CINXE.COM

Search results for: recycled felt

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: recycled felt</title> <meta name="description" content="Search results for: recycled felt"> <meta name="keywords" content="recycled felt"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="recycled felt" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="recycled felt"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 838</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: recycled felt</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">838</span> Investigation of the Acoustic Properties of Recycled Felt Panels and Their Application in Classrooms and Multi-Purpose Halls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivanova%20B.%20Natalia">Ivanova B. Natalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Djambova%20%D0%A2.%20Svetlana"> Djambova Т. Svetlana</a>, <a href="https://publications.waset.org/abstracts/search?q=Hristev%20S.%20Ivailo"> Hristev S. Ivailo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The acoustic properties of recycled felt panels have been investigated using various methods. Experimentally, the sound insulation of the panels has been evaluated for frequencies in the range of 600 Hz to 4000 Hz, utilizing a small-sized acoustic chamber. Additionally, the sound absorption coefficient for the frequency range of 63 Hz to 4000 Hz was measured according to the EN ISO 354 standard in a laboratory reverberation room. This research was deemed necessary after conducting reverberation time measurements of a university classroom following the EN ISO 3382-2 standard. The measurements indicated values of 2.86 s at 500 Hz, 3.23 s at 1000 Hz, and 2.53 s at 2000 Hz, which significantly exceeded the requirements set by the national regulatory framework (0.6s) for such premises. For this reason, recycled felt panels have been investigated in the laboratory, showing very good acoustic properties at high frequencies. To enhance performance in the low frequencies, the influence of the distance of the panel spacing was examined. Furthermore, the sound insulation of the panels was studied to expand the possibilities of their application, both for the acoustic treatment of educational and multifunctional halls and for sound insulation purposes (e.g., a suspended ceiling with an air gap passing from room to room). As a conclusion, a theoretical acoustic design of the classroom has been carried out with suggestions for improvements to achieve the necessary acoustic and aesthetic parameters for such rooms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20panels" title="acoustic panels">acoustic panels</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20felt" title=" recycled felt"> recycled felt</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption" title=" sound absorption"> sound absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20insulation" title=" sound insulation"> sound insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=classroom%20acoustics" title=" classroom acoustics"> classroom acoustics</a> </p> <a href="https://publications.waset.org/abstracts/167058/investigation-of-the-acoustic-properties-of-recycled-felt-panels-and-their-application-in-classrooms-and-multi-purpose-halls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">837</span> Masonry Blocks with Recycled Aggregates and Recycled Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Y.%20Matar">Pierre Y. Matar</a>, <a href="https://publications.waset.org/abstracts/search?q=Louay%20S.%20El%20Hassanieh"> Louay S. El Hassanieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Marleine%20F.%20Bayssary"> Marleine F. Bayssary </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demolished concrete is a major component of the construction and demolition (C&D) waste. The recycled aggregates obtained by crushing the demolished concrete can be used as a substitute of natural aggregates. Another major C&D waste is the flat glass. This glass can be also recycled and used as an aggregate substitute. The objective of this study is to determine the influence of the use of recycled concrete aggregates and recycled glass on the compressive strength and fire resistance of precast concrete masonry blocks. Tests are carried out on four series of blocks whose compositions include different percentages of recycled aggregates and recycled glass and one series of reference blocks whose composition consists of exclusively natural aggregates. The recycled coarse aggregates and recycled glass have 6.3/12.5 mm fraction and the natural aggregates have 0/6.3 mm fraction; no recycled fine aggregates are included in concrete mixes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=precast%20concrete%20blocks" title=" precast concrete blocks"> precast concrete blocks</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregates" title=" recycled aggregates"> recycled aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20glass" title=" recycled glass"> recycled glass</a> </p> <a href="https://publications.waset.org/abstracts/16126/masonry-blocks-with-recycled-aggregates-and-recycled-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">836</span> Analysis of Possibilities for Using Recycled Concrete Aggregate in Concrete Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Pernicova">R. Pernicova</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Dobias"> D. Dobias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present article describes the limits of using recycled concrete aggregate (denoted as RCA) in the top layer of concrete roads. The main aim of this work is to investigate the possibility of reuse of recycled aggregates obtained by crushing the old concrete roads as a building material in the new top layers of concrete pavements. The paper is based on gathering the current knowledge about how to use recycled concrete aggregate, suitability, and modification of the properties and its standards. Regulations are detailed and described especially for European Union and for Czech Republic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=Czech%20republic" title=" Czech republic"> Czech republic</a>, <a href="https://publications.waset.org/abstracts/search?q=pavements" title=" pavements"> pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregate" title=" recycled concrete aggregate"> recycled concrete aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=RCA" title=" RCA"> RCA</a>, <a href="https://publications.waset.org/abstracts/search?q=standards" title=" standards"> standards</a> </p> <a href="https://publications.waset.org/abstracts/50744/analysis-of-possibilities-for-using-recycled-concrete-aggregate-in-concrete-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">835</span> Influence of Recycled Glass Content on the Properties of Concrete and Mortar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bourmatte%20Nadjoua">Bourmatte Nadjoua</a>, <a href="https://publications.waset.org/abstracts/search?q=Houari%20Hac%C3%A8ne"> Houari Hacène</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of replacement of fine aggregates with recycled glass on the fresh and hardened properties of concrete and mortar is studied. Percentages of replacement are 0–25% and 50% of aggregates with fine waste glass to produce concrete and percentage of replacement of 100% to produce mortar. As a result of the conducted study, the slump flow increased with the increase of recycled glass content. On the other hand, the compressive strength and tensile strength of recycled glass mixtures were decreased with the increase in the recycled glass content. The results showed that recycled glass aggregate can successfully be used with limited level for producing concrete. Mortar based on glass shows a compressive strength with 50% lower than that of control mortar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20glass" title=" recycled glass"> recycled glass</a> </p> <a href="https://publications.waset.org/abstracts/44915/influence-of-recycled-glass-content-on-the-properties-of-concrete-and-mortar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">834</span> Flexural