /> <rect x="72" y="36" width="12" height="12" /> <rect x="108" y="36" width="12" height="12" /> <rect x="168" y="36" width="12" height="12" /> <rect x="216" y="36" width="12" height="12" /> <rect x="240" y="36" width="12" height="12" /> <rect x="252" y="36" width="12" height="12" /> <rect x="264" y="36" width="12" height="12" /> <rect x="288" y="36" width="12" height="12" /> <rect x="0" y="48" width="12" height="12" /> <rect x="24" y="48" width="12" height="12" /> <rect x="36" y="48" width="12" height="12" /> <rect x="48" y="48" width="12" height="12" /> <rect x="72" y="48" width="12" height="12" /> <rect x="108" y="48" width="12" height="12" /> <rect x="144" y="48" width="12" height="12" /> <rect x="156" y="48" width="12" height="12" /> <rect x="168" y="48" width="12" height="12" /> <rect x="180" y="48" width="12" height="12" /> <rect x="192" y="48" width="12" height="12" /> <rect x="216" y="48" width="12" height="12" /> <rect x="240" y="48" width="12" height="12" /> <rect x="252" y="48" width="12" height="12" /> <rect x="264" y="48" width="12" height="12" /> <rect x="288" y="48" width="12" height="12" /> <rect x="0" y="60" width="12" height="12" /> <rect x="72" y="60" width="12" height="12" /> <rect x="120" y="60" width="12" height="12" /> <rect x="132" y="60" width="12" height="12" /> <rect x="168" y="60" width="12" height="12" /> <rect x="180" y="60" width="12" height="12" /> <rect x="192" y="60" width="12" height="12" /> <rect x="216" y="60" width="12" height="12" /> <rect x="288" y="60" width="12" height="12" /> <rect x="0" y="72" width="12" height="12" /> <rect x="12" y="72" width="12" height="12" /> <rect x="24" y="72" width="12" height="12" /> <rect x="36" y="72" width="12" height="12" /> <rect x="48" y="72" width="12" height="12" /> <rect x="60" y="72" width="12" height="12" /> <rect x="72" y="72" width="12" height="12" /> <rect x="96" y="72" width="12" height="12" /> <rect x="120" y="72" width="12" height="12" /> <rect x="144" y="72" width="12" height="12" /> <rect x="168" y="72" width="12" height="12" /> <rect x="192" y="72" width="12" height="12" /> <rect x="216" y="72" width="12" height="12" /> <rect x="228" y="72" width="12" height="12" /> <rect x="240" y="72" width="12" height="12" /> <rect x="252" y="72" width="12" height="12" /> <rect x="264" y="72" width="12" height="12" /> <rect x="276" y="72" width="12" height="12" /> <rect x="288" y="72" width="12" height="12" /> <rect x="96" y="84" width="12" height="12" /> <rect x="132" y="84" width="12" height="12" /> <rect x="156" y="84" width="12" height="12" /> <rect x="168" y="84" width="12" height="12" /> <rect x="180" y="84" width="12" height="12" /> <rect x="0" y="96" width="12" height="12" /> <rect x="12" y="96" width="12" height="12" /> <rect x="24" y="96" width="12" height="12" /> <rect x="48" y="96" width="12" height="12" /> <rect x="60" y="96" width="12" height="12" /> <rect x="72" y="96" width="12" height="12" /> <rect x="84" y="96" width="12" height="12" /> <rect x="96" y="96" width="12" height="12" /> <rect x="144" y="96" width="12" height="12" /> <rect x="156" y="96" width="12" height="12" /> <rect x="180" y="96" width="12" height="12" /> <rect x="192" y="96" width="12" height="12" /> <rect x="204" y="96" width="12" height="12" /> <rect x="216" y="96" width="12" height="12" /> <rect x="264" y="96" width="12" height="12" /> <rect x="0" y="108" width="12" height="12" /> <rect x="24" y="108" width="12" height="12" /> <rect x="60" y="108" width="12" height="12" /> <rect x="108" y="108" width="12" height="12" /> <rect x="132" y="108" width="12" height="12" /> <rect x="192" y="108" width="12" height="12" /> <rect x="216" y="108" width="12" height="12" /> <rect x="288" y="108" width="12" height="12" /> <rect x="0" y="120" width="12" height="12" /> <rect x="12" y="120" width="12" height="12" /> <rect x="36" y="120" width="12" height="12" /> <rect x="60" y="120" width="12" height="12" /> <rect x="72" y="120" width="12" height="12" /> <rect x="120" y="120" width="12" height="12" /> <rect x="132" y="120" width="12" height="12" /> <rect x="192" y="120" width="12" height="12" /> <rect x="204" y="120" width="12" height="12" /> <rect x="216" y="120" width="12" height="12" /> <rect x="228" y="120" width="12" height="12" /> <rect x="264" y="120" width="12" height="12" /> <rect x="276" y="120" width="12" height="12" /> <rect x="288" y="120" width="12" height="12" /> <rect x="0" y="132" width="12" height="12" /> <rect x="48" y="132" width="12" height="12" /> <rect x="84" y="132" width="12" height="12" /> <rect x="96" y="132" width="12" height="12" /> <rect x="108" y="132" width="12" height="12" /> <rect x="120" y="132" width="12" height="12" /> <rect x="132" y="132" width="12" height="12" /> <rect x="156" y="132" width="12" height="12" /> <rect x="168" y="132" width="12" height="12" /> <rect x="180" y="132" width="12" height="12" /> <rect x="216" y="132" width="12" height="12" /> <rect x="276" y="132" width="12" height="12" /> <rect x="12" y="144" width="12" height="12" /> <rect x="24" y="144" width="12" height="12" /> <rect x="36" y="144" width="12" height="12" /> <rect x="72" y="144" width="12" height="12" /> <rect x="84" y="144" width="12" height="12" /> <rect x="120" y="144" width="12" height="12" /> <rect x="156" y="144" width="12" height="12" /> <rect x="168" y="144" width="12" height="12" /> <rect x="204" y="144" width="12" height="12" /> <rect x="216" y="144" width="12" height="12" /> <rect x="228" y="144" width="12" height="12" /> <rect x="252" y="144" width="12" height="12" /> <rect x="276" y="144" width="12" height="12" /> <rect x="288" y="144" width="12" height="12" /> <rect x="12" y="156" width="12" height="12" /> <rect x="24" y="156" width="12" height="12" /> <rect x="36" y="156" width="12" height="12" /> <rect