Behavior of Light-Gauge Steel Box Sections Filled with Normal and Recycled Aggregates Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rola%20%20El-Nimri">Rola El-Nimri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu%E2%80%99Tasime%20Abdel-Jaber"> Mu’Tasime Abdel-Jaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Hunaiti"> Yasser Hunaiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flexural behavior of light-gauge steel box sections filled with recycled concrete was assessed through an experimental program involving 15 composite beams. Recycled concrete was obtained by replacing natural aggregates (NA) with recycled concrete aggregate (RCA) and recycled asphalt pavement (RAP) with replacement levels of 20%, 40%, 60%, 80%, and 100% by the total weight of NA. In addition, RCA and RAP were incorporated in the same mixes with replacement levels of (1) 20% RCA and 80% RAP; (2) 40% RCA and 60% RAP; (3) 60% RCA and 40% RAP; and (4) 80% RCA and 20% RAP. A comparison between the experimental capacities and the theoretically predicted values according to Eurocode 4 (EC4) was made as well. Results proved that the ultimate capacity of composite beams decreased with the increase of recycled aggregate (RA) percentage and EC4 was conservative in predicting the ultimate capacity of composite beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexure" title="flexure">flexure</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20gauge" title=" light gauge"> light gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20asphalt%20pavement" title=" recycled asphalt pavement"> recycled asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregate" title=" recycled concrete aggregate"> recycled concrete aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20tube" title=" steel tube"> steel tube</a> </p> <a href="https://publications.waset.org/abstracts/125387/flexural-behavior-of-light-gauge-steel-box-sections-filled-with-normal-and-recycled-aggregates-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">833</span> Light Weight Mortars Produced from Recycled Foam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siwat%20Kamonkunanon">Siwat Kamonkunanon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents results of an experimental study on the use of recycled foam with cement-based mixtures to produce light weight mortar. Several mortar grades were obtained by mixing cement with different amounts of recycled foam, aggregate and water. The physical and mechanical properties of the samples such as density, thermal conductivity, thermal resistivity and compressive strength were investigated. Results show that an increase in the amount of recycled foam affects the mortar, decreasing its density and mechanical properties while increasing its workability, permeability, and occluded air content. These results confirm that mortar produced with recycled foam is comparable to light weight mortar made with traditional materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light%20weight" title="light weight">light weight</a>, <a href="https://publications.waset.org/abstracts/search?q=mortars" title=" mortars"> mortars</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20foam" title=" recycled foam"> recycled foam</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering" title=" civil engineering"> civil engineering</a> </p> <a href="https://publications.waset.org/abstracts/7829/light-weight-mortars-produced-from-recycled-foam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">832</span> Development of Recycled-Modified Asphalt Using Basalt Aggregate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong%20Wook%20Lee">Dong Wook Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Hyun%20Kim"> Seung Hyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeongho%20Oh"> Jeongho Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the strengthened regulation on the mandatory use of recycled aggregate, development of construction materials using recycled aggregate has recently increased. This study aimed to secure the performance of asphalt concrete mixture by developing recycled-modified asphalt using recycled basalt aggregate from the Jeju area. The strength of the basalt aggregate from the Jeju area used in this study was similar to that of general aggregate, while the specific surface area was larger due to the development of pores. Modified asphalt was developed using a general aggregate-recycled aggregate ratio of 7:3, and the results indicated that the Marshall stability increased by 27% compared to that of asphalt concrete mixture using only general aggregate, and the flow values showed similar levels. Also, the indirect tensile strength increased by 79%, and the toughness increased by more than 100%. In addition, the TSR for examining moisture resistance was 0.95 indicating that the reduction in the indirect tensile strength due to moisture was very low (5% level), and the developed recycled-modified asphalt could satisfy all the quality standards of asphalt concrete mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20concrete%20mixture" title="asphalt concrete mixture">asphalt concrete mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20grade" title=" performance grade"> performance grade</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20basalt%20aggregate" title=" recycled basalt aggregate"> recycled basalt aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled-modified%20asphalt" title=" recycled-modified asphalt"> recycled-modified asphalt</a> </p> <a href="https://publications.waset.org/abstracts/39062/development-of-recycled-modified-asphalt-using-basalt-aggregate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">831</span> Recycling of Aggregates from Construction Demolition Wastes in Concrete: Study of Physical and Mechanical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Saidi">M. Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ait%20Medjber"> F. Ait Medjber</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Safi"> B. Safi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Samar"> M. Samar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is focused on the study of valuation of recycled concrete aggregates, by measuring certain properties of concrete in the fresh and hardened state. In this study, rheological tests and physic-mechanical characterization on concretes and mortars were conducted with recycled concrete whose geometric properties were identified aggregates. Mortars were elaborated with recycled fine aggregate (0/5mm) and concretes were manufactured using recycled coarse aggregates (5/12.5 mm and 12.5/20 mm). First, a study of the mortars was conducted to determine the effectiveness of adjuvant polycarboxylate superplasticizer on the workability of these and their action deflocculating of the fine recycled sand. The rheological behavior of mortars based on fine aggregate recycled was characterized. The results confirm that the mortars composed of different fractions of recycled sand (0/5) have a better mechanical properties (compressive and flexural strength) compared to normal mortar. Also, the mechanical strengths of concretes made with recycled aggregates (5/12.5 mm and 12.5/20 mm), are comparable to those of conventional concrete with conventional aggregates, provided that the implementation can be improved by the addition of a superplasticizer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demolition%20wastes" title="demolition wastes">demolition wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20coarse%20aggregate" title=" recycled coarse aggregate"> recycled coarse aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability"> workability</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength" title=" mechanical strength"> mechanical strength</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%2Fwater%20absorption" title=" porosity/water absorption"> porosity/water absorption</a> </p> <a href="https://publications.waset.org/abstracts/14876/recycling-of-aggregates-from-construction-demolition-wastes-in-concrete-study-of-physical-and-mechanical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">830</span> Improvement of the Mechanical Behavior of an Environmental Concrete Based on Demolished</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Larbi%20Belagraa">Larbi Belagraa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The universal need to conserve resources, protect the environment and use energy efficiently must necessarily be felt in the field of concrete technology. The recycling of construction and demolition waste as a source of aggregates for the production of concrete has attracted growing interest from the construction industry. In Algeria, the depletion of natural deposits of aggregates and the difficulties in setting up new quarries; makes it necessary to seek new sources of supply, to meet the need for aggregates for the major projects launched by the Algerian government in the last decades. In this context, this work is a part of the approach to provide answers to concerns about the lack of aggregates for concrete. It also aims to develop the inert fraction of demolition materials and mainly concrete construction demolition waste(C&D) as a source of aggregates for the manufacture of new hydraulic concretes based on recycled aggregates. This experimental study presents the results of physical and mechanical characterizations of natural and recycled aggregates, as well as their influence on the properties of fresh and hardened concrete. The characterization of the materials used has shown that the recycled aggregates have heterogeneity, a high water absorption capacity, and a medium quality hardness. However, the limits prescribed by the standards in force do not disqualify these materials of use for application as recycled aggregate concrete type (RAC). The results obtained from the present study show that acceptable mechanical, compressive, and flexural strengths of RACs are obtained using Superplasticizer SP 45 and 5% replacement of cement with silica fume based on recycled aggregates, compared to those of natural concretes. These mechanical performances demonstrate a characteristic resistance at 28 days in compression within the limits of 30 to 40 MPa without any particular suitable technology .to be adapted in the case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregates" title="recycled aggregates">recycled aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%28RAC%29" title=" concrete(RAC)"> concrete(RAC)</a>, <a href="https://publications.waset.org/abstracts/search?q=superplasticizer" title=" superplasticizer"> superplasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/129450/improvement-of-the-mechanical-behavior-of-an-environmental-concrete-based-on-demolished" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">829</span> Microstructural Properties of the Interfacial Transition Zone and Strength Development of Concrete Incorporating Recycled Concrete Aggregate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Boudali">S. Boudali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Soliman"> A. M. Soliman</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Abdulsalam"> B. Abdulsalam</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ayed"> K. Ayed</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20E.%20Kerdal"> D. E. Kerdal</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Poncet"> S. Poncet </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the potential of using crushed concrete as aggregates to produce green and sustainable concrete. Crushed concrete was sieved to powder fine recycled aggregate (PFRA) less than 80 &micro;m and coarse recycled aggregates (CRA). Physical, mechanical, and microstructural properties for PFRA and CRA were evaluated. The effect of the additional rates of PFRA and CRA on strength development of recycled aggregate concrete (RAC) was investigated. Additionally, the characteristics of interfacial transition zone (ITZ) between cement paste and recycled aggregate were also examined. Results show that concrete mixtures made with 100% of CRA and 40% PFRA exhibited similar performance to that of the control mixture prepared with 100% natural aggregate (NA) and 40% natural pozzolan (NP). Moreover, concrete mixture incorporating recycled aggregate exhibited a slightly higher later compressive strength than that of the concrete with NA. This was confirmed by the very dense microstructure for concrete mixture incorporating recycled concrete aggregates compared to that of conventional concrete mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregates" title=" recycled concrete aggregates"> recycled concrete aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20transition%20zone" title=" interfacial transition zone"> interfacial transition zone</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20fine%20recycled%20aggregate" title=" powder fine recycled aggregate"> powder fine recycled aggregate</a> </p> <a href="https://publications.waset.org/abstracts/75148/microstructural-properties-of-the-interfacial-transition-zone-and-strength-development-of-concrete-incorporating-recycled-concrete-aggregate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">828</span> Durability Aspects of Recycled Aggregate Concrete: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smitha%20Yadav">Smitha Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Snehal%20Pathak"> Snehal Pathak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aggregate compositions in the construction and demolition (C&amp;D) waste have potential to replace normal aggregates. However, to re-utilise these aggregates, the concrete produced with these recycled aggregates needs to provide the desired compressive strength and durability. This paper examines the performance of recycled aggregate concrete made up of 60% recycled aggregates of 20 mm size in terms of durability tests namely rapid chloride permeability, drying shrinkage, water permeability, modulus of elasticity and creep without compromising the compressive strength. The experimental outcome indicates that recycled aggregate concrete provides strength and durability same as controlled concrete when processed for removal of adhered mortar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregate" title=" recycled aggregate"> recycled aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title=" shrinkage"> shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20chloride%20permeation%20test" title=" rapid chloride permeation test"> rapid chloride permeation test</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20permeability" title=" water permeability"> water permeability</a> </p> <a href="https://publications.waset.org/abstracts/80925/durability-aspects-of-recycled-aggregate-concrete-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">827</span> Experimental Study on Recycled Aggregate Pervious Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Wenzhan">Ji Wenzhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Tao"> Zhang Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Guoyou"> Li Guoyou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is the most widely used building material in the world. At the same time, the world produces a large amount of construction waste each year. Waste concrete is processed and treated, and the recycled aggregate is used to make pervious concrete, which enables the construction waste to be recycled. Pervious concrete has many advantages such as permeability to water, protection of water resources, and so on. This paper tests the recycled aggregate obtained by crushing high-strength waste concrete (TOU) and low-strength waste concrete (PU), and analyzes the effect of porosity, amount of cement, mineral admixture and recycled aggregate on the strength of permeable concrete. The porosity is inversely proportional to the strength, and the amount of cement used is proportional to the strength. The mineral admixture can effectively improve the workability