x="60" y="156" width="12" height="12" /> <rect x="84" y="156" width="12" height="12" /> <rect x="96" y="156" width="12" height="12" /> <rect x="120" y="156" width="12" height="12" /> <rect x="144" y="156" width="12" height="12" /> <rect x="156" y="156" width="12" height="12" /> <rect x="192" y="156" width="12" height="12" /> <rect x="216" y="156" width="12" height="12" /> <rect x="252" y="156" width="12" height="12" /> <rect x="288" y="156" width="12" height="12" /> <rect x="0" y="168" width="12" height="12" /> <rect x="48" y="168" width="12" height="12" /> <rect x="60" y="168" width="12" height="12" /> <rect x="72" y="168" width="12" height="12" /> <rect x="108" y="168" width="12" height="12" /> <rect x="144" y="168" width="12" height="12" /> <rect x="168" y="168" width="12" height="12" /> <rect x="192" y="168" width="12" height="12" /> <rect x="204" y="168" width="12" height="12" /> <rect x="216" y="168" width="12" height="12" /> <rect x="228" y="168" width="12" height="12" /> <rect x="264" y="168" width="12" height="12" /> <rect x="276" y="168" width="12" height="12" /> <rect x="288" y="168" width="12" height="12" /> <rect x="12" y="180" width="12" height="12" /> <rect x="24" y="180" width="12" height="12" /> <rect x="48" y="180" width="12" height="12" /> <rect x="60" y="180" width="12" height="12" /> <rect x="84" y="180" width="12" height="12" /> <rect x="120" y="180" width="12" height="12" /> <rect x="132" y="180" width="12" height="12" /> <rect x="144" y="180" width="12" height="12" /> <rect x="156" y="180" width="12" height="12" /> <rect x="180" y="180" width="12" height="12" /> <rect x="192" y="180" width="12" height="12" /> <rect x="216" y="180" width="12" height="12" /> <rect x="240" y="180" width="12" height="12" /> <rect x="276" y="180" width="12" height="12" /> <rect x="0" y="192" width="12" height="12" /> <rect x="24" y="192" width="12" height="12" /> <rect x="48" y="192" width="12" height="12" /> <rect x="60" y="192" width="12" height="12" /> <rect x="72" y="192" width="12" height="12" /> <rect x="84" y="192" width="12" height="12" /> <rect x="108" y="192" width="12" height="12" /> <rect x="192" y="192" width="12" height="12" /> <rect x="204" y="192" width="12" height="12" /> <rect x="216" y="192" width="12" height="12" /> <rect x="228" y="192" width="12" height="12" /> <rect x="240" y="192" width="12" height="12" /> <rect x="252" y="192" width="12" height="12" /> <rect x="96" y="204" width="12" height="12" /> <rect x="144" y="204" width="12" height="12" /> <rect x="156" y="204" width="12" height="12" /> <rect x="180" y="204" width="12" height="12" /> <rect x="192" y="204" width="12" height="12" /> <rect x="240" y="204" width="12" height="12" /> <rect x="252" y="204" width="12" height="12" /> <rect x="276" y="204" width="12" height="12" /> <rect x="288" y="204" width="12" height="12" /> <rect x="0" y="216" width="12" height="12" /> <rect x="12" y="216" width="12" height="12" /> <rect x="24" y="216" width="12" height="12" /> <rect x="36" y="216" width="12" height="12" /> <rect x="48" y="216" width="12" height="12" /> <rect x="60" y="216" width="12" height="12" /> <rect x="72" y="216" width="12" height="12" /> <rect x="96" y="216" width="12" height="12" /> <rect x="108" y="216" width="12" height="12" /> <rect x="144" y="216" width="12" height="12" /> <rect x="156" y="216" width="12" height="12" /> <rect x="180" y="216" width="12" height="12" /> <rect x="192" y="216" width="12" height="12" /> <rect x="216" y="216" width="12" height="12" /> <rect x="240" y="216" width="12" height="12" /> <rect x="252" y="216" width="12" height="12" /> <rect x="276" y="216" width="12" height="12" /> <rect x="288" y="216" width="12" height="12" /> <rect x="0" y="228" width="12" height="12" /> <rect x="72" y="228" width="12" height="12" /> <rect x="96" y="228" width="12" height="12" /> <rect x="120" y="228" width="12" height="12" /> <rect x="144" y="228" width="12" height="12" /> <rect x="168" y="228" width="12" height="12" /> <rect x="192" y="228" width="12" height="12" /> <rect x="240" y="228" width="12" height="12" /> <rect x="252" y="228" width="12" height="12" /> <rect x="276" y="228" width="12" height="12" /> <rect x="0" y="240" width="12" height="12" /> <rect x="24" y="240" width="12" height="12" /> <rect x="36" y="240" width="12" height="12" /> <rect x="48" y="240" width="12" height="12" /> <rect x="72" y="240" width="12" height="12" /> <rect x="96" y="240" width="12" height="12" /> <rect x="108" y="240" width="12" height="12" /> <rect x="120" y="240" width="12" height="12" /> <rect x="144" y="240" width="12" height="12" /> <rect x="168" y="240" width="12" height="12" /> <rect x="192" y="240" width="12" height="12" /> <rect x="204" y="240" width="12" height="12" /> <rect x="216" y="240" width="12" height="12" /> <rect x="228" y="240" width="12" height="12" /> <rect x="240" y="240" width="12" height="12" /> <rect x="252" y="240" width="12" height="12" /> <rect x="276" y="240" width="12" height="12" /> <rect x="288" y="240" width="12" height="12" /> <rect x="0" y="252" width="12" height="12" /> <rect x="24" y="252" width="12" height="12" /> <rect x="36" y="252" width="12" height="12" /> <rect x="48" y="252" width="12" height="12" /> <rect x="72" y="252" width="12" height="12" /> <rect x="132" y="252" width="12" height="12" /> <rect x="156" y="252" width="12" height="12" /> <rect x="168" y="252" width="12" height="12" /> <rect x="204" y="252" width="12" height="12" /> <rect x="228" y="252" width="12" height="12" /> <rect x="240" y="252" width="12" height="12" /> <rect x="252" y="252" width="12" height="12" /> <rect x="264" y="252" width="12" height="12" /> <rect x="0" y="264" width="12" height="12" /> <rect x="24" y="264" width="12" height="12" /> <rect x="36" y="264" width="12" height="12" /> <rect