of the mixture. The quality of recycled aggregates had a significant effect on strength. Compared with concrete using &quot;PU&quot; aggregates, the strength of 7d and 28d concrete using &quot;TOU&quot; aggregates increased by 69.0% and 73.3%, respectively. Therefore, the quality of recycled aggregates should be strictly controlled during production, and the mix ratio should be designed according to different use environments and usage requirements. This test prepared a recycled aggregate permeable concrete with a compressive strength of 35.8 MPa, which can be used for light load roads and provides a reference for engineering applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregate" title="recycled aggregate">recycled aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=permeable%20concrete" title=" permeable concrete"> permeable concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a> </p> <a href="https://publications.waset.org/abstracts/85903/experimental-study-on-recycled-aggregate-pervious-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">826</span> Effect of Concrete Waste Quality on the Compressive Strength of Recycled Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kebaili%20Bachir">Kebaili Bachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reuse of concrete waste as a secondary aggregate could be an efficient solution for sustainable development and long-term environmental protection. The variable nature of waste concrete, with various compressive strengths, can have a negative effect on the final compressive strength of recycled concrete. Accordingly, an experimental test programme was developed to evaluate the effect of parent concrete qualities on the performance of recycled concrete. Three grades with different compressive strengths 10MPa, 20MPa, and 30MPa were considered in the study; moreover, an unknown compressive strength was introduced as well. The trial mixes used 40% secondary aggregates (both course and fine) and 60% of natural aggregates. The compressive strength of the test concrete decrease between 15 and 25% compared to normal concrete with no secondary aggregates. This work proves that the strength properties of the parent concrete have a limited effect on the compressive strength of recycled concrete. Low compressive strength parent concrete when crushed generate a high percentage of recycled coarse aggregates with the less attached mortar and give the same compressive strength as an excellent parent concrete. However, the decrease in compressive strength can be mitigated by increasing the cement content 4% by weight of recycled aggregates used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive" title="compressive">compressive</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled" title=" recycled"> recycled</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/86475/effect-of-concrete-waste-quality-on-the-compressive-strength-of-recycled-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">825</span> Substitution of Natural Aggregates by Crushed Concrete Waste in Concrete Products Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jozef%20Junak">Jozef Junak</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadezda%20Stevulova"> Nadezda Stevulova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is aimed to the use of different types of industrial wastes in concrete production. From examined waste (crushed concrete waste) our tested concrete samples with dimension 150 mm were prepared. In these samples, fractions 4/8 mm and 8/16 mm by recycled concrete aggregate with a range of variation from 0 to 100% were replaced. Experiment samples were tested for compressive strength after 2, 7, 14 and 28 days of hardening. From obtained results it is evident that all samples prepared with washed recycled concrete aggregates met the requirement of standard for compressive strength of 20 MPa already after 14 days of hardening. Sample prepared with recycled concrete aggregates (4/8 mm: 100% and 8/16 mm: 60%) reached 101% of compressive strength value (34.7 MPa) after 28 days of hardening in comparison with the reference sample (34.4 MPa). The lowest strength after 28 days of hardening (27.42 MPa) was obtained for sample consisting of recycled concrete in proportion of 40% for 4/8 fraction and 100% for 8/16 fraction of recycled concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregate" title="recycled concrete aggregate">recycled concrete aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=re-use" title=" re-use"> re-use</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability"> workability</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/28665/substitution-of-natural-aggregates-by-crushed-concrete-waste-in-concrete-products-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">824</span> Impact of Locally Available Recycled Concrete Aggregate on Concrete’s Mechanical and Durability Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20Bu%C5%A1i%C4%87">Robert Bušić</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Mili%C4%8Devi%C4%87"> Ivana Miličević</a>, <a href="https://publications.waset.org/abstracts/search?q=Larisa%20%C5%A0arga%C4%8D"> Larisa Šargač</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The construction industry generates a large amount of waste, which poses a challenge for disposal and often requires significant areas for landfill. Therefore, recycling construction waste has become imperative. This study focuses on investigating the use of locally available recycled concrete as a substitute for traditional aggregates and analyzing the impact of this change on the mechanical and durability properties of concrete. The research begins with the crushing of locally available waste concrete, followed by sieving and sorting the aggregate into different fractions. Four concrete mix designs were created, with one serving as a reference mixture without recycled aggregate, while the remaining three mixes included recycled aggregate in varying proportions. The experimental part includes testing the key properties of concrete in both fresh and hardened states, including slump and flow tests, compressive strength, static modulus of elasticity, and shrinkage of the concrete, with the aim of assessing the impact of locally available recycled aggregate on concrete properties. By using experimental testing methods, the results were compared with conventional concrete, providing deeper insights into the potential advantages and disadvantages of using locally available recycled concrete in various construction projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregate" title=" recycled aggregate"> recycled aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/194656/impact-of-locally-available-recycled-concrete-aggregate-on-concretes-mechanical-and-durability-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">823</span> Investigating the Properties of Asphalt Concrete Containing Recycled Fillers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Taherkhani">Hasan Taherkhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasingly accumulation of the solid waste materials has become a major environmental problem of communities. In addition to the protection of environment, the recycling and reusing of the waste materials are financially beneficial. Waste materials can be used in highway construction. This study aimed to investigate the applicability of recycled concrete, asphalt and steel slag powder, as a replacement of the primary mineral filler in asphalt concrete has been investigated. The primary natural siliceous aggregate filler, as control, has been replaced with the secondary recycled concrete, asphalt and steel slag powders, and some engineering properties of the mixtures have been evaluated. Marshal Stability, flow, indirect tensile strength, moisture damage, static creep and volumetric properties of the mixtures have been evaluated. The results show that, the Marshal Stability of the mixtures containing recycled powders is higher than that of the control mixture. The flow of