x="48" y="264" width="12" height="12" /> <rect x="72" y="264" width="12" height="12" /> <rect x="96" y="264" width="12" height="12" /> <rect x="168" y="264" width="12" height="12" /> <rect x="180" y="264" width="12" height="12" /> <rect x="240" y="264" width="12" height="12" /> <rect x="288" y="264" width="12" height="12" /> <rect x="0" y="276" width="12" height="12" /> <rect x="72" y="276" width="12" height="12" /> <rect x="96" y="276" width="12" height="12" /> <rect x="120" y="276" width="12" height="12" /> <rect x="144" y="276" width="12" height="12" /> <rect x="156" y="276" width="12" height="12" /> <rect x="180" y="276" width="12" height="12" /> <rect x="192" y="276" width="12" height="12" /> <rect x="216" y="276" width="12" height="12" /> <rect x="240" y="276" width="12" height="12" /> <rect x="252" y="276" width="12" height="12" /> <rect x="276" y="276" width="12" height="12" /> <rect x="0" y="288" width="12" height="12" /> <rect x="12" y="288" width="12" height="12" /> <rect x="24" y="288" width="12" height="12" /> <rect x="36" y="288" width="12" height="12" /> <rect x="48" y="288" width="12" height="12" /> <rect x="60" y="288" width="12" height="12" /> <rect x="72" y="288" width="12" height="12" /> <rect x="96" y="288" width="12" height="12" /> <rect x="168" y="288" width="12" height="12" /> <rect x="180" y="288" width="12" height="12" /> <rect x="192" y="288" width="12" height="12" /> <rect x="228" y="288" width="12" height="12" /> <rect x="276" y="288" width="12" height="12" /> <rect x="288" y="288" width="12" height="12" /> </g> </svg> </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <a href="#" class="back-to-top"><span class="show-for-medium-up">Back to Top</span><span class="show-for-small">Top</span></a> <script data-cfasync="false" src="/cdn-cgi/scripts/5c5dd728/cloudflare-static/email-decode.min.js"></script><script src="https://pub.mdpi-res.com/assets/js/modernizr-2.8.3.min.js?5227e0738f7f421d?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery-1.12.4.min.js?4f252523d4af0b47?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.min.js?6b2ec41c18b29054?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.equalizer.min.js?0f6c549b75ec554c?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.multiselect.js?0edd3998731d1091?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.cycle2.min.js?63413052928f97ee?1732286508"></script> <script> // old browser fix - this way the console log rows won't throw (silent) errors in browsers not supporting console log if (!window.console) window.console = {}; if (!window.console.log) window.console.log = function () { }; var currentJournalNameSystem = "electronics"; $(document).ready(function() { $('select.foundation-select').multiselect({ search: true, minHeight: 130, maxHeight: 130, }); $(document).foundation({ orbit: { timer_speed: 4000, }, reveal: { animation: 'fadeAndPop', animation_speed: 100, } }); $(".chosen-select").each(function(element) { var maxSelected = (undefined !== $(this).data('maxselectedoptions') ? $(this).data('maxselectedoptions') : 100); $(this).on('chosen:ready', function(event, data) { var select = $(data.chosen.form_field); if (select.attr('id') === 'journal-browser-volume') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Volume_Options'); } if (select.attr('id') === 'journal-browser-issue') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Issue_Options'); } }).chosen({ display_disabled_options: false, disable_search_threshold: 7, max_selected_options: maxSelected, width: "100%" }); }); $(".toEncode").each(function(e) { var oldHref = $(this).attr("href"); var newHref = oldHref.replace('.botdefense.please.enable.javascript.','@'); $(this).attr("href", newHref); if (!$(this).hasClass("emailCaptcha")) { $(this).html(newHref.replace('mailto:', '')); } $(this).removeClass("visibility-hidden"); }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { $(document).foundation('equalizer', 'reflow'); }); // fix the images that have tag height / width defined // otherwise the default foundation styles overwrite the tag definitions $("img").each(function() { if ($(this).attr('width') != undefined || $(this).attr('height') != undefined) { $(this).addClass("img-fixed"); } }); $("#basic_search, #advanced_search").submit(function(e) { var searchArguments = false; $(this).find("input,select").not("#search,.search-button").each(function() { if (undefined === $(this).val() || "" === $(this).val()) { $(this).attr('name', null); } else { $(this).attr('name'); searchArguments = true; } }); if (!searchArguments) { window.location = $(this).attr('action'); return false; } }); $(".hide-show-desktop-option").click(function(e) { e.preventDefault(); var parentDiv = $(this).closest("div"); $.ajax({ url: $(this).attr('href'), success: function(msg) { parentDiv.removeClass().hide(); } }); }); $(".generic-toggleable-header").click(function(e) { $(this).toggleClass("active"); $(this).next(".generic-toggleable-content").toggleClass("active"); }); /* * handle whole row as a link if the row contains only one visible link */ $("table.new tr").hover(function() { if ($(this).find("td:visible a").length == 1) { $(this).addClass("single-link"); } }, function() { $(this).removeClass("single-link"); }); $("table.new:not(.table-of-tables)").on("click", "tr.single-link", function(e) { var target = $(e.target); if (!e.ctrlKey && !target.is("a")) { $(this).find("td:visible a")[0].click(); } }); $(document).on("click", ".custom-accordion-for-small-screen-link", function(e) { if ($(this).closest("#basic_search").length > 0) { if ($(".search-container__advanced").first().is(":visible")) { openAdvanced() } } if (Foundation.utils.is_small_only()) { if ($(this).hasClass("active")) { $(this).removeClass("active"); $(this).next(".custom-accordion-for-small-screen-content").addClass("show-for-medium-up"); } else { $(this).addClass("active"); $(this).next(".custom-accordion-for-small-screen-content").removeClass("show-for-medium-up"); $(document).foundation('orbit', 'reflow'); } } if (undefined !== $(this).data("callback")) { var customCallback = $(this).data("callback"); func = window[customCallback]; func(); } }); $(document).on("click", ".js-open-small-search", function(e) { e.preventDefault(); $(this).toggleClass("active").closest(".tab-bar").toggleClass("active"); $(".search-container").toggleClass("hide-for-small-down"); }); $(document).on("click", ".js-open-menu", function(e) { $(".search-container").addClass("hide-for-small-down"); }); $(window).on('resize', function() { recalculate_main_browser_position(); recalculate_responsive_moving_containers(); }); updateSearchLabelVisibilities(); recalculate_main_browser_position(); recalculate_responsive_moving_containers(); if (window.document.documentMode == 11) { $("<link/>", { rel: "stylesheet", type: "text/css", href: "https://fonts.googleapis.com/icon?family=Material+Icons"}).appendTo("head"); } }); function recalculate_main_browser_position() { if (Foundation.utils.is_small_only()) { if ($("#js-main-top-container").parent("#js-large-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-small-main-top-container")); } } else { if ($("#js-main-top-container").parent("#js-small-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-large-main-top-container")); } } } function recalculate_responsive_moving_containers() { $(".responsive-moving-container.large").each(function() { var previousParent = $(".responsive-moving-container.active[data-id='"+$(this).data("id")+"']"); var movingContent = previousParent.html(); if (Foundation.utils.is_small_only()) { var currentParent = $(".responsive-moving-container.small[data-id='"+$(this).data("id")+"']"); } else if (Foundation.utils.is_medium_only()) { var currentParent = $(".responsive-moving-container.medium[data-id='"+$(this).data("id")+"']"); } else { var currentParent = $(".responsive-moving-container.large[data-id='"+$(this).data("id")+"']"); } if (previousParent.attr("class") !== currentParent.attr("class")) { currentParent.html(movingContent); previousParent.html(); currentParent.addClass("active"); previousParent.removeClass("active"); } }); } // cookies allowed is checked from a) local storage and b) from server separately so that the footer bar doesn't // get included in the custom page caches function checkCookiesAllowed() { var cookiesEnabled = localStorage.getItem("mdpi_cookies_enabled"); if (null === cookiesEnabled) { $.ajax({ url: "/ajax_cookie_value/mdpi_cookies_accepted", success: function(data) { if (data.value) { localStorage.setItem("mdpi_cookies_enabled", true); checkDisplaySurvey(); } else { $(".js-allow-cookies").show(); } } }); } else { checkDisplaySurvey(); } } function checkDisplaySurvey() { } window.addEventListener('CookiebotOnAccept', function (e) { var CookieDate = new Date; if (Cookiebot.consent.preferences) { CookieDate.setFullYear(CookieDate.getFullYear() + 1); document.cookie = "mdpi_layout_type_v2=mobile; path=/; expires=" + CookieDate.toUTCString() + ";"; $(".js-toggle-desktop-layout-link").css("display", "inline-block"); } }, false); window.addEventListener('CookiebotOnDecline', function (e) { if (!Cookiebot.consent.preferences) { $(".js-toggle-desktop-layout-link").hide(); if ("" === "desktop") { window.location = "/toggle_desktop_layout_cookie"; } } }, false); var hash = $(location).attr('hash'); if ("#share" === hash) { if (1 === $("#main-share-modal").length) { $('#main-share-modal').foundation('reveal', 'open'); } } </script> <script src="https://pub.mdpi-res.com/assets/js/lib.js?f8d3d71b3a772f9d?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/mdpi.js?c267ce58392b15da?1732286508"></script> <script>var banners_url = 'https://serve.mdpi.com';</script> <script type='text/javascript' src='https://pub.mdpi-res.com/assets/js/ifvisible.min.js?c621d19ecb761212?1732286508'></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?ac4ea55275297c15?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/clipboard.min.js?3f3688138a1b9fc4?1732286508"></script> <script type="text/javascript"> $(document).ready(function() { var helpFunctions = $(".middle-column__help__fixed"); var leftColumnAffix = $(".left-column__fixed"); var middleColumn = $("#middle-column"); var clone = null; helpFunctions.affix({ offset: { top: function() { return middleColumn.offset().top - 8 - (Foundation.utils.is_medium_only() ? 30 : 0); }, bottom: function() { return $("#footer").innerHeight() + 74 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); if (leftColumnAffix.length > 0) { clone = leftColumnAffix.clone(); clone.addClass("left-column__fixed__affix"); clone.insertBefore(leftColumnAffix); clone.css('width', leftColumnAffix.outerWidth() + 50); clone.affix({ offset: { top: function() { return leftColumnAffix.offset().top - 30 - (Foundation.utils.is_medium_only() ? 50 : 0); }, bottom: function() { return $("#footer").innerHeight() + 92 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); } $(window).on("resize", function() { if (clone !== null) { clone.css('width', leftColumnAffix.outerWidth() + 50); } }); new ClipboardJS('.js-clipboard-copy'); }); </script> <script src="https://pub.mdpi-res.com/assets/js/jquery-ui-1.13.2.min.js?1e2047978946a1d2?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/slick.min.js?d5a61c749e44e471?1732286508"></script> <script> $(document).ready(function() { $(".link-article-menu").click(function(e) { e.preventDefault(); $(this).find('span').toggle(); $(this).next("div").toggleClass("active"); }); $(".js-similarity-related-articles").click(function(e) { e.preventDefault(); if ('' !