the mixtures containing recycled steel slag is lower, and that of the mixtures containing recycled asphalt and cement concrete powder is found to be higher than that of the control mixture. It is also found that the resistance against moisture damage and permanent deformation of the mixture can be improved by replacing the natural filler with the recycled powders. The volumetric properties of the mixtures are not significantly influenced by replacing the natural filler with the recycled powders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=filler" title="filler">filler</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20slag" title=" steel slag"> steel slag</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete" title=" recycled concrete"> recycled concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20asphalt%20concrete" title=" recycled asphalt concrete"> recycled asphalt concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20damage" title=" moisture damage"> moisture damage</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a> </p> <a href="https://publications.waset.org/abstracts/71186/investigating-the-properties-of-asphalt-concrete-containing-recycled-fillers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">822</span> Use of Recycled Aggregates in Current Concretes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Krizova">K. Krizova</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Hela"> R. Hela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper a summary of the results of concretes with partial substitution of natural aggregates with recycled concrete is solved. Design formulas of the concretes were characterised with 20, 40 and 60% substitution of natural 8-16 mm fraction aggregates with a selected recycled concrete of analogous coarse fractions. With the product samples an evaluation of coarse fraction aggregates influence on fresh concrete consistency and concrete strength in time was carried out. The results of concretes with aggregates substitution will be compared to reference formula containing only the fractions of natural aggregates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete" title="recycled concrete">recycled concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20aggregates" title=" natural aggregates"> natural aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20concrete" title=" fresh concrete"> fresh concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=properties%20of%20concrete" title=" properties of concrete"> properties of concrete</a> </p> <a href="https://publications.waset.org/abstracts/16112/use-of-recycled-aggregates-in-current-concretes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">821</span> Engineering Review of Recycled Concrete Production for Structural and Non-Structural Applications (Green Concrete)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Rouhi%20Belvirdi">Hadi Rouhi Belvirdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing demand for sustainable development, recycled materials are receiving more attention in construction projects. To promote sustainable development, this review article evaluates the feasibility of using recycled concrete in construction projects from an economic and environmental perspective. The results show that making concrete using recycled concrete is a suitable strategy for sustainable development. A complete examination of the physical and chemical properties of these recycled materials also provides important information about their suitability for use in the construction industry. Most of the studies do not show surprising results of the compressive or bending strength of these materials, and only the aspect of sustainable development of these materials is of interest. Their application can be investigated more in masonry and joinery works, but among them, some studies sometimes obtained more compressive and bending strength than the control sample, which can be used in concrete structures. Most of the cases introduced and discussed in this study can be implemented and help the country and the people of Iran preserve the environment and discuss sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20recycling" title="environmental recycling">environmental recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20materials" title=" recycled materials"> recycled materials</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20management" title=" construction management"> construction management</a> </p> <a href="https://publications.waset.org/abstracts/192244/engineering-review-of-recycled-concrete-production-for-structural-and-non-structural-applications-green-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">820</span> Stabilization of Fly Ash Slope Using Plastic Recycled Polymer and Finite Element Analysis Using Plaxis 3D</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tushar%20Vasant%20Salunkhe">Tushar Vasant Salunkhe</a>, <a href="https://publications.waset.org/abstracts/search?q=Sariput%20M.%20Nawghare"> Sariput M. Nawghare</a>, <a href="https://publications.waset.org/abstracts/search?q=Maheboobsab%20B.%20Nadaf"> Maheboobsab B. Nadaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushovan%20Dutta"> Sushovan Dutta</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20N.%20Mandal"> J. N. Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The model tests were conducted in the laboratory without and with plastic recycled polymer in fly ash steep slopes overlaying soft foundation soils like fly ash and power soil in order to check the stability of steep slope. In this experiment, fly ash is used as a filling material, and Plastic Recycled Polymers of diameter = 3mm and length = 4mm were made from the waste plastic product (lower grade plastic product). The properties of fly ash and plastic recycled polymers are determined. From the experiments, load and settlement have measured. From these data, load–settlement curves have been reported. It has been observed from test results that the load carrying capacity of mixture fly ash with Plastic Recycled Polymers slope is more than that of fly ash slope. The deformation of Plastic Recycled Polymers slope is slightly more than that of fly ash slope. A Finite Element Method (F.E.M.) was also evaluated using PLAXIS 3D version. The failure pattern, deformations and factor of safety are reported based on analytical programme. The results from experimental data and analytical programme are compared and reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factor%20of%20safety" title="factor of safety">factor of safety</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method%20%28FEM%29" title=" finite element method (FEM)"> finite element method (FEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20recycled%20polymer" title=" plastic recycled polymer"> plastic recycled polymer</a> </p> <a href="https://publications.waset.org/abstracts/23379/stabilization-of-fly-ash-slope-using-plastic-recycled-polymer-and-finite-element-analysis-using-plaxis-3d" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">819</span> Improvement of Performance for R. C. Beams Made from Recycled Aggregate by Using Non-Traditional Admixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Yehia">A. H. Yehia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rashwan"> M. M. Rashwan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Assaf"> K. A. Assaf</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Abd%20el%20Samee"> K. Abd el Samee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to use an environmental, cheap; organic non-traditional admixture to improve the structural behavior of sustainable reinforced concrete beams contains different ratios of recycled concrete aggregate. The used admixture prepared by using wastes from vegetable oil industry. Under and over reinforced concrete beams made from natural aggregate and different ratios of recycled concrete aggregate were tested under static load until failure. Eight beams were tested to investigate the performance and mechanism effect