== $('#recommended-articles-modal').attr('data-url')) { $('#recommended-articles-modal').foundation('reveal', 'open', $('#recommended-articles-modal').attr('data-url')); } }); $.ajax({ url: "/article/724926/similarity-related/show-link", success: function(result) { if (result.show) { $('#recommended-articles-modal').attr('data-url', result.link); $('.js-article-similarity-container').show(); } } }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { var modal = $(this); if (modal.attr('id') === "author-biographies-modal") { modal.find('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, draggable: false, }); modal.find('.multiple-items').slick('refresh'); } }); }); </script> <script> $(document).ready(function() { $(document).on('keyup', function (e) { if (e.keyCode == 27) { var hElem = $(this).find(".annotator-adder"); if (hElem.length){ hElem.css({'visibility':'hidden'}); } else { document.querySelector("hypothesis-adder").shadowRoot.querySelector(".annotator-adder").style.visibility = "hidden"; } } }); }); </script> <script> window.hypothesisConfig = function () { return { sidebarAppUrl: 'https://commenting.mdpi.com/app.html', showHighlights: 'whenSidebarOpen' , openSidebar: false , assetRoot: 'https://commentingres.mdpi.com/hypothesis', services: [{ apiUrl: 'https://commenting.mdpi.com/api/', authority: 'mdpi', grantToken: '', doi: '10.3390/electronics11020267' }], }; }; </script> <script async id="hypothesis_frame"></script> <script type="text/javascript"> if (-1 !== window.location.href.indexOf("?src=")) { window.history.replaceState({}, '', `${location.pathname}`); } $(document).ready(function() { var scifeedCounter = 0; var search = window.location.search; var mathjaxReady = false; // late image file loading $("img[data-lsrc]").each(function() { $(this).attr("src", $(this).data("lsrc")); }); // late mathjax initialization var head = document.getElementsByTagName("head")[0]; var script = document.createElement("script"); script.type = "text/x-mathjax-config"; script[(window.opera ? "innerHTML" : "text")] = "MathJax.Hub.processSectionDelay = 0;\n" + "MathJax.Hub.Config({\n" + " \"menuSettings\": {\n" + " CHTMLpreview: false\n" + " },\n" + " \"CHTML-preview\":{\n" + " disabled: true\n" + " },\n" + " \"HTML-CSS\": {\n" + " scale: 90,\n" + " availableFonts: [],\n" + " preferredFont: null,\n" + " preferredFonts: null,\n" + " webFont:\"Gyre-Pagella\",\n" + " imageFont:'TeX',\n" + " undefinedFamily:\"'Arial Unicode MS',serif\",\n" + " linebreaks: { automatic: false }\n" + " },\n" + " \"TeX\": {\n" + " extensions: ['noErrors.js'],\n" + " noErrors: {\n" + " inlineDelimiters: [\"\",\"\"],\n" + " multiLine: true,\n" + " style: {\n" + " 'font-size': '90%',\n" + " 'text-align': 'left',\n" + " 'color': 'black',\n" + " 'padding': '1px 3px',\n" + " 'border': '1px solid'\n" + " }\n" + " }\n" + " }\n" + "});\n" + "MathJax.Hub.Register.StartupHook('End', function() {\n" + " refreshMathjaxWidths();\n" + " mathjaxReady = true;\n" + "});\n" + "MathJax.Hub.Startup.signal.Interest(function (message) {\n" + " if (message == 'End') {\n" + " var hypoLink = document.getElementById('hypothesis_frame');\n" + " if (null !== hypoLink) {\n" + " hypoLink.setAttribute('src', 'https://commenting.mdpi.com/embed.js');\n" + " }\n" + " }\n" + "});"; head.appendChild(script); script = document.createElement("script"); script.type = "text/javascript"; script.src = "https://pub.mdpi-res.com/bundles/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; head.appendChild(script); // article version checker if (0 === search.indexOf('?type=check_update&version=')) { $.ajax({ url: "/2079-9292/11/2/267" + "/versioncheck" + search, success: function(result) { $(".js-check-update-container").html(result); } }); } $('#feed_option').click(function() { // tracker if ($('#scifeed_clicked').length<1) { $(this).append('<span style="display:none" id="scifeed_clicked">done</span>'); } $('#feed_data').toggle('slide', { direction: 'up'}, '1000'); // slideToggle(700); OR toggle(700) $("#scifeed_error_msg").html('').hide(); $("#scifeed_notice_msg").html('').hide(); }); $('#feed_option').click(function(event) { setTimeout(function(){ var captchaSection = $("#captchaSection"); captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); // var img = captchaSection.find('img'); // img.attr('src', img.data('url') + "?" + (new Date()).getTime()); // $(".captcha_reload").trigger("click"); var img = document.getElementById('gregwar_captcha_scifeed'); img.src = '/generate-captcha/gcb_captcha?n=' + (new Date()).getTime(); },800); }); $(document).on('click', '.split_feeds', function() { var name = $( this ).attr('name'); var flag = 1 - ($(this).is(":checked")*1); $('.split_feeds').each(function (index) { if ($( this ).attr('name') !== name) { $(this)[0].checked = flag; } }); }); $(document).on('click', '#scifeed_submit, #scifeed_submit1', function(event) { event.preventDefault(); $(".captcha_reload").trigger("click"); $("#scifeed_error_msg").html(""); $("#scifeed_error_msg").hide(); }); $(document).on('click', '.subscription_toggle', function(event) { if ($(this).val() === 'Create SciFeed' && $('#scifeed_hidden_flag').length>0) { event.preventDefault(); // alert('Here there would be a captcha because user is not logged in'); var captchaSection = $("#captchaSection"); if (captchaSection.hasClass('ui-helper-hidden')) { captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); var img = captchaSection.find('img'); img.attr('src', img.data('url') + "?" + (new Date()).getTime()); $("#reloadCaptcha").trigger("click"); } } }); $(document).on('click', '.scifeed_msg', function(){ $(this).hide(); }); $(document).on('click', '.article-scilit-search', function(e) { e.preventDefault(); var data = $(".article-scilit-search-data").val(); var dataArray = data.split(';').map(function(keyword) { return "(\"" + keyword.trim() + "\")"; }); var