of admixture on improving deformation characteristics, modulus of elasticity and toughness of tested beams. Test results show efficiency of organic admixture on improving flexural behavior of beams contains 20% recycled concrete aggregate more over the other ratios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deflection" title="deflection">deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=non-traditional%20admixture" title=" non-traditional admixture"> non-traditional admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregate" title=" recycled concrete aggregate"> recycled concrete aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=under%20and%20over%20reinforcement" title=" under and over reinforcement"> under and over reinforcement</a> </p> <a href="https://publications.waset.org/abstracts/7134/improvement-of-performance-for-r-c-beams-made-from-recycled-aggregate-by-using-non-traditional-admixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">818</span> Effect of Hollow and Solid Recycled-Poly Fibers on the Mechanical and Morphological Properties of Short-Fiber-Reinforced Polypropylene Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kerakra">S. Kerakra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bouhelal"> S. Bouhelal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Poncot"> M. Poncot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to give a comprehensive overview of the effect of short hollow and solid recycled polyethylene terephthalate (PET) fibers in different breaking tenacities reinforced isotactic polypropylene (iPP) composites on the mechanical and morphological properties. Composites of iPP/3, 7and 10 wt% of solid and hollow recycled PET fibers were prepared by batched melt mixing in a Brabender. The incorporation of solid recycled-PET fibers in isotactic polypropylene increase Young’s modulus of iPP relatively, meanwhile it increased proportionally with hollow fibers content. An improvement of the storage modulus, and a shift up in glass transition temperatures of hollow fibers/iPP composites was determined by DMA results. The morphology of composites was determined by scanning electron microscope (SEM) and optical polarized microscopy (OM) showing a good dispersion of the hollow fibers. Also, their flexible aspect (folding, bending) was observed. But, one weak interaction between the polymer/fibers phases was shown. Polymers can be effectively reinforced with short hollow recycled PET fibers due to their characteristics like recyclability, lightweight and the flexible aspect, which allows the absorbance of the energy of a striker with a minimum damage of the matrix. Aiming to improve the affinity matrix–recycled hollow PET fibers, it is suggested the addition of compatibilizers, as maleic anhydride. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotactic%20polypropylene" title="isotactic polypropylene">isotactic polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20recycled%20PET%20fibers" title=" hollow recycled PET fibers"> hollow recycled PET fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20recycled-PET%20fibers" title=" solid recycled-PET fibers"> solid recycled-PET fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20fiber" title=" short fiber"> short fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a> </p> <a href="https://publications.waset.org/abstracts/87527/effect-of-hollow-and-solid-recycled-poly-fibers-on-the-mechanical-and-morphological-properties-of-short-fiber-reinforced-polypropylene-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">817</span> The Efferent of Different Levels of Recycled Soybean Oil(RSO) on Growth and Performance of Broilers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Babak%20Asadi">Seyed Babak Asadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this experiment the effect of recycled soybean oil (RSO) on the growth and performance carcass of broiler was investigated. The percentages of recycled soybean oil (RSO) used in this experiment were 0, 2, 4, 6 and 8. In this regard, 300 one-day-old broilers were selected randomly consisting of five treatments and three replicates(20 chickens per replicate). The chicks were kept in an accumulated manner for the first week, then divided between treatments and kept until they reached the age of 42 days. Body weight at 21 and 42, weight gain, food intake and food conversion ratio in starter (0-21 d), finisher (21-42 d) and overall were measured. At the end of the experiment (42 days-old) 2 chicks from each replicate which had the nearest weight to the average group in their group were selected, slaughtered and different parts of their carcass were weight separately. The result showed that the rate of feed intake and feed conversion coefficient have significantly increased with higher levels of recycled soybean oil. There was not a significant different between experimental groups for liver, heart, intestine and the weight of carcass. Results from this experiment showed that it is possible to use recycled soybean oil for up to 8 percent of food ration for broiler chicks without any significant effects on carcass quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler" title="broiler">broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20soybean%20oil%20%28RSO%29" title=" recycled soybean oil (RSO)"> recycled soybean oil (RSO)</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance "> performance </a> </p> <a href="https://publications.waset.org/abstracts/28250/the-efferent-of-different-levels-of-recycled-soybean-oilrso-on-growth-and-performance-of-broilers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">816</span> Use of Fine Recycled Aggregates in Normal Concrete Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vignesh%20Pechiappan%20Ayyathurai">Vignesh Pechiappan Ayyathurai</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20Limbachiya"> Mukesh Limbachiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsein%20Kew"> Hsein Kew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a growing interest in using recycled, secondary use and industrial by product materials in high value commercial applications. Potential high volume applications include use of fine aggregate in flowable fill or as a component in manufactured aggregates. However, there is much scientific, as well as applied research needed in this area due to lack to availability of data on the mechanical and environmental properties of elements or products produced using fine recycled aggregates. The principle objectives of this research are to synthesize existing data on the beneficial reuse of fine recycled materials and to develop extensive testing programme for assessing and establishing engineering and long term durability properties of concrete and other construction products produced using such material for use in practical application widely. This paper is a research proposal for PhD admission. The proposed research aims to supply the necessary technical, as well as practical information on fine recycled aggregate concrete to the construction industry for promoting its wider use within the construction industry. Furthermore, to disseminate research outcomes to the local authorities for consideration of use of fine recycled aggregate concrete in various applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FRA" title="FRA">FRA</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20aggregate" title=" fine aggregate"> fine aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a> </p> <a href="https://publications.waset.org/abstracts/29998/use-of-fine-recycled-aggregates-in-normal-concrete-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">815</span> Effect of High Temperature on Residual Mechanical and Physical Properties of Brick Aggregate Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samia%20Hachemi">Samia Hachemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhafid%20Ounis"> Abdelhafid Ounis</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Heriheri"> W. Heriheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an