searchQuery = dataArray.join(" OR "); var searchUrl = encodeURI("https://www.scilit.net/articles/search?q="+ searchQuery + "&advanced=1&highlight=1"); var win = window.open(searchUrl, '_blank'); if (win) { win.focus(); } else { window.location(searchUrl); } }); display_stats(); citedCount(); follow_goto(); // Select the node that will be observed for mutations const targetNodes = document.getElementsByClassName('hypothesis-count-container'); // Options for the observer (which mutations to observe) const config = { attributes: false, childList: true, subtree: false }; // Callback function to execute when mutations are observed const callback = function(mutationList, observer) { for(const mutation of mutationList) { if (mutation.type === 'childList') { let node = $(mutation.target); if (parseInt(node.html()) > 0) { node.show(); } } } }; // Create an observer instance linked to the callback function const observer = new MutationObserver(callback); // Start observing the target node for configured mutations for(const targetNode of targetNodes) { observer.observe(targetNode, config); } // Select the node that will be observed for mutations const mathjaxTargetNode = document.getElementById('middle-column'); // Callback function to execute when mutations are observed const mathjaxCallback = function(mutationList, observer) { if (mathjaxReady && typeof(MathJax) !== 'undefined') { refreshMathjaxWidths(); } }; // Create an observer instance linked to the callback function const mathjaxObserver = new ResizeObserver(mathjaxCallback); // Start observing the target node for configured mutations mathjaxObserver.observe(mathjaxTargetNode); }); /* END $(document).ready */ function refreshMathjaxWidths() { let width = ($('.html-body').width()*0.9) + "px"; $('.MathJax_Display').css('max-width', width); $('.MJXc-display').css('max-width', width); } function sendScifeedFrom(form) { if (!$('#scifeed_email').val().trim()) { // empty email alert('Please, provide an email for subscribe to this scifeed'); return false; } else if (!$('#captchaSection').hasClass('ui-helper-hidden') && !$('#captchaSection').find('input').val().trim()) { // empty captcha alert('Please, fill the captcha field.'); return false; } else if( ((($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds:checked').length))<1) || ($('#scifeed_kwd_txt').length < 0 && !$('#scifeed_kwd_txt').val().trim()) || ($('#scifeed_author_txt').length<0 &&!$('#scifeed_author_txt').val().trim()) ) { alert('You did not select anything to subscribe'); return false; } else if(($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds2:checked').length)<1){ alert("You did not select anything to subscribe"); return false; } else { var url = $('#scifeed_subscribe_url').html(); var formData = $(form).serializeArray(); $.post(url, formData).done(function (data) { if (JSON.parse(data)) { $('.scifeed_msg').hide(); var res = JSON.parse(data); var successFeeds = 0; var errorFeeds = 0; if (res) { $('.scifeed_msg').html(''); $.each(res, function (index, val) { if (val) { if (val.error) { errorFeeds++; $("#scifeed_error_msg").append(index+' - '+val.error+'<br>'); } if (val.notice) // for successful feed creation { successFeeds++; // $("#scifeed_notice_msg").append(index+' - '+val.notice+'<br>'); $("#scifeed_notice_msg").append('<li>'+index+'</li>'); } } }); if (successFeeds>0) { text = $('#scifeed_notice_msg').html(); text = 'The following feed'+(successFeeds>1?'s have':' has')+ ' been sucessfully created:<br><ul>'+ text + '</ul>' +($('#scifeed_hidden_flag').length>0 ? 'You are not logged in, so you probably need to validate '+ (successFeeds>1?'them':' it')+'.<br>' :'' ) +'Please check your email'+(successFeeds>1?'s':'')+' for more details.'; //(successFeeds>1?' for each of them':'')+'.<br>'; $("#scifeed_notice_msg").html(text); $("#scifeed_notice_msg").show(); } if (errorFeeds>0) { $("#scifeed_error_msg").show();; } } $("#feed_data").hide(); } }); } } function follow_goto() { var hashStr = location.hash.replace("#",""); if(typeof hashStr !== 'undefined') { if( hashStr == 'supplementary') { document.getElementById('suppl_id').scrollIntoView(); } if( hashStr == 'citedby') { document.getElementById('cited_id').scrollIntoView(); } } } function cited() { $("#framed_div").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded"); if(loaded.innerHTML == "No") { // Load Xref result var container = document.getElementById("framed_div"); // This replace the content container.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1732286508\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; var url = "/citedby/10.3390%252Felectronics11020267/127"; $.post(url, function(result) { if (result.success) { container.innerHTML = result.view; } loaded.innerHTML = "Yes"; }); } } return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } function detect_device() { // Added by Bastien (18/08/2014): based on the http://detectmobilebrowsers.com/ detector var check = false; (function(a){if(/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino/i.test(a)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0,4)))check = true})(navigator.userAgent||navigator.vendor||window.opera); return check; } function display_stats(){ $("#article_stats_div").toggle(); return false; } /* * Cited By Scopus */ function citedCount(){ $("#framed_div_cited_count").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded_cite_count"); // to load only once the result! if(loaded.innerHTML == "No") { // Load Xref result var d = document.getElementById("framed_div_cited_count"); // This replace the content d.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1732286508\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; $.ajax({ method : "POST", url : "/cite-count/10.3390%252Felectronics11020267", success : function(data) { if (data.succ) { d.innerHTML = data.view; loaded.innerHTML = "Yes"; follow_goto(); } } }); } } // end else return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } </script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/highcharts.js?bdd06f45e34c33df?1732286508"></script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/modules/exporting.js?944dc938d06de3a8?1732286508"></script><script type="text/javascript" defer="defer"> var advancedStatsData; var selectedStatsType = "abstract"; $(function(){ var countWrapper = $('#counts-wrapper'); $('#author_stats_id #type_links a').on('click', function(e) { e.preventDefault(); selectedStatsType = $(this).data('type'); $('#article_advanced_stats').vectorMap('set', 'values', advancedStatsData[selectedStatsType]); $('#advanced_stats_max').html(advancedStatsData[selectedStatsType].max); $('#type_links a').removeClass('active'); $(this).addClass('active'); }); $.get('/2079-9292/11/2/267/stats', function (result) { if (!result.success) { return; } // process article metrics part in left column var viewNumber = countWrapper.find(".view-number"); viewNumber.html(result.metrics.views); viewNumber.parent().toggleClass("count-div--grey", result.metrics.views == 0); var downloadNumber = countWrapper.find(".download-number"); downloadNumber.html(result.metrics.downloads); downloadNumber.parent().toggleClass("count-div--grey", result.metrics.downloads == 0); var citationsNumber = countWrapper.find(".citations-number"); citationsNumber.html(result.metrics.citations); citationsNumber.parent().toggleClass("count-div--grey", result.metrics.citations == 0); if (result.metrics.views > 0 || result.metrics.downloads > 0 || result.metrics.citations > 0) { countWrapper.find("#js-counts-wrapper__views, #js-counts-wrapper__downloads").addClass("visible").show(); if (result.metrics.citations > 0) { countWrapper.find('.citations-number').html(result.metrics.citations).show(); countWrapper.find("#js-counts-wrapper__citations").addClass("visible").show(); } else { countWrapper.find("#js-counts-wrapper__citations").remove(); } $("[data-id='article-counters']").removeClass("hidden"); } if (result.metrics.altmetrics_score > 0) { $("#js-altmetrics-donut").show(); } // process view chart in main column var jsondata = result.chart; var series = new Array(); $.each(jsondata.elements, function(i, element) { var dataValues = new Array(); $.each(element.values, function(i, value) { dataValues.push(new Array(value.tip, value.value)); }); series[i] = {name: element.text, data:dataValues}; }); Highcharts.setOptions({ chart: { style: { fontFamily: 'Arial,sans-serif' } } }); $('#article_stats_swf').highcharts({ chart: { type: 'line', width: $("#tabs").width() //* 0.91 }, credits: { enabled: false }, exporting: { enabled: true }, title: { text: jsondata.title.text, x: -20 //center }, xAxis: { categories: jsondata.x_axis.labels.labels, offset: jsondata.x_axis.offset, labels:{ step: jsondata.x_axis.labels.steps, rotation: 30 } }, yAxis: { max: jsondata.y_axis.max, min: jsondata.y_axis.min, offset: jsondata.y_axis.offset, labels: { steps: jsondata.y_axis.steps }, title: { enabled: false } }, tooltip: { formatter: function (){ return this.key.replace("#val#", this.y); } }, legend: { align: 'top', itemDistance: 50 }, series: series }); }); $('#supplement_link').click(function() { document.getElementById('suppl_id').scrollIntoView(); }); $('#stats_link').click(function() { document.getElementById('stats_id').scrollIntoView(); }); // open mol viewer for molbank special supplementary files $('.showJmol').click(function(e) { e.preventDefault(); var jmolModal = $("#jmolModal"); var url = "/article/724926/jsmol_viewer/__supplementary_id__"; url = url.replace(/__supplementary_id__/g, $(this).data('index')); $('#jsmol-content').attr('src', url); jmolModal.find(".content").html($(this).data('description')); jmolModal.foundation("reveal", "open"); }); }); !function() { "use strict"; function e(e) { try { if ("undefined" == typeof console) return; "error"in console ? console.error(e) : console.log(e) } catch (e) {} } function t(e) { return d.innerHTML = '<a href="' + e.replace(/"/g, """) + '"></a>', d.childNodes[0].getAttribute("href") || "" } function n(n, c) { var o = ""; var k = parseInt(n.substr(c + 4, 2), 16); for (var i = c; i < n.length; i += 2) { if (i != c + 4) { var s = parseInt(n.substr(i, 2), 16) ^ k; o += String.fromCharCode(s); } } try { o = decodeURIComponent(escape(o)); } catch (error) { console.error(error); } return t(o); } function c(t) { for (var r = t.querySelectorAll("a"), c = 0; c < r.length; c++) try { var o = r[c] , a = o.href.indexOf(l); a > -1 && (o.href = "mailto:" + n(o.href, a + l.length)) } catch (i) { e(i) } } function o(t) { for (var r = t.querySelectorAll(u), c = 0; c < r.length; c++) try { var o = r[c] , a = o.parentNode , i = o.getAttribute(f); if (i) { var l = n(i, 0) , d = document.createTextNode(l); a.replaceChild(d, o) } } catch (h) { e(h) } } function a(t) { for (var r = t.querySelectorAll("template"), n = 0; n < r.length; n++) try { i(r[n].content) } catch (c) { e(c) } } function i(t) { try { c(t), o(t), a(t) } catch (r) { e(r) } } var l = "/cnd-cgi/l/email-protection#" , u = ".__cf_email__" , f = "data-cfemail" , d = document.createElement("div"); i(document), function() { var e = document.currentScript || document.scripts[document.scripts.length - 1]; e.parentNode.removeChild(e) }() }(); </script><script type="text/javascript"> function setCookie(cname, cvalue, ctime) { ctime = (typeof ctime === 'undefined') ? 