experimental investigation of high temperatures applied to normal and high performance concrete made with natural coarse aggregates. The experimental results of physical and mechanical properties were compared with those obtained with recycled brick aggregates produced by replacing 30% of natural coarse aggregates by recycled brick aggregates. The following parameters: compressive strength, concrete mass loss, apparent density and water porosity were examined in this experiment. The results show that concrete could be produced by using recycled brick aggregates and reveals that at high temperatures recycled aggregate concrete preformed similar or even better than natural aggregate concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20temperature" title="high temperature">high temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20loss" title=" mass loss"> mass loss</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20brick%20aggregate" title=" recycled brick aggregate"> recycled brick aggregate</a> </p> <a href="https://publications.waset.org/abstracts/37547/effect-of-high-temperature-on-residual-mechanical-and-physical-properties-of-brick-aggregate-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">814</span> Procedure for Impact Testing of Fused Recycled Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Halley">David Halley</a>, <a href="https://publications.waset.org/abstracts/search?q=Tyra%20Oseng-Rees"> Tyra Oseng-Rees</a>, <a href="https://publications.waset.org/abstracts/search?q=Luca%20Pagano"> Luca Pagano</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20A%20Ferriz-Papi"> Juan A Ferriz-Papi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recycled glass material is made from 100% recycled bottle glass and consumes less energy than re-melt technology. It also uses no additives in the manufacturing process allowing the recycled glass material, in principal, to go back to the recycling stream after end-of-use, contributing to the circular economy with a low ecological impact. The aim of this paper is to investigate the procedure for testing the recycled glass material for impact resistance, so it can be applied to pavements and other surfaces which are at risk of impact during service. A review of different impact test procedures for construction materials was undertaken, comparing methodologies and international standards applied to other materials such as natural stone, ceramics and glass. A drop weight impact testing machine was designed and manufactured in-house to perform these tests. As a case study, samples of the recycled glass material were manufactured with two different thicknesses and tested. The impact energy was calculated theoretically, obtaining results with 5 and 10 J. The results on the material were subsequently discussed. Improvements on the procedure can be made using high speed video technology to calculate velocity just before and immediately after the impact to know the absorbed energy. The initial results obtained in this procedure were positive although repeatability needs to be developed to obtain a correlation of results and finally be able to validate the procedure. The experiment with samples showed the practicality of this procedure and application to the recycled glass material impact testing although further research needs to be developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20materials" title="construction materials">construction materials</a>, <a href="https://publications.waset.org/abstracts/search?q=drop%20weight%20impact" title=" drop weight impact"> drop weight impact</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20testing" title=" impact testing"> impact testing</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20glass" title=" recycled glass"> recycled glass</a> </p> <a href="https://publications.waset.org/abstracts/79723/procedure-for-impact-testing-of-fused-recycled-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">813</span> Sustainable Reinforcement: Investigating the Mechanical Properties of Concrete with Recycled Aggregates and Sisal Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salahaldein%20Alsadey">Salahaldein Alsadey</a>, <a href="https://publications.waset.org/abstracts/search?q=Issa%20Amaish"> Issa Amaish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recycled aggregates (RA) have the potential to compromise concrete performance, contributing to issues such as reduced strength and increased susceptibility to cracking. This study investigates the impact of sisal fiber (SF) on the mechanical properties of concrete, with the objective of utilizing sisal fibers as a reinforcing element in concrete compositions containing natural aggregate and varying percentages (25%, 50%, and 75%) of coarse recycled aggregate replacement. The investigation aims to discern the positive and negative effects on compressive and flexural strength, thereby assessing the viability of sisal fiber-reinforced recycled concrete in comparison to conventional concrete composed of natural aggregate without sisal fiber. Test results revealed that concrete samples incorporating sisal fiber exhibited elevated compressive and flexural strength. Comparative analysis of these strength values was conducted with reference to samples devoid of sisal fiber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20construction" title="sustainable construction">sustainable construction</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20materials" title=" construction materials"> construction materials</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregate" title=" recycled aggregate"> recycled aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=sisal%20fibers" title=" sisal fibers"> sisal fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20concrete" title=" eco-friendly concrete"> eco-friendly concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber%20composites" title=" natural fiber composites"> natural fiber composites</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20materials" title=" recycled materials"> recycled materials</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20waste%20management" title=" construction waste management"> construction waste management</a> </p> <a href="https://publications.waset.org/abstracts/177067/sustainable-reinforcement-investigating-the-mechanical-properties-of-concrete-with-recycled-aggregates-and-sisal-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">812</span> Improvement of Mechanical Properties of Recycled High-Density and Low-Density Polyethylene Blends through Extrusion, Reinforcement, and Compatibilization Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Kharmoudi">H. Kharmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Elkoun"> S. Elkoun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Robert"> M. Robert</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Diez"> C. Diez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the literature, the elaboration of polymer blends based on recycled HDPE and LDPE is challenging because of the non-miscibility. Ensuring the compatibility of blends is one of the challenges; this study will discuss the different methods to be adopted to assess the compatibility of polymer blends. The first one aims to act on the extrusion process while varying the speed, flow rate, and residence time. The second method has as its purpose the use of grafted anhydride maleic elastomer chains as a compatibilizer. The results of the formulations will be characterized by means of differential scanning calorimetric (DSC) as well as mechanical tensile and bending tests to assess whether pipes made from recycled polyethylene meet the standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20HDPE" title="recycled HDPE">recycled HDPE</a>, <a href="https://publications.waset.org/abstracts/search?q=LDPE" title=" LDPE"> LDPE</a>, <a href="https://publications.waset.org/abstracts/search?q=compatibilizer" title=" compatibilizer"> compatibilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20tests" title=" mechanical tests"> mechanical tests</a> </p> <a href="https://publications.waset.org/abstracts/143628/improvement-of-mechanical-properties-of-recycled-high-density-and-low-density-polyethylene-blends-through-extrusion-reinforcement-and-compatibilization-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">811</span> Recycled Asphalt Pavement with Warm Mix Additive for Sustainable Road Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meor%20Othman%20Hamzah">Meor Othman Hamzah</a>, <a href="https://publications.waset.org/abstracts/search?q=Lillian%20Gungat"> Lillian Gungat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Izzi%20Md.