10*365*24*60*60*1000 : ctime; // default => 10 years var d = new Date(); d.setTime(d.getTime() + ctime); // ==> 1 hour = 60*60*1000 var expires = "expires="+d.toUTCString(); document.cookie = cname + "=" + cvalue + "; " + expires +"; path=/"; } function getCookie(cname) { var name = cname + "="; var ca = document.cookie.split(';'); for(var i=0; i<ca.length; i++) { var c = ca[i]; while (c.charAt(0)==' ') c = c.substring(1); if (c.indexOf(name) == 0) return c.substring(name.length, c.length); } return ""; } </script><script type="text/javascript" src="https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js"></script><script> $(document).ready(function() { if ($("#js-similarity-related-data").length > 0) { $.ajax({ url: '/article/724926/similarity-related', success: function(response) { $("#js-similarity-related-data").html(response); $("#js-related-articles-menu").show(); $(document).foundation('tab', 'reflow'); MathJax.Hub.Queue(["Typeset", MathJax.Hub]); } }); } }); </script><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1732286508"><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1732286508"><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/magnific-popup.min.js?2be3d9e7dc569146?1732286508"></script><script> $(function() { $(".js-show-more-academic-editors").on("click", function(e) { e.preventDefault(); $(this).hide(); $(".academic-editor-container").removeClass("hidden"); }); }); </script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/vmap/jqvmap.min.css?126a06688aa11c13?1732286508"> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.min.js?935f68d33bdd88a1?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.world.js?16677403c0e1bef1?1732286508"></script> <script> function updateSlick() { $('.multiple-items').slick('setPosition'); } $(document).ready(function() { $('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, responsive: [ { breakpoint: 1024, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 600, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 480, settings: { slidesToShow: 1, slidesToScroll: 1, } } ] }); $('.multiple-items').show(); $(document).on('click', '.reviewReportSelector', function(e) { let path = $(this).attr('data-path'); handleReviews(path, $(this)); }); $(document).on('click', '.viewReviewReports', function(e) { let versionOne = $('#versionTab_1'); if (!versionOne.hasClass('activeTab')) { let path = $(this).attr('data-path'); handleReviews(path, versionOne); } location.href = "#reviewReports"; }); $(document).on('click', '.reviewersResponse, .authorResponse', function(e) { let version = $(this).attr('data-version'); let targetVersion = $('#versionTab_' + version); if (!targetVersion.hasClass('activeTab')) { let path = targetVersion.attr('data-path'); handleReviews(path, targetVersion); } location.href = $(this).attr('data-link'); }); $(document).on('click', '.tab', function (e) { e.preventDefault(); $('.tab').removeClass('activeTab'); $(this).addClass('activeTab') $('.tab').each(function() { $(this).closest('.tab-title').removeClass('active'); }); $(this).closest('.tab-title').addClass('active') }); }); function handleReviews(path, target) { $.ajax({ url: path, context: this, success: function (data) { $('.activeTab').removeClass('activeTab'); target.addClass('activeTab'); $('#reviewSection').html(data.view); }, error: function (xhr, ajaxOptions, thrownError) { console.log(xhr.status); console.log(thrownError); } }); } </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?v1?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/storage.js?e9b262d3a3476d25?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/jquery-scrollspy.js?09cbaec0dbb35a67?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/magnific-popup.js?4a09c18460afb26c?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/underscore.js?f893e294cde60c24?1732286508"></script> <script type="text/javascript"> $('document').ready(function(){ $("#left-column").addClass("show-for-large-up"); $("#middle-column").removeClass("medium-9").removeClass("left-bordered").addClass("medium-12"); $(window).on('resize scroll', function() { /* if ($('.button--drop-down').isInViewport($(".top-bar").outerHeight())) { */ if ($('.button--drop-down').isInViewport()) { $("#js-button-download").hide(); } else { $("#js-button-download").show(); } }); }); $(document).on('DOMNodeInserted', function(e) { var element = $(e.target); if (element.hasClass('menu') && element.hasClass('html-nav') ) { element.addClass("side-menu-ul"); } }); </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/articles.js?5118449d9ad8913a?1732286508"></script> <script> repositionOpenSideBar = function() { $('#left-column').addClass("show-for-large-up show-for-medium-up").show(); $('#middle-column').removeClass('large-12').removeClass('medium-12'); $('#middle-column').addClass('large-9'); } repositionCloseSideBar = function() { $('#left-column').removeClass("show-for-large-up show-for-medium-up").hide(); $('#middle-column').removeClass('large-9'); $('#middle-column').addClass('large-12').addClass('medium-12'); } </script> <!--[if lt IE 9]> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8.js?6eef8fcbc831f5bd?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/jquery.xdomainrequest.min.js?a945caca315782b0?1732286508"></script> <![endif]--> <!-- Twitter universal website tag code --> <script type="text/plain" data-cookieconsent="marketing"> !function(e,t,n,s,u,a){e.twq||(s=e.twq=function(){s.exe?s.exe.apply(s,arguments):s.queue.push(arguments); },s.version='1.1',s.queue=[],u=t.createElement(n),u.async=!0,u.src='//static.ads-twitter.com/uwt.js', a=t.getElementsByTagName(n)[0],a.parentNode.insertBefore(u,a))}(window,document,'script'); // Insert Twitter Pixel ID and Standard Event data below twq('init','o2pip'); twq('track','PageView'); </script> <!-- End Twitter universal website tag code --> <script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'8e748c338b889b9f',t:'MTczMjQwMDQzOS4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script></body> </html>