%20Yusoff"> Nur Izzi Md. Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Valentin"> Jan Valentin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent hike in raw materials costs and the quest for preservation of the environment has prompted asphalt industries to adopt greener road construction technology. This paper presents a study on such technology by means of asphalt recycling and use of warm mix asphalt (WMA) additive. It evaluates the effects of a WMA named RH-WMA on binder rheological properties and asphalt mixture performance. The recycled asphalt, obtained from local roads, was processed, fractionated, and incorporated with virgin aggregate and binder. For binder testing, the recycled asphalt was extracted and blended with virgin binder. The binder and mixtures specimen containing 30 % and 50 % recycled asphalt contents were mixed with 3 % RH-WMA. The rheological properties of the binder were evaluated based on fundamental, viscosity, and frequency sweep tests. Indirect tensile strength and resilient modulus tests were carried out to assess the mixture&rsquo;s performances. The rheological properties and strength performance results showed that the addition of RH-WMA slightly reduced the binder and mixtures stiffness. The percentage of recycled asphalt increased the stiffness of binder and mixture, and thus improves the resistance to rutting. Therefore, the integration of recycled asphalt and RH-WMA can be an alternative material for road sustainable construction for countries in the tropics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20asphalt" title="recycled asphalt">recycled asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=warm%20mix%20additive" title=" warm mix additive"> warm mix additive</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological" title=" rheological"> rheological</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20performance" title=" mixture performance"> mixture performance</a> </p> <a href="https://publications.waset.org/abstracts/36104/recycled-asphalt-pavement-with-warm-mix-additive-for-sustainable-road-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">810</span> Comparative Analysis of Three Types of Recycled Aggregates and its Use in Masonry Mortar Fabrication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariano%20Gonzalez%20Cortina">Mariano Gonzalez Cortina</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Saiz%20Martinez"> Pablo Saiz Martinez</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20%20Fernandez%20Martinez"> Francisco Fernandez Martinez</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Rodriguez%20Sanchez"> Antonio Rodriguez Sanchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction sector incessant activity of the last years preceding the crisis has originated a high waste generation and an increased use of raw materials. The main aim of this research is to compare three types of recycled aggregates and the feasibility to incorporate them into masonry mortar fabrication. The tests were developed using two types of binders: CEM II/B-L 32.5 N and CEM IV/B (V) 32.5 N. 50%, 75% and 100% of natural sand were replaced with three types of recycled aggregates. Cement-to-aggregate by dry weight proportions were 1:3 and 1:4. Physical and chemical characterization of recycled aggregates showed continues particle size distribution curve, lower density and higher absorption, which was the reason to use additive to obtain required mortar consistency. Main crystalline phases determined in the X-Ray diffraction test were calcite, quartz, and gypsum. Performed tests show that cement-based mortars fabricated with CEM IV/B (V) 32. 5 N can incorporate recycled aggregates coming from ceramic, concrete and mixed recycling processes, using 1:3 and 1:4 cement-to-aggregate proportions, complying with the limits established by the Spanish standards. It was concluded that recycled mortar coming from concrete recycling process is the one which presents better characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title="construction and demolition waste">construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20mortar" title=" masonry mortar"> masonry mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregate" title=" recycled aggregate"> recycled aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20treatment" title=" waste treatment"> waste treatment</a> </p> <a href="https://publications.waset.org/abstracts/52696/comparative-analysis-of-three-types-of-recycled-aggregates-and-its-use-in-masonry-mortar-fabrication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">809</span> Chemical and Mechanical Characterization of Composites Reinforced with Coconut Fiber in the Polymeric Matrix of Recycled PVC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luiz%20C.%20G.%20Pennafort%20Jr.">Luiz C. G. Pennafort Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20de%20S.%20Rios"> Alexandre de S. Rios</a>, <a href="https://publications.waset.org/abstracts/search?q=Enio%20P.%20de%20Deus"> Enio P. de Deus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the search for materials that replace conventional polymers in order to preserve natural resources, combined with the need to minimize the problems arising from environmental pollution generated by plastic waste, comes the recycled materials biodegradable, especially the composites reinforced with natural fibers. However, such materials exhibit properties little known, requiring studies of manufacturing methods and characterization of these composites. This article shows informations about preparation and characterization of a composite produced by extrusion, which consists of recycled PVC derived from the recycling of materials discarded, added of the micronized coconut fiber. The recycled PVC with 5% of micronized fiber were characterized by X-ray diffraction, thermogravimetric, differential scanning calorimetry, mechanical analysis and optical microscopy. The use of fiber in the composite caused a decrease in its specific weight, due to the lower specific weight of fibers and the appearance of porosity, in addition to the decrease of mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20PVC" title="recycled PVC">recycled PVC</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20fiber" title=" coconut fiber"> coconut fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a> </p> <a href="https://publications.waset.org/abstracts/27634/chemical-and-mechanical-characterization-of-composites-reinforced-with-coconut-fiber-in-the-polymeric-matrix-of-recycled-pvc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycled%20felt&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycled%20felt&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycled%20felt&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycled%20felt&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycled%20felt&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycled%20felt&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycled%20felt&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycled%20felt&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycled%20felt&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycled%20felt&amp;page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycled%20felt&amp;page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycled%20felt&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10